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Abstract

With new cases of avian influenza H5N1 (H5N1AV) arising frequently, the threat of a new influenza pandemic remains a
challenge for public health. Several vaccines have been developed specifically targeting H5N1AV, but their production is
limited and only a few million doses are readily available. Because there is an important time lag between the emergence of
new pandemic strain and the development and distribution of a vaccine, shortage of vaccine is very likely at the beginning
of a pandemic. We coupled a mathematical model with a genetic algorithm to optimally and dynamically distribute vaccine
in a network of cities, connected by the airline transportation network. By minimizing the illness attack rate (i.e., the
percentage of people in the population who become infected and ill), we focus on optimizing vaccine allocation in a
network of 16 cities in Southeast Asia when only a few million doses are available. In our base case, we assume the vaccine
is well-matched and vaccination occurs 5 to 10 days after the beginning of the epidemic. The effectiveness of all the
vaccination strategies drops off as the timing is delayed or the vaccine is less well-matched. Under the best assumptions,
optimal vaccination strategies substantially reduced the illness attack rate, with a maximal reduction in the attack rate of
85%. Furthermore, our results suggest that cooperative strategies where the resources are optimally distributed among the
cities perform much better than the strategies where the vaccine is equally distributed among the network, yielding an
illness attack rate 17% lower. We show that it is possible to significantly mitigate a more global epidemic with limited
quantities of vaccine, provided that the vaccination campaign is extremely fast and it occurs within the first weeks of
transmission.
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Introduction

Highly pathogenic avian influenza A(H5N1AV) emerged in the

1990s in Southeast Asia with new cases arising in different parts of

the world [1]. Recent studies have shown that a few mutations can

make the H5N1AV influenza virus transmissible in ferrets [2,3],

reminding us that the possibility of a mutated H5N1AV influenza

strain capable of infecting humans might not be a remote one.

With a very high mortality ratio (i.e., about 60% of the reported

cases), the threat of a H5N1AV influenza pandemic remains one

of the biggest public health fears. Many pharmaceutical and non-

pharmaceutical interventions can be implemented during a

pandemic, but vaccination, when available, is the most effective

intervention. Several vaccines are being produced specifically for

H5N1AV [4] , but their production is still very limited [5]. In the

event of a H5N1AV pandemic, utilizing these vaccines optimally

at the beginning of transmission could make the difference

between reducing transmission to negligible levels or dealing with

a deadly infectious disease on a global scale.

In this highly connected world, people travel fast, and new

strains of influenza can travel with them. Indeed, the airline

transportation network can accelerate the diffusion of new strains

of influenza. For example, the pandemic influenza A(H1N1) 2009

(2009H1N1P) was first detected in Mexico in April 2009, and only

two weeks later, more than twenty countries reported their first
cases of 2009H1N1P, with most of these cases being imported via

airline travel [6,7]. This highlights the necessity of an extremely

fast global response to a new strain of pandemic influenza, on the

order of days.

Mathematical models are useful tools to explore different

pandemic scenarios and possible interventions, and they are

particularly well-suited for determining optimal vaccine distribu-

tion. With pioneering work starting in the 1970s, [8,9] and more

recently [10,11,12,13,14,15,16,17,18,19,20,21], important prog-

ress has been made in investigating the optimal resource allocation

for a given population. Most of this work has been centered

around a single population, and assumes that all the vaccine,

enough to cover a significant fraction of the population, will be
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available prior to an epidemic. In the present work, we focus on

optimizing vaccine allocation in a network of cities when only a

few million doses are available, and we search for their optimal

distribution by minimizing the illness attack rate (i.e., the

percentage of people in the population who became infected

and ill). We couple a mathematical infection transmission model

with two age-groups, children and adults, with a fast genetic

algorithm [22] to optimally and dynamically distribute vaccine

through a network of cities, connected by the airline transportation

network. Since Southeast Asia has seen more than half of the

H5N1AV influenza related deaths worldwide, we consider this

region for our model. We selected the most highly populated 16

cities in Southeast Asia for which we could find reliable airline

transportation data (fig. 1). This represents 10 different countries

and a total population of 70,980,365 people (table 1). These cities

are highly connected (fig. 1) and were previously shown to form a

transmission cluster in the global network of cities [23]. We show

that the vaccine allocation proposed by our optimizer could

greatly reduce the attack rate.

Results

Results for a single batch of vaccine
Because we are interested in investigating the optimal use of

vaccine for a quick response, we concentrate most of this work on

optimizing vaccine delivered in a single batch at the beginning of

the epidemic when only a few million doses are available. We

considered four vaccination days very early in transmission, at

either 5, 10, 15, or 30 days after its start, and two vaccination days

later on at either 60 or 90 days after the beginning of transmission.

Since we cannot know how much vaccine production will be ready

at the time of an epidemic, for each of these control days, we

consider allocating two, four, five, six, seven or ten million doses

corresponding to vaccinating 2.8, 5.6, 7.0, 8.5, 9.9 or 14.1% of the

total population, respectively (table 2).

For each possible vaccination day and coverage combination,

we compare the best vaccine allocation given by the genetic

algorithm, denoted as the optimal strategy, to a baseline scenario,

where no vaccine is available, and two other possible allocations.

The first is the pro rata strategy, where we distribute vaccine to

each age-group in each city proportional to the age-group’s size.

For example, if adults in city k correspond to 20% of the total

population in the network, then we assign 20% of the available

resources to the adults in city k. The second strategy is the

children-only pro rata strategy, where vaccine is distributed only to

the children in each city proportional to the children’s population

size.

All the simulations presented below started in the same city,

Jakarta, with 10 infectious people. Fig. S1 shows the epidemic

curves when no vaccination is applied. We also started our

simulations in Hong Kong and Taipei. The transmissibility of an

infectious disease is often characterized by the basic reproduction

number, R0, defined as the expected number of secondary

infections resulting from a single typical infectious person in a

completely susceptible population. In the results presented here,

R0~1:5, corresponding to a virus roughly as transmissible as the

2009H1N1P [24,25]. We also considered a less (R0~1:2) and a

more (R0~1:8) transmissible virus.

Figure 1. Network representation of 16 cities in Southeast Asia used for the simulations. An edge connecting two cities represents daily
travel between those cities. The size of the nodes in (A) correspond to the population size relative to the total population in the network. The size of
the nodes in (B) correspond to the flux of passengers traveling through each city relative to the total number of flights in the network. The base case
simulations were started in Jakarta, which accounts for 12.8% of the total population of the network but only 7% of the total daily travel goes
through it.
doi:10.1371/journal.pcbi.1002964.g001

Author Summary

In the past, the emergence of new strains of influenza has
been sometimes responsible for large and deadly pan-
demics. With a very high mortality rate, (i.e., about 60% of
the reported cases), H5N1AV influenza, commonly known
as bird flu, is thought to be an important potential threat
for a new pandemic. Because of this, several vaccines have
been developed, but only a few million doses are readily
available. Other zoonotic influenza strains, particularly in
pigs, also threaten, and vaccines are being produced for
them as well. In the event of an influenza pandemic,
utilizing these resources optimally could make the
difference between dealing with a serious infectious
disease at a global scale and reducing it to a highly
localized and controlled outbreak. In this paper, we
address this issue by developing a mathematical model
of influenza transmission on a network of cities. We couple
the model with an optimization algorithm to allocate
vaccine in time and space through the network. We find
that our optimal allocation strategies can mitigate a
pandemic, provided that vaccination occurs quickly, within
the first weeks of a potential pandemic. In addition, our
analysis highlights the importance of cooperative and
coordinated vaccine distribution, if we want to mitigate a
pandemic.

Optimal Vaccine Allocation for Pandemic Influenza
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The optimal strategy shows a modest decrease in the attack rate

when very little vaccine is available, provided vaccination occurs

during the first five days of the epidemic (i.e., 27% reduction in the

attack rate relative to the baseline for two million doses, fig. 2A).

As more vaccine becomes available, the optimal strategy greatly

reduces the attack rate, although this effect is attenuated as

vaccination starts later in the epidemic. For example, if

vaccination occurs on day five with five million doses, 3.5% of

the population would become infected, with an 85% reduction in

the attack rate compared to the baseline case. But if vaccination

occurs on day 30, then 14.9% of the population would become

infected with only 41% reduction compared to baseline (fig. 2C).

Once 10 million doses are available, the optimal strategy can

interrupt transmission as long as vaccination occurs before or on

day 30 (fig. 2F).

The optimal strategy outperforms the pro rata strategy for all

scenarios considered. With only two million doses available, there

is a slight difference in the attack rate with early vaccination (5%

difference), but this difference tends to disappear as we start

vaccination later in the epidemic (fig. 2A). As more vaccine

becomes available, this difference becomes more noticeable,

peaking when five and 10 million doses are available (17% and

16% difference in the attack rate, respectively, fig. 2C and 2F).

Our results suggest that for the vaccine coverages considered, the

pro rata strategy is somewhat insensitive to the timing of the

intervention, while the other two strategies considered are not.

This would further imply that the pro rata strategy has little

indirect effects of herd immunity, but still protects the individuals

being vaccinated.

When compared to the children-only pro rata strategy, the

optimal strategy performs better only when vaccination occurs

early in the epidemic and there are few doses of vaccine available

(fig. 2B–D). As more vaccine becomes available, the optimal

strategy and the children-only pro rata strategy yield very similar

attack rates, and for some cases the optimal strategy is in fact the

children-only pro rata strategy (for example fig. 2F, vaccination on

day 30, 60 or 90).

We next investigate the capacity of a strategy to mitigate a large

epidemic (where more than 1% of the population in each city got

infected and ill) from occurring. To this end, we calculate for each

solution the epidemic prevention potential (EPP) [26], defined as

one minus the ratio of the probability of an epidemic given a

particular intervention over the probability of an epidemic given

no intervention (fig. 3). Mathematically,

EPP~1{
Pr(Epidemic D intervention)

Pr(Epidemic Dno intervention)
: ð1Þ

The optimal strategy is able to mitigate epidemics with very low

quantities of vaccine, provided that vaccination starts very early in

the epidemic. With as little as four million doses, the optimal

strategy mitigates 58% of the epidemics if vaccination starts on day

5, but only 21% if vaccination starts on day 10 (fig. 3B). As more

vaccine becomes available, the optimal strategy is able to mitigate

a higher proportion of epidemics (fig. 3C–F). In contrast, the other

Table 1. Population values.

City Population Percentage of the total populationNation Percent under 20a

Bandung 2,510,982 3.5 Indonesia 38.32

Bangkok 6,704,000 9.4 Thailand 29.95

Denpasar 405,923 0.5 Indonesia 38.32

Haiphong 2,614,764 3.7 Vietnam 35.23

Ho Chi Minh City 5,314,000 7.5 Vietnam 35.23

Hong Kong 7,206,000 10.2 China 19.30

Jakarta 9,125,000 12.9 Indonesia 38.32

Kaohsiung 1,526,575 2.2 Taiwan 22.56

Kuala Lumpur 1,887,674 2.7 Malaysia 41.39

Manila 11,100,000 15.6 Philippines 44.24

Medan 2064719 2.9 Indonesia 38.32

Phnom Penh 2,009,264 2.8 Cambodia 45.78

Rangoon 4,477,638 6.3 Burma 41.52

Singapore 4,436,000 6.3 Singapore 25.65

Surabaya 2,845,000 4.0 Indonesia 38.32

Taipei 6,752,826 9.5 Taiwan 22.56

TOTAL 70,980,365 100

aThe percentages for each city were computed from [58] using the countr y’s percentage of children under 20 years old. Taiwan’s percentage was obtained from [59].
doi:10.1371/journal.pcbi.1002964.t001

Table 2. Vaccine coverages considered.

Million doses Percentage of the total population

2 2.8

4 5.6

5 7.0

6 8.5

7 9.9

10 14.1

doi:10.1371/journal.pcbi.1002964.t002

Optimal Vaccine Allocation for Pandemic Influenza
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two strategies considered fail to mitigate the epidemics in all of the

scenarios considered when less than 10 million doses are

available.With 10 million doses, the optimal strategy mitigates

over 90% of the epidemics as long as vaccination occurs during the

first 15 days. If vaccination occurs during the first ten days,

children-only pro rata is also able to mitigate the majority of the

epidemics with ten million doses.

Our results suggest that with limited quantities of vaccine, the

geographical allocation of vaccine is key in stopping the

epidemic if vaccination occurs early on, with most of the vaccine

going only to a few cities (figs. S2A, S3A). However, as the

epidemic progresses, or more vaccine becomes available,

allocating resources more evenly, to the high transmission

groups, here the children, becomes a predominant feature

(figs. 4C–E and 5C–E). For late vaccination, allocating vaccine

in children becomes less relevant and again, geographical

location is more important, with the optimal strategy favoring

cities where either where the epidemic has not peaked yet or it is

possible to reach a high proportion of children vaccinated

(figs. 4F, 5F). This is in agreement with previous work

[27,28,20], which have suggested that vaccinating children is

important early in the epidemic, but that there is a threshold

after which other groups might benefit more from limited

quantities of vaccine.

Sensitivity analysis
When the epidemic starts in Hong Kong, applying the optimal

strategy results in a lower EPP and a lower reduction in the attack

rate compared to baseline, specially noticeable when only a few

million doses of vaccine are available (fig. S2 and S3). Similar

results were obtained when the epidemic started in Taipei (figs. S4

and S5). Only 7% of the daily travel through the network goes

through Jakarta. In contrast, 17% of the daily flux of travelers

occurs (fig. 1B and table 3) in Hong Kong (16% of the daily flux

occurs in Taipei). Our results suggest that if an epidemic starts in a

city with a more important flux of travelers, it will spread more

rapidly and will be more difficult to mitigate.

Our results were not sensitive to changes in the basic

reproductive number. When the epidemic is less transmissible,

all three strategies perform better, with the optimal strategy being

slightly better than the children-only pro rata, both yielding to

substantial reductions in the attack rate (fig. S6). This is expected,

as we know from previous studies [29] that for a low R0 as this

one, the threshold in deterministic models for the number of

children and adults needed to be vaccinated to bring R0 below 1 is

much lower. The optimal strategy could mitigate most of the

epidemics with as little as two million doses of vaccine (fig. S7). For

a higher R0, the optimal strategy still outperforms the pro rata

strategy. If vaccination occurs early on, this difference is more

Figure 2. Attack rate with 95% bootstrapped CI with the epidemic starting in Jakarta. This figure shows the results for a single
intervention for six different vaccination days considered and six different vaccination coverages. Each panel represents a given number of vaccine
doses available to distribute in the entire network: A) Two million doses. B) Four million doses. C) Five million doses. D) Six million doses. E) Seven
million doses. F) Ten million doses. For each panel, each point in the graph corresponds to the attack rate for a single vaccination day, either on day 5,
10, 15, 30, 60, or 90 after the beginning of the epidemic. The optimal, pro rata and children-only pro rata strategies are shown in blue, green and
orange respectively. The baseline scenario (red) indicates no vaccination. For each vaccination coverage and day combination, the optimal strategy
considerably outperformed the pro rata strategy. When vaccination occurs early in the epidemic, and few doses are available, the optimal strategy
also outperforms the children-only pro rata strategy.
doi:10.1371/journal.pcbi.1002964.g002

Optimal Vaccine Allocation for Pandemic Influenza
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prominent than for R0~1:5, suggesting that when the virus is

more transmissible allocating the resources optimally is more

important, at least at the beginning of the epidemic (see Text S1

for details).

Our model assumed that infectious symptomatic individuals will

reduce their probability of traveling by 25%. We performed

sensitivity analysis with respect to this parameter (fig. S10 and

S11). We also performed sensitivity analysis with respect to the

reduction of the travel probability of an infected child compared to

the travel probability of an infected adult (fig. S12). As expected, if

more infected symptomatic people travel through the network

(10% reduction in the probability of travel) the attack rates are

slightly higher (fig. S10A), and the EPP is not as good (fig. S11A).

This makes sense since in this case the epidemic process is

accelerated. On the other hand, if the reduction in the travel

probability is higher (75% reduction) then less infected symptom-

atic people are traveling through the network. Here, the attack

rates are lower and the optimal strategy can prevent epidemics for

more days (figs. S10B, S11B, and S12). Our conclusions were not

sensitive to changes in the probability of travel for symptomatic

infectious people (both adults and children), or in changes in the

probability of travel for symptomatic infectious children in the

sense that the optimal strategy outperformed the other two

strategies considered. The biggest difference was still when

vaccination occurred during the first days of the epidemic (see

Text S1).

We also varied the values of the vaccine efficacies. We

considered a poorly-matched vaccine (VES~0:13, VEI~0:15
and VEP~0:25) and a moderately-matched vaccine

(VES~0:27, VEI~0:30, and VEP~0:50). These values corre-

spond to one-third and two-thirds of the values used for the

original analysis, which assumed that the vaccine would be as

efficacious as seasonal vaccines. As expected, if the vaccine is

poorly-matched, all the strategies perform poorly yielding high

attack rates (fig. S13A), and all of them fail to prevent the

epidemics (fig. S14A). If the vaccine is moderately-matched, the

results are close to the original results, with the optimal strategy

yielding clear reductions in the attack rates (fig. S13B) and a

significant proportion of the epidemics prevented, when vaccina-

tion occurs early on (fig. S14B). Furthermore, we performed

sensitivity analysis to the assumption that vaccine is administered

at once, and repeated the optimization assuming that the

vaccination would be completed in 10 days (fig. S15, see Text

S1 for details). While the optimal strategy still performs better than

the other strategies considered, the difference in the attack rate

(panel A) is not as marked as before. The optimal strategy in this

case could prevent 36% of the epidemics but only if vaccination

started on day 5 (panel B).

Figure 3. Epidemic prevention potential (EPP) with 95% bootstrapped CI with the epidemic starting in Jakarta. Each panel represents
a given number of vaccine doses available to distribute in the network. A) Two million doses. B) Four million doses. C) Five million doses. D) Six million
doses. E) Seven million doses. F) Ten million doses. Each point in each graph corresponds to the EPP for a single vaccination day, either on day 5, 10,
15, 30, 60, or 90 after the beginning of the epidemic. The optimal, pro rata and children-only pro rata strategies are shown in blue, green and orange
respectively. When fewer than 10 million doses of vaccine are available, only the optimal strategy is capable of mitigating a significant fraction of the
epidemics if vaccination starts early. With as few as 4 million doses, the optimal strategy can mitigate as many as 57% of the epidemics.
doi:10.1371/journal.pcbi.1002964.g003

Optimal Vaccine Allocation for Pandemic Influenza
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Finally, we performed the optimization assuming that only

children could receive vaccine. Here, the optimal strategy also

outperforms the other two strategies considered (fig. S16A), and

yields an EPP similar to the one obtained when the optimization

was performed using the entire population (fig. S16B, see Text S1

for details). These results suggest that there might be a tradeoff

between vaccinating specific geographical locations and vaccinat-

ing high-transmission groups. For some vaccine coverages or

vaccination dates, it might be better to vaccinate children and

adults in a city to guarantee that the reproduction number is below

1 in as many cities as possible, but for other coverages or dates it

might be better to concentrate the effort in the children (the high-

transmission group). This is consistent with previous work

[30,12,27,31,32,33], which have proposed tradeoffs between

vaccinating the high-transmission groups and the high-risk groups.

Results for two batches of vaccine
In this section we present the results when vaccine is considered

to be available in two batches, the first one carrying only two or

five million doses and the second one with either five, 10, or 15

million doses. We further consider allocating vaccine on either

days 10 and 30, days 10 and 60, or days 30 and 90 after the

beginning of the epidemic. Here, the optimal strategy basically

coincides with the children-only pro rata strategy for all scenarios

considered but one, where the optimal strategy has a modest 2%

lower attack rate (Fig. 6A). For all the scenarios considered, these

strategies perform much better than the pro rata strategy,

particularly when vaccination occurs on days 10 and 30, with a

maximal reduction of 17% in the attack rate (Fig. 6B).

With seven or ten million doses (both batches included), all the

strategies considered fail to mitigate the epidemic (Fig. 7A–B).

With 15 million doses of vaccine, the optimal strategy and the

children-only pro rata strategy mitigate over 95% of the epidemics

if vaccination occurs at days 10 and 30 or 10 and 60, but cannot

mitigate any epidemic if vaccination occurs at days 30 and 90

(Fig. 7C). These results are expected, since we found that for a

single intervention, the EPP was zero for all the strategies

considered if vaccination started after day 30.

Figure 4. Optimal vaccine distribution when four million doses are available and the epidemic is started in Jakarta. Each panel
corresponds to allocating vaccine on a different day: either 5 days (A), 10 days (B), 15 days (C), 30 days (D), 60 days (E), or 90 days (F) after the
beginning of the epidemic. Each bar corresponds to the percentage of children (red) or adults (blue) vaccinated in each city. These results suggest
that the geographical allocation of vaccine is important early in the beginning of the epidemic, when the optimal strategy allocates most of vaccine
in Jakarta, but then it is better to distribute vaccine evenly among children up to a certain threshold in time when it becomes important to allocate
the vaccine to those cities where either the epidemic has not peaked yet or it is possible to reach a higher proportion of children vaccinated.
doi:10.1371/journal.pcbi.1002964.g004

Optimal Vaccine Allocation for Pandemic Influenza
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Discussion

We propose here a mathematical model of influenza

transmission coupled with a fast genetic algorithm, which

provides strategies for vaccine allocation in a network of cities,

rather than in an individual population. Our results show that

the optimal strategy found by our genetic algorithm always

outperforms a pro rata strategy, both in reducing the total final

attack rate and in increasing the probability of mitigating an

epidemic, with differences in the attack rates as high as 16% of

the population.

This conclusion is consistent with previous findings [34].

Substantial study has been done to optimally allocate vaccine

within a country or a population [11,12,8,9,15,16,17,18,19,

20,35,21]. Furthermore, significant advances have been made in

optimizing resources for an epidemic in a network: Wu et al.

considered a metapopulation model of the continental US in 2007,

and they compared vaccine allocation in a prorated schedule

versus other types of optimal policies [34]. Dimitrov et al.

optimized antiviral allocation for the 2009 influenza epidemic in

the United States [11]. More recently, Klepac and colleagues [36]

developed a model of two coupled populations to incorporate

economic costs in finding optimal vaccination thresholds. Keeling

and Shattock [13] used the final epidemic size to compute optimal

vaccine distribution for two interacting communities. The present

study contributes to the body of knowledge by incorporating

stochastic components in the model and by allowing the possibility

of dynamic allocation of resources, both before and after the

beginning of an epidemic. In addition, our work can easily be

adapted for other infectious diseases. For example, our method-

ology could be used for the novel reassortant influenza A(H3N2)

virus, originating from swine, avian, and human viruses which has

been spreading from swine to humans, and then among humans in

the United States [37]. Indeed, because wider spread of this virus

is possible, plans are underway to make limited quantities of this

vaccine if needed.

Figure 5. Optimal vaccine distribution when seven million doses are available and the epidemic is started in Jakarta. Each panel
corresponds to allocating vaccine on a different day: either 5 days (A), 10 days (B), 15 days (C), 30 days (D), 60 days (E), or 90 days (F) after the
beginning of the epidemic. Each bar corresponds to the percentage of children (red) or adults (blue) vaccinated in each city. When vaccination occurs
early in the epidemic, the optimal strategy is to allocate most of the available vaccine in Jakarta. As vaccination occurs later on, the optimal strategy
switches to favor a more evenly distribution of vaccine amongst children. For late vaccination, allocating vaccine evenly in children becomes less
relevant but instead the optimal strategy allocates vaccine to fewer cities where the epidemic has not peaked yet or it is possible to reach a high
proportion of children vaccinated.
doi:10.1371/journal.pcbi.1002964.g005

Optimal Vaccine Allocation for Pandemic Influenza
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Furthermore, the results presented here emphasize the impor-

tance of confronting a global problem with a global solution,

rather than many individualistic ones. Indeed, when little vaccine

is available, sharing resources and optimally vaccinating early in

the outbreak results in mitigating the epidemic most of the time,

while the pro rata strategy always results in an epidemic with high

attack rates. This is in agreement with previous work by Colizza et

al. [38], in which they compared three different strategies for

antiviral use and found that cooperative strategies perform better

than non cooperative strategies. Our study also highlights the

importance of having a good global surveillance system. In our

results, most of the epidemics could be mitigated with as little as

five million doses of vaccine provided that we act fast, during the

first days of an epidemic, but no mitigation is likely to succeed after

just a few weeks (30 days). In brief, our results suggest that a global

stockpile of vaccine as the one established by WHO [39] would be

fundamental to stop an H5N1AV influenza pandemic.

The framework presented here has several limitations. Once the

epidemic starts in a city, our model becomes deterministic, and

this comes with simplifying assumptions. While in the present

study the objective function was set to minimize the overall illness

attack rate, the optimal solution depends heavily on attaining the

critical vaccination coverage in each city: indeed, under the

deterministic paradigm, an epidemic will not take off in a city if

R0ƒ1. This threshold will be achieved once a significant fraction

of children is vaccinated [29]. In reality, even if R0ƒ1, a small

epidemic exceeding the 1% threshold we set for EPP could

possibly occur. Thus our EPP values could be overly optimistic.

The network used here is a closed network, which does not allow

for any immigration or emigration of passengers from other cities

and we did not consider any flow of passengers through ground

transportation. Any epidemic will probably spread beyond this

network, potentially affecting the effectiveness our results. The

beginning of an epidemic in each city was approximated by a

simple birth-death process, and it does not differentiate between

the number of infected children and the number of infected adults

present in the city. We could not find reliable data regarding the

probability of an infected person suspending a trip due to illness, or

differential rates for traveling stratified by age. In this sense, our

model is conservative. Better data is urgently needed to create

more realistic models. Clearly, the simultaneous use of multiple

interventions would be more efficient in controlling an epidemic,

so an optimization routine that considers a portfolio of interven-

tions points the direction for future work. We assumed that the

vaccines for H5N1AV influenza virus would be as efficacious as

the seasonal vaccines. However, the current available vaccines for

avian influenza might not be well-matched to a new avian

influenza virus. Clearly, the effectiveness of any vaccination policy

relies on the efficacy of the vaccine used. Indeed, if the vaccine

were poorly-matched, then the optimal solution, while still being

better than the other two strategies considered, would not be very

efficacious. This highlights the necessity to recognize the influenza

strain quickly, so that the efficacy of the vaccine can be rapidly

evaluated, and additional targeted mitigation measures can be

implemented if necessary. In addition, our model does not account

for antibody buildup. Adding this feature would probably yield

results similar to those when vaccine is completed in several days.

Our sensitivity analysis showed that the attack rates and the EPP

were considerably lower when vaccination was completed in

several days. This highlights the importance of a fast and

aggressive vaccination campaign. In addition, our results were

sensitive to the knowledge of the exact point in the epidemic

(calculated starting from the introduction of the first infected

individuals) when vaccination was applied, specially during the

first days of an epidemic. This could become problematic in a real

situation, since inferring the exact date of the beginning of an

epidemic from epidemiological data might be very difficult to

achieve. The comparison between one and two batches of vaccine

showed that the results were sensitive to the assumption of an a-

priori knowledge of the vaccination times. As the H1N1 2009

influenza epidemic showed us, different problems can arise during

the production of a vaccine leading to delays in its delivery. In this

sense, our conclusions are optimistic. The results presented here

were obtained using a genetic algorithm. While genetic algorithms

have the advantage of being fast and adaptable, they are not

guaranteed to converge. We have reported here our best solutions

and shown that even if these solutions are only nearly optimal,

they still perform much better than the status quo strategies, which

are usually pro rata.

Many of the current governmental or institutional guidelines for

vaccine allocation are indeed based in a prorated type strategy,

where vaccine is distributed to states or countries according to

their population (e.g [40,41]). While this is presumably the most

fair strategy, it could also be, depending on the objective function

used, not the optimal use of resources. Optimal strategies depend

heavily in the objective function used, and different objective

functions can give rise to contradicting vaccination policies

[42,13,34]. While our optimal strategy significantly reduces the

overall attack rate, it creates an inequitable distribution of burden

of disease, with some cities having no epidemic at all and others

experiencing a big epidemic. An objective function with

constraints in the distribution of vaccine would be more fair.

Also, other objective functions could be used instead. For example,

one could set the objective function that allocates vaccine in fewer

populations but guarantees to attain critical coverage in them, so

that R0v1, or one could set an objective function that maximizes

the EPP, thereby maximizing the probability of a strategy to

mitigate an epidemic. Our results suggest that vaccinating only

children in a pro rated fashion can be a very efficient solution, and

it is more likely to be accepted by the population. A strategy for

Table 3. Daily flux of passengers through the network.

City Percentage of the total travel

Bandung 0.03

Bangkok 11.52

Denpasar 3.95

Haiphong 0.05

Ho Chi Minh 2.31

Hong Kong 17.36

Jakarta 7.47

Kaohsiung 8.85

Kuala Lumpur 7.23

Manila 4.13

Medan 1.1

Phnom Penh 1.06

Rangoon 0.66

Singapore 15.33

Surabaya 2.32

Taipei 16.61

Percentage of the total number of daily passengers traveling through each city
considered in the network.
doi:10.1371/journal.pcbi.1002964.t003
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prioritizing high-risk people and health workers together with

children might be a good starting point for discussion. Choosing a

vaccination strategy is inherently a difficult process, as one needs

to balance concepts like ethics, equality or fairness, together with

practical and logistical implications, and economic considerations.

We hope to provide decision-makers with the tools to find optimal

resource distribution, so that once the goals are established, the

available resources can be used at their best.

Methods

Mathematical model
We developed a semi-discrete model [43] of a network of K

cities connected by means of the airline transportation network,

similar to [11]. Namely, the model in each city is a continuous

compartmental deterministic model, but we stochastically pulse

the populations in the model every day to account for the travel

between the cities and to determine if an epidemic will start or not

in a susceptible city. We assumed that the most important

stochastic effect during an epidemic was the transportation of

newly infected people between cities and on the initialization of an

epidemic in a city. We then assumed a deterministic course of the

epidemic once established in a city.

Table 4 summarizes the parameter values used in the model.

The base case scenario had an epidemic with a basic reproduction

number R0 of 1.5 on average. We assumed that vaccine efficacies

would be similar to those for the seasonal influenza vaccine, and

used the estimates given in [44]. The population in each city is

divided into children (age v20 years) or adults (age §20 years),

where the proportion of people in each age-group for each city is

given by the proportion of people in that age-group for that

country (see table 1). The contact rates were computed based on

[45]. The data for the airline transportation network was taken

from [46] and [23]. A full description of the implementation can

be found in the Text S1.

Our model is written in Python 2.7 (http://www.python.org) and

Cython (http://cython.org, [47]) using the modules of Scipy and

Numpy [48]. This allowed us to use a fast genetic algorithm

Figure 6. Attack rate for vaccine allocation in two batches on two different days. Three vaccine coverages are considered: A) Seven million
doses of vaccine total, with two million available on the first day and five million available on the second day. B) 10 million doses of vaccine total, with
five million doses of vaccine available on each day. C) 15 million doses of vaccine total, five million doses available on the first day and 10 million
doses available on the second day. In each panel, three combinations of vaccination days are considered: vaccination on day 10 and day 30, day 10
and day 60, or day 30 and day 90. Here, the epidemic was seeded in Jakarta. The optimal, pro rata and children-only pro rata strategies are shown in
blue, green and orange respectively. Here, the optimal strategy and the children-only pro rata strategy yield similar attack rates for all scenarios
considered except for one. When seven million doses of vaccine are available at days 10 and 30, the optimal strategy yield a slightly lower attack rate
than the children-only pro rata strategy.
doi:10.1371/journal.pcbi.1002964.g006
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module written for Python, Pyevolve [22], to find nearly optimal

solutions to this problem.

Stochastic importation of infectious people. Let M be a

matrix representing the airline transportation network

(M~(mkl)), where mkl represents the mean number of travelers

per day going from city k to city l. Define P to be a matrix of

travel probabilities (P~(pkl)), where pkl is defined as the

probability that a person in city k will travel to city l. We

compute pkl from mkl as

pkl~
mkl

Nl

ð2Þ

where Nk is the total population in city k, with k,l~1, . . . ,K .

Each day, a random number rkl of infected travelers going from

city k to city l is computed for each of the eight infected classes

(children or adults, asymptomatic vaccinated or unvaccinated,

symptomatic vaccinated or unvaccinated). For the asymptomatic

classes,

rkl*Binomial(A, pkl): ð3Þ

where A represents the number (rounded to the nearest integer) of

infectious asymptomatic people in that class (children or adults,

vaccinated or unvaccinated) in city k on day t and pkl was

computed above. The number of symptomatic infectious travelers

is computed in a similar way, but the probability is reduced by

Figure 7. Epidemic prevention potential for vaccine allocation in two batches on two days. Three vaccine coverages are considered: A)
Seven million doses of vaccine total, with two million available on the first day and five million available on the second day. B) 10 million doses of
vaccine total, with five million doses of vaccine available on each day. C) 15 million doses of vaccine total, five million doses available on the first day
and 10 million doses available on the second day. In each panel, three combinations of vaccination days are considered: vaccination on day 10 and
day 30, day 10 and day 60, or day 30 and day 90. The optimal, pro rata and children-only pro rata strategies are shown in blue, green and orange
respectively. Here, the epidemic was seeded in Jakarta. All strategies fail to mitigate the epidemics if seven or 10 million doses are available in two
batches. With 15 million doses, the optimal strategy and the children-only pro rata strategy mitigate over 95% of the epidemics when the first batch
of vaccine is delivered on day 10 and the second one is delivered either on day 30 or on day 60.
doi:10.1371/journal.pcbi.1002964.g007

Table 4. Parameter values.

Parameter Description Value Reference

c recovery rate 0.25 [60]

r fraction of symptomatic 2/3 [60]

m reduction of infectiousness for asymptomatics 0.5 [60]

c11,c12,c21,c22 contact rates 1,0.1155, 0.1155, 0.4744 calculated.

VES,VEI,VEP vaccine efficacies for susceptibility, infectiousness and pathogenicity 0.4, 0.45, 0.75 [44]

p probability of transmission 0.4527 calculateda

aThis probability of transmission gives rise to a basic reproduction number of R0 = 1.5.
doi:10.1371/journal.pcbi.1002964.t004
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25%. Infectious people travel to a new city and stay there for a

period of six days, after which they are assumed to be recovered

and return to their original city.

Stochastic initialization of an epidemic. Let R0 be the

basic reproduction number, that is, the expected number of

secondary new infections that a single typical infected individual

would produce in a completely susceptible population. Let Rf be

the effective reproduction number, that is, the expected number of

secondary infections that a single typical infected individual would

produce in a population where a fraction f of the population is

vaccinated and no natural infection has yet occurred. Each day,

the model computes either R0 orRf for each city where the

epidemic has not started, using the approach given in [49] and

[50,51]. The basic reproduction number will be computed if no

vaccine has been distributed to that particular city, whereas the

effective reproduction number will be computed when a fraction

of the population was previously vaccinated. We approximate the

beginning of the epidemic in each city by a standard birth-death

process [52], and hence compute the probability Pk(t) of an

epidemic in city k starting on day t to be

Pk(t)~

1{( 1
R0

)
Itot
k

(t)
if there are no vaccinated people in city k and

R0w1

1{( 1
Rf

)
Itot
k

(t)
if a fraction f of the population has been

vaccinated in city k and Rf w1

0 if R0ƒ1 or Rf ƒ1,

8>>>>>>><
>>>>>>>:

ð4Þ

where I tot
k (t) represents the total number of imported infectious

people (both symptomatic and asymptomatic) present in city k on

day t. We repeat this process for each city until an epidemic starts

in this city (or the end of the simulation is reached).

Transmission within cities. Once an epidemic has started

in a city, it follows the dynamics given by a deterministic

compartmental model developed in [29]. Specifically, the popu-

lation in each city is divided into two age-groups, children and

adults. The population in each city is further divided in

susceptibles, infectious asymptomatic, infectious symptomatic,

and recovered. Members of each class can be vaccinated or

unvaccinated. A full description of the deterministic model can be

found in the Text S1.

Vaccination. Vaccine distribution to each city and age-group

is dictated by the optimizer. Because it is difficult to track

susceptible and infectious individuals, especially given that a

fraction of the latter are asymptomatic, we assume that only a

fraction of the vaccine given to a particular group is used, and we

consider the rest of it to be wasted. So if we have M doses of

vaccine available for age-group i in city k, only a fraction of these

will be delivered to the susceptible individuals in that group (see

Text S1 for details). The vaccine is assumed to be delivered all at

once, in a single day. We also assume that vaccinated people are

immediately protected.

Complete model. A run of the model consists of simulating

an epidemic over the network of cities for 250 days. All cities are

assumed to have different populations and different percentages

of children, but the same contact rate matrix and the same basic

parameters for the influenza transmission. Every day, for each

susceptible city (i.e a city where no epidemic has started yet), the

model counts the number of imported infections in the city and

determines if a new epidemic will start or not, using the

probability Pk(t), eq. (4). If it does start a new epidemic, it does

so with the number of imported infections as initial conditions

for the deterministic model. If an epidemic has already started

in the city, the model still exports and imports infectious

travelers, effectively changing the initial conditions of the

deterministic model for the next day. The optimizer predeter-

mines the cities where vaccine will be applied, as well as the

quantity of vaccine to be given to a particular city and age-

group. If the given day is a vaccination day, then the susceptible

populations in those cities are vaccinated as described in the

previous section.

Optimization
We consider the following optimization problem: given limited

quantities of vaccine available at given times, what is the optimal

vaccine distribution such that the final illness attack rate is

minimized?

Formally, suppose q(t1),q(t2), . . . ,q(tM ) doses of vaccine are

available at control times t1,t2, . . . ,tM . Both the control times and

the quantities of vaccine available at each control time are known

in advance. Recall that we are considering a network of K cities,

and let Nki represent the children (i~1) or adults (i~2) in city k.

Define a control vector u(tm) to be a vector in R2K ,

u(tm)~(u11(tm),u12(tm),u21(tm),u22(tm), . . . ,uK1(tm),uK2(tm)), ð5Þ

where uki(tm) represents the fraction of the population i to be

vaccinated in city k at control time tm. A solution u to the

optimization problem is a vector of control vectors, each of these

corresponding to a given control time,

u~(u(t1), . . . ,u(tM )) ð6Þ

such that 0ƒuki(t)ƒ1 for all k[1 . . . K and i[f1,2g. We define a

feasible solution as a solution of the form u given above that

satisfies, in addition, the constraint

X2K

k~1

X2

i~1

uki(tm)Nkiƒq(tm), for j~1, . . . ,M: ð7Þ

This represents the fact that at any control time tm, there is a

finite amount of vaccine q(tm) to be used that cannot be exceeded.

Let F be the set of all feasible solutions, and denote by LF the

boundary of F .

Our aim is to minimize the expected number of people who

become infected and ill, denoted by the objective function f(u).
Hence, we wish to find solutions to the following optimization

problem:

min
u[F

f(u)~ min
(u(t1),...,u(tM))

E½
XK

k~1

X2

i~1

X1

j~0

Rijk� ð8Þ

subject to the constraint (7). Rijk represents the number of

recovered symptomatic in subgroup i (i~1 for children and i~2
for adults) and vaccinated status j (j~0 for unvaccinated and j~1
for vaccinated).

Genetic algorithm. We use a genetic algorithm [53,54] to

compute the optimal strategies. In our case, a chromosome

represents a solution to our optimization problem, and we can

think of a gene as a particular control vector. We initialize the

genetic algorithm by randomly generating 48 feasible solutions

(Text S1). In addition, we add two particular solutions. The first

(4)
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particular solution consists of a pro rata distribution of resources.

Here, we distribute the available vaccine among all the cities and

all age-groups, proportionally to the size of that age-group. The

second particular solution consists of a children-only pro rata

distribution. Here, we distribute vaccine among children only,

proportionally to the number of children with respect to the total

child population in the network. This procedure ensures that our

optimizer has a variety of strategies to choose from, and that it

takes into account the observation that prioritizing vaccination in

children can lead to the optimal use of resources

[12,55,27,15,56,57].

In each generation, we use the objective function f to determine

the fitness of each solution. To ensure that each generation has

better (more fit) individuals than its predecessor, we carry over the

best 25 chromosomes from one generation directly to the next one.

We then use a crossover method to create the remaining set of 25

new chromosomes. Finally, the chromosomes undergoe a muta-

tion.

Because the new chromosome likely will not satisfy constraint

(7), we incorporate an extra step in the genetic algorithm. At this

stage, the chromosome is transformed just before its evaluation by

mapping each gene to the boundary of its feasible region.

Define the transformation T : (0,1�2K?LF by

T(u(tm))~T(u11(tm),u12(tm),u21(tm),u22(tm), . . . ,uK1(tm),uK2(tm))

~am(u11(tm),u12(tm),u21(tm),u22(tm), . . . ,uK1(tm),uK2(tm))
ð9Þ

where am is given by

am~min

1,
qm

N11u11(tm)zN12u12(tm)z . . . zNK1uK1(tm)zNK2uK2(tm)

� �
:

ð10Þ

This transformation maps radially each vector to its corre-

sponding vector on the boundary of the feasible region. The

minimum is taken to ensure that no transformed gene has a

coordinate greater than one, which would imply in our case

vaccinating more than 100% of the population.

Supporting Information

Figure S1 Epidemic curves for the 16 cities considered
in the baseline case. The epidemic is started in Jakarta, with 10

infectious individuals.

(TIF)

Figure S2 Attack rate with 95% bootstrapped CI for a
single intervention for six different vaccination days
considered and six different vaccination coverages for
an epidemic starting in Hong Kong. Each panel represents a

given number of vaccine doses available to distribute in the entire

network: A) Two million doses. B) Four million doses. C) Five

million doses. D) Six million doses. E) Seven million doses. F) Ten

million doses. For each panel, each point in the graph corresponds

to the attack rate for a single vaccination day, either on day 5, 10,

15, 30, 60, or 90 after the beginning of the epidemic. Three

different allocations are shown in each panel. The optimal strategy

(blue) is the one given by our method. The pro rata strategy (green)

consists of distributing vaccine to each age-group in each city

proportional to the age-group population size. The children-only

pro rata strategy (orange) consists of distributing vaccine only to

children in each city proportional to the children’s population size.

The baseline scenario (red) indicates no vaccination. For early

vaccination, an epidemic starting in Hong Kong yield to a higher

attack rates for the optimal and children only pro rata solutions,

this is due to the fact that the flux of daily travelers through Hong

Kong is much higher than the flux through Jakarta.

(TIF)

Figure S3 Epidemic prevention potential (EPP) starting
in Hong Kong with 95% bootstrapped CI. Three different

allocations are shown in each panel. Each panel represents a given

number of vaccine doses available to distribute in the network. A)

Two million doses. B) Four million doses. C) Five million doses. D)

Six million doses. E) Seven million doses. F) Ten million doses.

Each point in each graph corresponds to the EPP for a single

vaccination day, either on day 5, 10, 15, 30, 60, or 90 after the

beginning of the epidemic. The optimal strategy (blue) is the one

given by our method. The pro rata strategy (green) consists of

distributing vaccine to each age-group in each city proportional to

the age-group population size. The children-only pro rata strategy

(orange) consists of distributing vaccine only to children in each

city proportional to the children’s population size. When less than

10 million doses are available, the EPP for an epidemic starting in

Hong Kong is considerably lower for than if the epidemic starting

in Jakarta, highlighting the fact that it is more difficult to mitigate

an epidemic if it starts in a more connected city.

(TIF)

Figure S4 Attack rate with 95% bootstrapped CI for a
single intervention for six different vaccination days
considered and six different vaccination coverages for
an epidemic starting in Taipei. Each panel represents a given

number of vaccine doses available to distribute in the entire

network: A) Two million doses. B) Four million doses. C) Five

million doses. D) Six million doses. E) Seven million doses. F) Ten

million doses. For each panel, each point in the graph corresponds

to the attack rate for a single vaccination day, either on day 5, 10,

15, 30, 60, or 90 after the beginning of the epidemic. Three

different allocations are shown in each panel. The optimal strategy

(blue) is the one given by our method. The pro rata strategy (green)

consists of distributing vaccine to each age-group in each city

proportional to the age-group population size. The children-only

pro rata strategy (orange) consists of distributing vaccine only to

children in each city proportional to the children’s population size.

The baseline scenario (red) indicates no vaccination. The attack

rates under this scenario are similar to those when the epidemic is

seeded in Hong Kong.

(TIF)

Figure S5 Epidemic prevention potential (EPP) starting
in Taipei with 95% bootstrapped CI. Three different

allocations are shown in each panel. Each panel represents a

given number of vaccine doses available to distribute in the

network. A) Two million doses. B) Four million doses. C) Five

million doses. D) Six million doses. E) Seven million doses. F) Ten

million doses. Each point in each graph corresponds to the EPP for

a single vaccination day, either on day 5, 10, 15, 30, 60, or 90 after

the beginning of the epidemic. The optimal strategy (blue) is the

one given by our method. The pro rata strategy (green) consists of

distributing vaccine to each age-group in each city proportional to

the age-group population size. The children-only pro rata strategy

(orange) consists of distributing vaccine only to children in each

city proportional to the children’s population size. The EPP here is

very similar to the one obtained when the epidemic starts in Hong

Kong.

(TIF)
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Figure S6 Attack rate with 95% bootstrapped CI for a
single intervention for 6 different vaccination days
considered and 6 different vaccination coverages for
an epidemic with R0~1:2. Here, the epidemic was
seeded in Jakarta. Each panel represents a given number of

vaccine doses available to distribute in the entire network: A) Two

million doses. B) Four million doses. C) Five million doses. D) Six

million doses. E) Seven million doses. F) Ten million doses. For

each panel, each point in the graph corresponds to the attack rate

for a single vaccination day, either on day 5, 10, 15, 30, 60, or 90

after the beginning of the epidemic. Three different allocations are

shown in each panel: The optimal strategy (blue) is the one given

by our method. The pro rata strategy (green) consists of

distributing vaccine to each age-group in each city proportional

to the age-group population size. The children-only pro rata

strategy (orange) consists of distributing vaccine only to children in

each city proportional to the children’s population size. The

baseline scenario (red) indicates no vaccination. As expected, a low

R0 requires few doses of vaccine to mitigate an epidemic: with four

million of doses of vaccine, all strategies considered yield an attack

rate of less than 2% of the total population.

(TIF)

Figure S7 Epidemic prevention potential (EPP) for
R0~1:2 with 95% bootstrapped CI. Here, the epidemic was

seeded in Jakarta. Each panel represents a given number of

vaccine doses available to distribute in the network. A) Two

million doses. B) Four million doses. C) Five million doses. D) Six

million doses. E) Seven million doses. F) Ten million doses. Each

point in each graph corresponds to the EPP for a single

vaccination day, either on day 5, 10, 15, 30, 60, or 90 after the

beginning of the epidemic. Three different strategies are shown in

each panel. The optimal strategy (blue) is the one given by our

method. The pro rata strategy (green) consists of distributing

vaccine to each age-group in each city proportional to the age-

group population size. The children-only pro rata strategy (orange)

consists of distributing vaccine only to children in each city

proportional to the children’s population size. The optimal and the

children-only pro rata strategy can mitigate most of the epidemics

with as few as four million doses.

(TIF)

Figure S8 Attack rate with 95% bootstrapped CI for a
single intervention for 6 different vaccination days
considered and 6 different vaccination coverages for
an epidemic with R0~1:8. Here, the epidemic was seeded in

Jakarta. Each panel represents a given number of vaccine doses

available to distribute in the entire network: A) Two million doses.

B) Four million doses. C) Five million doses. D) Six million doses. E)

Seven million doses. F) Ten million doses. For each panel, each

point in the graph corresponds to the attack rate for a single

vaccination day, either on day 5, 10, 15, 30, 60, or 90 after the

beginning of the epidemic. Three different allocations are shown in

each panel: The optimal strategy (blue) is the one given by our

method. The pro rata strategy (green) consists of distributing

vaccine to each age-group in each city proportional to the age-

group population size. The children-only pro rata strategy (orange)

consists of distributing vaccine only to children in each city

proportional to the children’s population size. The baseline scenario

(red) indicates no vaccination.

(TIF)

Figure S9 Epidemic prevention potential (EPP) for
R0~1:8 with 95% bootstrapped CI and the epidemic
was seeded in Jakarta. Each panel represents a given number

of vaccine doses available to distribute in the network. A) Two

million doses. B) Four million doses. C) Five million doses. D) Six

million doses. E) Seven million doses. F) Ten million doses. Each

point in each graph corresponds to the EPP for a single

vaccination day, either on day 5, 10, 15, 30, 60, or 90 after the

beginning of the epidemic. Three different allocations are shown

in each panel: The optimal strategy (blue) is the one given by our

method. The pro rata strategy (green) consists of distributing

vaccine to each age-group in each city proportional to the age-

group population size. The children-only pro rata strategy (orange)

consists of distributing vaccine only to children in each city

proportional to the children’s population size. Here, the EPP is

much lower than in the base case scenarios (R0~1:5). The optimal

strategy is the only strategy able to mitigate some of the epidemics

for all days and coverages considered.

(TIF)

Figure S10 Attack rate with 95% bootstrapped CI for
five million doses with different travel probabilities. A)

An infectious symptomatic individual is 10% less likely to travel

than an asymptomatic individual. B) An infectious symptomatic

individual is 75% less likely to travel than an asymptomatic

individual. For each panel, each point in the graph corresponds to

the attack rate for a single vaccination day, either on day 5, 10, 15,

30, 60, or 90 after the beginning of the epidemic.

(TIF)

Figure S11 Epidemic prevention potential (EPP) with
95% bootstrapped CI for five million doses with
different travel probabilities. A) An infectious symptomatic

individual is 10% less likely to travel than an asymptomatic

individual. B) An infectious symptomatic individual is 75% less

likely to travel than an asymptomatic individual. For each panel,

each point in the graph corresponds to the attack rate for a single

vaccination day, either on day 5, 10, 15, 30, 60, or 90 after the

beginning of the epidemic.

(TIF)

Figure S12 Results for five million doses when children
have a 50% reduction in their probability of travel. A)

Attack rates with 95% bootstrapped CI. B) EPP with 95%

bootstrapped CI. For each panel, each point in the graph

corresponds to the attack rate for a single vaccination day, either

on day 5, 10, 15, 30, 60, or 90 after the beginning of the epidemic.

(TIF)

Figure S13 Attack rate with 95% bootstrapped CI for
five million doses with lower vaccine efficacies. A) One-

third of their original values (VES~0:13, VEI~0:15 and

VEP~0:25). B) Two-thirds of their original values (VES~0:27,

VEI~0:30, and VEP~0:50). For each panel, each point in the

graph corresponds to the attack rate for a single vaccination day,

either on day 5, 10, 15, 30, 60, or 90 after the beginning of the

epidemic.

(TIF)

Figure S14 Epidemic prevention potential (EPP) with
95% bootstrapped CI for five million doses with lower
vaccine efficacies. A) One-third of their original values

(VES~0:13, VEI~0:15 and VEP~0:25). B) Two-thirds of their

original values (VES~0:27, VEI~0:30, and VEP~0:50). For

each panel, each point in the graph corresponds to the attack rate

for a single vaccination day, either on day 5, 10, 15, 30, 60, or 90

after the beginning of the epidemic.

(TIF)

Figure S15 Results for five million doses when vaccina-
tion is completed in 10 days. A) Attack rates with 95%

Optimal Vaccine Allocation for Pandemic Influenza
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bootstrapped CI. B) EPP with 95% bootstrapped CI. For each

panel, each point in the graph corresponds to the attack rate for a

single vaccination day, either on day 5, 10, 15, 30, 60, or 90 after

the beginning of the epidemic.

(TIF)

Figure S16 Results for five million doses when vaccines
are given to children only. A) Attack rates with 95%

bootstrapped CI. B) EPP with 95% bootstrapped CI. For each

panel, each point in the graph corresponds to the attack rate for a

single vaccination day, either on day 5, 10, 15, 30, 60, or 90 after

the beginning of the epidemic.

(TIF)

Text S1 Complete mathematical model and sensitivity
analysis.

(PDF)
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