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Abstract

Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also
carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of
stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion cells
presented with natural and artificial stimuli that varied greatly in correlation structure; these stimuli and recordings are
publicly available online. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells
were modestly more correlated than in response to white noise checkerboards, but they were much less correlated than
predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial
correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and
nonlinearity. We found that in response to spatio-temporally correlated stimuli, ganglion cells had faster temporal kernels
and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes
in effective contrast at the ganglion cell input, largely explained the pattern of pairwise correlations across stimuli where
receptive field measurements were possible.
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Introduction

An influential theory of early sensory processing argues that

sensory circuits should conserve scarce resources in their outputs

by reducing correlations present in their inputs [1–3]. At the same

time, recent work has clarified that some redundancy in the retinal

output is useful for hedging against noise [4,5]. Moreover, sensory

outputs with varying amounts of correlation can engage cortical

circuits differently and thus result in a different sensory ‘‘code’’ [6].

Thus, some degree of redundancy appears to be useful to the brain

when dealing with response variability and making decisions based

on probabilistic input [7]. Indeed, correlations between neurons in

visual cortex are largely unchanged between unstructured and

naturalistic visual stimuli [8]. In the absence of neural mechanisms

supporting adaptation to the structure of sensory inputs, increased

stimulus correlation would induce a corresponding change in

neural correlation. Alternatively, the retina may dynamically

adjust its coding strategy to represent the new stimulus class

efficiently. To explore this possibility, we characterized the impact

of stimulus structure on retinal output correlation. Previous studies

have examined pairwise correlations amongst retinal ganglion cell

spike trains in specific stimulus conditions [9–14] but did not

report the changes in correlation for the same pairs across stimuli.

Are there mechanisms that might allow the retina to adjust its

functional properties when stimulus correlations change? Tradi-

tionally, retinal ganglion cells (RGCs) have been described by a

fixed linear receptive field followed by a static nonlinearity [15],

where surround inhibition acts linearly to suppress pairwise

correlations in natural visual input [2,3]. In this view, the receptive

field and nonlinearities might vary dynamically with stimulus

correlations, possibly by changing the strength of lateral inhibition

to maintain a fixed amount of output correlation. Indeed,

correlation-induced changes in receptive fields have been observed

in the LGN and visual cortex [16,17].

To test these ideas, we performed a series of experiments in

which we presented the retina with several stimuli with varying

degrees of spatial and temporal correlations. The retina never fully

decorrelated its input; even for the least correlated white noise

checkerboard stimuli, some correlations were present between

pairs of retinal ganglion cell spike trains. Responding to natural

movies, however, output correlations were only moderately

increased compared to correlations in responses to white noise

checkerboards, despite the dramatic difference in input-induced

correlations. Specifically, the differences in output correlations

were much less than those predicted by a non-adapting linear-

nonlinear functional model responding to these stimuli. We found
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a similar result for spatio-temporal exponentially correlated

stimuli, with an even smaller change in output correlations. In

this way, pairwise output correlations change by a relatively small

amount as compared to the expected input-induced change in

response to stimuli that span a broad range of spatio-temporal

correlations. Stimuli with only spatial correlations, on the other

hand, produced increases in output correlations similar to the

input-induced changes predicted by a static, non-adapting

functional model. In the extreme case, for temporally uncorrelated

full-field flicker, the output correlation increased substantially.

These results suggest a key role for temporal processing in

maintaining the level of output correlations. Indeed, we observed a

robustly faster response timecourse and a modest skew towards

stronger inhibitory surrounds in response to spatio-temporally

correlated stimuli. These changes were sufficient to largely explain

the observed relative suppression of pairwise correlations in the

retinal output for those experimental conditions where receptive

field measurements could be made.

Results

Simultaneous measurements of ganglion cell responses
We used a multi-electrode array to measure simultaneous

responses from groups of *40 retinal ganglion cells in guinea pig;

data and stimuli are available at [18]. Each recording interleaved

10-minute blocks of white noise checkerboard stimuli with 10-

minute blocks of correlated stimuli. Example frames from each

stimulus are shown in Fig. 1B, together with their respective spatial

and temporal correlation functions. We probed retinal responses

to natural movies, which allowed us to determine properties of

ganglion cell population activity during natural vision. However,

natural movies contain strong correlations in time (trace under

‘‘natural’’ stimulus in Fig. 1B) and space (Fig. 1A, B). There are

challenges with reliably estimating receptive fields from natural

stimuli due to these strong correlations and the highly skewed

natural intensity distribution (see Methods). We therefore also

assessed the effect of spatio-temporal correlations in a more

Author Summary

An influential theory of early sensory processing argues
that sensory circuits should conserve scarce resources in
their outputs by reducing correlations present in their
inputs. Measuring simultaneous responses from large
numbers of retinal ganglion cells responding to widely
different classes of visual stimuli, we find that output
correlations increase when we present stimuli with spatial,
but not temporal, correlations. On the other hand, we find
evidence that retina adjusts to spatio-temporal structure
so that retinal output correlations change less than input
correlations would predict. Changes in the receptive field
properties of individual cells, along with gain changes,
largely explain this relative constancy of correlations over
the population.

Figure 1. Natural and artificial stimuli vary in correlation structure. (A) Spatial correlation functions from four natural images (at higher
resolution than the stimuli used in our experiments), in gray. Black line shows average correlation function over a large database of natural images.
Although all images’ correlation functions have the same general shape, there are clear differences between images. (B) Examples of the stimuli used
in this work. Traces above frames show the spatial correlation function of each stimulus; traces below frames show the temporal correlation function.
Stimuli were displayed at 30 Hz in alternating 10-minute blocks. Spatial scale bar (below white noise frame) for stimulus frames and spatial correlation
functions is 400 mm; temporal scale bar for temporal correlation functions is 250 ms.
doi:10.1371/journal.pcbi.1003344.g001

Retinal Transformation of Stimulus Correlations
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controlled stimulus with short-range exponential correlations in

time and space and a binary intensity distribution (Fig. 1B, ‘‘spat-

temp exponential’’). Additional stimuli allowed us to vary the

spatial correlation over a broad range, without temporal structure,

in order to test the hypothesis that surround strength adapts to

remove correlations in nearby parts of an image. Thus, we

examined spatial correlations, in the absence of temporal

structure, of increasing extent: spatially exponential, a ‘‘multi-

scale’’ naturalistic stimulus featuring structure over many spatial

scales, and full-field flicker (Fig. 1B, bottom row). The multiscale

stimulus was designed to mimic the scale invariance of natural

scenes in a controlled binary stimulus, featuring both small and

large patches of correlated checks (such as the white area near the

center). Its construction is detailed in Methods. In one experiment,

we also compared responses to low-contrast white and multiscale

stimuli to their high-contrast counterparts. Finally, to control for

the effect of the skewed natural intensity distribution, we also

conducted experiments presenting scrambled natural movies

lacking spatial and temporal correlation while preserving the

intensity distribution. The mean luminance and single-pixel

variance were matched across all stimuli other than natural

movies, scrambled natural movies, and low-contrast stimuli. Over

30 minutes of recording in each stimulus condition, the typical cell

fired *7000 spikes. This was sufficient to assess spike train

correlations and to measure receptive fields for the white and

exponentially correlated stimuli.

For preliminary analyses, we measured the spike-triggered

average (STA) from each ganglion cell’s response to white noise.

The resulting receptive fields typically gave good coverage of the

sampled visual field (Fig. 2A) and clustered into classes on the basis

of their response polarity and temporal properties (Fig. 2B; details

in Methods). The four basic classes that we consistently identified

across experiments were fast-ON and fast-OFF, distinguished by

the transient and biphasic nature of their temporal filter, and slow-

ON and slow-OFF, which had longer integration times and often

less prominent biphasic filter lobes. It is possible that each of the

functionally identified cell classes comprises multiple types of cells.

Separating cells by class did not qualitatively change many of the

results reported below; in these cases, we combined all cells to

improve statistical power.

To probe the effect of stimulus correlation on ganglion cell

response properties in detail, we applied a standard functional

model, the linear-nonlinear (LN) model. In this model, the visual

stimulus is filtered with a linear kernel that represents the spatio-

temporal receptive field (STRF) of the cell. The filter output is

then passed through a nonlinear transfer function to generate a

predicted firing rate. The nonlinearity encompasses thresholding

and saturation, as well as any gain on the linear response. For

white noise stimuli, the STA is a good estimator of the STRF [19].

However, this simple property does not hold for correlated stimuli,

and so we fit the STRFs and other LN model parameters by

maximum likelihood estimation (see Methods). For the weakly

correlated spatio-temporal exponential stimulus, this technique

reliably extracted receptive fields (Fig. 2C).

Variation of output correlations with stimulus condition
We computed the correlation coefficient between spike trains

(binned at 33 ms) for all pairs of simultaneously recorded neurons.

In response to natural movies, correlations between most pairs of

cells increased in magnitude when compared with the correlations

between the same pairs when viewing white noise (Fig. 3A). We

quantified the size of this increase by finding the least-squares best

fit line (Fig. 3B, gray lines) and defining the ‘‘excess correlation’’ of

a population as the slope of this line minus one (see Methods). If all

cell pairs had, on average, the same correlation in both stimulus

conditions, the excess correlation would be zero. Excess correla-

tion was not strongly dependent on bin size (Fig. S2B). In the case

of natural movies, the excess correlation was 0:32+0:20 (95%

confidence interval computed using bootstrap resampling, as

explained in Methods; see Table 1), modestly different from zero

(and significantly nonzero at the 95% confidence level).

Because the retinal ganglion cell output is a highly transformed

representation of its input, it is not trivial to formulate a naı̈ve

expectation for the magnitude of output correlation given an input

correlation. In particular, simply evaluating the input correlation

between stimuli at the receptive field centers of a pair of cells

provides a misleading picture, since it neglects the spatial extent

and possible overlap of receptive fields. We therefore chose to

quantify the output correlation expected for a given input in a

simple null model: the LN model fit to the white noise responses.

This model captures correlation due to receptive field overlap and

simple nonlinear processing, while neglecting correlations due to

shared circuitry and more complex nonlinear behavior, such as

adaptation. For cells which had sufficiently well-estimated white

noise LN model parameters (as described in Methods) we were

able to compare the excess correlation predicted by the model to

that observed in the data. In order to separate effects that might

arise due solely to changes in firing rate between conditions (see

Fig. S3A) from changes specifically in pairwise correlations

between cells, we adjusted the threshold of each model neuron

separately under each stimulus to match predicted average firing

rates to their empirical values. All other parameters, namely the

spatio-temporal receptive field and the gain, were unchanged

between stimuli. This ‘‘non-adapting’’ model predicted a signifi-

cantly larger excess correlation in response to natural movies (gray

bars in Fig. 3D and Fig. 4A), suggesting that the low observed

excess correlation value under natural stimulation is a conse-

quence of nontrivial processing in the retina.

In addition to strong correlations, however, natural stimuli are

also characterized by a skewed distribution with many dark pixels

and a few extremely bright pixels, whereas our white noise

stimulus, included equal numbers of bright and dark pixels. To

disentangle effects of correlations from effects due to intensity

distribution, we presented the same retinae with a scrambled

natural movie. In this stimulus, we started with natural movies and

randomly shuffled the pixels in space and time to maintain the

intensity distribution but remove correlations. The excess corre-

lation in response to this stimulus was consistent with zero in both

the measured and simulated responses (Fig. 4A, left bars),

suggesting that the skewed natural intensity distribution does not

significantly affect output correlations. Moreover, comparing the

natural movie and scrambled natural movie directly, we found a

small excess correlation consistent with that in the natural movie

vs. white noise case. The non-adapting model again predicted that

the relative similarity of output correlations was nontrivial (Fig. 4A,

right bars). Thus, the retina greatly suppresses changes in

correlations of natural visual stimuli.

We found a similar set of results for the more weakly correlated

spatio-temporal exponential stimulus (Fig. 3B). In particular, the

excess correlation was low (0:12+0:05) compared to the increase

predicted by the non-adapting model (excess correlation of 0:67;

Fig. 3D). We also examined the results of experiments in which we

presented stimuli with varying degrees of spatial correlation. As

shown in Fig. 3C, many stimuli produced only a modest increase

in output correlations. Some stimuli with strong spatial correla-

tions, particularly the multiscale and full-field flicker stimuli,

resulted in a clear increase in output correlations when compared

to white noise. When we varied the contrast of a white noise

Retinal Transformation of Stimulus Correlations
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stimulus, output correlations decreased when the contrast was

lowered while all other stimulus properties were kept fixed. Thus,

the degree of correlation in the retinal output is not a reflection of

stimulus correlations alone. On the other hand, decreasing the

contrast of the multiscale stimulus did not significantly affect the

output correlations, suggesting that stimulus correlation and

contrast interact to shape output correlations.

For further analysis, we focused on the subset of stimuli shown

in Fig. 3D, all of which were presented in experiments where we

also obtained robust estimates of white noise receptive fields. Here

we again simulated responses of an LN model using fixed receptive

fields measured under white noise. For most stimuli, the model

neurons showed changes in correlation at least as large as those

observed in recordings. However, unlike the spatio-temporally

correlated exponential and natural stimuli discussed above, the

stimuli which had correlations in space only (spatial exponential

and multiscale) or no correlations (scrambled natural movie)

produced similar excess correlation values in recorded cells and in

our non-adapting model. This suggests that a fixed linear filter, as

in the non-adapting model, is largely sufficient to explain the effect

of spatial correlations, whereas higher-order processing is necessary

to suppress the impact of temporal stimulus correlations on output

Figure 2. Retinal ganglion cell receptive fields measured using a multi-electrode array. (A) Receptive field locations of 31 cells recorded
simultaneously from guinea pig retina. Each curve shows the 70% contour line of one receptive field. Scale bar is 200 mm. (B) Best-fitting temporal
kernels for 75 cells, clustered into four classes. Classes were obtained by manually clustering temporal filters on the basis of the projection onto their
first three principal components. (C) Maximum likelihood estimates of spatio-temporal receptive fields (STRFs) for an example cell. STRFs were
computed separately using responses to white noise (left) or exponential spatio-temporally correlated stimuli (right). Scale bar is 200 mm.
doi:10.1371/journal.pcbi.1003344.g002

Retinal Transformation of Stimulus Correlations
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Figure 3. Retinal output correlations are largely constant between stimulus conditions. (A) Instantaneous spike train correlation
coefficients between pairs of ganglion cells, comparing responses to natural movies and to white noise. Dashed black line is the diagonal. Cell pairs of
the same class are indicated by colors in the legend. Different- class pairs are separated into ON-OFF (gray) and ON-ON or OFF-OFF pairs (black). The
excess correlation, d, is the deviation of the slope of the best fit line (gray) from the diagonal. (B) Same as (A) but for spatio-temporal exponentially
correlated stimulus. (C) Excess correlation measured from ganglion cells responding to the indicated stimulus, compared to white noise. Numbers
below bars indicate the number of cell pairs in each condition; all recorded cells are included. Error bars are 95% bootstrap confidence intervals
computed over 50,000 random samples with replacement from the set of cell pairs. (D) Comparison of measured excess correlation (white) to non-
adapting model predictions (gray) for the indicated stimuli. Model values were derived from LN neurons with parameters fit to white noise data. Only

Retinal Transformation of Stimulus Correlations
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correlation. For the spatially uniform full-field stimulus, output

correlations appear to increase more than expected from the non-

adapting model. Note, however, that the full-field data were

collected as part of other experiments in which we presented white

noise checkerboards for a shorter time (10 minutes, as opposed to

30 minutes). Thus the receptive fields are less well estimated and

further studies are needed to verify with confidence the predictive

performance of a non-adapting model.

As discussed above, we were able to identify the cell classes for

many of our recorded neurons. In response to spatio-temporally

exponentially correlated noise and natural movies, cell class had a

modest effect on output correlations (Fig. 3A, B). Cells with opposite

ON- or OFF- polarities (gray points) tended to have negative

correlations, whereas cells of the same polarity (black and colored

points) generally had positive correlations. Several opposite-polarity

pairs did have positive correlation; these tended to have non-

overlapping receptive field centers (Fig. S5). Moreover, pairs with

opposite polarity showed a greater-than-average excess correlation,

particularly in response to natural movies. Under natural movies,

opposite-polarity pairs had an excess correlation of 1.5; under the

spatio-temporal exponential stimulus their excess correlation was

0.38 (See Fig. S4A, B). Within same- class pairs, slow-ON and slow-

OFF pairs (blue and yellow) tended to show a greater excess

correlation than fast-ON and fast-OFF pairs (red and green). Pairs of

slow cells had an excess correlation of 0.29 in the natural stimulus

and 0.28 in the spatio-temporal exponential, while fast pairs were

measured as 0.01 and 20.02 for the two stimuli, respectively. All of

these class-dependent excess correlations were small compared to the

overall non-adapting model predictions (excess correlations of 4.33

and 0.67 for natural and spatio-temporal exponential stimuli). We

also assessed the relationship between receptive field separation and

output correlation (Fig. 4C). Pairwise correlations tended to decay

with distance, but the average change in output correlation between

the correlated and white stimuli did not depend on distance.

Adaptation of temporal filters
We next sought to determine whether receptive fields adapt to

stimulus correlations and whether this adaptation can explain the

observed pattern of output correlations. As noted above, we were

able to obtain STAs from responses to white noise. STAs computed

in response to correlated stimuli, however, will be artificially blurred

by the stimulus correlations. To obtain a better estimate of the

spatio-temporal receptive field (STRF), we used maximum likeli-

hood estimation to fit a LN model separately for the white and

exponentially correlated stimuli [20]. Examples of STRFs obtained

in this way for one cell are shown in Fig. 2C. The strongly correlated

structure of the multiscale stimulus and the natural movies

precluded robust, unbiased STRF estimation with limited data

(see Methods). For this reason, we restricted any STRF computa-

tions to white noise and exponentially correlated noise. The latter

stimulus is only weakly correlated and thus we would expect at most

weak changes in the receptive fields between the conditions; indeed,

receptive fields are hard to distinguish by eye for many cells.

Measuring such weak changes requires high-quality receptive fields

whose locations can be unambiguously determined (see Methods),

as was the case for 75 neurons (*60% of the neurons recorded

under spatio-temporal exponential correlated conditions). Cells that

did not meet this standard were likely to include types that do not

respond as well to checkerboard stimuli, e.g., direction selective

ganglion cells and uniformity detectors. We included such cells in

the analysis of Fig. 3C in order to maximize the generality of our

results and to allow for the possibility that these neurons had

qualitatively different output correlations. For the neurons that did

pass the quality threshold, we found that the parameters of the LN

model (for each neuron, a linear filter and a nonlinearity gain and

threshold) changed with the stimulus.

Spike trains with sparse, transient firing events tend to be more

decorrelated [14]. Motivated by this finding, together with our

observation that temporally correlated stimuli yielded excess

correlation in the non-adapting model that was higher than in

the data, we analyzed adaptation in the temporal filtering

properties of retinal ganglion cells. To isolate changes in temporal

processing, we examined each neuron’s STRFs (estimated

separately under the white and exponentially correlated stimulus

conditions) and extracted the temporal components (see Methods).

These temporal profiles were faster for the correlated stimulus

than for white noise (Fig. 5A). To quantify this difference, we

computed the power spectrum of each neuron’s temporal filter

under each stimulus (Fig. 5B and 5D, top) and found a systematic

increase in high frequencies under the correlated stimulus,

cells whose receptive fields met a quality threshold are used here, in contrast to (C).
doi:10.1371/journal.pcbi.1003344.g003

Table 1. Number of cells recorded in each condition.

stimulus retinae all cells quality RFsb fast ONc fast OFFc slow ONc slow OFFc excess corr. conf. int.d

natural movie 3 84 34 12 0 9 13 0.51 60.18

scrambled natural movie 3 82 34 12 0 9 13 0.13 60.08

spatio-temporal exponential 5 212 75 29 4 31 8 0.14 60.05

spatial exponentiala 17 510 46 - - - - 0.27 60.09

multiscalea 16 513 62 - - - - 1.36 60.26

full-fielda 14 483 276 - - - - 2.82 60.40

low-contrast white 1 47 - - - - - 20.22 60.10

low-contrast multiscale 1 49 - - - - - 0.97 60.31

aFor our measurements of output correlation (Fig. 3C), we include additional data from experiments performed as part of other studies in which receptive field structure
was not probed. For model correlations and other analyses, we only used the subset of retinae and cells for which we obtained robust receptive field estimates.
bWe used a stringent requirement that receptive fields (RFs) be of high quality for any analyses in which we used receptive field estimates (e.g. in Fig. 3D).
cCells were only divided into classes if they had high-quality receptive fields and were recorded in response to stimuli chosen for detailed analysis.
d95% confidence intervals were computed by boot-strapping. See Methods for details.
doi:10.1371/journal.pcbi.1003344.t001
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indicating a shift toward high-pass filtering (Fig. 5E). As the

correlated stimulus had relatively more power at low frequencies

compared to the white stimulus, this form of adaptation

compensates for differences in the power spectrum and, hence,

tends to equalize output auto-correlations. In contrast, a non-

adapting model with a filter estimated from white noise acting on

Figure 4. Analysis of pairwise correlations. (A) Excess correlations for natural stimuli. Left and middle bars show excess correlation when
scrambled natural movies and intact natural movies, respectively, are compared to white noise in the data and in a population of non-adapting
model neurons. Right bars show excess correlation when responses to natural movies are compared to scrambled natural movies directly. A non-
adapting model predicts larger output correlations in response to the correlated natural input than seen in the data. (B) Output correlations under
the spatio-temporal exponential stimulus compared with white noise as predicted by LN models with parameters fit to the data. The two leftmost
bars (‘‘data’’ and ‘‘WN model (no adaptation)’’) reproduce the spatio-temporal ‘‘data’’ and ‘‘model’’ bars in Fig. 3D. (Note the difference in scale.) For
the other bars, we simulated a population of neurons using linear filters measured from each stimulus but gains measured only from white noise
(‘‘filter adaptation model’’) or using experimentally derived estimates of both linear filters and gains for each stimulus (‘‘filter+gain adaptation
model’’). In the fully adapted model, excess correlations are consistent with the data. (C) Pairwise output correlation as a function of the distance
between receptive field centers. Top row: Output correlations for white noise checkerboard (left) and natural movies (middle) and the difference in
correlation between these conditions (right) for experiments where natural movies were presented. Bottom row: Output correlations for white noise
checkerboard (left) and spatio-temporal exponential noise (middle) and the difference in correlation between these conditions (right) for experiments
where spatio-temporal exponential noise was presented. Each point corresponds to one simultaneously recorded cell pair; within a row, the same
pairs are represented in all three panels. Blue lines are the median correlation within bins chosen to contain 30 cell pairs each. Solid lines are median
correlations for same-polarity cell pairs; dashed lines are for opposite-polarity pairs.
doi:10.1371/journal.pcbi.1003344.g004

Retinal Transformation of Stimulus Correlations
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the correlated stimulus predicts large changes in the output power

spectrum (Fig. 5C). Indeed, this compensation was nearly exact for

many cells (Fig. 5C), though generally incomplete over the full

population (Fig. 5F). These results, combined with those of [14],

may indicate that the observed consistency of output correlations is

produced by an increase in response transience when stimulus

correlations increase.

Next, we found separate temporal profiles for the center and

surround and computed the latency, measured as time to peak, of

each. Surround latencies did not differ between white noise and

spatio-temporally exponentially correlated noise (t-test, p~:7,

n~75). However, center latencies l were shorter for correlated

noise. We quantified the shift in terms of an adaptation index

(lcorr{lwhite)=(lcorrzlwhite). The histogram of the adaptation index

(Fig. 6A; mean~{0:03, std~0:03; t-test pv10{12, n~75;

Wilcoxon signed rank text pv10{10) showed a robust tail toward

shorter center latency for correlated stimuli (skewness~{0:53).

Moreover, almost every cell from which we obtained receptive

fields had a longer latency for white noise than for correlated noise

(Fig. 6B; mean change~6:1 ms). This was true across cell classes.

To determine whether these changes in temporal filtering were

due to the presence of temporal correlations in this particular

stimulus (unlike many of the other stimuli we examined), we also

measured receptive fields from a separate population of ganglion

cells responding to white noise and to a stimulus that was

exponentially correlated in space but not in time. In this case,

filters did not show a systematic change in power spectra (Fig. 5D,

bottom), but the center latencies were shorter for the correlated

stimulus (Fig. 6C; mean change~7:2 ms). Again, computing

adaptation indices indicated that this effect was significant

(mean~{0:04, std~0:03; t-test pv10{10, n~37; Wilcoxon

signed rank test pv10{7). Thus, spatial correlations in the

Figure 5. Adaptation of the linear temporal filter. (A) Temporal filters are faster under spatio-temporal exponentially correlated noise (C) than
white noise (W). (B) Power spectrum of correlated noise input (C, black dashed line) has more low frequency power than white noise (W, gray dashed
line). The power spectrum of the temporal filter for correlated noise (C, black solid line) has more high frequency power. (C) Power spectra of filter
outputs: White-noise filter acting on white stimulus (solid gray); White-noise filter acting on correlated stimulus (dashed); Adapting correlated-noise
filter acting on correlated stimulus (solid black). In adapted cases, output power spectra are similar between stimuli – i.e., temporal kernels
compensate to maintain invariant output autocorrelation. (D) The difference in normalized filter power spectra between the correlated and white
stimuli, for spatio-temporal (top) and spatial (bottom) exponential experiments. The power spectra of all filters in each stimulus were normalized by
removing the DC component and dividing by the sum of squared amplitudes. The population change in temporal filters shows a consistent increase
in high-frequency power relative to low-frequency power for the spatio-temporal, but not the spatial, stimulus. (E) Total power above 5 Hz divided
by total power below 5 Hz for filters computed in response to correlated vs. white noise stimuli shows a shift towards high-pass signaling across the
population. Arrow and gray circle indicate the pair shown in A–C. (F) Same analysis as in (E) applied to the filter output in (C). Points near the diagonal
indicate near-complete compensation for stimulus changes; points below the diagonal indicate incomplete compensation.
doi:10.1371/journal.pcbi.1003344.g005
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Figure 6. Adaptation of the spatio-temporal receptive field and gain. (A) Center latency (time to peak of the temporal kernel) is shorter for
spatio-temporal exponentially correlated noise. Histogram shows adaptation indices (corr2white)/(corr+white) for center latency (n~75). (B,C)
Changes in center latency (corr2white) for spatio-temporally correlated (B) and temporally correlated (C) stimuli, in milliseconds. Almost all cells have
a decreased time to peak when responding to a correlated stimulus. (D) Adaptation indices, computed as in (A), for relative surround strength
(surround/center ratio) show a slight skew toward a stronger surround for spatio-temporally correlated noise (n~75). (E, F) Difference in surround
strength for the spatio-temporal (E) and spatial (F) exponential stimuli. (G) Gain adaptation. Gains were defined as the slope of the LN model
nonlinearity, and obtained separately for the response to white noise and to the spatio-temporally correlated exponential stimulus. Effective contrast,
the standard deviation of the linear filter output, was similarly measured in both stimuli. The difference in gain, correlated value minus white noise
value, is plotted against the difference in effective contrast. Increases in effective contrast tend to invoke compensating decreases in gain (n~75).
doi:10.1371/journal.pcbi.1003344.g006
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stimulus appear to produce a shift in the timing of the response

without changing the shape of the filter (as measured by the power

spectrum). The lack of an effect in the power spectrum may

explain why output correlations for the spatially exponential

stimulus are not reduced relative to the change in correlation for a

non-adapting model (Fig. 3D).

Adaptation of spatial receptive fields and nonlinearity
gain

The conventional view of retinal circuitry suggests that adaptive

decorrelation arises from stronger or wider surround inhibition

during viewing of correlated stimuli. We thus computed the

amplitudes of the surround and center components of each neuron’s

STRFs in both white noise and spatio-temporally exponentially

correlated noise. Defining the relative surround strength, k, as

the ratio of surround amplitude to center amplitude (details in

Methods), we computed an adaptation index for each cell as

(kcorr{kwhite)=(kcorrzkwhite). This adaptation index has a modestly

positive mean (Fig. 6D; mean~0:075, std~0:24; two-tailed t-test,

p~0:008, n~75; Wilcoxon signed rank test p~:008), as do the

changes in surround strength themselves (Fig. 6E). In addition, the

cells with the greatest degree of surround adaptation had a robust

tendency to increase in surround strength (skewness~0:15). There

was no discernible dependence on cell class. Interestingly, the

surround strength showed only a marginally significant change when

spatial correlations (but not temporal correlations) were added to

white noise (Fig. 6F; mean adaptation index~{0:087, std~0:26;

two-tailed t-test, p~0:05, n~37; Wilcoxon signed rank test p~:02).

Thus, while we do find some evidence for an increase in surround

strength with stimulus correlation, the effect is subtle. This outcome is

surprising given the common view since the work of Barlow [1,2] that

surround inhibition is primarily responsible for decorrelation of visual

stimuli. However, it is possible that the exponential correlations that

permitted us to estimate receptive fields are too weak to evoke strong

lateral inhibition.

Finally, we examined the gain g of each neuron, defined as the

maximum slope of the logistic nonlinearity fit to each neurons’

response (see Methods). Since the gain enters the nonlinearity after

the stimulus passes through the linear filter, we normalized the

filter to unit euclidean norm in order to obtain an unambiguous

definition of g. We found that the gains of individual neurons

changed when the stimulus was more correlated, but there was not

a systematic change between stimuli. Recall that the gain of many

sensory neurons, including retinal ganglion cells, is known to

change with the contrast of the stimulus [21,22]. To test for a

possibly related mechanism at work in our data we first defined

‘‘effective contrast,’’ swhite and scorr, as the standard deviation of

the normalized linear filter output in each stimulus, respectively.

This notion of effective contrast roughly captures the variability of

the ganglion cells’ input, taking presynaptic processing into

account. Any nonlinear gain control mechanism in the ganglion

cell layer should therefore be sensitive to this quantity. For some

cells scorr exceeded swhite, while for others the reverse was true.

Measuring the gains in both stimulus conditions (gwhite and gcorr),

however, we found systematic adaptation opposing the change in

effective contrast: gain tended to increase when effective contrast

decreased and vice-versa. Specifically, the quantities Dg~gcorr{gwhite

and Ds~scorr{swhite were significantly anticorrelated (Fig. 6G;

Spearman’s r~{0:54, p~10{6, n~75).

Output correlations in an adapting model
Finally, we assessed whether the receptive field changes

reported above could account for the observed modest increase

in output correlations between white noise and the spatio-temporal

exponential stimulus. For experiments using spatio-temporally

exponential noise, as discussed above, we measured the adaptation

in LN model parameters fit to each stimulus. We then separately

examined the effect of adaptation in different parameters on the

excess correlations predicted by the LN models. Including

adaptation of the linear filters, but not the gain, produced a

significantly improved match between the model and the data

(Fig. 4B, ‘‘filter adaptation model’’). Additionally allowing the gain

to adapt produced output correlations consistent with the data

(Fig. 4B, ‘‘filter+gain adaptation model’’). The contribution of gain

adaptation to decorrelation is interesting in light of our observa-

tion that output correlations are lower for stimuli with lower

contrast (Fig. 3C). Low contrast stimuli generally evoke lower

firing rates, which could result in decreased pairwise correlations

absent any change in linear filtering properties. (See Text S1 for a

derivation of this result and Fig. S3B for evidence that excess

correlation tends to increase with, but is not fully determined by,

average firing rate.) At the same time, changes in contrast lead to

gain control, wherein gain is higher for lower stimulus contrast.

This gain adaptation could also affect output correlations, as in

Fig. 4B. It would be interesting to know how gain control interacts

with changes in other properties, such as the nonlinearity

threshold and the shape of the linear filter, to set the correlations

in the retinal response. Note that the LN model is fit to each

neuron independently, without taking correlations between

neurons into account. Its successful prediction of the change in

pairwise correlations, without explicit introduction of inter-neural

interactions, is therefore noteworthy. We conclude that observed

adaptation in receptive fields and gains is adequate to explain the

output correlations in responses to a spatio-temporally correlated

stimulus.

Discussion

Our principal finding is that the mammalian retina maintains a

moderate level of output correlation across a wide range of spatio-

temporally correlated stimuli ranging from white noise checker-

boards (with limited correlations) to natural movies (with wide

spatial and temporal correlations). While the amount of output

correlation varies between stimuli, the changes are much less than

predicted by a non-adapting linear-nonlinear functional model.

Our data also suggest a differential effect of spatial versus temporal

correlations on the functional properties of the retinal output. We

focused here on spatial variations in our stimuli, but it would be

interesting to design future studies to explore the space-time

differences more systematically. In response to spatio-temporal

exponential noise, where the receptive fields could be estimated,

we showed that the relative invariance of output correlations is

largely accounted for by the observed changes in the linear

receptive field (faster temporal kernels and slightly stronger

surround inhibition for more correlated stimuli) and by changes

in the nonlinear gain (anti-correlated to changes in effective

contrast). The latter findings give an interpretation of the results in

terms of a conventional functional model (here a linear-nonlinear

cascade), but the measurement of output correlations is model-

independent.

Classifying cells into classes revealed a slight dependence of

excess correlation on cell class: most robustly, opposite polarity

ON-OFF pairs showed the greatest increase in correlation

magnitude when stimulus correlation increased. Indeed, if the

retinal output is split across parallel functional channels, redun-

dancy is likely to be highest within a channel due to shared circuit

inputs. It may thus be advantageous, from an information
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encoding perspective, for decorrelation to act within a channel,

with residual correlations across classes signaling to downstream

areas relevant relationships between the information in different

channels.

Pitkow and Meister [14] showed that salamander retina partly

decorrelates naturalistic inputs but that the response to white

noise is more correlated than the input, in part due to receptive

field overlap between ganglion cells. Here we demonstrated a

similar phenomenon in mammalian retina: consistent with their

results, we found that changes in output correlations were often

smaller than changes in input correlations. We also extended

their findings by showing explicitly that this partial decorrelation

occurs in individual pairs of neurons. In [14], it was also

suggested that the linear receptive field measured from white

noise was insufficient to explain the amount of decorrelation seen

for naturalistic stimuli, and the bulk of the decorrelation was

attributed to changes in the threshold of a functional model of

ganglion cells. However, the authors did not directly measure the

(possibly different) receptive fields of ganglion cells responding to

correlated stimuli, nor did they follow particular cell pairs across

different stimuli. Our measurements suggest that the nonlinear

processing proposed in [14] can be described in terms of

adaptation of the linear receptive field and nonlinear gain with

the net effect that output correlations are reduced relative to the

expected input-induced correlations, as was observed in visual

cortex by [8]. Our results also recall those of [16], [23], [17], and

[24], who showed that receptive fields in LGN and primary visual

cortex differ in structure when probed with natural movies versus

random stimuli.

We also found that the gain of retinal ganglion cells responding

to correlated stimuli changes with ‘‘effective contrast’’ swhite and

scorr, i.e. with the standard deviation of the input to the

nonlinearity in a linear-nonlinear model of ganglion cells. In

classical contrast gain control, firing rates and response kinetics

adapt to temporal contrast and to the spatial scale of stimuli

[21,22]. As increased stimulus correlation may produce a

qualitatively similar input to the inner plexiform layer as increased

contrast, some of the cellular mechanisms underlying contrast

adaptation might also contribute to the phenomena we have

uncovered. This provides an avenue for future study of the

functional mechanisms underlying adaptation to correlations.

We have focused in the present work on the failure of a non-

adapting linear-nonlinear model to capture the relatively small

scale of observed excess correlations and have seen that adaptation

in the linear filter might remedy this discrepancy. Alternatively,

shared circuitry in the population of neurons may be engaged by

correlated inputs and require explicit inclusion in any functional

model of retinal responses to different classes of correlated stimuli

[9,25]. Such shared circuitry leads to noise in one neuron being

passed to multiple nearby neurons and is thus measured by ‘‘noise

correlations.’’ While addition of fixed, stimulus-independent noise

correlation would not greatly change our results, a change in noise

correlation with stimulus would provide a different candidate

mechanism to account for our data [26]. This is another avenue

for future work.

We have focused here on the effects of spatial correlations in an

experimental design where we could compare receptive fields

computed from responses to two different stimuli. Thus, we used

relatively weak exponential correlations to ensure that we were not

measuring artifacts of the stimulus correlations themselves.

Recovering receptive fields from strongly correlated stimuli can

require long recording times. Because our experimental design

involved comparisons between several different stimuli, we were

only able to recover receptive fields for moderately correlated

stimuli. Future work could simply present each stimulus for a

longer duration to assess receptive field changes at a population

level rather than analyzing multiple stimuli in one experiment. In

such experiments with more data from each cell, alternative

methods of receptive field estimation such as Maximally Informa-

tive Dimensions [17] could potentially be applied. Further work

could also include parallel studies with stimuli including temporal

correlations only to complement our findings on responses to

spatial correlations.

Finally, it would be interesting to determine the timecourse of

the adaptations observed here. Knowing whether a change in

stimulus correlations induces changes in receptive fields and

output correlations within seconds, tens of seconds, or longer

would help to clarify the relationship between processing of

correlations and adaptation to other stimulus features such as

contrast. Again, the design of our experiments precluded making

these measurements – we focused on long segments to measure

steady-state processing of correlations, whereas assessing the

timecourse of changes requires finer and more systematic sampling

of transitions between stimuli.

Why would the retina need to adapt, in the behaving animal, to

variations in spatial correlations? While natural scenes are scale-

invariant on average, the specific correlations do vary depending

on the scene and the viewing distance (see Fig. 1A). Barlow

originally suggested that sensory systems should decorrelate their

inputs to make efficient use of limited neural bandwidth [1].

Consistent with this idea, we found that retina removes

redundancies in spatio-temporally correlated stimuli but also that

the retinal output is not completely decorrelated. Rather, the

output correlations are reduced to a lower level, roughly similar to

correlations in responses to white noise checkerboards when

considered relative to the much larger input-induced correlations

predicted by a non-adapting functional model of neural response.

What drives this tradeoff? Recall that redundancy can be useful to

protect against noise, to facilitate downstream computations, or to

enable separate modulation of information being routed to distinct

cortical targets. Thus, it may be that a certain degree of output

correlation between retinal ganglion cells represents a good

balance between the benefits of decorrelation and the benefits of

redundancy [5]. Sensory outputs with varying amounts of

correlation may also be decoded differently by cortex [6], in

which case maintaining a fixed visual code might require that

retinal output correlations are within the range expected by

downstream visual areas. In these interpretations, it makes sense

that the retina adapts to maintain correlation within a relatively

narrow range across stimulus conditions, as we have found.

Methods

Ethics statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health, as well

as the guidelines of the American Veterinary Medical Association.

The protocol was approved by the Institutional Animal Care and

Use Committee of the University of Pennsylvania (Permit Number

803091). All surgery was performed under anesthesia, and every

effort was made to minimize suffering.

Neural recording
We recorded retinal ganglion cells from Hartley guinea pig

using a 30-electrode array (30 mm spacing, Multi Channel

Systems MCS GmbH, Reutlingen, Germany). After anesthesia

with ketamine/xylazine (100/20 mg/kg) and pentobarbital
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(100 mg/kg), the eye was enucleated and the animal was

euthanized by pentobarbital overdose. The eye was hemisected

and dark adapted. The retina was separated from the pigment

epithelium, mounted on filter paper, and placed onto the

electrode array, ganglion cells closest to the electrodes. Extracel-

lular signals were recorded at 10 kHz. The retina was maintained

in well-oxygenated bath of Ames’ medium at a temperature of

370C. The health of the preparation was monitored by tracking

the average firing rates of active cells. Recording times were 2–

4 hours, a typical duration over which the guinea pig retina

preparation remains robustly responsive. We tested the consis-

tency of responses offline by comparing activity levels near the

beginning and end of the recording. We also measured the

responses to a flash of light immediately before and after

presentation of our main experimental stimuli. If any of these

measures changed greatly, we took this as a sign of poor health

and discarded the corresponding dataset. Spike times were

extracted with the spike-sorting algorithm described in [27];

briefly, a subset of data was manually clustered to generate spike

templates that were then fit to the remaining data using a

Bayesian goodness-of-fit criterion.

Data are available from the Dryad Digital Repository: http://

dx.doi.org/10.5061/dryad.246qg.

Stimulus generation
We displayed checkerboard stimuli (see Fig. 1B) at 30 Hz on a

Lucivid monitor (MicroBrightField inc., Colchester, VT) and

projected the image onto the retina. The mean luminance on the

retina was 9000 photons=s:mm2 (low photopic); each check

occupied an area between 50 mm667 mm and 100 mm6133 mm.

To make white noise and exponentially correlated stimuli, we first

produced random checkerboards with intensities drawn from a

Gaussian distribution. Spatio-temporally correlated stimuli were

produced by filtering the Gaussian stimulus with an exponential

filter with a time constant of three stimulus frames (99 ms) and a

space constant of one check to match the scale of typical receptive

fields. Stimuli with only spatial exponential correlations were

constructed similarly, but with a time constant set to zero. To

create the multiscale stimulus, we first generated gaussian white

noise checkerboards at several power-of-two scales. The largest

scale consisted of a single check filling the entire stimulus field, the

next largest was a 262 checkerboard (with check size equal to half

the stimulus field), the third largest was a 464 checkerboard (check

size one quarter of the stimulus field), and so on. The

checkerboards at all scales were then summed and thresholded

to obtain a binary stimulus qualitatively mimicking the scale-

invariant structure of spatial correlations in natural scenes (Fig. 1B).

This stimulus did not contain temporal correlations. Natural

movies of leaves and grasses blowing in the wind were collected

with a Prosilica GE 1050 high-speed digital camera with a 1/20

sensor (Allied Vision Technologies GmbH, Stadtroda, Germany)

connected to a laptop running StreamPix software (NorPix Inc.,

Montreal, Canada) to grab frames at 60 fps. The camera

resolution was set to 5126512 pixels, and movies were filmed

from a fixed tripod about 5 feet from the trees and grass. Natural

light was used to illuminate our outdoor scenes, and exposure time

was set (300{3000 ms) to capture variation in shadows and avoid

saturation of our 8-bit luminance depth. Videos were collected for

up to 30 minutes; 10 second to 5 minute segments with contin-

uous motion were selected. Videos were downsampled to match

the resolution and frame rate of our stimulus monitor. When we

analyzed responses to movies taken from different settings, we did

not see a sizable change in output correlation (Fig. S4C); thus, we

combined all natural videos in our analysis. To produce a

scrambled control for natural movies, pixels were randomly

shuffled in space and time to remove all correlations. All stimuli

other than natural movies (intact and scrambled) were thresholded

at the median to fix the mean luminance and single-pixel variance

and to maximize contrast. This binarization did not affect the

power spectra significantly. For low-contrast stimuli, all deviations

from the mean luminance were halved to give an overall contrast

of 50%. Typically, we alternated 10-minute blocks of white noise

with 10-minute blocks of a correlated stimulus.

Cell typing
We used reverse correlation to compute the spike-triggered

average (STA) for each cell responding to white noise. We

performed principal component analysis (PCA) on the best-fitting

temporal kernels and split cells into two clusters based on the sign

of the first component; the clusters were identified as ON and OFF

classes based on the sign of their temporal kernels. (Our under-

sampling of OFF cells [4,28] may be due to electrode bias, as

individual OFF cells are smaller and therefore less likely to be

detected by our electrode array.) PCA was repeated for the ON

and OFF groups separately. We manually identified clusters based

on the projections onto the first three principal components; in this

way we identified four functional classes, including slow-OFF, fast-

OFF, fast-ON, and slow-ON (see Fig. 2B).

Maximum likelihood estimation of linear-nonlinear
models

To obtain spatio-temporal receptive fields (STRFs) for both

white and exponentially correlated stimuli, we used publicly

available code (strflab.berkeley.edu; [20]) to carry out maximum

likelihood estimation. We parameterized the model by a linear

filter acting on the stimulus and a logistic nonlinearity, so that

firing probability is p(s)~1=(1zexp({g � (s{b))), where s
represents the linear filter output, and g and b are gain and offset

parameters. Gradient ascent with early stopping was used to

compute a maximum likelihood estimate of the linear filter that

best fit the data. We initialized the algorithm for each neuron

using the spike-triggered average recorded in response to white

noise. Many cells do not yield clear receptive fields when probed

with white noise, either because this stimulus does not evoke a

sufficiently strong response or because the response is not well

modeled as a single linear filter. To avoid potential artifacts that

could arise from including such cells in our receptive field and

model analyses, we selected cells whose receptive fields had clearly

visible centers. This classification of receptive fields as high-quality

was done before any other data analysis in order to avoid biasing

the selection. In datasets where we obtained receptive fields for

both white noise and a correlated stimulus the designations of

high-quality agreed between the two stimuli for 98% of cells. The

subset of cells identified in this way also had center locations that

were clearly delineated by our automated receptive field analysis,

giving confirmation of our visual threshold.

The STRF baseline was poorly constrained by the maximum

likelihood procedure, since an additive change in the STRF has a

similar effect to a proportional shift in the offset parameter of the

nonlinearity. We therefore normalized the STRFs by subtracting

an estimate of the baseline: we allowed the fit to include

components extending 100 ms after the spike — where the true

filter must be zero by causality — and subtracted the mean of

these frames. Inclusion of these post-spike frames also allowed us

to verify that the temporal autocorrelations in our stimuli did not

produce any acausal artifacts in the recovered STRFs. We

normalized the estimated linear filters to have unit Euclidean

norm (square root of the sum of squares of filter values) and then
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used gradient ascent to separately fit the gain and offset of a logistic

nonlinearity. Since the likelihood function in this case is convex,

there was no possibility of local maxima. While we were able to

compute unbiased estimates of STRFs from responses to stimuli

with exponential correlations, our multiscale and natural movie

stimuli were too correlated to estimate unbiased receptive fields

with the number of spikes we were able to obtain in a single

recording. Maximally Informative Dimensions, an important

alternative receptive field estimation method [29], would similarly

be constrained by the number of spikes obtainable when exploring

multiple stimulus conditions in a single recording session, as we

have done.

Correlation analysis
Correlations were measured as the correlation coefficient

between pairs of simultaneously recorded neurons. Spike trains

were divided into 33 ms bins; we assigned a bin a 1 if it had one or

more spikes and a zero otherwise. The results reported above did

not change if we used spike counts in each bin rather than

binarizing. Indeed, 98% of timebins had one or fewer spikes and

less than 0.05% had more than three spikes. We summarized the

results by finding the best fit line of the form rcorr~(1zd)rwhite,

where rwhite and rcorr are the pairwise correlations under the white

and correlated stimuli, respectively. We estimated the excess

correlation, d, by the total least squares regression method and

computed 95% bootstrap confidence intervals from 50,000

bootstrap resamples of the set of ganglion cell pairs.

Such instantaneous correlations are thought to combine slow

stimulus-driven effects with fast intrinsic effects due to shared noise

[13]. To verify that this did not affect our results, we isolated the

stimulus-driven component, by noting that our cross-correlation

functions can feature a short-timescale peak riding on a slow

component and extracting the latter. Specifically, we binned the

spike trains into 1 ms bins and computed cross-covariance

functions between pairs. To isolate the stimulus-induced compo-

nent, we smoothed the cross-covariance functions by fitting a cubic

B-spline curve with knots spaced at 20 ms to suppress the fast noise

component. We then found the shift, within a 200 ms window,

which maximized the absolute value of the smoothed cross-

covariance and estimated the correlation coefficient as the cross-

covariance at this shift normalized by the product of the standard

deviations. This gave excess correlation values consistent with

those reported above (not shown).

We also computed the power spectra of the stimuli, the best-

fitting temporal kernels, and the filter outputs (i.e. stimulus power

spectra multiplied by filter power spectra). We summarized each

power spectrum by computing the total power above 5 Hz divided

by the total power below 5 Hz.

Measures of receptive field characteristics
Given a STRF estimated for one cell under one of the stimulus

conditions, we first performed principal component analysis on the

timecourses of the individual pixels. From the resulting set of

‘‘principal timecourses’’ we selected the one most similar to the

timecourse of the pixel that achieves the peak value in the full

STRF. The complete linear filter was collapsed into a single frame

by finding the projection of each pixel onto this principal

timecourse. This procedure is equivalent to finding the best (least

squares) spatio-temporally separable approximation to the STRF:

K(x,t)~k(x)w(t), where k(x) and w(t) are the spatial and

temporal components of the approximation. From the single

frame k(x), we extracted the center and surround regions. To find

the center, we began with the peak pixel and then recursively

expanded the region in a contiguous patch to include any pixels

whose timecourses had at least a 50% correlation with already

included pixels. We ended the recursive process after the first pass

in which no pixels were added to the center. At this point, all pixels

not included in the center were considered part of the surround for

the purpose of assessing the surround strength.

Taking the center defined in this way as a mask for the full

STRFs, we summed all pixel values within the center at each time

point to generate a temporal profile for the central receptive field.

To obtain temporal kernels with greater precision than the 30 Hz

time scale of our STRFs, we used cubic spline interpolation with

knots spaced every 33 ms. From the interpolated timecourses, we

measured the time to peak under each stimulus for the center. In

addition, the peak value of this temporal profile was taken to be

the center weight of the receptive field. Similar computations

yielded the surround time to peak and surround weight. We then

quantified the relative surround strength as the ratio of surround

weight to center weight.

In addition, we measured the gain g of each neuron under each

stimulus condition. To test for contrast gain control, we defined

‘‘effective contrast,’’ s, as the standard deviation of the linear filter

output. To avoid ambiguity between linear filter amplitude and

gain, we normalized each STRF to have unit Euclidean norm

before computing the gain and the effective contrast.

We used the analysis method described here because it gave the

most robustly unbiased results in our simulations (see below), but

we also wanted to verify that our results did not change

dramatically with slightly different methods (see details in Text

S2 and Table S1). Briefly, we made a series of modifications to our

receptive field extraction method and repeated the analyses

described in the main text for each modification.

Model validation of receptive field analysis
To validate our STRF analysis methods, we generated synthetic

data using a linear-nonlinear (LN) model. We then applied STRF

extraction and analysis methods identical to those applied to real

data to check that the known LN parameters were extracted in an

unbiased fashion. The linear filter was chosen to be spatio-

temporally separable, with the temporal component taken from

measured ganglion cell responses. The spatial filter was modeled as

a difference-of-Gaussians, where the size and strength of the

surround Gaussian relative to the center Gaussian were chosen to

mimic receptive fields of real neurons. In each simulation,

parameters for 100 model neurons were chosen independently.

The results are summarized in Table 2.

In our first simulation, the surround radius (relative to center

radius) was chosen from a Gaussian distribution with mean 2 and

standard deviation 0.3, the relative surround strength from a

Gaussian distribution with mean 1 and standard deviation 0.1, and

the offset coordinates from Gaussian distributions with mean 0

and standard deviation 2 (‘‘Standard model’’ in Table 2). For each

model neuron, the same filter was applied to the spatio-temporal

exponentially correlated and uncorrelated stimuli in order to

simulate cases without adaptation. Across the population, our

model neurons showed only a slight bias in center latency between

the two stimuli (Fig. S1A). While this effect reaches significance

(for a~:05), the effect size is orders of magnitude smaller than that

seen in the data and thus could not explain our experimental

results. We also observed a tendency toward a slightly stronger

relative surround strength under white noise than under correlated

noise (Fig. S1B). Note that this is opposite the effect observed in

our experimental results (Fig. 6D–F). Thus, if anything our results

may be stronger than reported in the main text.

To further validate our analysis we ran simulations with an even

wider range of model parameters. We first constructed model
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neurons with surround radii measured from Gaussian distributions

with means of 1 (‘‘Small surround radius’’ in Table 2) or 3 (‘‘Large

surround radius’’), both with standard deviation 0.3, and all other

parameters the same as in our original simulation. In separate

simulations, we kept the mean surround radius at 2 but chose the

relative surround strength from a Gaussian distribution with mean

0.5 (‘‘Small surround weight’’) or 2 (‘‘Large surround weight’’),

both with standard deviation 0.1. As with our original set of

parameters, the models recovered from STRF analysis had at most

slight biases toward weaker surrounds and shorter center times to

peak under correlated noise (see Table 2).

Supporting Information

Figure S1 Receptive field results are validated with
model neurons and are robust to analysis method
changes. (A) Center time to peak for a population of non-

adapting model neurons, plotted as in Figure 6A. Receptive fields

were constructed as a difference of Gaussians. Surround radii

(relative to center radii) had a mean of 2 and a standard deviation

of 0.3. Surround weights (relative to center weights) had a mean of

1 and a standard deviation of 0.1. The model neurons do not show

a large difference between stimuli in center time to peak. (B)

Model neurons described in (A) show a slight bias toward smaller

recovered relative surround strength under correlated noise

compared to white noise. (C) Center time to peak is longer for

white noise than for correlated noise when the surround only

includes non-center pixels whose time courses are positively

correlated with the time course of the peak negative pixel. (D)

Relative surround strengths is marginally higher for correlated

noise than for white noise under the same analysis as in (C). (E)

Center time to peak is longer for white noise than for correlated

noise when the center is not required to form a single contiguous

component. The figure omits a few outliers that lie outside the

range of the horizontal axis and have longer time courses under

correlated noise. (F) Relative surround strengths is marginally

higher for correlated noise than for white noise under the same

analysis as in (E).

(TIF)

Figure S2 Correlation measurement controls. (A) As a

control on the quality of the non-adapting LN model, we

examined the difference between its predicted pairwise correla-

tions under the white noise stimulus (the stimulus to which the

model was fit) and the observed correlations. Since the model is a

single-neuron model that does not attempt to capture pairwise

correlations, we do not expect it to reproduce these correlations

perfectly. Nevertheless, many cell pairs are well-predicted,

indicating that their correlation is largely due to receptive field

overlap. There is, however, a slight tendency for the model to

underestimate correlations: this is likely due to its neglect of noise

correlations. We note that such a bias will not effect the model’s

predicted excess correlation, unless it is very different in the two

stimulus conditions. But such an effect would represent a form of

non-trivial processing in its own right. (B) Our correlation

measurements were based on binned spike trains. We measured

excess correlation, in the spatiotemporal exponential dataset, for a

variety of bin sizes. Its value is largely independent of bin size.

Error bars represent 95% bootstrap confidence intervals. All

correlations reported in the main text were estimated from spike

trains binned at 33 ms.

(TIF)

Figure S3 Firing rates are within a physiologically
normal range. (A) Firing rates are similar across stimuli. Each

cell’s average white noise firing rate was subtracted to aid in

comparison across experiments. Red line indicates the median for

each stimulus. Blue boxes show the middle 50% of values; black

boxes, the middle 90%. Gray crosses represent the outlying 10%

of cells. Numbers below each box show the number of cells

included. (B) Comparison of the excess correlation for each

correlated stimulus to the average response (relative to the white

noise response) shows that excess correlation is not simply a

reflection of firing rate.

(TIF)

Figure S4 Dependence of excess correlation on re-
sponse polarity and type of scene. (A, B) Excess correlation

values for natural movie (A) and spatio-temporal exponential (B)

stimuli separated by polarity of the recorded pair. Correlated

stimuli evoked a greater increase in output correlations for ON-

OFF pairs than for ON-ON and OFF-OFF pairs (white bars). This

increase was consistent with correlation changes predicted by a

non-adapting model for opposite-polarity pairs responding to

Table 2. Model validation of receptive field analysis.

AI (relative surround strength) AI (center time to peak)

mean std p skew mean std p skew

Standard model 20.02 0.06 .004 21.10 2 0.0003 0.002 .04 2 4.70

Small surround
weight

20.06 0.13 , .0001 20.12 2 0.0003 0.002 .04 2 4.69

Large surround
weight

20.05 0.26 .08 22.44 2 0.0014 0.004 .0003 2 2.66

Small surround
radius

2 0.01 0.08 .19 24.56 20.0009 0.003 .0007 22.49

Large surround
radius

20.02 0.05 ,.0001 20.24 20.0005 0.002 .01 23.71

Adaptation index (AI) in surround strength and center latency for different non-adapting control models. Columns labeled ‘‘mean,’’ ‘‘std,’’ and ‘‘skew’’ show the mean,
standard deviation, and skewness of the adaptation indices for the indicated analysis; columns labeled ‘‘p’’ show the p{values from t{tests of each distribution against
the null hypothesis of zero mean. Standard model: Surround radii (relative to center radii) had mean 2 and standard deviation 0.3; surround weights (relative to center
weights) had mean 1 and standard deviation 0.1. Small surround weight: Surround weights had mean 0.5; all other parameters were the same as in the standard
model. Large surround weight: Surround weights had mean 2. Small surround radius: Surround radii had mean 1. Large surround radius: Surround radii had
mean 3.
doi:10.1371/journal.pcbi.1003344.t002
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natural scenes (A, rightmost bar) but was smaller than the expected

correlation change in all other cases (gray bars). For the spatio-

temporal exponential stimulus, where we could compute white

noise and correlated noise receptive fields, the observed changes

filter and gain were able to reproduce the smaller change in output

correlations relative to input correlations (B, dark gray bars). (C)

Excess correlation computed by comparing responses to different

natural movies directly. Our natural stimulus ensemble was

composed of movies taken in three outdoor settings. During an

experiment, movies from these scenes were interspersed. Here we

see that output correlation are similar for all three; thus, in the

main text we group all natural movie data together.

(TIF)

Figure S5 Dependence of correlation on linear filter
overlap for opposite-polarity cell pairs. Correlation

coefficient between opposite-polarity cell pairs recorded under a

white noise stimulus. The dot product of the two cells’

spatiotemporal linear filters is used as a measure of the overlap

between areas with the same polarity; a pair of cells whose

receptive fields are identical in shape but have opposite polarity

will have a strong negative filter dot product. The fact that positive

correlation between opposite-polarity pairs’ spike trains is strongly

associated with positive filter dot products may be due to one cell’s

receptive field center lying in the other’s surround or to differences

in the temporal filtering of the two cells such that the RF centers

do not overlap temporally.

(TIF)

Table S1 Variants on receptive field analysis method.
Adaptation index (AI) in surround strength and center latency

measured by variations in our analysis method. Columns labeled

‘‘mean,’’ ‘‘std,’’ and ‘‘skew’’ show the mean, standard deviation,

and skewness of the adaptation indices for the indicated analysis;

columns labeled ‘‘p’’ show the p{values from t{tests of each

distribution against the null hypothesis of zero mean. Standard
analysis: Receptive fields were analyzed as presented in the main

text. Disconnected center: The center was not required to form

a contiguous region. Surround threshold: A threshold criterion

was used to find the surround so that only pixels positively

correlated with the peak surround pixel were included. No mean
subtraction: The mean of the frames after each spike was not

subtracted from the STRFs. First principal component: The

full STRF was collapsed onto a single frame by projecting onto the

first principal timecourse rather than the principal timecourse

most similar to the peak pixel. Masks from WN: Center and

surround regions measured from white noise were used to analyze

STRFs from both stimuli. Masks from CN: Center and

surround regions measured from spatio-temporal exponentially

correlated noise were used to analyze STRFs from both stimuli.

(PDF)

Text S1 Dependence of output correlation on gain and
firing rate. In the main text we found that gain adaptation

contributes to decorrelation in a population of LN neurons. In

Text S1, we derive a mathematical relationship between the gain

of model LN neurons and the pairwise correlations in the model

population.

(PDF)

Text S2 Tests of robustness. To verify that our receptive

field results were not an artifact of our specific analysis method, we

repeated the analysis with a number of modifications. In Text S2,

we report the results of these analyses.

(PDF)
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