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Abstract

Understanding the cognitive and neural processes that underlie human decision making requires the successful prediction
of how, but also of when, people choose. Sequential sampling models (SSMs) have greatly advanced the decision sciences
by assuming decisions to emerge from a bounded evidence accumulation process so that response times (RTs) become
predictable. Here, we demonstrate a difficulty of SSMs that occurs when people are not forced to respond at once but are
allowed to sample information sequentially: The decision maker might decide to delay the choice and terminate the
accumulation process temporarily, a scenario not accounted for by the standard SSM approach. We developed several SSMs
for predicting RTs from two independent samples of an electroencephalography (EEG) and a functional magnetic resonance
imaging (fMRI) study. In these studies, participants bought or rejected fictitious stocks based on sequentially presented cues
and were free to respond at any time. Standard SSM implementations did not describe RT distributions adequately.
However, by adding a mechanism for postponing decisions to the model we obtained an accurate fit to the data. Time-
frequency analysis of EEG data revealed alternating states of de- and increasing oscillatory power in beta-band frequencies
(14–30 Hz), indicating that responses were repeatedly prepared and inhibited and thus lending further support for the
existence of a decision not to decide. Finally, the extended model accounted for the results of an adapted version of our
paradigm in which participants had to press a button for sampling more information. Our results show how computational
modeling of decisions and RTs support a deeper understanding of the hidden dynamics in cognition.
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Introduction

Many decisions are not triggered by a single event but based on

multiple sources of information. When purchasing a new

computer, for instance, we certainly look at the price, but not

without accounting for further aspects like quality and appearance.

Usually, these multi-attribute decisions evolve sequentially, that is,

as long as the collected evidence is insufficient to motivate a

particular choice we search for more information to resolve our

uncertainty. Importantly, such ‘‘decisions not to decide’’ are not

directly observable but can promote significant changes in

behavior (like consulting a salesman or leaving the shop).

The temporal emergence of decisions is well captured by

sequential sampling models (SSMs), a mathematical approach that

allows making inferences on both, how and when people decide

[1–3]. The core structure of an SSM consists of an evidence

accumulation process that proceeds until an internal criterion (a

decision threshold) is met and a specific response is elicited. SSMs

have a long tradition in research on perceptual decision making

[4–6], but they also predict accuracy and response times (RTs) of

preferential choices [7–10]. They are used to model rapid [11,12]

as well as slow decisions, which may last up to several seconds

[13,14]. However, even though the assumption of a time-

consuming accumulation process implies that decisions are

delayed until a threshold has been reached, an explicit decision

not to decide is typically not considered by SSMs.

Using functional magnetic resonance imaging (fMRI) and

electroencephalography (EEG) in two recent studies [15,16], we

investigated the emergence of value-based decisions in the human

brain. Thereto, participants performed a stock-buying paradigm

(Figure 1A), in which they sampled probabilistic information (stock

ratings) about stock offers in a sequential manner and were free to

either buy or reject the offers at any time. We developed an SSM

variant that successfully predicted which choice is made but also

how many ratings are sampled. Critically, beyond the prediction

of the number of sampled ratings, the model did not specify the

exact timing of the decisions, that is, when exactly during the

presentation of a single rating the response was made. Here, we

argue that the standard SSM approach fails to account for the RT

pattern in this task (Figure 1B) and presumably in many other

sequential choice paradigms, as long as it does not assume the

existence of a decision not to decide that can inhibit the

accumulation process temporarily. We support the computational

results by evidence from time-frequency analyses of the EEG data

showing that the decision not to decide is accompanied by an

increase in oscillatory power in the beta band (14–30 Hz), a well-

established neural marker of the active inhibition of motor

responses [17–20]. Finally, we tested our model experimentally
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in the context of an adapted version of our task in which the

decision to sample more information is made explicit.

Results

Task design and response time distribution
In the following, we concentrate on the data set from the EEG

study for two reasons: First, due to shorter trials and a longer test

session the number of trials in the EEG paradigm was much

higher than in the fMRI paradigm (320 vs. 120 trials) providing

more robust parameter estimation. Secondly, in contrast to the

slowly developing blood oxygen level-dependent signal of fMRI,

the high temporal resolution of EEG allowed us to test for effects

of the decision not to decide on oscillatory activity within single

rating presentations. However, we replicate the central modeling

results using the fMRI data set (see Text S1).

An example trial of the EEG task is illustrated in Figure 1A. At

the beginning of the trial, participants were informed about the

costs for sampling each rating during that particular trial, which

were either high or low. After a short delay, the stock ratings were

presented consecutively for 1.5 s each. Participants were free to

respond at any time but had to decide after seeing six ratings at the

latest. Positive and negative ratings determined the probability that

the current stock was of positive or negative value. The goal was to

buy positive and to reject negative stocks while taking the costs for

sampling information into account in order to collect as many

points as possible until the end of the experiment (points were then

converted into real money).

The RT histograms for buy and reject decisions summed over

all 27 participants are depicted in Figure 1B. The distributions

for the ratings from one to six differ substantially in their

absolute height and there is some variation in their shape.

Nevertheless, the overall pattern is similar across ratings and

comparable to RT distributions obtained from non-sequential

decision-making paradigms [21]: After approximately 300 ms

with almost no responses, the histograms rise steeply, peak at

around 600 ms, and then decline slowly. In the following,

however, we will argue that it is this putatively common RT

distribution that cannot be addressed by the standard SSM

approach.

A computational model to predict response times
The SSM tested in our previous work [15,16] was designed to

predict the number of sampled ratings but did not estimate RT

distributions within the time window of a rating. This is because

for simplicity the model assumed that a rating presented one single

piece of evidence that changes the accumulation process just once

without further specifying when this change occurs. Yet, the model

allowed us to explain three central findings: First, higher evidence

induced earlier responses (i.e., less sampling of ratings). This was

explained by conditioning the decision variable (DV) of the

accumulation process on the log-evidence (LE) from already

sampled ratings. Secondly, less evidence was required at later

ratings. This was accounted for by a time-variant decline of the

decision threshold. Thirdly, higher costs for sampling (manipulat-

ed only in [16]) also reduced the amount of sampling, which was

explained by lower decision thresholds in high cost trials.

Importantly, these effects were also apparent in the RT

distributions, that is, higher evidence, choices at later ratings,

and higher costs were associated with shorter RTs. We therefore

concluded that the model is generally consistent with the observed

RT effects but unable to predict them directly.

Evidently, a model that can predict RTs requires that the

development of the DV is described with higher temporal

resolution. This can be achieved by assuming that the DV does

not change only once when a new rating is perceived but

continuously (i.e., at multiple time steps during a single rating

presentation). More specifically, we assume that the DV changes

continuously depending on the accumulated LE for a choice

option c (see [15] for how LE is calculated and updated based on

sampled ratings):

DV r,tð Þc~LE rð Þc|t, ð1Þ

where r is the number of the current rating (from 1 to 6 in our task)

and t is the time elapsed during the current rating. In our case, we

assumed that each time step t is 10 ms long (which is an arbitrary

choice providing a sufficient temporal resolution), so that 150 time

steps result for the duration of 1.5 s per rating. In the framework of

SSM, Equation 1 basically states that the accumulated LE from all

sampled ratings defines the current drift rate. Importantly, instead

of defining one DV we used two separate accumulators for the two

choice options (i.e., buy and reject). This allows an easy extension

of the model for including a third option (i.e., the decision not to

decide) in a third accumulator as described below. Furthermore

we assumed that the accumulation process is noisy by adding to

the LE an error term drawn from a normal distribution with a

mean of zero and a standard deviation s as a free parameter. Due

to this noise the model makes probabilistic predictions about what

and when choices are made. Our definition of a linear DV that

varies stochastically from trial to trial (and from rating to rating) is

comparable to other SSM approaches such as the LATER model

[11], the Random Ray model [22], or the LBA model [23]. To

derive the cumulative probability P that a choice has been made

until t (within any rating r), the expected position of the DV at t is

compared to the decision threshold h:

P t rjð Þc~P DV r,tð Þcwh rð Þc
� �

~1{W
h rð Þc{LE rð Þc|t

s|t

� �
, ð2Þ

Author Summary

When decisions are made under uncertainty, we often
decide not to choose immediately but to search for more
information that reduces the uncertainty. In most psycho-
logical experiments, however, participants are forced to
choose at once and cognitive models do not account for
the possibility of deliberately delaying decisions. By
modeling RT distributions in a sequential choice paradigm,
we demonstrate that people decide not to decide when
given the opportunity to sample more information.
Importantly, this explicit decision to wait is distinguishable
from an implicit delay in ongoing decisions as it actively
inhibits this ongoing process. We then looked at EEG
spectral power in the beta-band (frequencies from 14 to
30 Hz), which is known to reflect both the preparation and
inhibition of responses. The obtained pattern is consistent
with our proposal that participants repeatedly alternated
between considering and postponing their decision in the
sequential task. In an additional behavioral experiment, we
show that our model also predicts RTs of the decision to
sample more information. Hence, our combination of
cognitive modeling and EEG provides converging evidence
for the existence of a decision that is usually not directly
observable.

Deciding Not to Decide
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where W(x) represents the cumulative normal density function at x

(cf. [23]). The probability p that a choice is made at t is given by

the partial derivative of P with respect to t:

p t rjð Þc~
LP t rjð Þc

Lt
~w

h rð Þc{LE rð Þc|t

s|t

� �
|

h rð Þc
s|t2

, ð3Þ

where Q (x) represents the normal density function at x. However,

Equation 3 only specifies the probability of a choice (e.g., buy) at t,

given that no other choice (e.g., reject) has been made until t.

Thus, the probability f of a particular choice at t that is not

conditioned on the probability that no other choice has been made

until t is:

f t rjð Þc~p t rjð Þc| P
d=c

1{P t rjð Þd : ð4Þ

So far, we have only described the model within a single rating.

Across ratings, choice probabilities decline with the increasing

probability of a choice at earlier ratings:

f r,tð Þc~f t rjð Þc{
Xr{1

i~1

Xtmax

j~1

f j ijð Þbuyzf j ijð Þreject, ð5Þ

where tmax is the number of time points within each rating (we also

included a parameter t0, representing the non-decision time within

each rating, such that: tmax = 1502t0). As in our previous work, we

normalized the probability of choosing at the sixth rating (given

that a choice has not been made before) to 1, because participants

knew that they were punished for not responding at all. To

account for the reduction in required evidence and mean RTs at

later ratings and under high sampling costs [15,16], we allowed the

Figure 1. Sequential choice task and response time distributions. (A) Example trial of the paradigm in the EEG study. Participants were asked
to either buy or reject a stock offer based on up to six sequentially presented ratings that provided probabilistic information about the stock’s value.
They were free to respond at any time but had to trade-off the value of collecting information against the costs for each rating. The amount of costs
were presented before the first rating and varied on a trial-by-trial basis. (B) RT histograms for buy (blue) and reject (red) decisions summed over all
participants. The left panels show data for all six ratings separately (dashed lines indicate the start of a new rating), the right panels show data
summed over ratings.
doi:10.1371/journal.pcbi.1003309.g001

Deciding Not to Decide
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decision threshold to decrease (or increase) over consecutive

ratings and to vary between high and low cost trials:

h rð Þc~h 0ð Þc{l|r{a|C nð Þ, ð6Þ

where h(0) is the initial threshold, l controls the strength of the

threshold decrease (or increase) over ratings, and a controls the

influence of the costs in trial n on this threshold (C = 1 for high

costs; C = 0 for low costs). Taken together, the model has 6 free

parameters: the standard deviation s of the error component of

the DV, two initial thresholds for the two choice options h(0)buy and

h(0)reject, the non-decision time t0, and the two threshold modulators

a and l. Critically, the model specifies choice probabilities for

every 10 ms, allowing us to test its performance with respect to i)

whether the stock was bought or rejected, ii) how many ratings

were sampled, and iii) when exactly during a rating the response

was made.

The two upper panels in Figure 2 illustrate the model described

so far (for the example trial in Figure 1A). The upper panel

represents the accumulation process for the buy accumulator, the

middle panel for the reject accumulator. At the onset of every

rating, the DVs are (re-)set to zero. During a rating the DVs then

develop linearly with slopes given by the LE (e.g., at the first rating

the LE is in favor of buying the stock, so DVbuy moves toward the

decision threshold). The thresholds decrease from rating to rating.

Of note, the model accounts for effects of evidence, number of

sampled ratings, and sampling costs in the same way as the model

in our previous work. Furthermore, it is comparable to other

established SSM approaches [11,23].

Why should this standard model have difficulties with predicting

the observed RT distribution if it does not include an explicit

option of postponing decisions? A closer look at Figure 2 should

clarify this point: At the first rating, for instance, DVbuy moves

toward the threshold such that the probability for buying the stock

rises (as indicated by the gray line above the x-axis). This increase

appears to be monotonic (during the 1.5 s of the first rating), which

is inconsistent with the descent of the RT distribution after 800–

1000 ms (Figure 1B). A similar prediction emerges for rejecting at

the second and third rating. Here, the choice probability does not

increase monotonically, but the descent at later time points is too

shallow compared to the data. Only at the sixth rating the

probability distribution (for buying) resembles the typical RT

distribution. The reason for these patterns is that the probability

that a choice has already been made is distributed over the entire

course of the trial (i.e., over multiple ratings). At early ratings, this

probability is very low and has a small impact on the actual choice

probability f(r,t)c (see Equation 5). This is different to non-

sequential tasks, in which the probability of choosing between two

stimulus presentations is close to 1 (because a trial consists of only

one presentation). Thus, the standard SSM does not predict a

decrease in choice probability as long as the probability of an

earlier choice remains low (except for the resetting of the DVs to 0

when a new rating occurs). In fact, the probability of earlier

choices is the only explanation for the descent of RT distributions

in the standard SSM approach [21]. In conclusion, the approach

has difficulties with our observation that responses at late time

points (1–1.5 s) within each rating presentation are extremely rare

regardless of how many ratings have been sampled.

In contrast to this, we propose that participants explicitly

considered not deciding at the current rating in order to wait for

more information. In the context of our model, the decision not to

decide is represented by a third accumulator that joins the ‘‘race to

the thresholds’’ (lower panel in Figure 2). If this accumulator

reaches its threshold before the other two, the race is stopped

without an observable response, and resumed when a new rating

occurs. This simple assumption which requires only one additional

free parameter (the threshold for the third accumulator hwait) helps

to overcome the problem of the missing descent of choice

probabilities, because the decision not to decide becomes more

and more likely during the course of a single rating making choices

at late time points improbable.

Importantly, the drift rate of the DV for the third ‘‘wait’’

accumulator needs to be specified. We considered three different

implementations: In its simplest form, the drift rate could be a

constant value (e.g., 1) such that the DV linearly increases in the

same manner for every rating:

DV r,tð Þwait,constant~1|t: ð7Þ

Alternatively, the DV could depend on the number of already

sampled ratings, because the utility of not deciding and waiting for

more information decreases over time:

DV r,tð Þwait,time~ 1{c|
r

rmax

� �
|t, ð8Þ

where c is a free parameter controlling the impact of the current

rating number r, and rmax is the maximum number of ratings (6 in

our task) and used to standardize c across tasks with different

amount of information. Note that this implementation is

equivalent to a variable threshold (therefore hwait itself does not

change over ratings, see Figure 2). Finally, the drift rate could be a

function of the accumulated evidence (LE) for buying and rejecting

so that higher total LE (equivalent to |LE(r)buy|, see [15]) leads to a

slower rise in the DV, because higher evidence for deciding means

lower utility of not deciding):

DV r,tð Þwait,evidence~ LEmax{ LE rð Þbuy

��� ���� �
|t, ð9Þ

where LEmax is the highest log-evidence possible in the task (when

the 6 ratings are either all ‘‘+ +’’ or ‘‘2 2’’), which keeps the term

in parenthesis $0.

Model comparison I: Predicting the number of sampled
ratings

We first estimated the computational models with respect to the

probability with which they predicted the observed choice (buy or

reject) at the observed rating number (from 1 to 6) as realized in

our previous studies [15,16]. On the one hand, this was done to

ensure that the new implementations perform roughly as well as

our previous SSM. In addition, we intended to demonstrate that

the new models’ predictive accuracies are similar as long as the RT

distributions are not considered. In terms of the Bayesian

Information Criterion (BIC), the model from our previous studies

(‘‘M0’’) outperforms the new models (all ‘‘M1’’) (Table 1).

However, the new models do a comparatively good job and

predict choices (,90%) and number of sampled ratings (,65%)

almost as accurate as M0. Most importantly, there are virtually no

differences between the new candidates that include a decision not

to decide (all ‘‘M1*’’) and the model without this decision

(‘‘M1standard’’) (Table 1; Figure 3A). Figure 3B shows the average

choice rating (i.e., the rating at which the choice was made) and

RT (i.e., the exact time of the decision within the choice rating) per

participant together with the predictions from the new models

M1standard and M1*evidence. With respect to the choice ratings (x-

axis) both models lie in the range of the data, but with respect to

Deciding Not to Decide
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RTs (y-axis) both models predict mean RTs that are evidently too

high (except for some values of the M1*evidence model). This is to

be expected as the models were estimated only on the basis of the

choices and without using RTs. Taken together, the new models

predict choices and how many pieces of information are acquired,

but fitting the number of sampled ratings alone leaves open

whether the assumption of a decision not to decide provides any

advantage in describing the cognitive process of sequential value-

based decisions.

Model comparison II: Predicting response times
Figure 4A and B display the RT distributions for buy and reject

decisions together with the fits of models M1standard and

M1*evidence, respectively (illustrative model fits of two individuals

are provided in Text S1). It is obvious that M1standard performs

poorly. In contrast, M1*evidence reproduces the data accurately.

Note that this model fits best among all candidates, but the other

two models with a decision not to decide are also better than

M1standard (Table 1). The table also shows that only the M1*

models are still able to predict the number of sampled ratings at a

high level. Hence, M1standard seems to fail in two different ways:

First, within ratings the model underestimates the probability of

early decisions and overestimates the probability of late decisions;

secondly, across ratings the model overestimates the probability of

choosing at early ratings and underestimates the probability of

choosing at late ratings. These patterns become most evident when

looking at the prediction of average choice rating and RT per

participant (Figure 4C): Whereas predictions from M1*evidence

nicely overlap with the data, predictions from M1standard are too

low with respect to choice ratings and too high with respect to

RTs. These specific failures are consistent with our hypothesis that

a model without a decision not to decide should have difficulties

with accounting for the decrease in choice probability at later time

points within early ratings. In fact, M1standard seems to overesti-

mate the probability of choices at early ratings in order to ‘‘push’’

the probability that a choice has been made, as this is the model’s

exclusive feature to predict a descent in the probability function.

Interestingly, the height of the threshold of the decision not to

decide (a free parameter in M1*evidence) correlates with the mean

RT across participants (r = .62; p,.001). This is to be expected,

because with a higher threshold the decision not to decide takes

longer. Thus, the accumulation process is terminated later making

Figure 2. Illustration of the sequential sampling approach. The displayed model predictions refer to the example trial in Figure 1A. Each panel
represents a choice accumulator over the course of the whole trial (upper panel = buy, middle panel = reject, lower panel = decision not to decide).
The colored lines refer to the decision thresholds, the thick black lines to the average position of the decision variables (DV). The DV varies by
Gaussian noise such that the model specifies the time point of the choice probabilistically. At the bottom of the three x-axes the model predictions
for the models M1standard (gray line) and M1*evidence (black line) are depicted. The two models differ from each other by (not) assuming the existence
of the third accumulator.
doi:10.1371/journal.pcbi.1003309.g002
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buy and reject decisions at later time points still possible, which in

turn leads to a higher mean RT value. In conclusion, comparing

the models on the basis of RT predictions demonstrates the

superiority of SSMs which assume the existence of an explicit

decision not to decide. Moreover, the fact that M1*evidence

performs best suggests that the decision not to decide does not

occur at a fixed time point, but that participants considered buying

or rejecting the stock offer longer if evidence for one of the two

choice options was high.

Model comparison III: Alternative solutions
Beside our SSM adaptation, many other approaches allow

predicting RTs in sequential choice tasks. A question warranted

here is whether our realization makes the standard SSM

particularly poor and whether alternative implementations would

perform better – even without assuming a decision not to decide.

The critical features of our solution are: i) the resetting of the DV to

zero at every new rating, which could be replaced by a continuous

DV; ii) the assumption that the DV depends on the accumulated

LE, which could be replaced by a DV that depends only on the

current LE; iii) the assumption of a linear DV that varies only

between ratings, which could be replaced by a DV that

stochastically varies every 10 ms; iv) the assumption of separate

accumulators for each decision, which could be replaced by

having a single accumulator representing the difference between

the two options (i.e., a random walk with upper and lower

thresholds).

Hence, we tested four additional SSMs that were all based on

the framework of a continuous random walk (see Figure 5 for

graphical illustration and Text S1 for mathematical implementa-

tion). Note that we cannot provide a closed-from solution for these

models because the position of the DV after the first rating (and

any other rating) is not fully known. Instead, we simulated each

model 100 times per trial (leading to 32,000 simulations of each

model per participant) and used the frequency of correct choice

and RT predictions to fit the models and to approximate log-

likelihood and BIC. In addition, we also simulated M1standard and

M1*evidence for facilitating comparisons.

Among the new candidates (all ‘‘M2’’), the first model

(‘‘M2walk’’) is the standard random walk model and most similar

to M1standard. Here, the DV stochastically varies between the upper

threshold for buying and the lower threshold for rejecting, and

every new rating changes the drift rate of the walk. The model has

the same number (and type) of free parameters as M1standard. The

second model (‘‘M2leak’’) additionally assumes that the change in

the DV depends on the current distance of the DV from the origin.

This introduces a ‘‘leak’’ in the accumulation which is known as

Table 1. Model comparison I & II.

Models

M0 M1standard M1*constant M1*time M1*evidence

n (parameters) 5 6 7 8 7

Fit to rating

BIC 673.2 711.7 713.7 713.7 704.7

(171.7) (168.6) (164.9) (158.6) (159.8)

n (best BIC) 20 5 0 0 2

% choice 91.0 90.4 90.3 90.6 90.4

(3.1) (3.3) (3.3) (2.9) (3.2)

% rating 66.2 64.8 65.1 65.7 64.8

(10.2) (10.0) (9.9) (9.5) (9.8)

Fit to RT

BIC – 2589.3 2362.7 2320.2 2259.2

(243.1) (234.4) (246.5) (248.8)

n (best BIC) – 0 1 6 20

% choice – 84.7 89.1 90.3 89.8

(5.7) (3.3) (3.1) (3.0)

% rating – 47.1 58.9 62.4 60.5

(14.0) (7.0) (9.5) (9.3)

% RT – 11.3 18.0 18.1 18.1

(2.6) (5.4) (5.6) (6.2)

Note. n (parameters) = number of parameters per model; BIC = Bayesian
Information Criterion (averaged over participants); n (best BIC) = number of
participants, for which the respective model had the lowest BIC value; %
choice/% rating/% RT = average percentage of trials, in which the peak of the
choice probability function of the respective model matched the actual choice/
number of sampled ratings/100 ms bin (chance levels are: 50.0%/16.7%/6.7%).
Values in parentheses are standard deviations.
doi:10.1371/journal.pcbi.1003309.t001

Figure 3. Model comparison based on the number of ratings.
(A) Relative frequencies of buy (blue) and reject (red) decisions as well
as model predictions of M1standard and M1*evidence when estimated to
predict the number of acquired ratings, separately for the ratings from 1
to 6. (B) Average choice point in terms of rating number (x-axis) and
mean RT (y-axis) per participant together with the respective
predictions from the models M1standard and M1*evidence. Horizontal
and vertical lines at the data points represent 95% confidence intervals.
doi:10.1371/journal.pcbi.1003309.g003
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the Ornstein-Uhlenbeck process [3,7,8,24]. The third model

(‘‘M2stop’’) is similar to M2walk but here the current LE influences

the DV only at the beginning of each rating for a specific time

period (afterwards, the DV fluctuates without any drift until the

next rating appears). The time period, in which the current LE

influences the DV, is not fixed but depends on the amount of

accumulated evidence and the number of sampled ratings (see

Equation S7 in Text S1). This was implemented to accommodate

the influences of evidence and rating number on mean RTs as

described above. In the fourth model (‘‘M2jump’’) the DV usually

fluctuates without any drift but at some point (also specified

according to Equation S7) the DV jumps up or down in

dependence of the current LE. M2jump can be regarded as a

direct adaptation of the model M0 from our two previous studies

[15,16], as this model assumes that each rating changes the DV

only once.

Figure 6 shows the simulated RT histograms of the four new

models along with the simulation results of M1standard and

M1*evidence. First of all, the predictions of M2walk and M1standard

are very similar: Both models overestimate the probability of

deciding at early ratings and the probability of deciding at late

time points within each rating. M2leak seems to overcome the first

but not the second problem. The RT histogram of M2jump is very

odd with very narrow and high peaks (due to the abrupt jumps in

the DV), which is not in line with the observed RT distributions.

Only M2stop seems to provide an acceptable RT pattern with fast

increases at the beginning and slow decreases at the end of each

rating. The comparison of RT histograms is supported by a formal

model comparison by means of the (approximated) BIC (Table 2):

M2walk and M1standard perform similarly, M2leak is slightly better

but still much worse than M1*evidence. M2jump has the worst fit of

all models, and only M2stop can compete with M1*evidence.

The comparison between the accumulator and the random walk

models suggests that the poor fit of the standard approaches

(M1standard, M2walk, M2leak) does not depend on the exact

adaptation of the SSM framework to the current task. In addition

to the quantitative model comparisons, however, the two classes of

models can be compared by a specific different qualitative

prediction: They make very different choice predictions in

situations in which the accumulated evidence (LE) switches from

favoring one choice option over the other (buy vs. reject). Here,

the accumulator models (i.e., M1) predict that the majority of

decisions will be made in accordance with the new evidence,

because the drift rate depends only on the updated LE. On the

other hand, the random walk models (i.e., M2) predict that

decisions are approximately equally distributed across the two

options, because the DV moves from one threshold towards the

other. In fact, nearly 95% of participants’ choices that were made

directly after a switch in LE were in accordance with the updated

LE. Consequently, only the accumulator models were able to

predict these choices above chance level (Table 2). Altogether,

considering the quantitative and qualitative model comparisons we

conclude that M1*evidence predicts choices and RTs for our

sequential choice task best.

Time-frequency analysis of EEG data
We hypothesized that the hidden decision not to decide should

be detectable on the neural level. Our modeling results suggest an

alternation of two processes within each rating, namely the

consideration of a choice during the first half of the presentation

time that is followed by its termination (or inhibition) unless a

choice is really made. Therefore, we looked for a neural marker

that can reflect both, preparation and inhibition of responses.

Oscillations in beta-band frequencies (14–30 Hz), which are

measurable via time-frequency analysis of EEG data, fulfill this

criterion. More specifically, a decrease in beta power has been

associated with preparation of motor responses [25–27] and an

increase in beta power with stopping responses and maintaining

Figure 4. Model comparison based on response times. (A) RT
histograms of buy (blue) and reject (red) decisions as well as model
predictions of M1standard when fitted to predict RTs. (B) Same as in (A)
but with predictions of M1*evidence. (C) Average choice point in terms of
rating number (x-axis) and mean RT (y-axis) per participant together
with the respective predictions from the models M1standard and
M1*evidence.
doi:10.1371/journal.pcbi.1003309.g004
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Figure 5. Illustration of the random walk models. For each of the four models, two separate simulations (light and dark gray) of the trial shown
in Figure 1 are depicted using the parameter values of the subject that was closest to the group average (in terms of mean choice rating and mean
RT). Green and red lines represent the thresholds for buying and rejecting, respectively. After crossing a threshold the simulation lines are dashed to
show how the walk would have proceeded.
doi:10.1371/journal.pcbi.1003309.g005

Deciding Not to Decide

PLOS Computational Biology | www.ploscompbiol.org 8 October 2013 | Volume 9 | Issue 10 | e1003309



the current behavioral status [17–20]. Hence, we predicted that

for ratings without buy or reject decisions the oscillatory activity in

the beta-band should decrease during the first half of the 1500 ms

time window (reflecting response preparation) but then increase

again (reflecting response inhibition).

Figure 7A (upper panel) shows the development of induced

oscillatory power from 5 to 50 Hz during the first four ratings (for

which we had data from all participants) averaged over all 57 scalp

electrodes. First of all, the signal shows a general decrease over

time that is strongest in the alpha-band (8–13 Hz) and weaker in

the gamma-band (31–50 Hz). However, most important are the

step-wise decreases in the beta-band at the beginning of each

rating, which are followed by a recovery in power after

approximately 500 ms (see also the lower panel of Figure 7A

which depicts the signal average over all beta frequencies). This

alternation of de- and increases at each rating corroborates our

hypothesis that both the decision process and its inhibition should

be reflected in beta-band oscillations. Note that the pattern was

highly frequency-specific: in the beta-band it was present in 37 out

of 57 channels at the statistical level of p,.001 (Figure 7B), but

only one channel in the alpha-band (P1) and no channel in the

gamma-band showed this effect at the very liberal level of p,.05.

Notably, in the phase-locked analysis the general decrease in

beta-power was also present, but the repeated de- and increases at

every trial could not be observed (see Figure S4 in Text S1).

We were further interested in bringing the effects of intra- and

inter-individual variability in the computational and neural data

together. As stated before, the model comparison supported the

M1*evidence model, in which the drift rate of the decision not to

decide depends negatively on accumulated evidence. This

indicates that higher evidence induces a later inhibition of the

choice process (within each rating). Therefore, we tested whether

at ratings with high evidence the pattern of de- and increase in

beta-band power is delayed. For each rating number (from 1 to 6)

we conducted a median-split based on the LE and calculated peak

latencies for de- and increase in the beta-band signal for the 37

significant channels (see Figure 7B) separately for low and high

evidence ratings. As depicted in Figure 8A, the recovery of beta

was indeed delayed for high evidence as compared to low evidence

ratings (t(27) = 3.15; p = .004). In addition, the recovery appeared to

be reduced in amplitude as well. A similar prediction can be tested

across participants: The higher the threshold of the decision not to

decide, the longer the choice process (within the time period of one

rating). Accordingly, the threshold parameter should be positively

correlated with the beta-band peak latencies. This prediction was

confirmed by the data (r = .42; p = .028) (Figure 8B).

Figure 6. RT distributions for the simulated random walk and accumulator models. The histograms show the frequencies of simulated
choice predictions (blue = buy, red = reject) per model for the ratings 1 to 6, averaged over all participants.
doi:10.1371/journal.pcbi.1003309.g006
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Behavioral study
A particular strength of our cognitive modeling approach is that

it revealed a hidden choice process of deciding not to decide that

was not directly observable. However, the model can also be

applied and generalized to choice situations in which the decision

not to decide is made explicit as an observable response.

Accordingly, the model should also describe RT distributions

when participants have to press a button to receive a new rating

and to postpone the decision. Therefore, we conducted an

additional experiment with 20 participants using a behavioral

task equivalent to the EEG paradigm – with the only difference

being that new ratings did not appear every 1.5 s but had to be

explicitly acquired via button presses (see Text S1). We used

M1*evidence to fit RT distributions of the decisions to buy and to

reject stocks and of the decision to sample more ratings and found

that the model was able to reproduce the observed RT patterns of

all three types of decisions (Figure 9A) (the overall latency of buy

and reject decisions is slightly underestimated due to the fact that

responses at the first rating were nearly 500 ms slower than at later

ratings: t(20) = 6.67; p,.001). In addition, the mean RTs and

threshold parameters of the decision to sample more information

were positively correlated with each other (r = .89; p,.001)

(Figure 9B), suggesting that the model is able to capture inter-

individual differences in this adapted sequential choice task.

Discussion

In the present study, we developed a computational model that

allows making inferences on response times for a sequential choice

paradigm, in which people are free to collect multiple pieces of

information before they decide. The model comparison demon-

strated the superiority of assuming that people actively terminate

the decision process to wait for more information in this task. The

time-frequency EEG analysis revealed alternating states of

decreases and increases in oscillatory beta-band power supporting

the view that responses are considered but then actively inhibited if

the current information is insufficient to motivate a choice.

The difficulty of the standard SSM approaches in predicting the

RT distribution originated from the repeated declines in choice

frequency at the end of every rating presentation. In other words,

the RT distribution within a rating resembled the RT pattern

commonly found in non-sequential tasks but the model without a

decision not to decide (M1standard) and the conventional random

walk alternatives (M2walk, M2leak) were unable to capture the

distribution over multiple ratings as a whole. An alternative

solution could be to first assign the probabilities of choosing at

each rating (e.g., on the basis of our model proposed in [15]) and

then to model how these probabilities are distributed within

ratings. However, such an approach appears psychologically

implausible as it would require people to specify their choice

probabilities at the beginning of each rating. But the likelihood of a

choice is not simply set after 100 or 200 ms; it emerges over time,

and this is what SSMs aim to model.

As stated, our SSM adaptation is just one out of many possible

solutions for sequential choice tasks. However, the simulation

results demonstrate that our conclusions are not restricted to the

particular implementation that we chose, which is in line with the

notion that different SSM approaches lead to equivalent

predictions under many circumstances [3,28]. Among the four

random walk models we tested, only M2stop provided an

acceptable fit to the observed RT distributions. Even though this

model does not include a separate accumulator for the decision not

to decide, the model’s concept that the influence of evidence on

the DV is temporally restricted is very similar to the idea that the

choice process is terminated at some point (and does not naturally

follow from a standard random walk or diffusion model). In

contrast to M1*evidence, however, M2stop does not answer the

question of why the drift rate changes during each rating.

Accordingly, for tasks in which the decision to sample more

information is explicitly made by the participant (as in our

additional behavioral study), M2stop does not provide a prediction

whether and when a new rating will be sampled. In contrast,

M1*evidence is applicable to both scenarios and makes clear

predictions that were consistent with the observed behavior.

Moreover, only the accumulator models correctly predicted

decisions that were made after switches in evidence. Finally, the

higher mathematical feasibility of our approach, which offers a

closed-form solution to modeling RT distributions in sequential

choice paradigms, is a strong advantage.

Under which circumstances is it necessary to extend an SSM by

including a decision not to decide? Certainly, the majority of (non-

sequential) decision-making paradigms with a continual input of

information can be successfully modeled without this component.

However, in many decision problems faced in everyday life, people

do not receive information automatically but actively and

explicitly search for information. This implies that people have

to decide whether the information acquired so far is sufficient to

reach a decision or whether additional information should be

searched for. Accordingly, there are many experiments using

sequential delivery of information, particularly in the emerging

field of decision neuroscience [14–16,26,27,29–34] (methods

such as fMRI and EEG also require well-controlled stimulus

Table 2. Model comparison III.

Models

M2walk M2leak M2stop M2jump M1standard M1*evidence

n (parameters) 6 7 9 9 6 7

BIC 2835.4 2756.9 2350.5 3097.9 2873.9 2298.8

(190.9) (166.2) (246.2) (141.1) (220.8) (165.5)

n (best BIC) 0 0 10 0 0 17

% switch 55.5 54.1 54.5 52.7 88.4 86.9

(15.7) (15.2) (16.4) (10.8) (5.2) (6.6)

Note. n (parameters) = number of parameters per model; BIC = Bayesian Information Criterion (averaged over participants); n (best BIC) = number of participants, for
which the respective model had the lowest BIC value; % switch = average percentage of model predictions matching participants’ choices after a switch in evidence.
Values in parentheses are standard deviations.
doi:10.1371/journal.pcbi.1003309.t002
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presentations). Accurate computational modeling of the decision

mechanisms in sequential choice is therefore highly desirable. In

addition, there is a substantial body of research on choice deferral

[35,36] where decision makers are explicitly provided with the

option to refuse a choice (similar to our behavioral study). Here,

the decision not to decide is relevant as it is defined as an explicit

option in the decision process.

Interestingly, the assumption of a decision not to decide seems to

improve the model fit in the fMRI data set even more than in the

EEG data set (see Table S1 in Text S1). This could be related to the

longer presentation times of ratings (2–4 s instead of 1.5 s), such that

the periods are prolonged, in which participants terminate the choice

process to wait for more information. Future studies should identify

the conditions, under which a decision not to decide becomes

particularly relevant to account for RT distributions in sequential

choice. We propose that factors like the number of cues (and its

variability) and the presentation time of cues (and its variability)

influence for how long people postpone their decision process.

In a previous paper that was based on the same EEG data set

[16], we looked at event-related potentials (ERPs) in the motor

system, such as the readiness potential, to investigate the

emergence of value-based decision in the human brain. The

ERP analyses already pointed to the existence of a decision not to

decide, insofar as the readiness potential declined after 700 ms

within every rating. However, this effect provides only indirect

evidence as compared to the increase in beta-band power, which

has been directly linked to active response inhibition [17–20].

Furthermore, unlike the latency of de- and increases in the beta-

band (Figure 8), we did not find any relationship between the

latency of the readiness potential and intra- or inter-individual

variability of the decision not to decide. A probable reason for this

difference is that in contrast to ERPs, induced oscillatory signals do

not have to be phase-locked to the onset of stimulus events so that

they are more likely to reveal the existence and the temporal

extent of endogenous brain activity [37]. In line with this, the

alternating pattern in the beta-band could not be observed in the

Figure 7. EEG time-frequency analysis. (A) The upper panel shows spectral power from 5 to 50 Hz averaged over all 57 scalp electrodes for the
first four ratings (data for later ratings are missing for some participants, who always responded earlier), baseline corrected to the 500 ms before the
first rating. The white, horizontal lines indicate the range of beta frequencies (14–30 Hz). The lower panel shows the power in the beta-band. A
general negative trend in the signal and the alternation between de- and increases at every rating are clearly visible. (B) Position of scalp electrodes.
The 37 labeled electrodes show the expected effect in the beta band (i.e., lower average signal in the first half of each rating than in the second half)
at p,.001. Note that all EEG analyses are restricted to ratings at which no response was made.
doi:10.1371/journal.pcbi.1003309.g007
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phase-locked time-frequency analysis. Finally, it should be noted

that our conclusion about the existence of a decision not to decide

does not rest upon reverse inference [38]: Instead of first finding

the beta synchronization and then speculating about inhibition

processes, we first established computational evidence for a hidden

choice mechanism and then hypothesized (and corroborated) that

this mechanism is reflected in a specific oscillatory EEG pattern.

Our findings demonstrate that a thorough modeling of

behavioral data can reveal hidden dynamics in cognition that

would remain hidden if only observable decisions are taken into

account or if models are fitted against too coarsely averaged data

[39]. Whereas comparing the SSM variants only on the basis of

how many ratings are sampled failed to reveal the necessity of

assuming a decision not to decide, the comparison based on RT

distributions was decisive. Moreover, we were able to specify

the decision not to decide in more detail by showing that people

are faster in reaching this decision as long as evidence for either

choice option is low. Our study further advocates combining

computational modeling with brain imaging techniques, as both

methodologies attempt to look into the ‘‘black box’’ of the human

mind. In this context, the temporal precision of EEG nicely

dovetailed with the fine-grained RT modeling allowing us to

discover a decision that would otherwise not have been observable.

Materials and Methods

Participants
For the EEG study [16], we had data sets from 28 participants

(details on materials and methods of the fMRI study [15] and the

Figure 8. Relationship between computational and neural
variability. (A) Beta-band power averaged over the 37 channels
shown in Figure 7B separated for low and high evidence. The recovery
of beta power is delayed in high evidence ratings. (B) The threshold
parameter for the decision not to decide (according to M1*evidence) was
correlated across participants with the averaged peak latencies for the
de- and increase in beta power.
doi:10.1371/journal.pcbi.1003309.g008

Figure 9. Results of the behavioral study. (A) RT histograms of buy
(blue) and reject (red) decisions, and the decision to sample more
information (green) together with model predictions of M1*evidence. The
left panels show RTs measured from the onset of the first rating, the
right panels show RTs measured from the onset of the rating at which
the response was given. Note that the alternating pattern of de- and
increases is washed out by the variable latency of the decision to
sample more information (in contrast to the fixed duration per rating in
the EEG study). (B) Correlation between the threshold parameter and
mean RT of the decision to sample more information.
doi:10.1371/journal.pcbi.1003309.g009
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behavioral study are provided in the Supporting Information).

Participants were right-handed healthy persons with normal or

corrected-to-normal vision. Data of one participant, whose

average RT was 3.4 standard deviations higher than the group

average, was excluded. Therefore, the final sample comprised 27

participants (mean age = 25.8 years, 63.2, 20–32 years; 14

females). The study was approved by a local ethics committee

(‘‘Ethik-Kommission der Ärztekammer Hamburg’’) and accords to

the principles expressed in the Declaration of Helsinki. All

participants gave written informed consent. Participants were

reimbursed for participation and could earn additional money by

winning points in the task (every collected point was rewarded with

0.01 Euro).

Experimental design
In the sequential decision problem, participants had to decide

whether to buy or reject stock offers based on ratings (of fictitious

stock rating companies) that provided probabilistic information

about the stocks’ value (Figure 1A). Each trial started with the cost

phase (2 s), in which the participant was informed about the costs

for observing one rating in that particular trial. Rating costs were

either low (22 points) or high (25 points) according to a

randomized order, presented in red in the middle of the black

display screen. A break of 2 s followed, in which a white ‘‘x’’ was

shown. Afterwards, the decision phase commenced with presen-

tation of the first rating (1500 ms for each rating). Enclosed by a

gray frame, the rating appeared (in white) in the middle of the

screen and the cumulative costs for observed ratings were

presented (in red) above it together with the number of observed

ratings (in white). All information was presented in a narrow range

in the middle of the screen to prevent excessive eye movements

(screen size: 19 inches; distance to screen: ,95 cm; horizontal

visual angle: ,1.6u; vertical visual angle: ,2.4u). After the

participant’s response or the termination of the sixth rating, the

next trial started with a variable delay of 2 to 6 s. Stimulus

presentation was realized using the Presentation Software package

(Neurobehavioral Systems).

Participants were told that stocks were either good (value:

+80 points) or bad (value: 280 points) and buying a stock would

lead to the payment of its value. Participants were instructed to

respond whenever they wanted during the decision phase but not

later than at the sixth rating (they would otherwise receive the

negative value of a bad stock while paying the costs for all six

ratings). They were further informed about the possible rating

values (i.e., ‘‘2 2’’, ‘‘2’’, ‘‘+’’, or ‘‘+ +’’), the cost conditions, the

independence of subsequent ratings from each other, that all

ratings were equally important, that the prior probability of good

and bad stocks was equal, and that the ratings contained

probabilistic information about stock values: They were instructed

that the probability of being offered a good stock is increased to

approx. 57% given a ‘‘+’’ and decreased to approx. 43% given a

‘‘2’’, that ‘‘+ +’’ (‘‘2 2’’) ratings are equivalent to two separate

‘‘+’’ (‘‘2’’) ratings, and that in general the more ‘‘+’’s and the less

‘‘2’’s are presented, the higher the probability of a good stock. In

fact, the probability of a good stock is updated with every new

rating according to Bayes’ theorem (details are provided in [15]).

Responses were made with left and right index fingers for pressing

keys ‘‘X’’ and ‘‘M’’ on the keyboard, respectively. The assignment

of choice options (buy, reject) and index fingers was counterbal-

anced across participants. Overall, 320 stocks were offered during

the EEG experiment (with a break of approximately 5 minutes

after 160 stocks). Rating configurations for these stocks were

generated randomly for each participant with the restriction that

each of the four possible rating values of the first rating was

presented in exactly 25% of the trials. The length of the

experiment depended on the amount of awaited ratings but did

not exceed 90 minutes. Participants knew that the number of

stocks was fixed and that faster play would not lead to getting more

offers. Before the EEG experiment, the task was practiced in two

runs of 40 trials; the first run included feedback about the

correctness of the choice to familiarize participants with the

probabilistic nature of rating information; in the second run

feedback was omitted as in the main experiment.

Model estimation
Parameter values for the computational models (see Results)

were estimated using the simplex search algorithm [40] as

implemented in Matlab. The algorithm was set up to find the

parameter set H that minimized the deviance of a model, which is

based on the log-likelihood of the behavioral data given the model

[39]. If c is the choice (buy or reject) made at rating r (1–6) and

time t (1–150 in steps of 10 ms), then the deviance of the model

when fitted to the number of ratings becomes:

deviance~{2|
XN

n~1

ln
XT

t~1

f r,t Hjð Þc

" #
, ð10Þ

where N is the number of trials and T is the number of time steps.

Thus the model predictions f(r,t)c (see Equation 5) are summed

over the 150 time steps within a rating. To fit RT distributions,

this summation could simply be omitted. However, we still

summed over 10 consecutive time steps (thus getting 15 bins of

100 ms length per rating), which was necessary to obtain robust

modeling results. Note that our method of fitting RTs retains the

information about choices and number of sampled ratings thus

ensuring that a model that can predict RT distributions but not

choices or number of sampled ratings would perform poorly. For

model comparison the Bayesian Information Criterion (BIC) was

calculated, which takes the model complexity by the number of

free parameters k into account to penalize model complexity [39]:

BIC~deviancezk|ln Nð Þ: ð11Þ

EEG data acquisition
EEG data was recorded from 57 active Ag/AgCl electrodes

mounted on an elastic cap (actiCAP, Brain Products) at standard

scalp locations (Fp1, Fpz, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5,

F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FC2, FC4, FC6,

FT8, C5, C3, C1, Cz, C2, C4, C6, TP7, CP5, CP3, CP1, CPz,

CP2, CP4, CP6, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3,

POz, PO4, PO8, O1, Oz, O2) at a sampling rate of 500 Hz. 7

additional electrodes were used to record vertical and horizontal

eye movements (electrooculogram, EOG) and muscle activity

(electromyogram, EMG) of two face muscles (corrugator supercilii,

zygomaticus). For vertical EOG, the difference between the signal

at Fp1 and an electrode positioned below the left eye was used. For

horizontal EOG and EMG, the difference between the two

relevant additional electrodes was used (horizontal EOG: left and

right temples; EMG: two electrodes positioned over the respective

muscle). Two further electrodes were used as reference (positioned

at FCz) and ground (positioned at the neck). Electrode resistances

were kept below 10 kOhm.

EEG data preprocessing and analysis
EEG data preprocessing and analysis was conducted using

Fieldtrip [41]. EEG data from all electrodes were first segmented
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into single trials with epochs lasting from 1 s before the cost phase

to 1 s after the decision phase and downsampled to 200 Hz. The

signal of the 57 scalp electrodes were then re-referenced to

average, while EOG and EMG signals were calculated as

described above. Epoch data was baseline corrected to the 1 s

time window preceding the cost phase and then filtered using a

high pass filter of 1 Hz and a low pass filter of 80 Hz. The long

trial duration led to numerous eye blinks within trials and we thus

chose to subtract blink-related and other eye movement artifacts

using the Gratton-Coles algorithm [42] rather than simply deleting

any trials with blinks. Artifact correction further included

automatic detection and elimination of trials with excessive

absolute EEG signals or excessive changes in the EEG signal.

Finally, the data was inspected manually for any remaining

artifacts and trials were deleted accordingly. Taking trials without

responses and trials with artifacts together, data from 7.1% of the

trials on average could not be analyzed.

For the time-frequency analysis, separate epochs for each rating

were generated excluding those ratings at which a response was

given (to avoid confusion with motor-evoked signals). Spectral

power for frequencies from 5 to 50 Hz in steps of 0.5 Hz were

then calculated for each rating in every trial using the ‘‘Multi-

tapering’’ method for transforming time-frequencies [43] with a

single Hanning taper over time windows of 400 ms in steps of

40 ms. For the phase-locked analysis, the waveforms of individual

ratings epochs were first averaged and spectral power analysis was

then conducted on these average waveforms [37]. To test for

effects of accumulated evidence, we split epochs for every rating

(from 1 to 6) into equal numbers of low and high evidence ratings

(defining low and high evidence ratings in this way avoids

confusing evidence- and time-dependent effects, because evidence

tends to be higher at later ratings). Raw spectral data was log-

transformed to obtain approximately normally distributed

values for parametric analyses [44]. To show the development of

time-frequency results over multiple ratings (Figure 7A), data from

consecutive ratings were concatenated (but only for ratings 1–4, as

some participants never sampled all information). For statistically

testing the hypothesis that beta-band power first de- and then

increases during a rating, we calculated the average power in the

beta-band for the first and second 750 ms of each rating separately

and then tested whether the power in the second half was higher

than in the first half (at p,.001). Only channels that survived this

criterion were included in the peak latency analysis (to ensure that

peak latencies are estimable at all). Peak latencies were derived by

measuring the time point between 250 and 750 ms at which beta

power was lowest and the time point between 750 and 1250 ms at

which beta power was highest (peaks before 250 and after 1250 ms

were considered unrealistic). The two latencies were then averaged

to obtain a single index per participant.

Supporting Information

Text S1 Supporting information including descriptions of the

random walk models and the simulations, materials and

procedures of the fMRI and the behavioral study, Table S1, and
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