
Perspective

Current Practice in Software Development for
Computational Neuroscience and How to Improve It
Marc-Oliver Gewaltig1*, Robert Cannon2

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2 Textensor Ltd., Edinburgh, United Kingdom

Abstract: Almost all research
work in computational neurosci-
ence involves software. As re-
searchers try to understand ever
more complex systems, there is a
continual need for software with
new capabilities. Because of the
wide range of questions being
investigated, new software is often
developed rapidly by individuals or
small groups. In these cases, it can
be hard to demonstrate that the
software gives the right results.
Software developers are often
open about the code they produce
and willing to share it, but there is
little appreciation among potential
users of the great diversity of
software development practices
and end results, and how this
affects the suitability of software
tools for use in research projects.
To help clarify these issues, we
have reviewed a range of software
tools and asked how the culture
and practice of software develop-
ment affects their validity and
trustworthiness. We identified
four key questions that can be
used to categorize software pro-
jects and correlate them with the
type of product that results. The
first question addresses what is
being produced. The other three
concern why, how, and by whom
the work is done. The answers to
these questions show strong cor-
relations with the nature of the
software being produced, and its
suitability for particular purposes.
Based on our findings, we suggest
ways in which current software
development practice in computa-
tional neuroscience can be im-
proved and propose checklists to
help developers, reviewers, and
scientists to assess the quality of
software and whether particular
pieces of software are ready for
use in research.

Introduction

Like most areas of scientific investigation,

neuroscience is increasingly dependent on

software. Software is used for recording and

analyzing experimental data. It is also used

in computational models that make it

possible to perform detailed quantitative

studies of phenomena that are too intricate

or complex to be elucidated by abstract

reasoning or mathematics alone. In some

cases, existing tools are perfectly adequate.

In others, the only way to provide required

functionality is to write the software from

scratch. Many studies involve a mix of the

two approaches: existing tools are com-

bined with custom software implementing

new models, or combining old tools in new

ways. This leads to continual production of

software.

Despite great diversity in the nature of

the software created, and in the reasons for

it being written, publications involving the

use of simulation software tend to treat it

all in the same way. This can lead to

misunderstanding and disappointment

when it turns out that software used for a

particular study is not sufficiently well

written, or well documented to be used or

extended by others.

The phenomenon is not unique to

neuroscience. In proposing guidelines for

scientific software development, Baxter

et al. [1] wrote of their

‘‘…collective, heartbreaking experiences

watching wheels reinvented, finding dead

or unusable programs, and, worse, inher-

iting rancid and labyrinthine code bases.’’

Although this is clearly disappointing, it

may also be inevitable. Of course, it is

possible to develop software in a highly

structured and disciplined way, in which

all the output is of a very high standard.

However, this typically requires large

teams with rather low output per devel-

oper. In science, developers often work

alone, and are learning their skills as they

go along. In these conditions, it is natural

that the results are voluminous but of very

variable quality.

The greatest challenge with this kind of

disparate, and ad hoc, development model

is to ensure that the software used in

research studies is actually doing what the

developers intended. When Donoho et al.

[2] examined the methods used to validate

scientific software they found that:

‘‘The vast body of results being generated

by current computational science practice

suffer a large and growing credibility gap: it

is impossible to verify most of the

computational results shown in conferences

and papers.’’

They went on to conclude that:

‘‘[C]urrent computational science practice

does not generate routinely verifiable

knowledge.’’

These issues came to media prominence

in 2009, with the exposure of source code

from the University of East Anglia’s

Climate Research Unit, used for process-

ing global temperature data. The code

contained frank, and frequently critical,

comments from a software developer.

When questioned by the press, profession-

al software engineers expressed views

ranging from resigned acknowledgment

Citation: Gewaltig M-O, Cannon R (2014) Current Practice in Software Development for Computational
Neuroscience and How to Improve It. PLoS Comput Biol 10(1): e1003376. doi:10.1371/journal.pcbi.1003376

Editor: Sean Hill, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Published January 23, 2014

Copyright: � 2014 Gewaltig, Cannon. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: The authors received no specific funding for this manuscript.

Competing Interests: I have read the journal’s policy and have the following conflicts: Marc-Oliver Gewaltig
is a paid employee of École Polytechnique Fédérale de Lausanne. Robert Cannon is a paid employee of
Textensor Inc.

* E-mail: marc-oliver.gewaltig@epfl.ch

PLOS Computational Biology | www.ploscompbiol.org 1 January 2014 | Volume 10 | Issue 1 | e1003376

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

to outright incredulity at the state of the

code [3]. In the light of findings by

Donoho et al. [2] and Baxter et al. [1],

this situation will be unsurprising to many

scientific software developers. They are

likely to be relieved, however, that their

own code is not subject to such scrutiny,

and that it is not being used to generate

data that informs global decisions.

There are numerous documented cases

where scientific software has fallen short,

leading to erroneous conclusions with

significant consequences. For example,

Post and Votta [4] report that the United

States withdrew from the International

Thermonuclear Experimental Reactor

(ITER) project in 1998 on the basis of

preliminary and, as was later found,

incorrect simulations. The United States

is currently trying to rejoin ITER. More

recently, Miller [5] reported in Science that

five high-profile articles (three in Science

and two in other journals) had to be

retracted because of an error in analysis

software that the authors had ‘‘inherited’’

from another laboratory. It seems likely

that these documented cases only scratch

the surface of a much bigger problem, and

that the majority of errors due to faulty

and unreliable software remain undetect-

ed. This should come as little surprise,

given that much scientific software is

written by scientists with little or no

training or experience in software devel-

opment [6].

Many of the reported problems caused

by software faults come from the physical

and engineering sciences rather than the

life sciences. This could be because these

disciplines have a longer history of de-

pending on computational results, a

stronger culture of validation and error

reporting, or simply a different approach

to computational studies. However, com-

putational work is now becoming very

important in the life sciences as well—

with examples of use ranging from

commercial and large-scale community

projects in systems biology, to the single-

person projects that are so common in

neuroscience. In this paper, therefore, we

will focus on neuroscience software, and

on the way the culture and practice of

software development affects the validity

and trustworthiness of the results it

generates.

The most important results of our study

are not our assessments of individual

software projects, but the assessment

criteria we have developed. We believe

that these criteria can be used to under-

stand why some projects yield more useful

tools than others, and also to guide

expectations about the results of software

development activities. This kind of anal-

ysis may, in turn, help funders and

researchers to decide how best to get the

software they need, and make it easier for

developers to decide which projects to

work on. Our criteria could also help

explain decisions about research funding,

and the ease or difficulty of publishing a

particular paper—phenomena that often

puzzle researchers. Even if reviewers never

use exactly the criteria we are proposing,

we suggest that the underlying issues

contribute to their decisions.

Methods

The best starting point for a study of

current practice in software development

in computational neuroscience is a repre-

sentative sample of software tools. We

therefore reviewed two lists: one covering

modeling tools from the INCF Software

Center, the other a list of simulation tools

curated by Jim Perlewitz [7]. To be listed,

tools must have been proposed by their

developers or have achieved enough

visibility to be added by third parties. This

means that the two lists on their own

present a representative sample of the

software currently available to computa-

tional neuroscientists. To complete the

picture, we also examined a sample of

projects from open software repositories,

including SourceForge, GitHub, and Bit-

Bucket.

For our review, we used information

about each tool’s update history, available

versions, and current status, together with

any record of publications using the tool.

The majority of this information came

from the tool’s primary website and

source-code repository. The review was

somewhat subjective and almost certainly

incomplete. However, it fulfilled our

purpose of identifying the range of tools

available and establishing ways of catego-

rizing them that could be useful in future

evaluations. For this reason, we have not

listed all the tools reviewed, or given our

observations for each individual case.

Instead, we present general observations

that emerged from the study, using some

of the tools we examined to illustrate our

points.

Although we have attempted to look at

each tool objectively, it is worth stressing

that our study is intended to offer new

perspectives, rather than a dispassionate,

empirical study of a field in which we are

deeply involved. As such, it is informed by

our own experience as readers and review-

ers of software papers, and by anecdotal

accounts of problems with scientific soft-

ware projects over many years.

Results

We considered about 50 software pro-

jects, including subcellular simulators,

simulators for large networks, and pro-

grams for interactive investigation of

complex dynamical systems. All the tools

were developed by or for neuroscience

researchers, and were publicly available.

About half of them appeared to be still

maintained. Of the rest, half had clearly

been abandoned. The remainder ap-

peared to be inactive or dormant.

The criteria we found most useful can

be succinctly summarized under four

headings: ‘‘What,’’ ‘‘Why,’’ ‘‘Who,’’ and

‘‘How.’’

‘‘What?’’: Types of Scientific Software
The ‘‘What’’ axis concerns the end

product of the development effort. How

should we classify a particular software

tool? What should we expect from it? Is it

like a commercial product, or just some

sample source code that may prove useful?

Both kinds of software can benefit the

community in their own way. However,

researchers who expect one kind of

software are disappointed when they find

the other.

We suggest that scientific software can

be split into four broad categories. First,

there are exercises: the software produced

by developers as a way of acquiring skills

and testing new ideas. Second, there are

the reference implementations they use to

back up new models or algorithms they

are publishing—software that has very

different requirements from tools intended

for regular use by third parties. Third,

there are private tools written to address a

particular problem and normally used

only by a single individual or group.

Finally, there are public tools: fully fledged

software products intended for public use.

In what follows, we will consider each of

these four categories in turn.

1. Exercises and proof-of-concept

software. Much research software is

written to test an algorithm or to advance

a researcher’s understanding of the ideas or

data involved. In these conditions, there is

little need to impose a clear separation

between the model and the implementation

or to write user documentation. The most

important characteristic of this category of

work is that the final outcome is not the

software itself. Where the software is

created as a training exercise, the

outcome is the trained individual. Where

the software is created to explore or

develop an algorithm, the algorithm

should stand without reference to any

specific implementation.

PLOS Computational Biology | www.ploscompbiol.org 2 January 2014 | Volume 10 | Issue 1 | e1003376

2. Reference implementations. Good

examples of reference implementations can

be found in the supplementary data to the

classic Izhikevich neuron model [8] or the

original publication of the Mersenne-Twister

algorithm for random number generation

[9]. One of the main characteristics of a

reference implementation is that the source

code should favor readability by other

developers over computational efficiency.

As such it does not need the kind of

logging, error handling, or user

documentation called for in production

software. Indeed, such features may

obscure the core algorithm. A concise and

minimal implementation is easier to read

and easier to incorporate in other tools,

which provide their own logging and error

checking.

3. Private tools. Many research

groups develop and maintain private

tools for simulation and for data analysis.

Such tools are frequently directed at very

specific problems, and changes to the

software may be required for each new

problem. Knowledge about what the

software does and how it is used may be

largely unwritten and passed directly

between users. The benefit of such

private tools is that the development

effort required is typically much lower

than for general-purpose solutions. When

the research performed with such a tool is

published, the software is typically

described in the methods section, rather

than being the focus of the publication.

Descriptions are generally brief and do not

incorporate much information about the

testing and validation of the software.

4. Public tools. This category is

reserved for tools that have most of the

characteristics of commercial software

products including broad scope, robustness,

demonstrable correctness, and adequate

documentation. With this class of software,

it should be possible for new users to

undertake effective work without recourse

to the original developers and without

requiring modifications to the source code

to address new problems within the

software’s intended domain of application.

This requires a good internal design with a

clear separation between the specification

and implementation of a model, and may

require scripting or plugin support for

extensions. The creation of new public

tools generally involves publication of

papers about the software itself, including

the methods involved and steps taken to

validate it. Many widely used tools such as

Neuron [10], GENESIS [11], and NEST

[12] fall into this category.

Unfinished, abandoned and unused

tools. All software development carries

the risk that it will fail to produce anything

useful. This can happen for a variety of

reasons including insurmountable

technical difficulties, lack of experience

among the developers, bad choices early

on in the project, or simply because the

software, as originally conceived, is of no

use to researchers. Indeed, this last case is

alarmingly common, particularly among

capability-driven projects, as described in

the ‘‘How’’ section below. Software that is

developed by individual researchers or

students for their own purposes and

never used again can be most charitably

regarded as an exercise or a proof of

concept: almost certainly, the developer

has gained some insight or understanding

from writing it. The same cannot be said

where work is delegated to in-house

developers or students working on behalf

of someone else. This kind of software is a

waste of valuable resources. When it fails

to deliver adequate results, an analysis of

what has gone wrong can yield valuable

lessons for the future. We will return to

this issue later in this paper.

‘‘Why?’’: The Origins of Neuroscience
Software

The ‘‘Why?’’ axis is characterized by a

strongly bimodal distribution. One group

of software consists of ‘‘demand-driven’’

projects. These arise where software is

needed to solve a particular problem, and

the focus is on developing a tool that can

help with the research in hand as soon as

possible. At the opposite end of the

spectrum are ‘‘capability-driven’’ projects.

These are projects driven by technological

opportunities: the kind of projects that

emerge when it first becomes possible to

perform a new kind of computation, or

because the current fashion in software

development shifts in favor of one design

approach over another.

Demand-driven software. The char-

acteristic of demand-driven software is that

there is a user, or ‘‘customer,’’ for the

software from the very beginning. The

customer could be the same person as the

developer, where researchers or students

write software for their own needs, or an

independent party, as when research groups

hire in-house developers or contract

independent developers.

A good example is the neuroConstruct

project, which is being developed by the

Silver Laboratory at UCL [13]. In this

case, there is only one developer, and the

group is its own customer. Several people

in the group are engaged in research that

is dependent upon the software being

developed.

Commercial software efforts are de-

mand-driven. Some speculative efforts

may explore new technologies in the hopes

of creating a market. However, investors

in such projects are understandably keen

to see market demand emerge as soon as

possible, so they can cut their losses if it

does not.

Capability-driven software. By capability-

driven software, we mean software that is

developed because it might be useful, and

there is funding for it. Since capability-

driven software has no acute demand, it

typically has no users.

Capability-driven software can occur on

any scale. At an individual level, students

may rewrite a perfectly adequate tool in a

different language, simply because they

prefer it. This can be good training, but is

unlikely to yield an improved software

product. On a larger scale, informatics

groups are sometimes successful in attract-

ing funding to build what they believe

neuroscience researchers need. This mod-

el has been tried extensively in various

countries, attracting substantial investment

in the United Kingdom’s e-Science pro-

gram, but has often led to disappointing

results. Typical problems include building

the wrong thing (lack of market research

before funding), a fixed-term development

cycle with staff typically hired for three

years, and no sustainable continuation

plan. Even when the project yields useful

software, the initial grant funding usually

stops at just about the time when the

project can be expected to attract external

users.

A typical example is the NeoSim

framework [14], developed under the e-

Science project in connection with the

United States’ Human Brain Project. At its

peak, it had five programmers but never

attracted any users. The developers de-

parted at the end of the grant with very

little to show for their efforts, and none of

the software was ever reused. This was

possible because NeoSim was a purely

technology-driven proposal without a spe-

cific scientific application. Although it had

the potential to grow into a useful product,

the lack of demonstrable demand within

the funded period made it a poor candi-

date for continuation. NeoSim addressed

problems of connecting simulators, ad-

dressed more recently by MUSIC [15]

and the Blue Brain Project [16]. In such

projects, developers need almost superhu-

man prescience if they are to build

something useful. This is a critical issue

for a number of recent large-scale projects

promising new software for neuroscience

research. It is closely related to the

burgeoning population of empty databases

PLOS Computational Biology | www.ploscompbiol.org 3 January 2014 | Volume 10 | Issue 1 | e1003376

and unused web applications that have

been built because developers thought

others would use them [17,18].

Capability-driven software is sometimes

sold to funders on the grounds that it will

not only help neuroscientists, but will also

generate new computer science results.

This proposition is based on the optimistic

assumption that getting computer scien-

tists to write brain modeling software will

help them understand the brain. We know

of no cases where this has actually

happened.

‘‘Who?’’: Software Developers in
Computational Neuroscience

The need for new software can be met

in many ways. In some cases, researchers

write it themselves. More often, research

students work on software projects either

as part of their research work or as a

means to develop the models and simula-

tions needed for their research. In either

case, the work is done by individuals

whose primary motivation is the research

outcome itself. For larger projects, a

research group may be able to hire in-

house developers who focus exclusively on

the software, or they may outsource

development to commercial entities. Each

model has its own advantages and disad-

vantages. In general, there is a strong

correlation between who does the work

and the type of software that is produced.

Researchers. For researchers address-

ing new problems in computational

neuroscience, the most direct way to

develop the required software is to write it

themselves. Many computational neuro-

scientists have extensive software deve-

lopment experience and can write very

good software. By developing on their

own, they eliminate the need to

communicate their ideas to a third party,

and can achieve results fast. However,

software development is very rarely

recognized as a primary output of research

positions, and often competes for time with

teaching, grant writing, supervising students,

administration, and, of course, the research

itself. Interestingly, researchers’ ability to

engage in software development seems to be

inversely correlated with their requirement

to engage in teaching and university

administration. The NEST simulator [13]

and PyNN language [19] are good examples

of projects in which a significant part of the

development effort comes from researchers

in permanent positions. These projects also

have considerable input from students, but

the active involvement of full-time re-

searchers gives them a degree of continuity

and coherence that is hard to achieve by

other means. Interestingly, all the lead

researchers are based in continental

Europe, even if some of them are from the

United Kingdom and North America.

Students. For researchers who do not

have the skills, time, or inclination to write

new software themselves, having it written

by research students is a natural (and

cheap) alternative. Many research projects

require new tools and, in the absence of

additional funding, there is little

alternative to having the software written

by students. This is a challenging way of

developing new software, for several

reasons. First, students typically do not

have professional software development

experience before starting. Therefore, they

must learn to write good software, as well

as learn to do research. However, software

skills are best learned by working among

more experienced developers, and very

few labs can provide this environment.

This often leads to the problems described

by Baxter et al. [1], with students having

to make software design and architectural

decisions on their own before they are

really ready. Secondly, research projects

are often too short for software to be

written and interesting research results to

be achieved with it. The outcome of

standalone student projects is therefore

very variable. Some students write great

software, but by their own admission,

others spend their time learning by trial-

and-error. In the latter case, the best

approach is to extract any good ideas and

start again from scratch. Finally, writing

software for other users reduces the time

available for research, and is very risky for

researchers wishing to pursue a research

career. This issue is particularly problematic

where researchers hire students for projects

with a very large software development

component, because they need the software

for their own research. The students have

very little chance of developing research

careers, and are in effect serving as fixed-

term contractors, paid a fraction of the

market rate.

In-house developers. An alternative

to using research students for software

development is to hire software engineers,

whose primary goal is the development of

good software to be used by other people.

This has the advantage that the

developers’ actual work is well aligned

with their own objectives and job

descriptions. Because they work only on

the software, they are also able to

complete many of the associated tasks

such as developing documentation,

examples, and tutorials, which are

essential for practical software products,

but which are not on the critical path to

generating research results. Some of the

most successful long-term software systems

in use in computational neuroscience,

including both Neuron and Genesis,

have benefited from in-house developers.

However, it should be mentioned that, in

both cases, the developers had also been

involved in original research. At present,

the greatest challenge for software

development by in-house developers is

funding. With almost no permanent

university positions for this kind of work,

developers depend on successive short-

term contracts and rely on their principal

investigators (PIs) for continued funding.

For PIs, keeping a good in-house

developer can be very difficult, as any

break in funding will force them to find

work elsewhere, and it may be hard to hire

them back afterward.

Outsourced developers. A potential

solution to the problem of providing

continuity for in-house developers is to

outsource the work to commercial or

nonprofit organizations that undertake

software development for a number of

clients. In principle, such organizations

can even out the flow of funds from

different projects, and provide their

developers with a more secure career

path than in-house developers. Perhaps

the biggest difficulty with this model is

finding software engineers with sufficient

qualifications in specific domains of

research.

‘‘How?’’: Development Models for
Neuroscience Software

The means by which scientific software

is developed vary according to the needs of

the project, funding sources, and the

interests of those involved. Observations

of current projects suggest three broad

categories. First is the Heroic Model,

where one developer works on a piece of

software over several years. Second is the

Collaborative Model, in which researchers

from different groups pool their resources

to develop and maintain a piece of

software. Finally, in the Outsourced Proj-

ect Model, a research group contracts an

independent software developer to write a

particular piece of software.

The Heroic Model. This was the

most common development model in the

projects we reviewed. A researcher begins

writing software to address a particular

problem. Over time, the software

accumulates features and the researcher

decides to share it with others. In some

cases, this point is reached at the end of

PhD theses, when the researchers think

that they will not be able to continue to

develop the software themselves and

release it to the community. In other

PLOS Computational Biology | www.ploscompbiol.org 4 January 2014 | Volume 10 | Issue 1 | e1003376

cases, a researcher continues development,

and other members of his/her research

group get involved in using or extending

the software, which remains entirely

within the group.

The biggest challenge with the Heroic

Model is that such tools rarely reach the

maturity and completeness required to

constitute a public tool. Notable excep-

tions are Brian [20] and Topographica

[21], which have gained momentum and

partially transitioned into other develop-

ment models. However, many of the

Heroic tools we examined have a single

developer and no apparent ongoing activ-

ity. The other main weakness of the model

is the emphasis on a single developer. This

creates a single point of failure, with no

means to ensure continued use or devel-

opment of the software if the original

developer is no longer available. In brief,

the Heroic Model lacks adequate mecha-

nisms to motivate and reward other

developers for extending and supporting

the original work for the benefit of the

community.

It is natural for research software

projects to begin with the Heroic Model.

One of the main challenges with neuro-

science software is to promote the transi-

tion of the best such projects into more

sustainable models. A notable exception is

the NEURON modeling package, by far

the most widely cited of the tools exam-

ined in this study. First developed by

Michael Hines in the late 1970s, NEU-

RON is still developed and maintained by

its original author, who has received

uninterrupted NIH funding from 1978 to

the present. This shows that the Heroic

Model is capable of delivering long-term

solutions, albeit under rather exceptional

circumstances. A more typical situation

may be that of Genesis 3, where the lead

developer was forced to seek work in the

private sector due to lack of continuity in

funding.

The Collaborative Project Model. Colla-

borative projects arise where a collection of

individuals or research groups with similar

requirements pool their resources, with

each participant focusing on aspects of the

project relevant to his or her own work.

In this model, the participants benefit

from a shared core codebase, shared

infrastructure, and the increased visibility

that comes from being part of a larger

effort.

One of the best examples of a collabo-

rative project is the neural simulation tool

NEST, developed by the NEST Initiative.

NEST started in 1995 under the name

SYNOD [22] and has been under active

development ever since. At the time of

writing, NEST has over ten developers

working on different parts of the software.

Having users contribute what they need

for their own work ensures that features

are implemented as and when they are

needed, and that each new feature is tested

out on real scientific problems before

being released to the wider community.

Although this type of development is

rare in neuroscience, it is much more

prevalent in related disciplines. In partic-

ular, as De Schutter noted in this journal

[23], systems biology is currently in a very

different situation from computational

neuroscience. Demands arising from the

flood of data from increasingly industrial-

ized processes in systems biology have led

to large-scale collaborative software pro-

jects. The active development of new

software for which there was a clear

community need has enabled the devel-

opment of and support for community

standards such as MIASE and SBML. De

Schutter contrasts this with the situation in

computational neuroscience, where much

‘‘computational neuroscience software is

shackled by legacy code’’ [23,24]. The

focus on large-scale projects in systems

biology makes it possible to employ

specialists for different roles within a

project. In particular, systems biology

can employ scientific programmers who

are not expected to double up as research-

ers, and for whom there is a credible, long-

term career path in providing the software

engineering component of a much larger

activity.

The Outsourced or Market

Model. In this model, researchers in

need of software contract an independent

company or individual to write it. The

development of PSICS [25] was

outsourced at a fixed price by a research

group that needed the software for its

research. In this case, documentation and

validation amounted to 40% of the total

cost, with the core functionality carefully

defined to produce a tool that the

researchers could use on their own. After

the initial work, two research groups

contracted the original developers for

additional work to meet their specific

requirements. All the outputs are fully

documented and open source.

This model has yet to be used exten-

sively in neuroscience, but the example of

PSICS suggests that this could be at least

partly due to the lack of suitable organi-

zations to outsource to, rather than a lack

of interest from the community. In

principle, this model offers advantages to

both sides. Researchers can negotiate a

fixed-price contract to be paid on delivery

of working, validated software. Small

projects can be accommodated and the

original developers are more likely to be

available to carry on when more work is

required and additional funding is avail-

able. For software developers with an

interest in science, such organizations

could offer a stable career path in a single

location, while working on a succession of

different projects and with the kind of

close contact with other software engineers

that is essential for effective professional

development.

The Community Engagement

Model. This model has a long history

in other areas of software development; for

example, the Linux operating system has a

large community of independent developers.

However, it is a relatively new approach

for neuroscience. One of the best recent

examples is the OpenWorm project

(openworm.org) where a community of

developers got together to create a

biomechanical and physiological simulation

of C. elegans. Most of them have no specific

scientific training, but they are able to read

the literature and implement the models.

Interestingly, the project’s success in

developing working software is making it

increasingly attractive to researchers, who

contribute their experimental data and offer

their expertise in computational modeling.

Although it is rather early to assess scientific

outcomes, OpenWorm has already jumped

some of the hurdles facing projects that

originate in the scientific community. It has

a large and active community of developers.

The software itself is of a high standard, and

there is a healthy balance between core

development and the development of

specific products, including visualization

tools, documentation, and an accessible

web presence.

Discussion

After inspecting a wide range of soft-

ware projects, we found that these projects

can be usefully categorized by the answers

to four key questions: ‘‘What,’’ ‘‘Why,’’

‘‘Who,’’ and ‘‘How.’’ We suggest that this

scheme usefully captures the main factors

determining the long-term success of a

software project, and consequently the

value it represents to the research com-

munity, and the advancement of neuro-

science research.

However, there is one additional assess-

ment criteria that we have not been able to

consider so far: we have not been able to

assess whether individual pieces of soft-

ware are correct, in the sense that they

correctly implement the models they are

intended to implement. The reason for

this omission is that in most cases the

PLOS Computational Biology | www.ploscompbiol.org 5 January 2014 | Volume 10 | Issue 1 | e1003376

necessary information does not exist. In

the past, when computational modeling

was something of a fringe activity, this

situation could be tolerated. Today, how-

ever, simulations and other computational

results are playing an increasingly impor-

tant role in science, political decision

making, and society as a whole [26,27],

and researchers are becoming increasingly

aware of the critical influence of software

quality on the sustainability of their

research. In these conditions, scientific

software can no longer be the private

affair of the scientists who develop it.

Assessment of Scientific Software
Given the growing importance of scien-

tific software, the community needs ways

of assessing whether a particular exercise,

reference implementation, or tool is fit for

its intended purpose. The first threshold a

software tool must cross is that it must be

‘‘research-ready’’: ready to be used for

research by the person who wrote it. This

means that the developer can be confident

that the results it produces are correct. For

simple scripts, this may be achieved by

inspection, but in most cases it will be

necessary to apply the tool to test models

for which there are known analytic

solutions, or to models generated by other

tools. With the exception of the three

Rallpack tests [28] for single-cell simula-

tors, computational neuroscience has very

few standard tests. In comparison, the

Systems Biology Markup Language

(SBML) test suite comprises more than a

thousand test models, complete with

detailed descriptions and expected results

for comparison. A number of projects are

under way to address these issues (see, for

example, http://opensourcebrain.org).

The late development of comprehensive

test suites in computational neuroscience

can be largely attributed to the absence of

shared model description formats [29].

With the emergence of NeuroML [30] for

single-cell models and PyNN for networks,

the coming years will hopefully see major

improvements.

Software that is research-ready may still

not be suitable for use by other research-

ers. As well as being correct, wider usage

requires that it is accessible and usable.

For example, it should have comprehen-

sive documentation and examples, as well

as sufficient error handling and reporting

functionality to enable users to trace

problems with their models without re-

course to the source code. Below, we

propose checklists for assessing whether a

particular tool meets these criteria.

Creation of Public Tools
One of the stated aims of many projects

involving software development is to

produce software that will be of use to

other researchers. In our terminology, this

entails creating a public tool. Of the

criteria considered here, the ‘‘Why?’’ axis

has the clearest correlation with the

eventual emergence of a public tool from

a software development activity. Some-

what obviously, unless the implementation

of a demand-driven project is so bad that

the software cannot be used at all, these

projects almost always find at least some

use in research. Conversely, capability-

driven projects only find a use if what has

been developed happens to coincide with a

research community need. Much highly

specialized software never has this good

fortune.

The ‘‘Who’’ axis is also important.

Should software be written by scientists,

or delegated entirely to professional soft-

ware engineers? On the one hand, core

algorithms cannot be developed without

the involvement of scientists. This means

scientific software inevitably has a close

link to the latest research. However,

Wilson [6] found that very few researchers

are familiar with best practice in software

development. Our own observations sug-

gest that this situation has changed

somewhat over the last seven years. With

the explosion of open-source activity on

GitHub and BitBucket, and the increasing

use of community sites such as StackOver-

flow to discuss design and development

practices, it is now much easier for

developers to keep up with new practices,

even when they are not working in a

software company. Indeed, the prepon-

derance of short-term projects may act in

scientists’ favor, since they are able to

adopt new tools as they emerge, rather

than being tied to long-term corporate

structures.

However, the process of turning a

private tool into a public tool is very

demanding in terms of programming,

testing, and documentation. According to

some estimates, in fact, this step requires

up to nine times the effort needed to

develop a private tool [31]. Individual

developers and laboratories do not have

the resources or skills to transform a

private tool into a public one, and to

handle its subsequent distribution and user

support. This task could, however, be

handled by spin-off companies or other

commercial entities. This system works

well in experimental biology, where many

of the companies now supplying laborato-

ry equipment have their origins in re-

search laboratories.

Another problem for the users and

developers of scientific software is that

funding systems, and the career paths of

research students and junior researchers,

tend to favor the development of new tools

over the extension and maintenance of

existing ones. This explains why a high

proportion of early-stage projects in our

sample are no longer supported. Taken

together, these observations highlight the

need for funding and projects that fill the

gap between innovative single-developer

projects and research-ready software ap-

plications. In neuroscience, there is cur-

rently an ample supply of early-stage

projects, but almost no mechanism for

turning them into useful public tools.

Sharing of Software
Sharing software is widely considered

an important step in improving quality in

the computational sciences [32,33]. While

this is certainly true, it is also important to

realize that there are different reasons why

software should be shared. Accordingly,

there has to be a range of different

standards for shared software.

Software used in research studies should

be made freely available when such studies

are published, if not before. However,

making software available should not be

confused with asserting that the software is

ready and usable by other researchers.

Reference implementations of a novel

algorithm or model, such as those provid-

ed by Izhikevich [8] and Matsumoto [9],

may be of interest primarily for other

software developers who are developing

their own implementations of the models.

A reference implementation may also be

useful for generating test cases to compare

with other tools, but not suitable for

running simulations on the scale needed

by a specific research problem. Simulation

scripts and other iterative development

work used by a single group in pursuit of a

research problem may not be sufficiently

general or well documented for other

researchers to use them ‘‘as-is.’’ It is

nevertheless important to have them

available for future examination, if their

results are challenged or if other groups

wish to implement exactly the same

configuration as a reference point for a

new study.

We see three distinct motives to share

software with the scientific community:

1. To allow other researchers to evaluate

and understand how a particular

numerical or simulation result was

obtained. This is the case for most

model and simulation code. We can

PLOS Computational Biology | www.ploscompbiol.org 6 January 2014 | Volume 10 | Issue 1 | e1003376

say here that the code is shared for

‘‘reading.’’

2. To allow researchers to develop their

own implementation of a model or

algorithm, based on a published refer-

ence implementation. The reference

implementations of the Izhikevich neu-

ron [8] constitute such a case. Howev-

er, they also illustrate the problem of

‘‘error propagation.’’ Although the

implementation provided in the origi-

nal paper has known numerical prob-

lems [34], it is still often regarded as the

‘‘correct’’ implementation and is used

in many applications. A possible solu-

tion is to introduce curated reference

implementations of models and algo-

rithms, similar to those found in the

systems biology community or in the

well-known Boost library (www.boost.

org). In such cases, code is shared for

‘‘reading and writing.’’

3. Finally, software is shared or, better

still, published so that other researchers

can use it as a tool for their research. In

most cases, the code will be rather

complex due to user interfaces, error

handling, and other infrastructure

code, so the general user will not be

able to extract and understand its core

algorithms. In this scenario, the soft-

ware is mostly ‘‘used,’’ rather than read

or modified.

Each of these three ‘‘use cases’’ requires

different quality standards for when the

software is shared. The lowest level is what

we call ‘‘review-ready.’’ The source code is

prepared and documented, so that review-

ers and scientists can understand its main

algorithms. The next highest quality

standard is ‘‘research-ready,’’ meaning

that the software is sufficiently well tested

and documented so that its research results

can be trusted. Finally, the highest quality

standard is what we call ‘‘user-ready.’’ At

this level, the software is sufficiently well

tested and documented so that researchers

who are not familiar with the source code

can use it to generate research results that

can still be trusted.

Recommendations
These considerations have led us to

formulate a number of suggestions for

improving scientific research that is heavily

dependent on software. These suggestions,

which may be of interest to researchers,

funders, and software developers, are

presented as points for consideration,

rather than as definitive recommendations.

The only firm recommendation is that the

problem needs to be recognized and

addressed.

1. Not all software development efforts

can or should lead to the creation of

public tools. There are differences

between proofs of concept, private

tools, and public tools. Funders should

not expect to pay for proof-of-concept

work and have the code released as a

public tool. Developers should not

expect to publish a paper about a

private tool as though it were a public

one. Checklists such as those presented

below can make it easier to decide

which category a tool is in.

2. Journals should formalize their policies

on what is required for different

categories of publication, including

papers about novel algorithms with

proof-of-concept software (reference

implementations), research papers

where the results are generated by

software, and papers about new public

tools. A blanket requirement simply to

make the code available risks confusing

the picture, and making it hard for

readers to distinguish between different

sorts of software. We are not against

developers being open about their

work and making their source code

easily accessible; indeed, we are very

much in favor of this approach.

Rather, our concern is that this kind

of visibility can too easily be confused

with a suggestion of ‘‘research-readi-

ness.’’ As a starting point, we suggest

that:

a) Papers about software should only be

published when the software meets

the criteria for a public tool.

b) Where research papers depend on

software, the software should either

be an existing public tool or reviewers

should have access to the code and

verify that it meets the standards of a

private tool. Ideally, there should be

separate peer review for such soft-

ware (see item 4).

c) For proof-of-concept work, the ideas

should be able to stand on their own

and papers should make minimal

mention of the specific implementa-

tion. However, it is often useful to

make an implementation available to

facilitate adoption, for example as

Gillespie [35], Izhikevich [8], and

Matsumoto [9] did. In this case, the

software submitted should meet the

criteria for ‘‘review-readiness’’ laid

out in the first checklist below.

3. When considering papers about public

tools, at least one reviewer should be

asked to look only at the software,

perhaps using checklists such as those

below. If, as at present, reviewers are

asked to consider the software as well

as reviewing the rest of the paper, it is

almost inevitable that consideration of

the software will be a secondary

concern, at best. Developing a review

model that includes consideration of

code opens up a new pool of well-

qualified reviewers (developers of other

scientific software) who are rarely

involved in the review process at

present.

4. Rather than leaving software review

solely to journal reviewers, the com-

munity could organize some form of

software certification, perhaps under

the aegis of the International Neuroin-

formatics Coordinating Facility

(INCF). This could operate indepen-

dently of the journal review process,

would lessen the burden on reviewers,

and might be able to offer a more

standardized assessment of user-readi-

ness in public tools. It would also offer

a mechanism for researchers who are

not software specialists to have expert

involvement in and assessment of the

projects they run. A role model for this

sort of software review and certification

could be the peer-reviewed C++ library

Boost (see www.boost.org).

5. Funding for software development

should be mediated by the intended

beneficiary—the scientist with research

to do—rather than flow directly from

funder to developer. The latter model

has consistently failed to produce the

tools that users actually want. Although

they are not the focus of this study,

similar arguments can be made for

databases and other repositories that

have generally remained unpopulated

when their development was not driven

by the end users themselves [17,18].

While this approach may slow the

development of new software, it en-

sures that prospective users become

involved in the design and develop-

ment of the tool at an early stage,

minimizing the risk of creating the

‘‘wrong kind of tool.’’

6. Publications involving novel software

or algorithms should, wherever possi-

ble, include reference models and data

in a standardized format, after the

manner of the Rallpack tests [28].

These reference models should then

be used to verify that future tools

correctly implement existing models

(item 3 in the second checklist below).

In this way, even if new implementa-

tions start from scratch, their scope can

grow incrementally, instead of just

PLOS Computational Biology | www.ploscompbiol.org 7 January 2014 | Volume 10 | Issue 1 | e1003376

repeating the same errors as earlier

projects.

Checklists
We propose three checklists to help

assess whether a particular piece of

software is ‘‘review-ready’’ (meaning that

it is suitable for examination by a reviewer

in conjunction with the publication of a

novel algorithm), ‘‘research-ready’’ (a pri-

vate tool that is suitable for generating

publishable results), or ‘‘user-ready’’ (con-

stituting a public tool that is both ‘‘re-

search-ready’’ and adequate for use by

independent third parties). In each case,

all the related statements should be true

for the software to qualify.

In compiling the checklists, our inten-

tion has been to establish a minimal

pragmatic set of requirements that can

be realistically achieved, and which can

help to alleviate some of the basic

problems that plague scientific software

today. The checklists do not address issues

of software quality in terms of systems

architecture or coding. Although of obvi-

ous importance, such considerations are

beyond the scope of this paper. They are,

however, covered by software life-cycle

models, such as Tribits, developed by the

Trilinos Project of the Sandina National

Laboratories [36].
Criteria for proof-of-concept

software to be ‘‘review-ready.’’

1. Software written in a compiled lan-

guage is easy to compile and runs

without crashing.

2. Software written in an interpreted

language is easy to install and runs

without warnings and error messages.

3. The software favors directness and

simplicity over computational efficien-

cy, where the former provides a clearer

demonstration of the algorithm.

4. It contains enough commentary to

easily relate sections of the code to

the written presentation of the algo-

rithm.

5. It comes with simple test cases that can

be run easily.

Criteria for private tools to be

‘‘research-ready.’’

1. Software written in a compiled lan-

guage is easy to compile and runs

without crashing.

2. Software written in an interpreted

language is easy to install and runs

without warnings and error messages.

3. The software offers basic error han-

dling and diagnosis.

4. Previous versions are archived and

readily available, so that results pro-

duced with a previous version can be

regenerated.

5. The software comes with test cases

where analytic or previously computed

results are known.

6. The software implements any relevant

consistency checks, such as conserva-

tion of mass or charge.

Additionally, publications containing

results generated with private tools should

include test cases for which the tool’s

behavior is already known, or can be

independently predicted, demonstrating in

this way that the model that has been

implemented is indeed the model that was

intended.

Criteria for public tools to be ‘‘user-

ready.’’

1. The software meets all the criteria for a

private tool.

2. The software comes with implementa-

tions of previously published models

demonstrating that the software gener-

ates correct results, at least for the cases

provided.

3. There is comprehensive user and

developer documentation that enables

qualified individuals to work with the

software without recourse to the devel-

opers.

4. The user interface to the tool, whether

graphical or command-based, con-

forms to usability and design norms

for software of this type.

Conclusion

We have examined a wide range of

software that has been created for use in

neuroscience research. We find that some

of the dismay of other authors at the

current state of affairs can be attributed to

a misunderstanding as to why particular

software was created and what can

reasonably be expected of it.

Writing bad software is an inevitable

step in the professional development of

anyone who will eventually write good

software. Much of this work involves

solving problems that have already been

solved. To dismiss this as reinventing the

wheel is like arguing that pianists

shouldn’t learn to play pieces that other

musicians can already perform better.

The difference, of course, is that trainee

musicians do not publish recordings of

their work. This, we suggest, is where the

real problem lies. Much scientific soft-

ware is, in effect, written by early-stage

trainee software engineers. Unlike the

cacophony made by music students,

much neophyte software output gets

recorded for posterity as though it were

publishable work. This leads to the

unusable programs and labyrinthine

codebases that so distressed Baxter et

al. [1]. From this perspective, the prob-

lem is not that trainee software develop-

ers write bad software, but that this

software is misrepresented to others as

being ready for use in solving scientific

problems, or as a basis for extension by

other developers.

Based on this observation, we suggest

that the best way to improve the situation

is to recognize the different types of

software development activity within

science, and adjust expectations accord-

ingly. We hope that by formalizing the

progression of software, from exercise or

proof-of-concept code to useful multi-

user tools, including notions about what

is publishable, and when software be-

comes ready for use in a scientific

investigation, much of the current confu-

sion around software quality, validity,

and suitability for publication may be

avoided. Inevitably, such a realignment

of expectations will result in much

existing software being reclassified as

not yet ‘‘research-ready.’’ However, such

an outcome can only be beneficial in

driving the creation of truly reliable

research tools, and improving the credi-

bility of software-dependent research

results.

Acknowledgments

We thank Hans Ekkehard Plesser and Markus

Diesmann for valuable comments on earlier

versions of the manuscript. Thanks also to

Richard Walker and Guy Willis for proofread-

ing the final version of the manuscript.

References

1. Baxter SM, Day SW, Fetrow JS, Reisinger SJ

(2006) Scientific software development is not an

oxymoron. PLoS Comput Biol 2: e87.

doi:10.1371/journal.pcbi.0020087.

2. Donoho DL, Maleki A, Ur Rahman I, Shahram

M, Stodden V (2009) Fifteen years of reproducible

research in computational harmonic analysis. IEEE

Computing in Science and Engineering 11: 8–18.

3. House of Commons Science and Technology Com-

mittee (2009–10) The disclosure of climate data from

the Climatic Research Unit at the University of East

Anglia. Eighth Report of Session 2009–10, Vol II.

PLOS Computational Biology | www.ploscompbiol.org 8 January 2014 | Volume 10 | Issue 1 | e1003376

4. Post DE, Votta LG (2005) Computational science

demands a new paradigm. Phys Today 58: 35–

41.

5. Miller G (2006) A scientist’s nightmare: software

problem leads to five retractions. Science 314:

1856–1857. doi:10.1126/science.314.5807.1856.

6. Wilson G (2006) Where’s the real bottleneck in

scientific computing. Am Sci 94: 15–16.

doi:10.1511/2006.1.5.

7. Perlewitz J (2013) Available: http://home.

earthlink.net/,perlewitz/. Accessed April 2013.

8. Izhikevich EM (2003) Simple model of spiking

neurons. IEEE Trans Neural Netw 14: 1569–

1572.

9. Matsumoto M, Nishimura T (1998) Mersenne

twister: a 623-dimensionally equidistributed uni-

form pseudo-random number generator. ACM

Trans Model Comput Simul 8: 3–30.

doi:10.1145/272991.272995.

10. Hines ML, Carnevale NT (2003) The NEURON

simulation environment. In: Arbib MA, editor.

The handbook of brain theory and neural

networks, 2nd edition. Cambridge, MA: MIT

Press. pp. 769–773.

11. Bower JM, Beeman D (1998) The book of

GENESIS: exploring realistic neural models with

the GEneral NEural SImulation System, 2nd

edition. New York: Springer-Verlag. ISBN 0-

387-94938-0.

12. Gewaltig M, Diesmann M (2007) NEST (Neural

Simulation Tool). In: Izhikevich EM, editor.

Scholarpedia encyclopedia of computational neu-

roscience. 11204 p.

13. Gleeson P, Steuber V, Silver RA (2007) neuro-

Construct: a tool for modeling networks of

neurons in 3D space. Neuron 54: 219–235.

14. Goddard N, Hood G, Howell F, Hines M, De

Schutter E (2001) NEOSIM: portable large-scale

plug and play modeling. Neurocomputing 38:

1657–1661.

15. Djurfeldt M, Hjorth J, Eppler JM, Dudani N,

Helias M, et al. (2010) Run-time interoperability
between neuronal network simulators based on

the MUSIC framework. Neuroinformatics 8: 43–

60.
16. Markram H (2006) The Blue Brain Project. Nat

Rev Neurosci 7: 153–160. doi:10.1038/nrn1848.
17. Kennedy D (2006) Where’s the beef? Missing

data in the information age. Neuroinformatics 4:

271–273.
18. Nelson B (2009) Data sharing: empty archives.

Nature 461: 160–163. doi:10.1038/461160a.
19. Davison AP, Brüderle D, Eppler JM, Kremkow J,

Muller E, et al. (2008) PyNN: a common interface
for neuronal network simulators. Front Neuroin-

form 2: 11. doi:10.3389/neuro.11.011.2008.

20. Goodman DF, Brette R (2008) Brian: a simulator
for spiking neural networks in Python. Front

Neuroinform 2: 5. doi:10.3389/neuro.11.005.2008.
21. Bednar JA (2009) Topographica: building and

analyzing map-level simulations from Python, C/

C++, MATLAB, NEST, or NEURON compo-
nents. Front Neuroinform 3: 8.

22. Diesmann M, Gewaltig M, Aertsen A (1995)
SYNOD: an environment for neural systems

simulations, language interface and tutorial.
Weizmann Institute of Science, Technical Report

GC-AA/95-3.

23. De Schutter E (2008) Why are computational
neuroscience and systems biology so separate?

PLoS Comput Biol 4: e1000078.
24. De Schutter E (2013) Collaborative modeling in

neuroscience: time to go open model? Neuroin-

formatics 11: 135–136. doi:10.1007/s12021-013-
9181-6.

25. Cannon RC, O’Donnell C, Nolan MF (2010)
Stochastic ion channel gating in dendritic neu-

rons: morphology dependence and probabilistic
synaptic activation of dendritic spikes. PLoS

Comput Biol 6: e1000886. doi:10.1371/journal.-

pcbi.1000886.

26. Interagency Modeling and Analysis Group

(IMAG) (2009) Futures Meeting: the impact of
modeling on biomedical research, final report.

Available: http://www.imagwiki.org/mediawiki/

images/9/99/IFM2009_Final_Report.doc. Ac-
cessed 23 December 2013.

27. National Science Foundation (2010) NSF 10-029.
Dear Colleague Letter: Software Infrastructure

for Sustained Innovation (SI2).

28. Bhalla US, Billitch DH, Bower JM (1992)
Rallpacks: a set of benchmarks for neuronal

simulators. Trends Neurosci 15: 453–458.
29. Cannon RC, Gewaltig MO, Gleeson P, Bhalla

US, Cornelis H, et al. (2007) Interoperability of
neuroscience modeling software: current status

and future directions. Neuroinformatics 5: 127–

138.
30. Gleeson P, Crook S, Cannon RC, Hines ML,

Billings GO, et al. (2010) NeuroML: a language
for describing data driven models of neurons and

networks with a high degree of biological detail.

PLoS Comput Biol 6: e1000815.
31. Brooks F (1995) The mythical man-month: essays

on software engineering. Addison-Wesley.
32. Ince DC, Hatton L, Graham-Cumming J (2012)

The case for open computer programs. Nature
482: 485–488. doi:10.1038/nature10836.

33. Neylon C, Aerts J, Brown CT, Coles SJ, Hatton

L, et al. (2012) Changing computational research.
The challenges ahead. Source Code Biol Med 7:

2. doi:10.1186/1751-0473-7-2.
34. Izhikevich EM (2010) Hybrid spiking models.

Philos Trans A Math Phys Eng Sci 368: 5061–

5070.
35. Gillespie DT (1977) Exact stochastic simulation of

coupled chemical reactions. J Phys Chem 81:
2340–2361.

36. Heroux M, Bartlett R, Howle V, Hoekstra R, Hu
J, et al. (2003) An overview of Trilinos. Sandina

National Laboratories Report 2003-2927. Albu-

querque.

PLOS Computational Biology | www.ploscompbiol.org 9 January 2014 | Volume 10 | Issue 1 | e1003376

