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Abstract

Toxin-Antitoxin modules are small operons involved in stress response and persister cell formation that encode a ‘‘toxin’’
and its corresponding neutralizing ‘‘antitoxin’’. Regulation of these modules involves a complex mechanism known as
conditional cooperativity, which is supposed to prevent unwanted toxin activation. Here we develop mathematical models
for their regulation, based on published molecular and structural data, and parameterized using experimental data for F-
plasmid ccdAB, bacteriophage P1 phd/doc and E. coli relBE. We show that the level of free toxin in the cell is mainly
controlled through toxin sequestration in toxin-antitoxin complexes of various stoichiometry rather than by gene
regulation. If the toxin translation rate exceeds twice the antitoxin translation rate, toxins accumulate in all cells. Conditional
cooperativity and increasing the number of binding sites on the operator serves to reduce the metabolic burden of the cell
by reducing the total amounts of proteins produced. Combining conditional cooperativity and bridging of antitoxins by
toxins when bound to their operator sites allows creation of persister cells through rare, extreme stochastic spikes in the
free toxin level. The amplitude of these spikes determines the duration of the persister state. Finally, increases in the
antitoxin degradation rate and decreases in the bacterial growth rate cause a rise in the amount of persisters during
nutritional stress.
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Introduction

Stress response is an important aspect of the physiology of

bacteria, allowing them to deal with a continuously changing

environment and exposure to altering and fluctuating food

sources as well as life-threatening chemicals such as antibiotics.

Among the elements involved in bacterial stress response are the

type II toxin-antitoxin (TA) modules [1,2]. These are found in

prokaryotes as pairs of genes encoding a protein that interferes

with basic metabolism (the toxin) and its regulator (the

antitoxin). The toxins display a variety of three-dimensional

folds and biochemical activities: CcdB and ParE family

members inhibit gyrase [3,4], although via different molecular

mechanisms. MazF toxins are structurally similar to CcdB but

function as ribonucleases that degrade specific mRNAs and/or

modify ribosomes [5–7]. RelE toxins, however, are structurally

related to ParE but bind at the A site of the ribosome and

degrade mRNAs in a translation-dependent manner [8,9].

Other toxins such as HipA and Doc arrest translation without

RNA degradation, for example through phosphorylation of

elongation factor Tu [10]. A variety of biological roles have

been attributed to TA modules ranging from molecular

parasites over the stabilization of genetic elements (plasmids,

introns and labile chromosomal segments) to altruistic suicide

and the generation of persister cells.

Persisters are cells which exhibit multidrug tolerance, not

because of a specific resistance mechanism like a mutation in an

antibiotic target, but because they are in a dormant, slow-growing

state. Cell-wall synthesis, translation and topoisomerase activity

are slowed down in dormant cells, making it impossible for

bactericidal antibiotics, whose targets are often implicated in these

general metabolic processes, to kill the cells [11]. Persisters pre-

exist in bacterial populations [12], they are subpopulations that

allow survival of the bacterial colony in the case of severe

environmental stresses. As such, they are involved in the multidrug

tolerance of biofilms and the recalcitrance of bacterial infectious

diseases [11]. As expression of TA toxins can bring cells in a

‘‘dormant state’’ or reversible stasis [13], TA modules have been

linked to the development of persisters [14].

Each type of toxin is associated with one or more types of

antitoxins, leading to a large number of TA families [15]. The

antitoxins are typically two domain proteins consisting of a folded

common DNA binding domain (helix-turn-helix, ribbon-helix-

helix, AbrB fold, etc.) associated with an intrinsically disordered

toxin-neutralizing segment that folds upon binding. Regulation of

the toxin activity is achieved by balancing the synthesis and

proteolytic degradation of the antitoxin [16]. Therefore TA

modules are typically activated (for example during nutritional

stress) by an increased activity of housekeeping proteases such as

Lon and ClpXp [17,18]. The neutralization function of the
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antitoxin is however not necessarily passive. In certain cases such

as gyrase poisoning by CcdB, the intrinsically disordered domain

of the antitoxin was shown to play an active role in reactivating the

stalled gyrase molecules [19].

TA modules are further regulated at the transcription level by a

mechanism termed ‘‘conditional cooperativity’’ [20]. Here the

toxin acts as a co-repressor or anti-repressor depending on the

ratio between toxin and antitoxin. When either an excess of toxin

or antitoxin is available in the cell, transcription will occur until the

cellular ratio is balanced and a repressing toxin-antitoxin complex

is predominantly formed. Conditional cooperativity has been

observed in all classic type II TA families where it was investigated,

independent of the toxin or antitoxin fold, the operator size or the

toxin target [21–24]. The molecular mechanisms leading to

conditional cooperativity vary and involve a low-to-high affinity

switch going from a repressing to a non-repressing toxin-antitoxin

complex and/or steric exclusion principles [19,23,25].

Since the toxins interfere with the basic bacterial metabolism,

free toxins can have an inhibitory effect on bacterial growth. This

growth inhibition, in turn, can lead to changes in gene expression,

as the RNA transcription rates and the protein dilution rates

depend on the growth rate [26]. Although relevant results were

obtained with models excluding these toxic effects (see for example

[27]), it is clear that including the interaction of the toxin-antitoxin

module with the host bacterium will lead to more realistic

conclusions. The impact of gene circuits on host physiology can

lead to drastic changes in the dynamics of the gene circuits

themselves, as demonstrated by Tan et al. [28], who found that

bistability in the expression of a mutant T7 RNA polymerase was

caused by the reduction in growth rate due to the expression of this

non-toxic protein. Furthermore, Nevozhay et al. recently showed

how the interplay of individual cell growth rate and cellular

memory jointly determine the overall cell population fitness in a

bistable synthetic gene circuit when including variable division

rates of single cells [29]. Several mathematical models have

already been used in the study of persister cell formation. For

example, Balaban et al. modeled the phenotypic switch between

normally growing cell populations and persisters, discriminating

two different types of persisters, one generated during the

stationary phase and one which spontaneously arises during

growth [12].

As TA modules are implicated in the formation of persister cells

[14,30,31], the regulatory network of these systems has been

modeled as the underlying cause of persister generation. Koh and

Dunlop built a model for the hipBA TA module, including

transcription, translation and repression of gene expression by the

antitoxin and a toxin-antitoxin complex [27]. They argue that

persistence is not caused by bistability, but by stochastic

fluctuations in the expression of HipA and HipB, causing the free

toxin level to exceed a threshold. The autoregulation of the relBE

module was studied by Cataudella et al., who found that

conditional cooperativity prevents random toxin activation in

growing cells and promotes fast translational recovery by quickly

removing the free toxin after a period of starvation [32].

Although these publications significantly contributed to our

understanding of persister cells and TA modules, we believe that a

general modeling framework that includes conditional coopera-

tivity and that is applicable to several toxin-antitoxin families could

help to answer several of the remaining questions in this field, such

as the role of multiple binding sites on the operator and the effect

of toxin-dependent cell growth rate modulation. This paper

presents a theoretical analysis of transcription regulation by

conditional cooperativity based upon parameters available for

the ccdAB (F-plasmid), phd/doc (bacteriophage P1) and relBE (E. coli)

modules, three TA modules that are well characterized. We study

both the molecular mechanism observed in the relBE TA module,

where the binding sites on the operator are considered indepen-

dent, and present the first mathematical model for the mechanism

observed in the ccdAB and phd/doc TA modules, where an

interaction between the different binding sites on the operator

exists as chains of alternating toxins and antitoxins can be formed

on the DNA.

Results

Two models to describe conditional cooperativity
We model TA modules based on all essential interactions in

three well-studied systems: the F-plasmid ccdAB, bacteriophage P1

phd/doc and E. coli relBE operon (Figure 1). Common to these

systems is that the toxin and antitoxin can form complexes with

distinct stoichiometries and DNA binding properties. In the figure

the free antitoxin (A) and the free toxin (T) correspond to the

biologically relevant species and are typically dimers for the

antitoxin, but can be monomers (RelE, Doc) or dimers (CcdB2)

for the toxin, depending on the TA module considered. The AT

complex (corresponding to the molecular species CcdA2-CcdB2,

Phd2-Doc and RelB2-RelE) has a higher affinity for the operator

sites than the isolated antitoxin. The TAT species consists of two

toxins flanking a single antitoxin dimer - corresponding to CcdB2-

CcdA2-CcdB2, Doc-Phd2-Doc and RelE-RelB2-RelE species.

As the DNA binding properties of this species are dependent on

the TA module considered, they will be discussed below. The TA

operator has one or more binding sites (denoted Di with i[½1, n� in
Figure 1A) for A, AT and/or TAT. It is assumed that transcription

is halted when at least one molecule (A) or complex (AT or TAT)

is bound on the operator. When no proteins are bound on the

operator, the genes coding for the toxin and antitoxin are

transcribed. Translation of the mRNA leads to the creation of

toxin and antitoxin. In TA modules the translation rate for the

antitoxin has been found to be larger than the one for the toxin

[17]. Therefore, when the toxin-antitoxin operator is being freely

Author Summary

Bacterial persistence plays an important role in many
chronic infections. Persisters are subpopulations of bacte-
ria which are tolerant to biological stresses such as
antibiotics because they are in a dormant, non-dividing
state. Toxin-antitoxin (TA) modules play a pivotal role in
persister generation and bacterial stress response. These
small genetic loci, ubiquitous in bacterial genomes and
plasmids, code for a toxin that slows down or halts
bacterial metabolism and a corresponding antitoxin that
regulates this activity. In order to further unravel the
intricate autoregulation of TA modules and their role in
persister cell formation, we built stochastic models
describing the transcriptional regulation including condi-
tional cooperativity. This is a complex mechanism in which
the molar ratio between both proteins determines
whether the toxin will behave as a co-repressor or as a
de-repressor for the antitoxin. We found that the necessary
protein production and therefore the energetic cost
decreases with increased binding site number. Finally,
these models allow us to simulate the formation of
persister cells through rare, stochastic increases in the free
toxin level. We believe that our analysis provides a fresh
view and contributes to our understanding of TA
regulation and how it may be related to the emergence
of persisters.

Modeling of Toxin-Antitoxin Regulation
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expressed, initially more antitoxin than toxin will be created.

However, the antitoxin is degraded faster than the much more

stable toxin, influencing the steady state toxin:antitoxin ratio. The

degradation of the antitoxins also extends to those within the

complexes AT and TAT. Although the bound toxins protect the

antitoxin from proteolytic degradation, this protection is not

complete and the decay of antitoxin within complexes allows for

the release of the attached toxins.

When it comes to the DNA binding interactions at the operator,

there are fundamental differences between the three studied TA

systems. The mechanism in the relBE system is the basis for the

‘‘independent binding site model’’ (Figure 1B). In this model, it is

assumed that the binding sites on the operator behave indepen-

dently, and either an individual antitoxin or a toxin-antitoxin

complex can bind to each binding site. Conditional cooperativity is

included in this model by ensuring that the AT complex has a

higher affinity for the binding sites on the DNA than the antitoxin

alone. Therefore, the toxin can act as a co-repressor for the

antitoxin. Furthermore, we assume that the binding of an extra

toxin to a DNA-bound AT complex will lead to the detachment of

a TAT complex (shown in the final step of Figure 1B) from the

promoter/operator, enabling mRNA transcription to proceed if all

binding sites are unbound. The toxin can therefore function as a

derepressor in the autoregulation of the operon by removing

(through the formation of the secondary complex TAT) the bound

proteins when the ratio of total toxin to total antitoxin

(Ttotal:Atotal) is high.

The second or ‘‘interacting binding site’’ model (Figure 1C)

considers more complex binding processes on the DNA,

experimentally observed for the ccdAB and the phd/doc modules

[19,23]. In this case, toxins can bridge different binding sites on

the operator, forming a chain of alternating toxins and

antitoxins. When the Ttotal:Atotal ratio increases, this complex

can again be released from the DNA: An extra toxin comes in

and the soluble TAT complexes are formed (shown in the final

step of Figure 1C), as it is impossible for TAT complexes to

occupy adjacent binding sites on the promoter/operator due to

steric clashes.

Figure 1. Toxin-antitoxin models for one or more binding sites on the operator based on the repression. (A) A toxin-antitoxin module
typically consists of a promoter/operator region, followed by the genes for the antitoxin and the toxin. After transcription of the polycistronic mRNA,
the toxin and antitoxin are translated. These proteins can form two non-toxic complexes, AT and TAT. The degradation (represented by 1) of
antitoxin and mRNA is more intense (indicated in black) than degradation of toxin and both complexes AT and TAT, in which case the degradation
rate corresponds to dilution by cell division. (B) Molecular mechanism of conditional cooperativity in the ‘‘independent binding sites’’ model as
experimentally observed for relBE. Two AT complexes complexes can bind independently next to each other. Addition of a third toxin to form a TAT
complex leads to release of this entity from the operator. (C) Molecular mechanism in the ‘‘interacting binding sites’’ model. In this case, as observed
for ccdAB and phd/doc, the toxin has two binding sites for an antitoxin and is thus able to bridge two antitoxin dimers on the operator via a low and a
high affinity interaction. Addition of an additional toxin leads to a switch from a low to a high affinity interaction, and the resulting TAT complex
again is released from the operator.
doi:10.1371/journal.pcbi.1003190.g001

Modeling of Toxin-Antitoxin Regulation
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Finally, in the last two sections of the results, we add the toxic

effect. We assume that above a certain threshold, free toxin

inhibits the bacterial growth. As noted by Klumpp et al. [26], a

decrease in the growth rate will be reflected by a decrease in the

transcription rates, therefore, we include the effect of the free toxin

levels on the transcription rates as well.

Similarities and differences in dynamics for three
different TA modules

In order to determine the influence of the parameter set used on

the behavior of the toxin-antitoxin module, we performed

stochastic simulations of a toxin-antitoxin module with two

independent antitoxin binding sites on the promoter/operator,

and the parameter sets for the ccdAB, phd/doc and relBE system (see

Table 1 and Figure 2). Initially, mRNA is transcribed and toxin

and antitoxin are translated (Figure 2A and B) as the operator

DNA is initially unbound (Figure 2E). Once the operator gets

bound, repression starts and mRNA transcription stops. From

Figure 2E, it can be seen that after this initial response, the

operator DNA is mostly occupied by one or more protein species.

Pulses in the toxin and antitoxin level occur during short periods

when the operator becomes unoccupied in a single cell. The free

toxin population is retained at very low levels as is expected in a

growing cell population [17]. For the relBE system, a maximum of

eight free toxins is found for the simulated cell shown in Figure 2

and the average free toxin level is approximately one, whereas for

the ccdAB and phd/doc systems, the average free toxin level is much

lower than one (Figure 2B). The overall majority of toxin

molecules are thus sequestered into toxin-antitoxin complexes

AT (Figure 2C) or TAT (Figure 2D).

Although there are slight differences in the protein and complex

concentrations and the number of binding/unbinding events on

the DNA, the behavior of the toxin-antitoxin model with two

independent binding sites on the operator is qualitatively similar

for the ccdAB and the phd/doc parameter sets. The average levels

are similar for the unbound DNA, antitoxin, toxin and complexes

AT and TAT although the plotted single cell behavior differs due

to the stochastic nature of the simulations.

The outcome of the simulations changes more significantly

when the relBE parameter set is used. The most remarkable

difference is the increase in the free toxin level for the relBE

module. This is not illogical as the molecular mechanism for

conditional cooperativity used by relBE is distinct from the

mechanism employed by ccdAB and phd/doc and several param-

eters such as the DNA binding rates are very different.

Considering the similarities in the output, for simplicity we only

use the ccdAB parameter set in the simulations presented in the

remainder of this work.

Free toxin level is mainly controlled by complex
sequestration and not by gene regulation

Two mechanisms are responsible for managing the potentially

lethal toxin-antitoxin modules in bacteria. At the protein level, free

toxins can be neutralized by complex formation with a free

antitoxin or a non-saturated toxin-antitoxin complex AT [14]. At

the transcriptional level, the negative autoregulation of the operon

by conditional cooperativity ensures that the production of

antitoxins and toxins is repressed when more antitoxin than toxin

is present. When an excess of toxin emerges, the transcription is

derepressed and the antitoxin will be the main product of

translation, as explained above. To study the role of both levels in

the regulation of toxin-antitoxin modules, we performed a series of

simulations with the ‘‘independent binding sites’’ model, in which

either operator binding or the sequestration of the toxin in

complex TAT or in both non-toxic complexes (AT and TAT) were

eliminated. When DNA binding by both antitoxin and toxin-

antitoxin complexes is abolished during the simulation, the free

toxin level remains fully controlled (see Figure S1). This shows that

the sequestration into the complexes AT and TAT without any

gene regulation accounts for a complete suppression of the toxin,

albeit with a higher level for antitoxin and complexes AT and

TAT. Alternatively, in simulations where formation of the

secondary complex TAT (and therefore also conditional coopera-

tivity) is eliminated, the cell continues to control the toxin level,

although more variability in the antitoxin level is observed. When

the formation of both complexes AT and TAT is abolished, but

DNA binding remains included, the cell does not manage to

control the free toxin level and produces as much toxin as

antitoxin. This suggests that AT formation is necessary for the

control of the free toxin level and TAT formation helps to reduce

the variability in the antitoxin level.

An increase in the number of binding sites on the
operator allows for toxin control with lower protein
levels and leads to a localized response in time

Different toxin-antitoxin modules have different numbers of

binding sites on their operator, ranging from two in the phd/doc

and relBE system [20,33] to eight in the ccdAB system [34]. We

investigated the influence of this property on the levels of free

toxin, free antitoxin and non-toxic complexes in a toxin-

antitoxin system with independent binding sites on the operator.

In Figure 3A, we plot the Probability Density Functions (p.d.f)

for each of the protein components of the toxin-antitoxin

system. The p.d.f. is constructed by simulating the time

evolution of many cells and detecting the protein level at each

point in time. Using this information we calculated the

probability to find a certain number of protein components in

a cell. It can clearly be seen that increasing the number of

binding sites on the operator leads to decreased protein levels

and variability for the free antitoxin and complexes (AT and

TAT), while the free toxin level stays low and relatively

constant. This decrease in the protein concentrations allows a

more economical maintenance of the toxin-antitoxin system.

The increase from one to two binding sites on the operator has

the most profound effect on the protein levels. The mean value

for each distribution is shown in Figure 3B and there is a linear

relationship with the reciprocal of the number of binding sites

(NBS) on the operator for A, AT and TAT. There seems to be a

direct correlation between the free toxin variability and the

number of binding sites, however the absolute magnitude of this

phenomenon in comparison to the total amount of antitoxin and

complexes makes this relationship negligible.

The p.d.f. for both of the non-toxic complexes can be described

by a normal distribution for a toxin-antitoxin system with one

binding site on the operator. However, with an increasing number

of binding sites these distributions become bimodal. The extra

peak at low complex concentrations may be explained by the fact

that the antitoxin level equals zero more often as the number of

binding sites on the operator increases (see Figure S2 and S3).

The effect of the number of independent binding sites on the

operator on the time evolution of the antitoxin and toxin level and

the binding on the DNA is shown in more detail in Figure S2 and

S3. When the operator only consists of one binding site, many fast

DNA binding and unbinding events are observed. This leads to an

evenly distributed response around the average for the mRNA

production and therefore the free toxin and antitoxin level. With

an increasing number of antitoxin binding sites on the operator,

Modeling of Toxin-Antitoxin Regulation
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the probability of the operator being bound by at least one

antitoxin increases as well. This leads to localized bursts in time of

mRNA creation and corresponding spikes in the free toxin and

antitoxin levels.

Conditional cooperativity is essential to maintain a viable
toxin:antitoxin ratio in TA modules with interacting
binding sites on the operator

Conditional cooperativity is included in both the model for

independent binding sites and the model with interacting binding

sites, since the toxin can derepress the operon at high Ttotal:Atotal

ratios. In the former model, this is due to the assumption that a

TAT complex is unable to bind the DNA. In the latter model, this

is due to the fact that ‘‘stripping’’ of a protein chain from the

promoter/operator can occur when a low affinity interaction in

this chain is replaced by a high affinity interaction with a new

toxin, forming soluble TAT complexes that are unable to occupy

adjacent binding sites on the operator due to steric hindrance. The

role of conditional cooperativity in the regulation of TA modules is

studied in the following simulations by abolishing the formation of

TAT complexes on the DNA and their subsequent release

(independent binding sites) or the stripping reaction (interacting

binding sites). In both cases, the formation of TAT complexes in

solution is still possible.

When the operator consists of independent binding sites

(Figure 4A and C), the unbinding rates of antitoxin and AT from

the operator are large enough to free the promoter and allow

mRNA creation. Therefore, conditional cooperativity has no

profound effect on the system dynamics as the DNA binding

reaction rates control the behavior of the toxin-antitoxin system.

In the model with interacting binding sites (Figure 4B and D),

however, conditional cooperativity is of essential importance to

free the DNA promoter/operator from the chain of alternating

toxins and antitoxins bound to it, so that transcription can occur

and the antitoxin can be expressed (Figure 4B). In this case, the

toxin level can be controlled. In the absence of conditional

cooperativity, the promoter/operator remains bound as the

unbinding rates are too slow to completely free the DNA from

the protein chain. In this situation, no toxin or antitoxin is

expressed. As the antitoxin will be degraded more rapidly, a large

increase in the free toxin level occurs, inducing a cessation of cell

growth or cell death (Figure 4D). Please note that the decrease in

the toxin level after this spike is not necessarily found in vivo. This

decrease is caused by toxin dilution due to cell division, as we

assumed that the doubling time of E. coli is constant. Furthermore,

the synchrony in the average antitoxin and toxin concentrations in

Figure 4B is caused by the initial conditions being identical for all

cells. These coherent oscillations disappear after longer simulation

times, but reflect the presence of a well-defined time between

Table 1. Model Parameters for the phd/doc, ccdAB and relBE toxin-antitoxin systems.

Parameter Meaning phd/doc ccdAB relBE Units

rU Unbound mRNA transcription rate 0.116086 0.1333 0.133 sec{1

rB Bound mRNA transcription rate 0 0 0 sec{1

b1 Antitoxin translation rate 0.137 0.139 0.127 sec{1

b2 Toxin translation rate 0.053 0.033 0.02105 sec{1

c Translational coupling 3 3 10

V Volume factor 3.612e+8 3.612e+8 3.612e+8 m3

dm mRNA decay rate 0.00203 0.00203 0.00203 sec{1

dc Decay rate due to cell cycle dilution 2.8881e-4 2.8881e-4 2.8881e-4 sec{1

da Antitoxin decay rate 4*dc 4*dc 0.00269 sec{1

F Decay of Antitoxin inside the complex 0.2 0.2 0.2

aTH Binding of Antitoxin and Toxin through the high affinity site (T) 8.79e+6 2e+6 5.01e+5 M{1sec{1

hTH Unbinding of Antitoxin and Toxin through the high affinity site (T) 5.3e-5 7.14972e-6 1.66e-4 sec{1

aTHL Formation of a bridge across two Antitoxins by one toxin using both a
high and low affinity site (T)

8.79e+7 2e+7 M{1sec{1

hTHL Unbinding of a bridge across two Antitoxins by one toxin using both a
high and low affinity site (T)

2.74e-8 2.72e-11 sec{1

aAT Binding of Complex (AT) to binding site on the operator 9625 3510 39000 M{1sec{1

hAT Unbinding of Complex (AT) from a binding site on the operator 0.0028875 0.001097 3.9e-4 sec{1

aA Binding of Antitoxin to a binding site on the operator 9625 3510 370 M{1sec{1

hA Unbinding of Antitoxin from a binding site on the operator 0.0231 0.008775 3.7e-3 sec{1

aATB Binding of Complex (AT) to a binding site on the operator as well as
formation of a toxin bridge with another antitoxin

96250 35100 M{1sec{1

hATB Unbinding of Complex (AT) from a binding site on the operator as well as
unbinding of a toxin bridge with another antitoxin

1.49e-6 4.17e-8 sec{1

aAB Binding of Antitoxin to a binding site on the operator as well as formation
of a toxin bridge with a bound Complex (AT)

96250 35100 M{1sec{1

hAB Unbinding of Antitoxin from a binding site on the operator as well as
unbinding of a toxin bridge with a bound Complex (AT)

1.19e-5 3.33e-7 sec{1

doi:10.1371/journal.pcbi.1003190.t001

Modeling of Toxin-Antitoxin Regulation
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spikes in the free toxin and antitoxin level. Such coherence is not

likely to be found in an actual bacterial population though due to

the lack of similar synchronous initiation of the different cells.

Free toxin accumulates when the toxin translation rate
exceeds twice the antitoxin translation rate

The translation rates for the antitoxin and the toxin, b1 and b2,

are hard to determine experimentally but are important param-

eters for the behavior of the toxin-antitoxin module. The

translation rates in this article are based on the average translation

rate in E. coli, on the lengths of the proteins, on the fact if

monomers or dimers are formed in solution (immediate dimer-

ization is assumed and therefore the translation rate is halved in

the case of dimers) and on the translational coupling, ensuring that

toxins are produced at a lower rate than antitoxins. In order to

show the influence of variations in both translation rates, Figure 5

shows the free antitoxin and the free toxin level in the parameter

plane (b1, b2), using the model for independent binding sites on

the operator. Two regions are clearly visible in this parameter

space: One in which the free antitoxin level is high and the free

toxin level is controlled (on average less than one free toxin per cell

is present) and one in which the free toxin level is very high with

negligible amounts of free antitoxin present, corresponding to a

non-culturable cell population. The latter region is indicated as

[K] in Figure 5. There is a clear threshold between these two cell

populations, which is crossed when the toxin translation rate

exceeds twice the antitoxin translation rate. In all currently

investigated TA modules, the synthesis rate for the antitoxin was

higher than the one for the toxin [17]. Therefore, these modules

can be safely maintained in a cell population.

The lower panels in Figure 5 show the effect of b2 on the

Ttotal:Atotal ratio, and on the total protein number (keeping

b1~0:139 as in all previous simulations). From these plots it can

be seen that in controlled, stable cells the total amount of toxin is

always lower than twice the total amount of antitoxin. This can be

explained by the fact that one antitoxin can maximally neutralize

two toxins for the investigated TA modules [25,34,35]. At the

boundary b2~2b1, the critical Atotal:Ttotal value of 0.5 is reached.

If the toxin translation rate is further increased, the total level of

toxin is larger than twice the antitoxin level and free toxins can

accumulate. When approaching the b2~2b1 boundary, the total

protein level in the cell also becomes increasingly large. This

boundary can be found analytically from the deterministic version

of the ‘‘independent binding sites’’ model under certain assump-

tions (see Text S1).

TA modules allow for rare, extreme stochastic spikes in
the toxin level

TA modules are involved in the emergence of persister cells

[14,30,31]. In the following paragraphs, we check which

Figure 2. Numerical simulation of the generic TA model including two independent binding sites. The systems were simulated for
500 minutes per individual cell. The graphs show the results for a single cell (color-coded towards the species plotted: free antitoxin (green), free
toxin (red), AT complex (dark blue), TAT complex (cyan) or free operator DNA (gray)) as well as an average of 1000 cells (in black). The used parameter
sets are indicated above the panels. No toxic feedback effects are included: KT~?.
doi:10.1371/journal.pcbi.1003190.g002
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parameters and assumptions are necessary to allow a persister to

be formed, and reveal one possible avenue to persistence. A

parameter scan in the translation rate of the antitoxin and the

toxin was performed, both for the model with three independent

binding sites on the operator as for the model with three

interacting binding sites. The top panels in Figure 6 show the

percentage of cells that reach a toxin level higher than 100 during

a time interval of 500 minutes. In accordance with Figure 5, a

sharp transition from 0% to 100% can be observed when the

translation rate of toxin b2 exceeds twice the translation rate of

antitoxin b1 for the independent binding site model. Below this

boundary, the toxin level is controlled in every cell (see for

example Figure 4A). When crossing this boundary, the toxin level

continuously grows to large values (see Figure S5B). Of course, the

in vivo response may differ from the shown simulation once the

toxin level reaches a sufficiently high level, as the toxic effect is not

explicitly modeled in this simulation. However, as high toxin levels

would be present in every cell, growth of a bacterial cell population

would be impossible in this region of parameter space as indicated

above (Figure 6 region [K]).

In the case of three interacting binding sites on the operator,

extra effects come into play. For b2w2b1 every cell still

experiences a continuously growing toxin level (see Figure S5B).

However, in the experimentally most relevant case, where the

translation rate of toxin is smaller than the translation rate of

antitoxin [17], the observed response differs from cell to cell. In

this region, two types of response are possible with different

probabilities. The cell can have a stable low toxin level, controlled

by regular oscillations in the antitoxin level (see Figure 4B and

Figure 6A). In this case, each increase in the toxin:antitoxin ratio is

followed by the release of the protein chain from the DNA,

causing a spike in the mRNA, antitoxin and complex levels,

respectively, and keeping the free toxin level close to zero. This

response is similar to the one in the case of independent binding

sites on the operator.

The other possible response is that the cell produces a large

pulse of toxin (see Figure 6B). The toxin level does not

continuously grow, but its growth is arrested after some time.

However this is abated since after this occurrence the system

quickly returns to its controlled state, because no toxic effect was

included in this simulation. This rare event can be stochastically

initiated if a TAT complex is still bound on the DNA when the

Ttotal:Atotal ratio reaches the level of two, this is when the level of

the antitoxin and the AT complex are very low or zero. In this

Figure 3. The levels of antitoxin and toxin-antitoxin complexes decrease with increasing number of operator binding sites. (A)
Probability density functions (p.d.f) for free antitoxin, free toxin, free complex AT and free complex TAT using the generic model with independent
binding sites on the operator are shown. Px refers to the probability of finding the species x (where x can be A, T, AT or TAT) with a given
amplitude. The gray-shaded region shows the margin of error with width 2s, the dark gray line shows the mean. (B) Mean value of protein level
versus the reciprocal number of binding sites on the operator (NBS). No toxic feedback effects are included: KT~?.
doi:10.1371/journal.pcbi.1003190.g003
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case, the full chain of alternating toxin and antitoxin dimers can

no longer be formed on the DNA. As conditional cooperativity

is unable to free this complex from the DNA, the free toxin level

will rise as long as the TAT complex does not unbind from the

DNA. Please note that this rise in free toxin level is caused by

the degradation of the antitoxin within the complexes AT and

TAT, and the concomitant release of toxin molecules. There-

fore, degradation of antitoxin within the toxin-antitoxin

complexes is necessary to obtain persister cells in this

framework.

The probability of having toxin spikes, and therefore the

potential of persisters occurring in the population, increases as

one approaches the b2~b1 line. The toxin spike becomes

increasingly high with increasing values of b2 (see also Figure

S4). In the region b1vb2v2b1 every cell will reach toxin levels

higher than 100, but the response can either be a toxin spike or

a continuously growing toxin level (see Figure S5A and B

respectively). The percentage of the cells responding with

continuously growing toxin levels increases (to 100%) as one

approaches the b2~2b1 line.

Figure 4. Conditional cooperativity has a larger influence on system dynamics in the interacting binding sites model. The graphs
show the time evolution of a single cell (color-coded towards the species plotted: free operator (gray), free antitoxin (green), free toxin (red)) as well
as an average of 1000 cells (in black). A and C: three independent binding sites on the operator. B and D: Three interacting binding sites on the
operator. A and B: with conditional cooperativity. C and D: without conditional cooperativity. No toxic feedback effects are included: KT~?.
doi:10.1371/journal.pcbi.1003190.g004
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The bottom panel of Figure 6 shows a more detailed analysis

of the probability of obtaining large amplitude toxin spikes for

the normal parameter values as presented in Table 1. The

number of toxin spikes having an amplitude larger than 10 is

numerically detected. One observes two characteristic scales.

The first one is associated to regular stochastic fluctuations of

the toxin amplitude under normal operation (see Figure 4B and

Figure 6A). The probability of finding toxin spikes of increas-

ingly high amplitude decreases exponentially. The second

scaling can be attributed to the different mechanism where a

TAT complex remains bound to the DNA for a certain time, as

mentioned above. Provided that the binding affinity of TAT to

the DNA operator site and the toxin translation rate b2 are large

enough, rare high amplitude toxin spikes can be observed (see

also Figure S4).

Large toxin spikes provide a route to persister cell
formation through growth rate suppression

To obtain a more realistic view of persister cell formation, the

duration of persistence and the influence of free toxin levels on the

growth rates, we introduced toxic feedback effects into both the

independent and interacting binding site models. Once the free

toxin level crosses a threshold KT, the growth rate and

transcription rates decrease. This decrease is modeled by a Hill

function where the Hill factor n determines how sharp the

transition is around the threshold value KT. A minimal growth

rate is defined to ensure that the cell can always recover after a

(potentially long) time (see also Materials and methods).

In the independent binding site model toxic feedback effects

have only marginal impact and no long-term persister dynamics

are found (see Figure S6). Panels A and B in Figure S6 show a

direct comparison between simulations carried out without

feedback (see also Figure 3) and with feedback. Even in the case

of a very low threshold, the protein levels remain very similar and

almost no difference is observed in the p.d.f. Panel C in Figure S6

shows the effect of the threshold level chosen and its impact on the

normalized individual fitness or growth rate c (where c~1 in the

case of no growth rate reduction). The fitness is detected at each

point in time of the simulation and used to calculate its probability

P(c) at any given time. At high threshold values, free toxin levels

remain too low to be able to cause a noticeable reduction in fitness.

When decreasing the threshold, the fitness landscape is broadened

due to stochastic excursions of the free toxin level, allowing for

lower growth rates. We have calculated the average fitness R by

taking the first moment of the probability distribution of the

individual fitness (R =
Ð

P(c)cdc) and it is displayed in the legend.

Although a modulation of the growth rate can be obtained, at no

point is the dynamics altered and no clear switch to a persister

state is observed.

The simulations using the interacting binding site model with

toxic feedback effects are shown in Figure 7, where we have

decreased the translational coupling by a factor of three (c~1)

such that toxin spikes are more likely to be found. Panels A and B

show a simulation without and with the inclusion of toxic feedback

effects, respectively. When no feedback is included the system

responds to the toxin spike by complex sequestration that causes a

Figure 5. If the toxin translation rate exceeds twice the antitoxin translation rate, free toxin accumulates. Parameter scans for b1 versus
b2 show the level of the free antitoxin A and the free toxin in the case of independent binding sites on the operator. The response of 200 cells has
been averaged after simulating for 500 minutes. In the region [K], indicated in gray, the free toxin level grows continuously to large numbers,
corresponding to a non-culturable cell population. The lower panels show the effect of a change in b2 , keeping b1 at its normal value (see table 1), on
the Atotal:Ttotal ratio and total protein number (Atotal+Ttotal). No toxic feedback effects are included: KT~?.
doi:10.1371/journal.pcbi.1003190.g005
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return to nominal levels of toxin. However, with feedback a toxin

spike of significant size can cause the system to switch to a

persistent state for multiple cell cycles where there is no antitoxin

present to neutralize the toxin levels. The duration of this persister

state is closely related to the spike amplitude, as the recovery time

to switch back to normal operation is mainly determined by the

time it takes for the toxin level to drop due to (slow) dilution. This

close relation between toxin spike amplitude and duration is

shown in Panel C. Without toxic feedback the red cluster of points

shows a clear correlation between spike amplitude and duration

(see inset). When only introducing a toxic effect on the

transcription rates, this cluster of points is split in two separate

ones (see clusters a and b in green). If one also introduces a toxin-

dependent growth rate modulation (see blue points), cluster (a)

Figure 6. The antitoxin and toxin translation rates influence persister cell formation. The parameter scans for b1 versus b2 in the top
panels show the percentage of cells (out of 200 simulated cells) that reach a free toxin level higher than 100 during a time of 500 minutes, both for
independent and interacting binding sites. The bottom panel provides a more detailed analysis of the behavior observed in the interacting binding
sites model for the parameters presented in Table 1 (see also white dot in the parameter scan). The number of toxin spikes with amplitude larger than
10, detected by analyzing the time evolution of 320000 cells during a time of 500 minutes each cell are plotted. Two characteristic scaling laws are
found. The first one (A) is related to regular stochastic variation, and a second one with lower probability is related to rare events where a TAT
complex stays bound on the DNA for a limited time determined by the DNA binding affinity of TAT. Panel A shows an example of a typical time series
of 200 minutes of regular cell dynamics. Panel B shows a similar time series containing a rare toxin spike of high amplitude, which is a potential
avenue to persistence. No toxic feedback effects are included: KT~?.
doi:10.1371/journal.pcbi.1003190.g006
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remains similar, but the second cloud of points (b) shifts to

duration times that are orders of magnitude larger. This is

immediately reflected in the fitness landscape shown in Panel D for

the three different cases. Including cell growth modulation, one

can now observe that it is most probable to find the cell in a state

with fitness c~1. However, there is a clear second peak in the

probability distribution at a much reduced fitness c~clow. The

shape of this bimodal distribution function (such as for the relative

heights of both peaks) can be controlled by changing the various

system parameters. Similarly the average fitness R can be

controlled. The bimodal response is qualitatively very different

from the case in the independent binding site model and originates

from the possibility to create the persister states (where the fitness

can be decreased for longer periods of time). Similar bimodal

effects have been studied in other papers [26,29,36]. However, no

bistability is present in our model when including the toxic

feedback, provided the minimal fitness c~clow is non-zero. The

system remains monostable, but the bimodal response results from

stochastically triggered transient excursions during which the

individual fitness is very low.

Figure 7. Large toxin spikes provide a route to persister cell formation through growth rate suppression. Panel A and B show the free
toxin T (red) and free antitoxin A (green) level in the case of interacting binding sites on the operator, respectively without (A) and with (B) toxic
feedback effects. Panel C shows a scatterplot comparing toxin spike amplitude and duration when the system has no toxin feedback (red),
transcription modulation only (green) and transcription and cell growth modulation (blue). Panel D shows a probability distribution of the fitness
landscape in the three cases, obtained by analyzing the response of 100 cells during 100 days of simulated data. Panel E shows a sketch of how the
average growth rate of a population of cells can be decreased through the presence of persister cells (cells with decreased growth rate). Such
persister cells are shown in red and their growth is largely arrested. c~1, KT~50, n~5 and clow~0:005.
doi:10.1371/journal.pcbi.1003190.g007
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Panel E shows a sketch of normal exponential cell population

growth (left) and a reduced growth of a cell population due to

persister cell creation (right). The average fitness of a population of

cells can be decreased through the presence of persister cells which

are highlighted in red. Since these cells have their growth arrested

at points they do not divide on the usual time scale as the normal

(black) cells. This is why the population which has these persisters

(right) can have a lower population number or slower growth in

comparison to a population without persister cells (left).

Persistence can be greatly increased during nutritional
stress

During nutritional stress, the antitoxin degradation rate da

increases due to the activation of cellular proteases like Lon [37].

Furthermore, the rate of protein synthesis decreases to approxi-

mately 5% of the pre-starvation level [38]. We thus investigated

the influence of the antitoxin degradation rate and the antitoxin

and toxin translation rates (b1 and b2) on the free toxin level in the

independent binding sites model (see Figure S7). It can be

observed that the boundary b2~2b1 for the viability of a cell

population does not change when increasing the antitoxin

degradation rate. For the viable cells, the increase in the antitoxin

degradation rate is mainly responsible for the increase in the

average free toxin level associated with nutritional stress [38]. A

decrease of both the toxin and antitoxin translation level with the

same factor will not heavily affect the free toxin level.

We further investigated if the increase in antitoxin degradation

and the decrease in translation rates and in growth rates associated

with nutritional stress also affect the formation of persister cells. In

Ref. [12], Balaban et al. outlined a model for persisters created

through normal growth (type II) and showed a switch from normal

behavior to persistent activity in a population. The model has two

states, normal (N) and persister (P), the switching rate from N to P

and P to N are defined as a and b, respectively, while the growth

rate of both states are given by mN and mP:

dN

dt
~{aNzbPzmNN ð1Þ

Figure 8. Growth rate modulation can cause an increase in the amount of persisters during nutritional stress. Panel A describes the
probability distribution of the fitness landscapes (left) and the correlation between spike duration and spike amplitude (right) for the normal
parameter set and the parameter set in which the growth rate is halved, in the model with interacting binding sites on the operator. The
corresponding normalized average growth rate R and transfer rates from normal to persister state are shown. c~3, KT~50, n~5 and clow~0:005.
Panel B shows the time evolution of the persister fraction, starting from two different initial conditions, using a~5:0 10{5 min{1 and
b~4:1 10{5 min{1 . In panel C, parameter scans for a versus b show the persister fraction.
doi:10.1371/journal.pcbi.1003190.g008
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dP

dt
~aN{bPzmPP ð2Þ

The same model can be used to analyze the growth of cell

populations in our case. The mentioned switching rates a and b

can be directly estimated from our simulations and changes in

these rates can be linked to underlying system parameters and the

corresponding dynamics. Both growth rates mN and mP correspond

to both peaks in the bimodal fitness distribution (mN~dc,

mP~dcclow). We used our model to analyze the fitness landscapes

and estimate corresponding switching rates resulting from the

changes in growth, translation and antitoxin degradation rates. In

the top panels of Figure 8A, using the standard parameter set, no

well-separated persister population is found in the scatterplot

showing the toxin spike amplitude vs. the spike duration. This

absence of a clear family of persister cells is also reflected in the

fitness landscape where no bimodal response is found. However,

when the growth rate is halved, there are two distinct populations

of cells (see bottom panels A). In addition to the population

dividing at a normal growth rate, there is a fraction dividing at a

fitness clow. The estimated switching rates show that the transfer

from normal to persister state occurs at a faster speed (a.b) than

the return. This difference in speed becomes more pronounced

when also including a reduction in translation rate and antitoxin

degradation rate (see Figure S8).

Using Eqs. (1)–(2), the time evolution of both cell populations

can be simulated in time. The resulting persister fraction is shown

in Figure 8B for the switching rates as estimated from the case with

halved growth rate. Independently from the initial conditions, the

persister cell fraction evolves to a steady state solution after about

300 minutes. A similar two-state population dynamics model has

been used in Ref. [29] to understand how the combination of

cellular memory and individual fitness jointly define the overall

distribution of cell populations. In this work, phenotypic switching

rates were estimated in a bistable system of high and low

expressers, and it was shown how cell lineage statistics can be

different from population snapshot statistics. The authors

concluded that cells tend to switch predominantly to the high

expression state and switch back much more rarely. This translates

to a.b, which agrees with our findings in the presence of

nutritional stress. An example of this behavior can be seen in

Figure 7B, where a typical time series is shown of an individual cell

lineage. It is clear that the cell spends most of its time in the

persister state. Looking at the persister fraction of the overall cell

population, however, only a minority of the cells are in a persister

state.

The persister fraction in the overall cell population is greatly

determined by the switching rates to get into a persister state and

to escape from it. This escape time is essentially determined by the

reduced fitness in such a persister state. Although we have found

that during nutritional stress a.b, the normal cell population still

dominates due to its much larger individual fitness with respect to

the persisters. Figure 8C shows an analysis of the dependence of

the persister fraction on both switching rates a and b. One can

clearly see that the switching rate to get into persistence strongly

controls the persister fractions, such that its increase in nutritional

stress conditions immediately leads to an increased persister

fraction. The return rate to normal operation (b) has practically no

influence on the persister fraction, provided that it is slower than

the decay rate due to dilution of the normal cell population

(related to its growth rate).

Discussion

Strong evidence has been accumulating that various types of

bacterial toxin-antitoxin modules are implicated in persister cell

formation [14,30,31]. In the present paper we investigated how

the peculiar type of gene regulation called ‘‘conditional coopera-

tivity’’, that seems to be a common feature of TA modules, is

capable of controlling the cellular free toxin levels and might

control the formation of persisters. We successfully constructed

two models for the autoregulation of toxin-antitoxin modules by

conditional cooperativity, which mirror two molecular mecha-

nisms that allow for conditional cooperativity [19,23,25]. In the

first model, we consider the binding sites on the operator as

independent entities on which antitoxins and AT complexes can

bind, whereas in the second model, the toxins can bridge the

antitoxin-bound binding sites on the DNA. Stochastic simulations

based upon these models showed several essential characteristics of

TA modules, such as very low free toxin levels and high free

antitoxin levels in non-starvation conditions, and this for three

different parameter sets derived from experimental data available

for F-plasmid ccdAB, bacteriophage P1 phd/doc and E. coli relBE.

We found that sequestration of toxins in toxin-antitoxin

complexes and not gene regulation is responsible for the main

control of the free toxin level as a viable toxin-antitoxin balance is

still maintained in absence of any regulation (removing the DNA

binding properties of the antitoxin from the model). However,

when the DNA binding reactions are included in the ‘‘interacting

binding site’’ model, the ‘‘stripping’’ reaction (binding of T to AT

to obtain a TAT species that quickly dissociates from the operator)

is still necessary to allow fresh antitoxin synthesis and therefore

maintain viable free toxin levels. The stripping reaction, which has

a pivotal role in the conditional cooperativity, allows the toxin to

function as a derepressor for the operon by releasing the chain of

alternating toxins and antitoxins from the DNA at high

Ttotal:Atotal ratios. In the independent binding site model, such a

chain cannot be formed. Therefore, the dissociation rates of the

antitoxin and the AT complex from the DNA are sufficiently high

to free the operator, allowing antitoxin synthesis and subsequently

toxin neutralization.

We further found that the toxin level can be controlled in the

presence of lower amounts of antitoxin and toxin-antitoxin

complexes if the number of binding sites on the DNA increases.

Therefore, the maintenance of a TA module becomes more

economical for the cell as the amount of binding sites on the

operator increases. This may be the reason why the ccdAB module

has evolved to have as much as eight binding sites on the operator.

When considering independent binding sites on the operator,

parameter scans reveal a clear threshold between healthy,

antitoxin dominated, and non-culturable, toxin dominated cell

populations, which is crossed when the toxin translation rate is

more than double the antitoxin translation rate. In the model with

interacting binding sites on the operator, toxin accumulation also

occurs in all cells above this boundary. In all studied TA modules,

the antitoxin translation rates are higher than the toxin translation

rates [17]. In this region in parameter space, most cells have a low

free toxin level, but in very rare cases the free toxin level spikes,

which can lead to the formation of a persister cell. This steep

increase in the free toxin level can occur when the operator is

occupied and no new antitoxin can be made at a moment when

the free antitoxin level is very low. In this case, the degradation of

antitoxin in toxin-antitoxin complexes leads to the accumulation of

free toxins, which can perform their toxic activity. This toxic

activity is added in certain simulations by decreasing the growth

rate and the transcription rate once the free toxin concentration
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exceeds a certain threshold. In this case, the level of free toxin

determines how long the toxin spike lasts and how long the cell

resides in the persister state. A similar result was obtained by

Rotem et al., who found that bacteria go into a dormant state once

the toxin level crosses a threshold, and that this toxin level

determines the length of the dormancy [36]. In reality, more

complex toxic feedback effects can also take place, dependent on

the TA module considered. For example, in the case of RelE or

Doc, translation would be inhibited in vivo. As multiple TA

modules can be present in one bacterium, the inhibition of

translation by one toxin could lead to an increase in the

concentration of other toxins as suggested by Keren et al. [14].

In order to obtain persister cells during our simulations, it was

necessary to assume that antitoxins can be degraded within the

toxin-antitoxin complexes. It was also previously shown that such

degradation can play an important role in TA modules, as a switch

from an antitoxin dominated state to a toxin dominated state upon

amino acid starvation was only possible for the relBE system when

the active degradation of RelB within toxin-antitoxin complexes

was taken into account [32]. Moreover, we found that the increase

in the amount of persisters during starvation is mainly caused by

the increase in the antitoxin degradation rate and the decrease in

the growth rate, rather than by the decrease in the translation rates

of the toxin and the antitoxin.

As toxin-antitoxin modules are very complex systems, even

more interactions could be integrated in the models. For example,

it would be interesting to examine the influence of the mechanism

for the toxicity on the dynamics of a TA module. This mechanism

is specific for every toxin-antitoxin module, for example mRNA

degradation in the relBE TA module and inhibition of translation

in phd/doc. Our model also assumes that the operator of a TA

module consists of binding sites with identical affinity. It will be of

interest to investigate the dynamics of a TA module with an

operator that contains several binding sites with different affinities

for the antitoxin.

Finally, we would like to develop a more general interacting

binding site model, removing the need of simulating all DNA

interactions separately. Such a model would allow a more in-depth

investigation of the dynamical mechanism leading to the described

rare toxin spikes. So far, it seems that these spikes are triggered

stochastically and do not exist in the deterministic system, being

always monostable. In most systems where pulsed dynamics have

been observed, however, they often rely on underlying determin-

istic bifurcations leading to for instance bistability, oscillations and

excitability (for an overview, see Ref. [39]). One such example is

for instance the genetic competence in Bacillus subtilis under stress

conditions, where a transient cellular state is also initiated

stochastically [40].

Materials and Methods

Model parameters
Three parameter sets were built up, one for the phd/doc, one for

the ccdAB and one for the relBE toxin-antitoxin module (Table 1).

mRNA transcription is assumed to only take place when the

promoter/operator region is unbound, hence rB, the transcription

rate for bound DNA, is zero. The transcription rate for unbound

DNA, rU, is based on a transcription rate of 70 nucleotides/

second [41,42] and the transcript lengths. The translation rates are

based on a translation rate of 20 amino acids per second [43].

Furthermore, the parameter set accounts for the fact that CcdA,

CcdB, Phd and RelB form dimers in solution, whereas Doc and

RelE are monomers. The in vivo translation rates for the antitoxins

(b1) are higher than the ones for the toxins due to translational

coupling. As such, in order to evaluate the translation rate for the

toxin (b2), the translation rate based on the length was divided by

the translational coupling factor (c). The volume factor (V) allows

us to convert molar units to molecules/cell, using an E. coli volume

of 0.6 (mm)3 [44].

The decay rate of the mRNA (dm) is based on a half life of

5.7 minutes in vivo. Cell division is not explicitly included in the

model, but it is implicitly present in the decay rate dc for the toxin

and the complexes AT and TAT. These values were chosen so

that the amount of proteins in the cell is halved every generation

and the doubling time of E. coli was set at 40 minutes. As the

antitoxins are always degraded faster than the corresponding

Table 2. Core reactions for the Independent and Interacting binding site models for the Gillespie simulation.

Protein Level Reaction Propensity M A T AT TAT

Bound mRNA Creation rB(1{PiDi) +1 0 0 0 0

Unbound mRNA Creation rUPiDi +1 0 0 0 0

Decay mRNA dmM 21 0 0 0 0

Antitoxin Creation b1M 0 +1 0 0 0

Decay Antitoxin dAA 0 21 0 0 0

Toxin Creation b2M 0 0 +1 0 0

Decay Toxin dCT 0 0 21 0 0

Complex (AT) Creation aTHA � T 0 21 21 +1 0

Breakdown of Complex (AT) hTHAT 0 +1 +1 21 0

Decay Complex (AT) dCAT 0 0 0 21 0

Decay of A within Complex (AT) FdAAT 0 0 +1 21 0

Complex (TAT) Creation aTHAT � T 0 0 21 21 +1

Breakdown of Complex (TAT) hTHTAT 0 0 +1 +1 21

Decay Complex (TAT) dCTAT 0 0 0 0 21

Decay of A within Complex (TAT) FdATAT 0 0 +2 0 21

M: mRNA, A: free antitoxin, T: free toxin, AT and TAT: toxin-antitoxin complexes. The meaning of the model parameters is given in Table 1.
doi:10.1371/journal.pcbi.1003190.t002
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toxins, the antitoxin decay rate da was fixed as four times dc,

corresponding to a half life of approximately 15 minutes for CcdA

[16]. We include antitoxin degradation in AT and TAT

complexes. This is described by the parameter F, which is set at

a certain percentage of da.

Both in the ccdAB and in the phd/doc system, the antitoxin can

bind to a high affinity and a low affinity binding site on the toxin.

The kon for the interaction of CcdA at the high affinity binding

site, aTH, was determined by Surface Plasmon Resonance (SPR)

by De Jonge et al. [45]. The koff (hTH) for this interaction is

calculated from this kon and the KD for the high affinity toxin-

antitoxin interaction, determined by Drobnak et al. [46] using

ITC. These kinetic parameters are based on SPR results (Loris

and Garcia-Pino, unpublished data) for the phd/doc operon and on

SPR results by Overgaard et al. [47] for the relBE operon.

The kon for the interaction of CcdA with one binding site on the

operator, aA, was determined as 3510 M{1s{1 (Loris et al.,

unpublished data); the koff for this interaction, hA, is based on a

KD of 2.5 mM [48], and aA. For the phd/doc operon, the koff of the

antitoxin from the DNA is based on a half life of 30 seconds for a

complex of Phd and a single binding site on the operator [49]. The

kon for this interaction is based on the Kd, determined by Garcia-

Pino et al. [23] using ITC and this koff . It was assumed that the kon

for a toxin-antitoxin complex (aAT) is equal to the kon for an

antitoxin alone. The higher affinity of this complex for the

operator DNA, derived from EMSA experiments, is therefore

reflected in the koff (hAT) alone.

For the relBE operon, the dissociation rates of the antitoxin and

the toxin-antitoxin complex AT from the DNA were determined

by Overgaard et al. [20] using SPR, while the corresponding

association rates are based on the dissociation constants reported

[50]. The koff of a TAT and an AT complex from the DNA are

assumed to be equal in the model with interacting binding sites on

the operator, whereas the TAT complex immediately unbinds in

the independent binding sites model. When one protein or protein

complex interacts at two different sites with proteins or DNA with

known affinity, for example when a toxin forms a bridge between

two bound antitoxin molecules by binding one antitoxin at the

high affinity and one antitoxin at the low affinity binding site, these

affinities are multiplied. We assume the kon for the binding of all

proteins and complexes to the DNA or to a DNA-bound protein

complex to be equal to the kon of the antitoxin to DNA, unless a

supplementary high affinity toxin-antitoxin interaction is formed

in the process. In this case, the kon is multiplied by ten.

In certain simulations, we introduce toxic feedback effects (see

also Figure 1). Firstly, we describe a decrease in transcription rate

as a function of the free toxin level:

rB?rB

Kn
T

Kn
TzTn

Secondly, we consider the decrease in the growth rate (modeled

by an equivalent decrease in the dilution rate dc) as a function of

the free toxin level:

dc?dc(clowz(1{clow)
Kn

T

Kn
TzTn

)

Each of these effects is implemented by a Hill-type function,

with KT the toxin threshold, n the Hill factor describing how sharp

the transition takes place around KT and clow defined as the lowest

possible normalized growth rate at very high levels of free Toxin

T. We define c, the normalized growth rate, as:

c~(clowz(1{clow)
Kn

T

Kn
TzTn

)

We use n~5 and clow~0:005 and unless otherwise stated, we

use KT~50. In order to obtain a high number of persisters, we

decreased the translational coupling, c, to 1 instead of 3 in Figure 7.

Gillespie algorithm
The outlined models were simulated using a Gillespie algorithm

which is based on treating the chemical reactions as discrete

stochastic events [51]. At each time step, the state of the system is

given by the number of molecules (or equivalently: the concen-

tration) of mRNA (M), antitoxin (A), toxin (T), primary complex

(AT) and secondary complex (TAT). The operator was defined as

having n binding sites, denoted by Di, being 0 if bound and 1 if

unbound. The total operator site is unbound if DU~PiDi~1 and

bound if DU~0.

The chemical reactions at the protein level with the rates

determined by the parameters specified in Table 1 lead to the

changes in the number of molecules as outlined in Table 2.

Supporting Information

Figure S1 Sequestration in complexes, rather than gene
regulation, controls the free toxin levels. The panels on the

left hand side show the single cell response, while the panels on the

right hand side show the average response of 1000 cells. The black

line is a normal simulation using the stated parameters. The green

dotted line is the simulation result without any protein binding to

the DNA promoter/operator site. The red line excludes sequestra-

tion of toxin into the complex TAT, while the light blue line

excludes sequestration of toxin in any complex (both AT and TAT).

(EPS)

Figure S2 As the number of binding sites on the
operator increases, the response becomes more local-
ized in time. The systems were simulated for 500 minutes per

individual cell. The graphs show the time evolution of a single cell

(color-coded towards the species plotted: free operator (gray), free

antitoxin (green), free toxin (red)) as well as an average of 1000

cells (in black).

(EPS)

Figure S3 Regular oscillatory behavior is observed in
the model with interacting binding sites. Time evolution of

one cell and the average (black line) response (1000 cells). A–B

Two binding sites. C–D Three binding sites. A and C:

independent binding sites on the operator, B and D: with bridging.

(EPS)

Figure S4 A higher affinity of TAT for the operator DNA
and an increasing toxin translation rate cause more
persister cell formation in the interacting binding sites
model. The number of toxin spikes with amplitude larger than

10, detected by analyzing the time evolution of 320000 cells during

a time of 500 minutes each cell are plotted. In panel A, the

binding site affinity of TAT to the DNA is changed. The red

markers show the simulation results using the parameter set as

shown in Table 1 of the article, while the green and blue markers

correspond to a 10 fold decrease and increase in the binding

affinity, respectively (hTAT~10 hAT, hAT, 0:1 hAT). In panel B, the

effect of changing the toxin translation rate is investigated. The red
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markers again show the simulation results using the parameter set

as shown in Table 1 of the article, while the green and blue

markers correspond to a 3 fold decrease and increase in the toxin

translation rate, respectively. Depending on the parameters, two

characteristic scaling laws are found. The first one is related to

regular stochastic variation, and a second one with lower

probability is related to rare events where a TAT complex stays

bound on the DNA for a limited time determined by the DNA

binding affinity of TAT.

(EPS)

Figure S5 Depending on the toxin and antitoxin trans-
lation rates, persister cells occur in the model with
interacting binding sites on the operator. Parameter scans

for b1 versus b2 showing the percentage of cells (out of 200

simulated cells) that reach a free toxin level higher than 100 during

a time of 500 minutes, both for independent and interacting

binding sites. Time series exemplifying the behavior in each

characteristic region are shown in panels (A) and (B). Panel A

shows a cell with a controlled toxin level in the case of independent

binding sites and the formation of a persister cell, a rare stochastic

event which can occur in the case of interacting binding sites.

Panel B shows that in the region [K], the toxin level in the cell

keeps on growing and thus reaches a fatal concentration. The

value of b2~0:1 and 0:3 in (A) and (B), respectively, while

b1~0:139 in both cases.

(EPS)

Figure S6 The effect of toxic feedback inclusion to the
independent binding site model with two sites. The effect of

the feedback on the time evolution for A and T is shown in panel A

with feedback (dashed line) and without (solid line). Panel B shows

the corresponding p.d.f. for A and T, and corresponds to the plots

shown in in Figure 3 (also simulated for 500 min and for 1000 cells).

In panel C is the fitness landscape as in figure 7D, but obtained from

1 cell simulated over 100 days. The four panels have the standard

parameters, with n~5, clow~0:005 and the threshold KT is

changed as indicated in the legend with the calculated R.

(EPS)

Figure S7 Increasing antitoxin degradation rates
cause increasing amounts of free toxin. Parameter scans

for b1 versus b2 show the free toxin T level in the case of

independent binding sites on the operator and this for different

values of the degradation rate of antitoxin. The response of 200

cells has been averaged after simulating for 500 minutes. In the

region [K], indicated in gray, the free toxin level grows

continuously to large numbers, corresponding to a a non-

culturable cell population.

(EPS)

Figure S8 Higher antitoxin degradation rates and
lower growth rates are responsible for the increase
in the amount of persisters during nutritional stress.
Panel A–E describe the situation for the normal parameter set

(A) and three effects associated with nutritional stress: decreas-

ing translation rates (B), increasing antitoxin degradation rates

(C), decreasing growth rates (D) and their combination (E). The

left panels show a probability distribution of the fitness

landscape in each of these cases, the right panels present the

correlation between spike duration and spike amplitude. The

corresponding normalized average growth rate R and transfer

rates from normal to persister state are shown. c~3, KT~50,

n~5 and clow~0:005.

(EPS)

Text S1 Supporting information to the article.

(PDF)
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