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Abstract

Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental
nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-
defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective,
namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses
regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in
systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically
difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here
we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast
pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable
responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs
hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not
replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding
provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that
machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein
synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the
cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in
network evolution. The capacity of ensembles to signal effectively will ultimately shape how we conceptualize the function,
evolution and engineering of signaling networks.
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Introduction

Much of our reasoning about the function of biological systems

relies on the formation of multi-subunit protein complexes [1]. In

some cases, such as the ribosome and the proteasome, these

complexes take the form of intricate molecular machines with well-

defined quaternary structures [2–4]. The overall structure of

complexes formed during signal transduction, however, is

considerably less clear. There are a few well-characterized

signaling machines, like the apoptosome, and some have argued

that the majority of structures produced by signaling networks

would have a machine-like character [5,6]. Most of the complexes

formed during signal transmission and processing have not had

their global three-dimensional structures experimentally deter-

mined, however, and as such we currently do not know the extent

to which signaling occurs via machines [7]. Despite this

uncertainty, the machine-like perspective on signaling complexes

is pervasive in the literature, if often implicit; for instance, one

commonly represents signaling networks graphically by drawing

large complexes in which all of the relevant proteins interact

simultaneously [8–14] (Fig. 1A). Although such diagrams are often

presented as compact summaries of a set of interactions, they are

certainly evocative of a machine-like structure, and lead naturally

to analogies between signaling complexes and highly ordered

objects such as circuit boards [7,9].

One issue that complicates this machine-based picture is the fact

that the protein interaction networks that underlie cellular

signaling exhibit considerable combinatorial complexity; that is, they

can (theoretically) generate anywhere from millions to 1020 or

more unique molecular species [7,15–17]. For example, even a

single PDGF receptor dimer has ,105 possible phosphorylation

states, many of which could be (stably) occupied by any given

molecule [7,18]. A similar problem arises in protein folding: a

polypeptide chain could theoretically adopt so many conforma-

tions that it is a priori difficult to understand how a protein folds

quickly and stably into a single native structure [16,19,20].

Proteins have evolved energy landscapes with specific features in

order to overcome this problem (which is known as the ‘‘Levinthal

paradox’’). In order to assemble well-defined signaling machines,

signaling networks would similarly need to evolve specific

‘‘chemical potential landscapes’’ in order to drive the system to

a specific set of quaternary structures [16,19].

Mayer et al. have speculated, however, that signaling networks

might not need to assemble machine-like structures at all in order

PLOS Computational Biology | www.ploscompbiol.org 1 October 2013 | Volume 9 | Issue 10 | e1003278



to function [7]. This ‘‘pleiomorphic ensemble’’ hypothesis posits

that heterogeneous mixtures of complexes drive cellular responses

to external signals. Early work, based on systems of Ordinary

Differential Equations (ODEs) that considered a few hundred

molecular species, indicated that more diffuse ‘‘network’’ models

of signaling could generate reasonable signaling behavior [21,22].

The dearth of computational methods that can handle combina-

torially complex networks has made it difficult to fully test the

ensemble hypothesis in realistic networks, however [16]. As such,

it is currently unclear if ensembles could even produce reliable

responses to signals, or if there is any functional or evolutionary

difference between networks that employ ensembles vs. machines.

Over the past 10 years, a set of rule-based methods have been

developed that allow one to model the behavior of biological

systems without an a priori reduction in the set of possible species

that can be formed [11,16,21,23,24]. Given a model consisting of

a specific set of protein interaction rules, we can exactly sample

sets of protein complexes (or ‘‘conformations’’) from the

astronomically large set of all possible complexes the model can

generate. In this work we employed these methods to investigate

the possibility of signaling via ensembles in silico. We focused on the

pheromone response network (Fig. 1A), one of multiple mitogen-

activated protein kinase (MAPK) cascades in Saccharomyces cerevisiae.

This thoroughly characterized signaling cascade involves the

scaffold protein Ste5, which is thought to be a nucleation point for

the formation of signaling complexes (Fig. 1B) and prevent

crosstalk [8–10]. Since similar MAPK cascades are found in

eukaryotic cells from yeast to humans [25], this network represents

an excellent model system for exploring the influence of

combinatorial complexity on signaling dynamics.

Figure 1. The yeast pheromone MAPK network. (A) A typical representation of the cascade. Pheromone (a-factor) stimulates G-protein
activation via a GPCR (purple and red). The subsequent recruitment of the scaffold to the membrane enables the kinase phosphorylation cascade
(blue and green), ultimately activating the MAPK, Fus3 (yellow), and regulating mating-related genes (orange). (B) Scaffold-based species potentially
generated during our model’s phosphorylation cascade (color coded to Fig. 1A). Solid arrows represent association events between either two
monomers or a monomer and oligomer. Dashed arrows indicate a series of these association events. Red arrows indicate possible assembly pathways
for the decamer (far right) in the machine model. Note that this is a very small sample of the entire set of scaffold-based signaling species and their
possible interactions.
doi:10.1371/journal.pcbi.1003278.g001

Author Summary

Intracellular signaling networks are central to a cell’s ability
to adapt to its environment. Developing the capacity to
effectively manipulate such networks would have a wide
range of applications, from cancer therapy to synthetic
biology. This requires a thorough understanding of the
mechanisms of signal transduction, particularly the kinds
of protein complexes that are formed during transmission
of extracellular information to the nucleus. Traditionally,
signaling complexes have been largely perceived (albeit
often implicitly) as machine-like structures. However, the
number of molecular complexes that could theoretically
be formed by complex signaling networks is astronomi-
cally large. This has led to the pleiomorphic ensemble
hypothesis, which posits that diverse and rapidly changing
sets of transient protein complexes can transmit and
process information. Our goal was to use computational
approaches, specifically rule-based modeling, to test these
hypotheses. We constructed a model of the prototypical
yeast mating pathway and found significant ensemble-like
behavior. Our results thus demonstrated that ensembles
can in fact transmit extracellular signals with minimal
noise. Additionally, a comparison of this model with one
tailored to generate machine-like complexes displayed
notable phenotypic differences, revealing potential advan-
tages for ensemble-like signaling. Our demonstration that
ensembles can function effectively will have a significant
impact on how we conceptualize signaling and other
processes inside cells.

Machines vs. Ensembles in Intracellular Signaling
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In our initial model, we included only those interactions (and

their requisite molecular contexts) that have been explicitly

characterized experimentally. We found that this model is able

to fit available data on the response of the network to pheromone,

despite exhibiting significant ensemble character. We also

constructed an alternative set of rules that could assemble a

scaffold-based signaling machine, similar to those typically drawn

to graphically summarize the cascade [8–14] (Fig. 1A). Although

this model does fit some of the available data, we found that it

could not replicate the ‘‘combinatorial inhibition’’ of the pathway

observed at high levels of Ste5 overexpression [12,26]; instead, it

displayed considerable robustness to such changes. We also

demonstrated that TAP/MS, a common technique for experi-

mentally determining the components of ‘‘molecular machines’’

via binary interactions [27,28], could not distinguish between the

complexes formed in these two models, despite their radically

different character. Direct experimental tests of the ensemble

hypothesis thus require the application of assays that can measure

three-way or higher-order interactions, such as fragment comple-

mentation, fluorescence triple correlation spectroscopy or single-

molecule approaches [29–35]. Our findings indicate that ensem-

bles can indeed reliably transmit and process extracellular

information, and their inherent plasticity in response to perturba-

tions like scaffold overexpression implies that they may play a role

in facilitating the evolutionary variation of signaling systems within

cells [36].

Results

Constructing a model of pheromone signaling in yeast
A summary of the molecular interactions underlying the yeast

pheromone response network may be found in Fig. 1A. Briefly, the

signaling cascade is initiated by the interaction between extracel-

lular pheromone molecules and a G-protein coupled receptor

(GPCR), which induces dissociation between the a subunit (Gpa1)

and bc subunits (the Ste4-Ste18 complex, hereafter referred to as

Ste4) of the G-protein [37]. Ste4 then recruits the scaffold protein,

Ste5, which dimerizes, binds numerous kinases (Ste20, Ste11, Ste7)

and promotes a phosphorylation cascade resulting in dual-

phosphorylation and activation of the MAPK, Fus3 [38,39]. As

mentioned above, the vast majority of graphical depictions of this

cascade involve simultaneous binding of all requisite proteins to

Ste5 (Fig. 1A) [8–14], however to our knowledge there is no

explicit experimental evidence that such a large scaffold-based

complex is actually formed during signaling. Active Fus3 then

translocates to the nucleus, regulating the expression of numerous

mating-related genes via the transcription factor Ste12 [10].

To create a dynamical model of this cascade, we constructed a

set of rules for these interactions and other events (e.g. post-

translational modification, protein synthesis and degradation,

nucleotide transfer). The rules themselves, which follow mass-

action kinetics, were primarily derived from two sources: an online

model (http://yeastpheromonemodel.org) [40] and an ODE

model [11], both of which are based on comprehensive literature

searches (Section 1 in Supporting Information Text S1). In our

initial model, if a reaction (e.g. efficient phosphorylation of Fus3 by

Ste7) requires conditions that have been experimentally charac-

terized (e.g. Ste7 also bound to Ste5), they are explicitly

represented in the rule. We added no additional constraints to

this model, in order to: (a) see if existing knowledge of these

interactions is sufficient to produce realistic network dynamics

(Fig. 2) and (b) characterize whether they result in machine- or

ensemble-like character. The rule set, written in the Kappa rule-

based modeling language [41], contains 232 rules, 18 protein and

8 gene agent types and is available as a separate supporting file

(‘‘ensemble.ka’’ in Protocol S1). This model displays considerable

combinatorial complexity: even if we only focus on complexes

containing the Ste5 scaffold, the system can generate over 3 billion

unique molecular structures (Section 3.5 in Text S1). We thus

employed KaSim, an open source simulator for Kappa models, to

consider the dynamics of the system without a reduction in its

combinatorial complexity. Our general simulation strategy is

described in detail in the Materials and Methods section and

Section 2 in Text S1; a graphical schematic can be seen in Fig. 3A

Parameterization of the model
The model described above has two types of parameters: initial

copy numbers (i.e. concentrations) for each of the 18 protein

agents and stochastic rate constants for each of the 232 rules. We

obtained the initial conditions directly from experimental mea-

surements of copy number in yeast cells [40,42]. The stochastic

rate constants were obtained from a combination of experimental

data and parameter fitting. Briefly, 7% of the rate constant

parameters in the model have been directly measured for yeast

proteins, 68% were estimated from measurements on related

proteins in other networks and 25% were completely unknown

and thus given approximate values. In order to reproduce

experimental observations with our model, we identified 111 rules

that were likely to influence experimentally characterized trends

and varied their rate constants.

We found that only 25 of these parameters had a strong impact

on the dynamics of important observables in the model, and so we

only modified those values during our fitting procedure. Of these

25, 22 had original estimates obtained from related proteins. In

those cases, we restricted variation of the parameters to an increase

or decrease of about one order of magnitude, to maintain

similarity between the fitted value and the original estimate. Two

of the remaining parameters had no available estimate, and so we

restricted variations in those parameters to a biologically realistic

range (a table with ranges for each type of parameter is available in

Section 1.2 in Text S1). Finally, one parameter, the Gpa1

degradation rate, had been measured experimentally; we restricted

variation in this parameter to a less than five fold change, a

reasonable range given the inherent error in the experimental

measurement [43]. Further details on how we identified and

varied these parameters may be found in Section 1.2 in Text S1.

Since each simulation of this model requires over three hours of

CPU time, we could not perform fits using standard techniques,

nor could we employ statistical methods to understand the

probabilistic structure of the parameter space [44,45]. Therefore,

we manually altered these 25 parameters (subject to the above

constraints) and simulated the model with the updated rate

parameters. We iteratively applied this procedure until the model

successfully replicated the dose-response behavior of Fus3 with

respect to pheromone (Fig. 2A) [13,14], the temporal dynamics of

G-protein activation (Fig. 2B) [37], and other experimental

observations (Figs. S1, S2, S4, and S5 in Text S1). To test the

robustness of our results to the particular simulation method, we

translated our rules into the related BioNetGen Language (BNGL)

and used the same parameters to simulate the model using the

BNGL simulator NFsim [23]. The two software packages

produced exactly the same dynamics for these rules (Figs. S4, S5

and Section 2.2 in Text S1). The BNGL version of the model is

also available as a supporting file (‘‘ensemble.bngl’’ in Protocol S1).

Given the large number of parameters in the model compared

to the amount of data available for fitting, one should not construe

the above results as implying this model represents a uniquely valid

description of the system. Indeed, as we demonstrate below, even

Machines vs. Ensembles in Intracellular Signaling
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fairly different rule sets can provide (roughly) equivalent fits to this

data; we thus cannot make any claims regarding the identifiability

of the parameters or even the rule set itself [45,46]. The point in

this case is that it is possible to find some set of parameters that

replicate the data, indicating that this model is at least consistent

with available observations.

Heterogeneity in signaling complexes
To determine if the model described above signals through

ensembles, we implemented a pairwise comparison between the

sets of complexes produced in two independent simulations i and j,

using the Jaccard distance, which we refer to as ‘‘compositional

drift’’ [16]:

d(i,j)~
Ci DCj

�
�

�
�

Ci|Cj

�
�

�
�
,

where Ci represents the set of unique complexes in simulated cell

i, D and | are the symmetric difference and union set operators,

respectively, and |X| is the cardinality of set X. Given the

complexes present in two simulated cells, drift is the number of

complexes unique to either one cell or the other, divided by the

total number of complexes in the union of the two cells. Drift can

thus be interpreted as the probability that a complex found in one

cell is not found in the other at a particular point in time. For

example, d = 0 indicates identical sets of complexes, whereas d = 1

means the sets are pairwise disjoint. We only performed this

comparison between multiple simulation replicates that started

from exactly the same steady-state initial condition; thus d = 0 at

t = 0 for all of our simulations (Fig. 3A; Sections 2.3 and 3.3 in

Text S1). Note that this calculation takes into account any

difference between complexes, whether the difference is in

binding partners, phosphorylation states, or otherwise. Analysis

of other potential criteria for differentiating complexes yielded

similar results to those discussed below (Fig. S9 and Section 3.3 in

Text S1).

We observed a marked increase of drift between simulations

with pheromone (and thus signaling activity) as opposed to those

without pheromone (Fig. 3B). At peak Fus3 signaling activity

(t = 360 seconds), around 80% of all unique complexes were

exclusive to one simulation or the other (Fig. 3B). Such small

overlap indicates that individual cells utilize different sets of

signaling complexes, consistent with the ensemble hypothesis

[7,16]. To confirm that this high level of drift is not an artifact of

our chosen parameters, we generated over 1000 rule sets with

randomized rate parameters (Section 2.4 in Text S1). In Fig. 3C

we see the distributions of drift values among scaffold-based signaling

species for both the validated model and models with randomized

parameters at peak Fus3 signaling. Although the average random

parameter set has somewhat lower drift than observed in our

original parameter set, approximately 97% of the drift values from

the models with randomized parameters were nonetheless greater

than 0.8. The high level of drift among signaling species thus likely

arises from the rules and interactions themselves rather than

specific rate constants.

While the results in Fig. 3C indicate relatively high levels of

heterogeneity at a particular time point, it could be that two

different simulated cells utilize the same set of complexes, just at

different times during signal transduction. We thus considered the

differences between cells based on the union of all the unique

complexes they sampled across the time points in our simulations

(i.e. the points in Fig. 3B). We found that using the union of

complexes across times only reduced absolute drift levels by about

10%, indicating a high degree of diversity between simulated cells

across the entirety of the signaling dynamics (Fig. S10 in Text S1).

Our analysis of drift across time points raised the question of

whether an individual simulation i maintains a specific set of

complexes, or if the set changes over time. To answer this

question, we used an alternative drift calculation, termed autodrift:

di(t,t+Dt) instead of d(i,j). We found that simulated cells employ

rapidly changing sets of complexes during peak signaling times in

this model (Fig. 3D). Autodrift increased as a double exponential,

with a longest time scale of approximately 0.5 s (Fig. 3D, inset, and

Figure 2. Experimental validation of the rule-based ensemble model. All error bars are 95% confidence intervals (simulated n = 10 where the
simulations start from identical steady-state initial conditions). (A) Dose-response curves for Fus3 activation with respect to pheromone. The model
displays similar behavior to that observed experimentally, although the experimental curves do not completely agree with one another [13,14]. Also
note that the level of noise observed in our simulations is equivalent to, if not less than, that observed in vivo. (B) G-protein activation time-course
curves in response to 100 nM pheromone. An initial spike in activation, a subsequent decline and a long-term increase are seen upon pheromone
stimulation in both wild-type FRET experiments [37] (black circles) and simulation (red solid line). Addition of cycloheximide in the experimental data
(black triangles) indicates that the long-term increase in G-protein activation is due to pheromone-induced transcription [37].
doi:10.1371/journal.pcbi.1003278.g002

Machines vs. Ensembles in Intracellular Signaling
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Section 3.3 in Text S1). Indeed, within 5 seconds the difference

between a cell and its past self achieves levels of drift similar to that

observed between two completely independent cells in the

population. This is consistent with observations from both

modeling and experimental studies of epidermal growth factor

signaling in mammals, where a diverse set of phosphorylated

species forms rapidly during signaling [47,48]. The rapid increase

in drift also highlights the transient nature of the ensembles of

complexes that are generated.

Detailed analysis of signaling species
It is possible that the putative ensembles in this case merely

represent a set of highly similar (though technically distinct)

signaling species that form around a large ‘‘core’’ signaling

complex. We thus examined in detail the structures of the scaffold-

based species at various time points in our simulations. If a core

complex were present, we would expect to see substantial

conservation of protein binding patterns (ignoring phosphorylation

state) in the set of unique complexes. Though Ste5 dimers are

Figure 3. Characterization of heterogeneity among signaling species in the ensemble model. All error bars are 95% confidence intervals.
(A) Visual depiction of our simulation method. An initial state was defined (red; all monomeric protein agents with one exception) and a number of
trajectories were simulated to represent a set of untreated, homeostatic yeast cells (green). Pheromone was then added and each steady-state cell
was simulated for a number of independent 1-hour trajectories (blue). Drift values were then calculated pairwise for all simulations that were derived
from the same original homeostatic cell. The same procedure was also performed without adding pheromone as a control. (B) Average drift on a log
time scale (n = 45). All simulations in this case (both with and without pheromone) start from identical steady-state initial conditions, so we have d = 0
at time t = 0. Simulations with pheromone (red) show a greater overall increase in drift as compared with simulations without pheromone (black).
Peak levels of drift (,0.8) occur around 100–300 seconds into simulations with pheromone. The ultimate decline in drift (t = 3600 s) is due to the
presence of negative feedback in the cascade, returning the MAPK network to homeostasis. (C) Density of drift among scaffold-based complexes with
randomized parameters (black, n = 9000) and the parameters that reproduce the experimental data (blue, n = 450). 1000 parameter sets were
randomly generated and simulated, and we employed kernel density estimators to produce the density curves (Section 2.4 in Text S1). Though the
mean drift values of the two distributions are significantly different (p,1025, Section 2.4 in Text S1), the vast majority of drift values in the models
with both randomized and fixed parameters are above 0.8, demonstrating the robustness of high drift in the model, regardless of rate parameters. (D)
Autodrift occurs on two different timescales as indicated by statistical analysis of our double-exponential fit (n = 10, Section 3.3 in Text S1). Signaling
events induce rapid divergence within one second (inset) from identical initial states within a particular simulation starting at the time of peak signal
output (t = 300 s, Section 3.3 in Text S1) [47]. Also of note is the blue dashed line, which is the average drift between simulations at the 360 second
time point (the blue dotted lines are the 95% confidence interval).
doi:10.1371/journal.pcbi.1003278.g003

Machines vs. Ensembles in Intracellular Signaling
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present in ,70% of species during peak signal throughput,

conservation significantly declines as the binding pattern is

expanded to include more proteins (Fig. 4A). In fact, not once

did we find a Ste5 dimer bound to all its potential interaction

partners, indicating that the complex used in the standard

graphical depiction of this phosphorylation cascade is one that

would very rarely, if ever, occur in simulations of this model

(Fig. 1A) [8–14].

It is possible that complexes in the ensemble model still assemble

around a consistent core structure, just not the traditional

representation of a scaffold-based core signaling complex that we

intuitively expect (Fig. 1A). Since there are over 3 billion possible

scaffold signaling structures in this model, however, we could not

search for this core by enumerating all possibilities and looking at

conservation patterns as in Fig. 4A. We thus used a straightfor-

ward clustering analysis to search for an alternative core structure.

The signaling species generated in our model were clustered on

the basis of the structural similarity between complexes, repre-

sented in this case by the graph edit distance metric, which is simply the

number of changes (or edits) that would be required to form one

complex starting from another. This distance accounts for

differences in the members of a complex (i.e. the removal of a

protein from a complex increases the distance) as well as

differences in phosphorylation state, etc. (Fig. S12 and Section

3.4 in Text S1).

We implemented a hierarchical clustering algorithm based on

this distance. Briefly, the algorithm chooses a representative

complex from each cluster, called the ‘‘clustroid,’’ which is the

complex with the lowest average graph edit distance to all other

complexes in its cluster (Section 3.4 in Text S1). At each level of

the hierarchy, the algorithm combines the two clusters whose

clustroids are most similar, that is those with the minimum graph

edit distance (i.e. the minimum between-cluster distance, or

MBCD). This algorithm is initialized with each complex in its own

cluster (meaning the complex is its own clustroid) and continues

until the original set of complexes is partitioned into a given

number of clusters. This number, which we call the ‘‘cutoff,’’ is a

free parameter and is relatively arbitrary in our case (Fig. S15 and

Section 3.4 in Text S1), so we repeated the clustering algorithm

with numerous different cutoff values. We calculated the size of the

largest conserved structural pattern as a function of the cutoff

value for each cluster that contained ten or more complexes. We

found that, on average, this conserved pattern contained less than

2 proteins (Fig. 4B), indicating substantial dissimilarity among

clustered proteins; cutoff values producing clusters with 4 or more

proteins in the conserved subgraph were very rare (Fig. S15 in

Text S1). These results, combined with the dissimilarity between

clusters generated from independent simulations (Fig. S13 in Text

S1) and the high levels of drift we observe (Fig. 3B–D), underscore

the strong ensemble character of this model.

Building a machine model based on a multi-subunit
kinase

The findings described above indicate that heterogeneous

ensembles of complexes can indeed transmit and process

extracellular information with levels of noise comparable to those

observed experimentally (Figs. 2–4). To understand if machine-like

complexes could also produce reliable signaling behavior, we

Figure 4. Structural analysis of complexes. (A) Structural
conservation among scaffold-based signaling species in the ensemble
model (n = 10). Ste5 dimers are present in 70% of species (black),
however as we consider higher-order oligomers formed around this
dimer, the fraction of species that contain these patterns drops sharply,
with the fully bound Ste5-based decamer not seen at all. The standard
depiction of the scaffold-based signaling complex (Fig. 1A) is thus
unlikely to be observed in the ensemble model, if it occurs at all. Error
bars are 95% confidence intervals. (B) The average size of the conserved
protein complex as a function of the final number of clusters (i.e. the
cutoff). At each cutoff, the average considers only those clusters with 10
or more members, to avoid contribution from very small collections of
complexes. The average size does not exceed two, even considering up
to 100 unique clusters. Error bars represent the 95% confidence interval
of the mean. (C) Conservation of structure as in Fig. 4A, but in the

machine model (n = 10). Here the decamer (signaling machine) is
present in about 50% of species during peak signaling. The dimer,
tetramer and hexamer patterns (black, red and blue, resp.) are present
in identical fractions of the unique species, but are separated slightly in
the graph for clarity.
doi:10.1371/journal.pcbi.1003278.g004

Machines vs. Ensembles in Intracellular Signaling
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constructed an alternative model with the goal of assembling

signaling machines, which we defined to be stable, multi-subunit

kinases based around the scaffold Ste5 [1,5,9]. Specifically, the

machine we focused on consists of a Ste5 dimer, with each scaffold

protein bound to a Ste4–Ste20 dimer and two kinases, Ste11 and

Ste7 (Fig. 1A). Upon assembly and activation, this decameric

structure binds and phosphorylates Fus3 according to standard

mass-action kinetics [9].

In contrast to the previous model, we were forced to introduce a

priori assumptions (neither experimentally supported nor specifi-

cally refuted) in order to generate stable signaling machines. The

simplest possible approach would be to create rules and rates that

render the desired machine complex incredibly stable. The

decamer, however, is essentially never generated in our original

model’s simulations (Fig. 4A), so a machine model based purely on

increasing the stability of the desired complex is unlikely to

actually produce such machines in high quantities reliably. As

mentioned above, this fact resembles the Levinthal paradox in

protein folding: no matter how stable the native state of a

polypeptide chain may be, proteins would essentially never fold if

they randomly searched for this state on an otherwise ‘‘flat’’ energy

landscape [19,20]. Alternatively, evidence suggests that molecular

machines assemble hierarchically in vivo [49], and so we added

specific rules that determine the order in which binding and

phosphorylation could occur between the scaffold and its

associated proteins (Fig. 1B, red arrows). This represents a

hierarchical energy landscape (extending the analogy to protein

folding), where each consecutive step builds toward the formation

of a ‘‘native’’ signaling machine [19]. For example, in the machine

model, binding of Ste11 to the scaffold can only take place if Ste5

has dimerized and each scaffold is bound to a Ste4–Ste20 dimer.

Beyond these scaffold assembly rules, no other alterations were

made to the model.

The resulting rule set is sufficiently complex that it is impossible

to directly estimate the number of unique species that the machine

model could form. We thus translated this model from Kappa into

BNGL and used available BioNetGen tools to calculate the total

number of species for this rule set [50]; as with our ensemble

model, the Kappa and BNGL versions of the machine model are

available as supporting files (‘‘machine.ka’’ and ‘‘machine.bngl’’,

respectively, in Protocol S1). This analysis indicated that the

machine model could only generate a total of 1106 possible

scaffold-based structures, a decrease of over 6 orders of magnitude

compared to the ensemble model (Section 3.5 in Text S1). The

hierarchical assembly rules in this case thus drastically constrain

the set of possible species that the model can sample.

Differences between the machine and ensemble models
As with our original model, we subjected this alternative

machine model to parameter variation and confirmed that it can

reproduce experimental data (Figs. S6, S7, S8 and Sections 1.8

and 3.2 in Text S1). Although the dose-response and time-course

trends of the machine and ensemble models are similar, they

exhibit significantly different sets of signaling complexes. As

expected, nearly half of all unique scaffold species in the machine

model contained the decamer defined above (Fig. 4C), indicating

wide conservation of the desired core signaling complex, in

contrast to the complete lack of conservation observed in the

ensemble model (Figs. 4A and 4B).

The set of species sampled in the machine model also differed

dramatically from those produced by the ensemble model. As a

gross estimate of this difference, we considered the cumulative

number of unique scaffold-based species obtained by a set of

simulations; that is, the total number of unique complexes that are

found in a group of N simulated cells. In the machine model, this

number rapidly approaches a maximum value as N increases,

saturating at around 800 after considering only 100 simulations

(Fig. 5A). The machine model thus samples about 70% of the 1106

possible scaffold complexes in a population of ,100 cells. The

behavior of the ensemble model is strikingly different, sampling a

Figure 5. Comparison of notable characteristics in the machine and ensemble models. (A) Cumulative number of unique signaling
complexes sampled by the machine and ensemble models (black and red, respectively) as a function of the number of independent simulations
considered. We see that ensemble model generates a set of complexes approximately two orders of magnitude larger than the machine model over
a range of 600 simulations. (B) Drift density among scaffold species in the validated machine model (n = 450) and 1000 machine models with
randomized parameters (n = 7789) as compared to the data in Fig. 3C. A large difference between the machine and ensemble models can be seen,
with significantly higher mean drift in both the validated ensemble model and the set of randomized ensemble models (both comparisons have a
significance of p,1025, see Section 2.4 in Text S1). It is also notable that the largest drift value from the machine model is much lower than the
smallest from the set of ensemble models with randomized parameters. The remaining heterogeneity observed in the machine model can be
attributed to the presence of assembly intermediates and regulatory interactions.
doi:10.1371/journal.pcbi.1003278.g005
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set of unique structures that is nearly two orders of magnitude

greater than the machine model (approximately 70,000, Fig. 5A),

and failing to saturate even after considering a population of 600

simulated cells. Although the total number of sampled species

across these 600 cells is large, it is only 0.0022% of the 3 billion

species the ensemble model could theoretically generate.

As one might expect given the results of Fig. 5A, we observed

large differences in drift during peak signal output between the two

models. On average, only 55% of unique scaffold complexes were

exclusive to one of two simulations in the machine model, as

opposed to 90% in the ensemble model (Fig. 5B). As with the

ensemble model, we generated 1000 alternative machine models

with randomized parameter sets to determine if the level of drift in

this case was an artifact of the parameterization of the model.

Though the distribution of drift values was fairly wide across these

randomized models, in every case we observed considerably less

drift than for the validated or randomized ensemble model

(Fig. 5B). The rules underlying the machine model thus robustly

produce dynamics that one might expect for well-established

molecular machines like the ribosome or proteasome: a stable,

heavily populated core structure with residual diversity arising

from assembly intermediates and the association of substrates and/

or regulatory factors.

Evaluating experimental evidence for ensembles
Since these two models can both reproduce general pheromone-

dependent trends, one might ask if it is possible to differentiate

machine- and ensemble-like signaling processes directly using

available experimental techniques. The most natural approach

would be tandem affinity purification in conjunction with mass

spectrometry (TAP/MS), which is widely employed as a high-

throughput assay for the discovery and analysis of protein

complexes [27]. For example, Gavin et al. employed a ‘‘socio-

affinity’’ (SA) index designed to extrapolate binary TAP/MS

interaction data in order to discover novel ‘‘eukaryotic cellular

machines’’ via clustering analysis [27]. To determine whether this

technique could discern the nature of in vivo signaling complexes,

we characterized the signaling species generated in both the

ensemble and the machine models using the SA index [27]. There

is a high correlation between the SA scores produced from our two

models’ sets of species (Fig. 6A); clustering these scores using the

commonly employed MCL algorithm [27,28,51,52] results in

essentially the same set of complexes (Fig. 6A, inset).

This leads to the question of whether one could ever detect any

functional differences between ensembles and machines in a

signaling context. Previous work has established the presence of

‘‘combinatorial inhibition’’ [26] (akin to the ‘‘prozone’’ effect [53])

in this particular cascade; increased expression of the Ste5 scaffold

leads to a maximal response, past which further overexpression

leads to a decline in signal output [12,40]. We found that the

Figure 6. Indirect evidence for complex structure. (A) The socio-
affinity (SA) scores [27] obtained from a computational TAP/MS
experiment (averages over 10 simulations) where each point is the SA
score between two specific proteins (e.g. Ste4 and Fus3) in both the
ensemble (x-axis) and machine models (y-axis). The machine and
ensemble models’ scores exhibit a strong correlation and clustering
them [28] resulted in highly similar ‘‘complexes’’ (inset, dashed lines
exclusive to ensemble model, dotted to machine model), indicating
that this method of characterizing in vivo complexes cannot distinguish
between these two modes of signaling. (B) Overexpression of Ste5 in
the machine (red) and ensemble (black) model results in different
responses (n = 10). In addition to the phenotypic plasticity, we can see
the clear presence of combinatorial inhibition [26] in the ensemble (but
not machine) model as observed in vivo by Chapman and Asthagiri [12].

(C) We analyzed the robustness of combinatorial inhibition to variations
in the parameters by considering 100 randomized ensemble models
and 100 randomized machine models. In each case, we simulated the
model with 126 and 606 the WT Ste5 concentration, and calculated
the relative change in Fus3 activation, DFus3pp (606–126). The
negative values for the distribution of ensemble models (black)
indicates the robust presence of combinatorial inhibition, whereas the
machine models (red) mostly have changes around zero with a few
strongly positive outliers (which have been omitted for clarity). The
difference in means between the two distributions is statistically
significant (p,1025, permutation test). Vertical bars on the x-axis
indicate the relative DFus3pp (606–126) for the validated machine and
ensemble models in red and black, respectively.
doi:10.1371/journal.pcbi.1003278.g006
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ensemble model reproduces this behavior, while the machine

model does not (Fig. 6B). In the ensemble model, the eventual

decrease in signal response arises because the high quantity of

scaffold proteins lowers the probability of cascade components

(say, Ste7 and Ste11) binding the same scaffold dimer [26,53], and

so the rate of signal propagation is drastically reduced. The

hierarchical assembly rules in the machine model, however,

reduce drift by ensuring scaffold dimers can only bind Ste7 after

Ste11 is already bound. Beyond a certain minimal point,

increasing Ste5 concentration has no effect, since the only

potential scaffold binding partners for Ste7 are already bound to

Ste11, and thus can propagate signal.

To test if the difference in Fig. 6B was robust to variations in the

rate parameters, we simulated 100 randomized ensemble models

and 100 randomized machine models with three values of Ste5

concentration: Wild Type (WT), 12 times WT (126) and 60 times

WT (606). We used these simulations to calculate the relative

change in peak Fus3 activation (DFus3pp) between two pairs of

scaffold concentrations: WT to 126, and 126 to 606. The

validated ensemble and machine models both exhibit a positive

DFus3pp (126 – WT), corresponding to an increase in Fus3

activation (the peak in Fig. 6B); all the randomized ensemble

models, and most of the randomized machine models, displayed

this same behavior (Figs. S16, S17 and Section 3.7 in Text S1). In

the ensemble model, increasing Ste5 to 606 WT concentration

decreases response, yielding a negative DFus3pp (606–126), while

the machine model exhibits an approximately constant response

across these concentrations (Figs. 6B and C). The randomized

ensemble models also universally showed a decrease in Fus3

activation from 126 to 606 Ste5 concentration, indicating that

combinatorial inhibition is a robust feature of the ensemble model.

The randomized machine models, however, had mostly increases in

Fus3 activation between these two concentrations, and in no case

did we observe a decrease as large as that observed for the

ensemble models (Fig. 6C). The relative lack of combinatorial

inhibition in the machine model is thus likely a feature of the rules

themselves, rather than the specific parameters chosen.

It should be noted that the machine considered here is an acyclic

complex; that is, there are no ring-like motifs in the protein

interaction map for Ste5 (Fig. 1A) [53–57]. Previous modeling

studies indicate that ring-like structures can assemble efficiently

into well-defined quaternary structures, at least in certain

parameter regimes [57]. Nonetheless, overexpression of a single

subunit in a heteromeric ring causes a marked decrease in the

concentration of the assembled machine, indicating that ring-like

structures can simultaneously exhibit a machine-like character and

combinatorial inhibition [53,56,57]. We leave full consideration of

the interplay between robustness and topology in the evolution

hierarchical assembly pathways to future work [56,57].

Discussion

The nature of the signaling complexes formed during signal

transduction is foundational to how we conceptualize and

understand information processing in cells. This is particularly

true of scaffolds, whose primary function is to serve as a platform

for the formation of multicomponent complexes that transmit

signals [9]. The question of whether these complexes align more

with the machine or ensemble paradigm is thus crucial for

developing a principled picture of the roles scaffolds play. For

instance, it has been posited that Ste5 acts to insulate pheromone

signals from activating other, related MAP kinase cascades by

sequestering active Ste11 in a pheromone-specific complex. This

view is inconsistent with the ensembles we observe, however, since

those involve appreciable concentrations of free, active Ste11; in

contrast, the machine model produces essentially no active Ste11

molecules that are not bound to the scaffold. The capacity of Ste5

to fulfill the role of insulator in this pathway, or the need to posit

other mechanisms such as cross-inhibition [8,9], is thus directly

related to the degree of ensemble character the network displays, a

fact that highlights the central role that reasoning about

quaternary structure plays in developing and evaluating hypothet-

ical signaling mechanisms.

Our findings indicate that certain experimental methods, such

as TAP/MS, are ill-equipped to directly resolve the structural

details of signaling complexes in living cells. The difficulty in this

case lies with the inherently binary nature of co-purification assays:

they can tell us that two proteins interact in some way, but they tell

us very little about the global structural context of the complexes in

which those proteins are found. For example, in our computa-

tional TAP/MS experiment, we see that the overall pattern

obtained by ‘‘tagging’’ each protein and recording its interaction

partners is essentially the same for both the ensemble and machine

models (Fig. 6A). This is due to the fact that, while the types of

quaternary structures formed varies considerably between the two

models (Fig. 4), the probability of observing any given pairwise

association between two proteins is essentially the same. Our

results thus indicate that it is problematic to construe clusters

obtained from TAP/MS data as representing ‘‘cellular machines’’

in the classic sense [1,27].

In contrast, experimental methods that can capture ternary or

higher interactions (i.e. the simultaneous association of three or

more distinct proteins) could be used to provide direct evidence for

(or against) the hierarchical assembly of a signaling machine. For

instance, in the machine model, Ste7 only binds Ste5 after Ste11 is

already bound. Observation of Ste7-Ste5 association in the

absence of Ste11 binding to Ste5 would thus provide evidence

against the type of signaling machine considered here (Fig. 1B).

Methods such as fragment complementation assays and fluores-

cence triple correlation spectroscopy could likely be used to probe

these types of ternary association dynamics [29–31]. Alternatively,

recent advances in single-molecule (super-resolution) microscopy

(e.g. methods like PALM and STORM) could potentially track the

assembly of machine- or ensemble-like signaling complexes [32–

35].

While direct experimental tests of the ensemble hypothesis are

currently lacking, inherent functional differences between machine

and ensemble models can be used to provide indirect evidence for

or against a particular paradigm. For instance, the hierarchical

assembly rules that are required to reliably construct a functional

scaffold-based signaling machine prevent our machine model from

replicating the experimental observation of combinatorial inhibi-

tion (Fig. 6B) [9,12,26]. Our analysis of machine models with

randomized parameters indicate that this is likely a general

observation: in order to exhibit combinatorial inhibition, signaling

networks must have the capacity to sample large sets of complexes,

ultimately leading to ensemble behavior (Fig. 6C). Although more

work is clearly needed to unambiguously resolve the question of

machines vs. ensembles, our findings on combinatorial inhibition

indicate that at least some degree of ensemble character is likely

present in yeast pheromone signaling. It is also clear that the

assembly pathways employed to form machines can have

measurable, phenotypic consequences. As a result, even if one

could determine experimentally the small set of machine-like

complexes employed by some network, making a model that

employs these machines, but ignores the mechanisms necessary to

generate them [11,21], may not accurately capture the response of

the system to perturbations.

Machines vs. Ensembles in Intracellular Signaling
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The presence of ensemble character in signaling also highlights

a potential evolutionary trade-off between machines and ensem-

bles in terms of their phenotypic plasticity. Considering again the

analogy to protein folding, adopting a well defined, thermody-

namically stable tertiary structure clearly enables the function of a

vast array of protein domains (i.e. the general protein structure-

function paradigm) [58]. In some cases, however, it has been

posited that ‘‘intrinsically unstructured’’ (or unfolded) protein

domains may have a distinct functional or evolutionary advantage:

for instance, they may display greater interaction plasticity,

binding specifically yet transiently with a large number of protein

targets [58,59]. Similarly, a protein with a robust, stable

quaternary structure (i.e. a machine) [1,7,16] may be beneficial

for the conservation of universal cellular tasks, like protein

synthesis and degradation. In the case of signal transduction,

however, ensembles may offer greater functional and evolutionary

plasticity. For example, modifying Ste5 expression levels produces

altered, but nonetheless functional, responses without the need to

introduce complex, coordinated mutations to the reaction

network’s rule set (Fig. 6B) [36]. In this sense, both intrinsically

disordered proteins and pleiomorphic ensembles may perform

unique intracellular tasks precisely because they involve less well-

ordered (tertiary or quaternary) structures. The ensemble charac-

ter we observe could thus represent a form of weak regulatory

linkage among genes, ultimately being responsible for the

remarkable capacity of MAPK networks to exhibit different but

meaningful phenotypes when they are re-wired, either through

synthetic modifications or naturally over the course of evolution

[9,25,36,60].

Since machines do indeed form in some signaling networks (e.g.

the apoptosome), there is likely a spectrum of structural specificity in

the formation of complexes during signal transduction [1,6,7].

Indeed, one could modify the machine model presented here to

include a finite probability of ‘‘off-pathway’’ binding events (e.g.

some chance that Ste7 will bind Ste5 even if Ste11 is not already

bound). Such models could exhibit intermediate levels of both drift

and combinatorial inhibition (Figs. 5B and 6B); future work on this

and related systems will be necessary to understand the particular

functional and evolutionary consequences of a particular degree of

ensemble-like character in any given system. Nonetheless, our

work clearly demonstrates that large, heterogeneous ensembles

can indeed reliably transmit and interpret extracellular informa-

tion [7,21,22]. This hints at the existence of a new paradigm for

molecular computation, one in which the evolution or engineering

of ‘‘local’’ interaction rules allows for robust information

processing in the absence of ‘‘global’’ order (i.e. a stable, multi-

subunit signaling machine) [1,5]. Understanding the consequences

of this paradigm for robustness [61], plasticity [9,36] and crosstalk

[8] in signaling networks represents a crucial task for the emerging

field of systems biology.

Methods

Simulation
The models in this work were simulated using KaSim, a

stochastic simulator for rule-based models based on the Kappa

language that is capable of stochastically sampling all possible

species a given model can generate (Fig. 5B; Section 2.1 in Text

S1) [23,24]. The model is initialized with a set of (mostly)

monomeric protein agents and simulated for 1000 seconds

without pheromone to generate a steady-state population of N

untreated ‘‘cells.’’ We treated the cells with pheromone, and

generated a set of N9 independent hour-long simulations from each

steady-state starting cell. All of the complexes present in the

simulation were recorded at logarithmically spaced time intervals.

Compositional drift calculations were performed using these

‘‘snapshots;’’ we only performed this calculation between simula-

tions that started from exactly the same initial conditions (Fig. 3A).

We performed similar simulations to determine both dose-

response and the time course trends. Further simulation details

may be found in Section 2.3 in Text S1.

Autodrift statistical fitting
Simulation data was fit to a set of exponential models using

nonlinear least-squares regression. We found that a double

exponential function was the best fit for the data upon analysis

of the residuals and the statistical significance of the estimated

model coefficients. The functional form of the model and the full

statistical analysis can be found in Section 3.3 in Text S1.

Complex classification and clustering
We focused primarily on the scaffold-based species for the

analysis of structural conservation and subsequent clustering.

These were defined as any complex that included a Ste5 agent or

that could bind a free Ste5 agent. We created a vector notation to

uniquely identify any scaffold-based complex to simplify the

calculation of the graph edit distance between any two complexes

(Figs. S11, S12, and Section 3.4 in Text S1). We then implemented

the clustroid-based hierarchical clustering approach described in

the main text. Other clustering criteria, such as standard single-

and complete-linkage, gave similar results (Section 3.4 in Text S1).

Socio-affinity scores and complex determination
We extracted all the binary interactions from the set of

complexes generated by our simulations, artificially creating

‘‘bait’’ and ‘‘prey’’ association data. This computational version

of the TAP/MS experimental procedure was used to generate the

SA scores [27]. The MCL clustering algorithm [52] was then

employed to generate the ‘‘functional modules’’ generally associ-

ated with such data sets [51]. More information on the SA score

calculation and clustering algorithm can be found in Section 3.6 in

Text S1.

Supporting Information

Protocol S1 Model files. This zip file contains the ensemble and

machine models in both Kappa and BNGL syntax: ‘‘ensemble.ka,’’

‘‘ensemble.bngl,’’ ‘‘machine.ka,’’ and ‘‘machine.bngl.’’ Each file

contains the agent declarations, initial conditions, rules, variables,

and observables necessary for simulation. The Kappa models

(‘‘*.ka’’) may be simulated using the freely available KaSim

simulator (https://github.com/jkrivine/KaSim/). The BNGL

models (‘‘*.bngl’’) must first be converted to XML format using

BioNetGen prior to simulation with NFSim (http://emonet.biology.

yale.edu/nfsim/).

(ZIP)

Text S1 Supporting information. This file contains the

additional figures, tables, methods and explanations referenced in

the main text.

(PDF)
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