
Optimal Balance of the Striatal Medium Spiny Neuron
Network
Adam Ponzi*, Jeffery R. Wickens

Neurobiology Research Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan

Abstract

Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of
movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary
coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local
MSN network but only at realistic connectivities of 10*20% and only when MSN generated inhibitory post-synaptic
potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated
population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find
that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into
fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population
firing rate components interact with cortical stimulus variations. Around 15% connectivity a transition to a more
dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity
regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only
in the transition regime do weak changes in cortical driving interact with many population components so that sequential
cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time
histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally
realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics – it is neither too
stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond
in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods
after variations in cortical excitation.
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Introduction

The striatum forms the main input to the Basal Ganglia (BG), a

subcortical structure involved in reinforcement learning and action

selection. It is 90% composed of medium spiny neurons (MSNs)

which inhibit each other through a local network of collaterals,

receive excitatory projections from the cerebral cortex and are the

only cells which project outside the striatum. Because of its

inhibitory structure the MSN network is often thought to act

selectively, transmitting the most active cortical inputs downstream

in the BG while suppressing others. However studies show that

local MSN network connections are too sparse and weak to

perform global selection and their function remains puzzling.

Many studies of neural response to sensory stimuli and

behavioural task events throughout the brain have found that cells

display large highly repeatable variations in firing rate on slow

behaviourally relevant time scales. In the striatum tonic and phasic

MSN activity patterns have been observed locked to task [1–3] and

reward predicting events [4–7]. Several studies show that individual

MSNs display diverse response profiles with phasic activity peaks

not simply at stimulus onset and offset but broadly distributed across

the whole spectrum of delays after task events [8–10].

Since MSN network connectivity is sparse and weak it has been

assumed in-vivo MSN firing patterns simply reflect cortical

driving. Indeed if the roughly 10000 cortical inputs an MSN

receives covary, even weakly [11,12], on slow timescales cumu-

latively they could generate large modulations in MSN activity on

similar time scales. It is important to understand how temporally

varying cortical inputs are transformed by the MSN network and

possibly interface with intrinsically MSN network generated

population and cell assembly dynamics.

Indeed recent work seems to support the hypothesis that

phasic in-vivo MSN activity can be partially generated

internally within the striatum. Adler et al. [13] have shown

that distinct coherent MSN cell assemblies are sequentially

activated after sensory events. At least three different MSN

clusters showed peak activity at different latencies after cue

presentation in a behavioural task. The cell clusters were not

differentiated by intrinsic cell properties and the authors

suggested their dynamics might be MSN network generated.

Indeed the BG have a strongly convergent largely feed-forward

architecture. Although MSNs may be unable to inhibit

downstream targets in the GPe and SNr individually they may

be able to do so by acting coherently in such cell assemblies.
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Several other recent studies have suggested the possibility that

rather than acting independently MSNs may act coherently in cell

assemblies [14,15]. Cell assembly activity is commonly observed

throughout the brain [14–22]. However in contrast to cortical

studies where cell assemblies are often defined through precise

repetitive spiking relationships striatal studies suggest that MSNs

do not synchronize on precise timescales but rather display

coherently varying firing rates generated by coherent burst firing

episodes on slower timescales [14,15,23]. In-vitro investigations

[14,24,25] found that MSN cell assemblies fire coherently in

recurrent sequential episodes and generate complex spatio-

temporal patterns while network transition matrices display abrupt

transitions between different active cell assemblies.

In recent modeling work [26] we showed that the local MSN

network even when driven by constant cortical excitation can

generate such slowly varying cell assembly dynamics providing

cells are excited just above firing threshold. In this ‘balanced’

situation even small changes in network generated inhibition or

cortical excitation can cause cells to switch between firing and

quiescent states. Network generated activity was in close agree-

ment with experiment only at striatally relevant connectivity of

around 10*20%.

Here we investigate how sudden switches in cortical driving, as

might occur in sensory driven behavioural tasks interacts with

MSN network generated chaotic cell assembly activity. We show

that stimulus specific cell assemblies can be reliably activated in

sequence locked to stimulus switch times, resulting in slowly

varying peri-stimulus time histograms (PSTH). Thus rather than

generating a static stimulus dependent activity pattern we suggest

the local MSN network is optimized to generate stimulus

dependent dynamical activity patterns for long time periods after

variations in cortical excitation. We investigate how this activity

depends on network parameters and find that MSN task

modulation is optimized in a marginally stable transition regime

which occurs at striatally relevant connectivities and synaptic

strengths. We discuss how these properties may be utilized in

temporally delayed reinforcement learning tasks strongly recruit-

ing the striatum.

Results

Networks display stimulus switching induced
reproducible patterns

In this section we illustrate stimulus onset locked cell assembly

dynamics using an example time series. We show that the MSN

network can generate prolonged sequences in response to sudden

changes in otherwise constant cortical stimuli. Thus we show that

the MSN network produces a dynamic sequence rather than a

static state of active and quiescent cells due to the MSN network

dynamics rather than the cortical drive.

In Figure 1(a) we show a spike raster plot from a 500 cell MSN

network simulation of connectivity r~0:22. The simulation is

subject to an input switching protocol where two different stimuli,

each characterised by a fixed set of cortical input rates (see

Methods), are applied for two seconds each in alternation

repeatedly. Cells have been ordered by a clustering algorithm

(see Methods) applied to only one of the stimuli, B, and each of the

30 clusters is coloured differently. As can be seen individual cells

fire spikes in episodic bursts lasting up to many hundreds of msecs.

The MSNs fire approximately periodically with period two

seconds, the period of the forcing stimulus. Most cells do not fire

throughout the whole duration of a stimulus but ‘phasically’ at

specific epochs often several hundred msecs after onset of a

particular stimulus and lasting for only a short time.

In order to quantify the reproducibility of the dynamics we

calculate the two-time firing rate similarity [14,21,22,27,28].

Similarity is just the scalar product of the vectors of cell firing

rates at two different times, t1 and t2. Similarity can take values

ranging from 0, meaning firing rate vectors are orthogonal, to 1,

meaning firing rate vectors are identical. Figure 1(b) shows a

8|8 second mean similarity matrix, M(t1,t2) constructed by

moving an eight second segment through the time series in steps

of four seconds to create an average similarity with periodicity of

the stimulation period (see Methods).

We denote by B(a,b) the ‘block’ of time points such that

avt1vaz2 and bvt2vbz2. Therefore the blocks B(0,0), and

B(2,2) describe the mean similarity within a given presentation of

respectively stimulus A or B. Sometimes this seems ‘diagonal’ (e.g.

stimulus B, B(2,2)) and sometimes more ‘block-like’ (e.g. stimulus

A, B(0,0)). In stimulus B the similarity drops off rapidly as t1

increases away from the diagonal t1~t2 (for any 2vt2v4)

showing that the firing activity moves through a rapid succession

of different states during stimulus B (as can also be observed

directly in the time series Figure 1(a)). The network therefore not

only represents the active stimulus but also the time elapsed since

stimulus onset. On the other hand activity during stimulus A is

more ‘fixed point’ like, where time elapsed from onset is not

strongly encoded.

The blocks B(2,0) and B(4,2) describe similarity in firing

activity between a given stimulus, respectively A and B, and the

immediately following stimulus, respectively B and A. As can be

seen similarity is weak in these blocks demonstrating that the

network activity is able to discriminate the stimuli.

The blocks B(4,0) and B(6,2) describe similarity between a

given stimulus, respectively A and B and the next presentation of

the same stimulus. In particular in stimulus B activity drops off

rapidly as t1 increases away from the diagonal t1~t2z4 (for any

2vt2v4) demonstrating that the network activity not only moves

through a sequence of different states, but that these state

Author Summary

The striatum forms the main input to the Basal Ganglia
(BG), a subcortical structure involved in reinforcement
learning and action selection. It is 90% composed of
medium spiny neurons (MSNs) which inhibit each other
through a network of collaterals, receive excitatory
projections from the cerebral cortex, and are the only
cells which project outside the striatum. Because of its
inhibitory structure, the MSN network is often thought to
act selectively, transmitting the most active cortical inputs
downstream in the BG while suppressing others. However,
studies show that local MSN network connections are too
sparse and weak to perform global selection and their
function remains puzzling. Here we investigate a different
hypothesis. Rather than generating a static stimulus
dependent activity pattern, we suggest the MSN network
is optimized to generate stimulus dependent dynamical
activity patterns for long time periods after variations in
cortical excitation. We demonstrate, using simulations, that
the MSN network has special characteristics. It is neither
too stable to respond in a dynamically complex temporally
extended way to cortical variations, nor is it too unstable
to respond in a consistent repeatable way. We discuss how
these properties may be utilized in temporally delayed
reinforcement learning tasks strongly recruiting the stria-
tum.
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sequences are reproducible across different presentations of a given

stimulus.

These results demonstrate that an inhibitory spiking MSN

network model can generate sequential patterns of activity for

several hundred msecs after stimulus onset which are reproducible

across different presentations of the same stimulus, but different for

different stimuli. This is true even though the excitatory input

strengths are fixed for the duration of a stimulus (except for

random fluctuations). Thus the activation of cells is not simply

determined by the input strengths. If this were the case (roughly

speaking) the most strongly excited cells in any particular stimulus

would remain active throughout that stimulus period while the

least strongly activated would remain quiescent throughout the

stimulus. Since the mean excitatory input strength is the same in

both stimuli the onset locked patterns result only from the

redistribution of excitation across MSNs; an increase in mean

excitation level is not required. This is because cells are balanced

close to firing threshold where even small variations in input drive

cause a large change in the distribution and temporal evolution of

activity across the inhibitory asymmetrically connected network.

Thus balanced network activity provides cells with a large diversity

of strong temporal responses to a given stimulus, rather than

generating a static state of active and quiescent cells. Moreover

clusters formed from many cells can also display this behaviour as

observed in the time series Fig. 1(a).

Recognition of stimuli through sequential activations remains

stochastic however; on some trials a stimulus fails to generate its

normal patterns. These failures may correspond to error trials in a

behavioural task. Stochastic stimulus recognition is not due to the

random fluctuations in excitation, but an effect of the chaotic

network dynamics, also occurring in deterministic spiking network

simulations as described in Supplemental Text S1. These results

extend those briefly reported in our previous publication [29]. In

the following we investigate why this activity occurs and under

what MSN network conditions it occurs maximally.

Stimulus onset locked reproducible dynamics optimized
near striatal connectivity

We have demonstrated that stimulus onset locked reproducible

dynamics can occur in network simulations, but how does it

depend on the network parameters such as connectivity and

connection strength? To investigate these issues quantitatively we

calculate mean similarity profiles for simulations of 500 cell

networks. In previous work [26] (and see Model) we have

suggested that a 500 cell network can provide a reasonable

representation of real MSN network activity. This is because it

respects both the striatally relevant MSN connection probability,

of about 15%, and the approximate number of cells, *500,

contacted by a given MSN since only a proportion of the MSN

cells *15% are depolarized to firing threshold by cortical

excitation. We demonstrate here that the reproducibility of

stimulus onset locked dynamics is maximized at striatally relevant

connectivities.

Figure 2(a) shows cross-sections from mean similarity matrices

MT (t) (see Methods and Figure 2(b)) calculated from a 500 cell

connectivity r~0:18 network simulation of 180 seconds, after

discarding a 12 second transient. As in the example time series

above (Figure 1(a)) here network simulations have two stimuli,

each presented for two seconds, alternately. Each profile shows the

similarity between a 100 msec window centered on a given epoch

T msecs after the onset of a stimulus and another 100 msec

window at a later time Tzt, averaged across all presentations of

both stimuli. The time lags t extend for 5 seconds, that is to a

point near the end of the next presentation of the current stimulus.

In other words these are profiles along a horizontal (or vertical)

slice from the point t1~t2~T through a mean similarity matrix

like the one shown in Figure 1(b) as schematically illustrated in

Figure 2(b).

The late epoch T~800 msec similarity profile, Figure 2(a,

cyan), describes how similarity behaves far from stimulus onset.

After about half a second (t&500 msec) firing activity patterns

decorrelate and similarity decays to its background level of about

0:93. This is the level of similarity between firing activity patterns

separated by long time periods under a constant stimulus. At time

lag t~2000{T~1200, the switch to a different stimulus occurs.

As can be seen this T~800 similarity profile (cyan) shows a

sudden change to a lower level around 0:45. This low level of

similarity, in this case close to the similarity level 0:5 of

uncorrelated activity, demonstrates that the different stimuli evoke

very different activity patterns. At time lag t~4000{T~3200
the onset of the next presentation of the same stimulus occurs and

similarity returns to its background level of around 0:93. Similarity

Figure 1. Stimulus onset locked reproducible cell assembly sequences. Cell raster plot time series segment for the 500 cell network
simulation with connectivity r~0:22, inhibitory neurotransmitter timescale timescale tg~50 msec and synaptic strength parameter k~1 so that
peak synaptic conductance is 3:4=(50|0:22)~0:34 nS and peak IPSP size &230 mV, corresponding to Figure 8(e,f). 2|2 second input switching
stimuli A and B are indicated on bottom axis. Cells are grouped and coloured by k-means clusters with 30 clusters applied to only stimulus B. All cells
active in stimulus B shown. Elipses indicate cell cluster bursts which appear to repeat across multiple presentations of stimulus B. (b) 8 second
similarity matrix M(t1,t2) averaged across the whole 180–12 second time series, including 42 presentations of each stimulus, a segment of which is
shown in (a). Colours shown in key. Stimulus A is presented during periods 0*2 and 4*6 and stimulus B is presented during periods 2*4 and
6*8 secs.
doi:10.1371/journal.pcbi.1002954.g001
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shows a (broad and weak) peak centered exactly on time lag

t~4000 msec. Thus activity is most similar at the same epoch T
in the next presentation of the current stimulus, even at this late

epoch T~800 msec after stimulus onset. The existence of this

peak demonstrates that the dynamical evolution after stimulus

onset is reproducible across presentations.

The behaviour is different at epochs T close to stimulus onset,

such as T~100 msec (black). Activity in this early epoch is much

less similar to the stimulus’ background activity, as shown by the

decay to a much lower level of similarity (around 0:8) than the

T~800 epoch (cyan) case. At time lag t~2000{T~1900, the

switch to a different stimulus occurs. Similarity drops to a lower

level, but not as low as the epoch T~800 (cyan) level. Thus firing

activity early after a stimulus switch is more similar to the previous

(and subsequent) stimulus than later after the switch (see

Discussion). Again similarity shows a peak at t~4000, the exact

same epoch T in the next presentation of the current stimulus.

This T~100 epoch similarity peak is much sharper than the

T~800 (cyan) one. Similarity profiles MT (t) at intermediate T
show decreasing t~4000 peak sharpness with increasing T
indicating that the reproducibility of the dynamical evolution does

not continue indefinitely.

We now investigate how reproducibility of dynamical evolution

depends on network connectivity. As explained in the Model section

when we vary connectivity r we rescale the connection strength by the

connection probability so that the mean level of inhibition on a cell is

unchanged by the connectivity variation.

The reproducibility at epoch T of the stimulus onset locked

dynamics can be quantified by the difference in the height of the

t~4000 peak seen in Figure 2(a) and the background level as a

function of epoch T . Indeed if the stimulus onset locked dynamical

evolution were not reproducible at a given epoch T then the epoch T
similarity profile would not show a t~4000 peak and similarity would

remain at the peak level of &0:93, like the T~800 (cyan) similarity

profile does. Thus we calculate the average mean background similarity,

MB(T)~SMT (t)T950vtv1050 and peak similarity MP(T)~
SMT (t)T3950vtv4050 obtained by averaging MT (t) over the time

lag t ranges 950vtv1050 and 3950vtv4050, respectively, (shown

by the vertical lines in Figure 2(a) and illustrated schematically in

Figure 2(b)) for different epochs T after stimulus onset.

The quantity DM(T)~MP(T){MB(T), is plotted versus

connectivity for several epochs T in Figure 3(a). At high

connectivity rw0:5, DM(T) approaches zero for all epochs T .

Below this connectivity it starts to increase, displaying a peak

around connectivity r~0:1*0:2 before decreasing again. Around

connectivity r&0:15, DM(T) is significantly greater than zero up

to about epoch T~800 msec (cyan line) indicating reproducible

stimulus locked dynamics persists for this long after stimulus onset

at this connectivity. Most interestingly reproducible stimulus

locked activity appears optimal at connectivities close to real

striatal connectivity.

Peak in dynamical reproducibility is robust to decrease in
time scale of inhibition

In the Model section we explain that the time scale of inhibitory

neurotransmitter decay is set by the parameter tg. In the above

this has been set to tg~50 msecs in accordance with Janssen et al.

[30] which shows a time course of MSN IPSP with a half life of

recovery of about 30–40 msec. However a fairly large range of

values has been found in various studies depending on experi-

mental conditions [31–35]. Here we investigate network behaviour

when tg is reduced to 20 so that the decay half-life

ln(2)tg~14 msec.

Figure 3(b) shows the same computation of the reproducibility

of stimulus onset locked dynamics DM(T) shown in Figure 3(a)

except using the reduced setting for tg. Evidently DM(T) shows a

very similar behaviour at this lower tg, including the peak around

connectivity r~0:1*0:2. The magnitude of the effect is much

reduced however as can be seen by the peak height. Furthermore

even at optimal connectivity, DM(T) is only significantly different

from zero up to about epoch T~300 msec. However the results

presented above, in particular the peak in DM(T) at striatally

relevant connectivity are robust to at least 60% reduction in tg.

Peaks in dynamical reproducibility and distinguishablity
occur when inhibitory connections have near striatal
strength

We can also ask how the reproducibility of stimulus onset locked

dynamics, DM(T), depends on the strength of inhibitory

Figure 2. Mean firing rate similarity shows peak at same time epoch in the following presentation of current stimulus. (a) Mean
similarity profiles MT (t) for connectivity r~0:18 network simulation versus time lag t. Firing rate similarities calculated using 100 msec window
incremented in 10 msec steps. Epochs T after stimulus onset shown in key. Bars indicate sem. Vertical lines indicate averaging periods (see
Figure 2(b)). 500 cell network simulation of length 180–12 seconds under a 2|2 second input switching protocol. Inhibitory neurotransmitter
timescale tg~50 msec. Synaptic strength k~1 so that peak synaptic conductance is 3:4=(50|0:18)~0:38 nS and peak IPSP size &280 mV (b)

Illustration of mean similarity profiles MT (t) and calculation of averages MB(T), MD(T), MP(T). For example the green solid line shows M300(t)

while MB(300) is the mean similarity in the intersection of the green solid line and the two diagonal lines denoted by MB(T) at time lags
t~950,1050.
doi:10.1371/journal.pcbi.1002954.g002
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connections. In the Model section we explain that the connection

strength parameter kM was chosen to be 3:4 nS in order to

generate realistic IPSPs of around 250 mV [26] at connectivities

around r~0:2 when the postsynaptic cell is close to firing

threshold and the inhibitory neurotransmitter timescale has the

value tg~50 msec. At these parameter values the peak conduc-

tance generated by a spike is 3:4=(0:2|50)~0:34 nS (see Model

section.) Here we fix the connectivity r~0:2 and timescale tg~50

and vary the synaptic strength around the value which produces

IPSPs of realistic size. Thus the peak conductance is set to be

k0:34 nS and k varied so that k&1 recovers IPSPs of realistic size.

In Figure 4 we show that variation with k also produces a peak in

DM(T) for epochs up to about T~600 msec after stimulus onset.

The peak is very close to k~1. Remarkably the maximum occurs

close to the value of connection strength which recovers IPSPs

close to experimentally observed size.

In Figure 4(b) we also show a stimulus distinguishability measure

DM2(T)~MB(T){MD(T). Here the different stimulus similarity,

MD(T)~SMT (t)T2950vtv3050 is obtained by averaging MT (t)
over the time lag t range, 2950vtv3050 (shown by the vertical

lines in Figure 2(a) and illustrated in Figure 2(b)). The distinguish-

ability of background activities under the two stimuli is given by

the large epoch T results, for example by DM2(800). A value of

zero indicates that similarity between firing activity at two well

separated time points in a given stimulus is the same as between

two different stimuli, and thus activity is solely dependent on the

network irrespective of the stimulus. Stimulus distinguishability

DM2(800) (cyan) also remarkably has a peak near k~1 in the

striatally relevant region. For shorter epochs after stimulus onset,

for example T~100 (black), the quantity DM2(100) is smaller

because soon after stimulus onset firing activity resembles the

previous stimulus. Stimuli become more distinguishable as time

elapses (see Discussion.)

MSN network shows dynamical regime transition as
connectivity and connection strength are varied

We have shown that the reproducibility of stimulus onset

locked dynamical evolution and stimulus distinguishability are

optimized in the striatally relevant parameter region of connec-

tivity and connection strength. We now investigate why this

should be. Here we show that the peaks occur near a transition in

network activity which occurs in the striatally relevant parameter

region and demonstrate the nature of the transition. In this

section we investigate 500 cell network simulations under constant

(randomly fluctuating) excitatory drive without the stimulus

switching.

Figure 3. Stimulus onset locked reproducible dynamics maximal at striatal connectivity. (a) Strength of stimulus onset locked
reproducible dynamics DM(T) (see text) versus connectivity r for several different epochs T after stimulus onset (see key) corresponding to
Figure 2(b). Inhibitory neurotransmitter timescale tg~50 msec. Synaptic strength parameter k~1 so that peak synaptic conductance varies as
3:4=(50r)nS and peak IPSP size as &(50=r)mV. (b) Same as (a) except inhibitory neurotransmitter timescale reduced by 60% to tg~20 msec.
Synaptic strength parameter k~1 so that peak synaptic conductance varies as 3:4=(20r)nS and peak IPSP size as &(80=r)mV. (a,b) 500 cell network
simulations of length 180–12 seconds under the 2|2 second input switching protocol. Points show actual values, solid lines show three point
average.
doi:10.1371/journal.pcbi.1002954.g003

Figure 4. Stimulus onset locked reproducible dynamics and stimulus distinguishability maximal at striatal connection strengths. (a)
Strength of stimulus onset locked reproducible dynamics DM(T) (see text) versus synaptic strength parameter k for connectivity r~0:2 and
timescale of inhibitory neurotransmitter tg~50 msec. Actual peak conductance is given by k0:34 nS and k~1 generates realistic peak IPSP sizes of
around 250 mV. Several different epochs T after stimulus onset (see key) for 500 cell network simulations of length 180–12 seconds under a
2|2 second input switching protocol. Points show actual values, solid lines show three point average. (b) Same as (a) but stimulus distinguishability
DM2(T).
doi:10.1371/journal.pcbi.1002954.g004

Optimal Balance of the Striatal MSN Network
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The black points in Figure 5(a) show the minimum inter-spike-

interval (ISI) observed for each active cell (cells which fire at least

three spikes in the 168 second observation period) in network

simulations of different connectivity. At high connectivity the

distribution is very broad. Most cells have minimum ISIs of

between 10 and 20 msecs but many have much longer minimum

ISIs. This indicates that at high connectivity the network displays

winner(s)-take-all like activity.

On the other hand at low connectivity the minimum ISI

distribution does not show the quiescent component. The

transition from a broad distribution to a narrow one appears to

occur fairly suddenly around r~0:2 connectivity. This is also

observed in the mean minimum ISI (Figure 5(a) red line) which is

roughly flat with high value above r&0:5 connectivity, but falls off

rapidly below around connectivity r~0:2.

The coefficient of variation (CV) of a cell’s ISI distribution,

defined as the cell’s ISI standard deviation normalized by its

mean ISI, also reveals the connectivity dependent transition.

Figure 5(c, green line) shows how this quantity, averaged

across all active cells, varies with network connectivity

corresponding to Figure 5(a). At connectivities above around

r~0:5 it is roughly flat with value around 0:75 indicating that

on average cells are firing fairly regularly. Below about

connectivity r~0:5 it starts to increase and very rapidly below

about connectivity r~0:2. Spike time series’ become signifi-

cantly more bursty than Poissonian (CVw1) around r~0:15
connectivity. Thus we find a transition from a network state

where the active cells fire mostly regularly to a state where

active cells fire in an episodic bursting way.

The proportion of active cells (those that fire at least three spikes

in the 168 second observation period) also demonstrates the

connectivity dependent transition. This quantity (Figure 5(c), black

line) shows a minimum around connectivity r&0:2 where about

50% of the network cells are active. On increasing connectivity the

active proportion rises slowly towards about 70% at full

connectivity while on decreasing connectivity it rises rapidly

towards 100% activity at zero connectivity. Indeed when fewer

cells are active we expect network generated fluctuations to be

reduced and the remaining active cells thus fire more regularly,

reducing the CV values at higher connectivity.

Thus the network shows a fairly sharp transition from a

regularly firing winners-take-all type regime where a proportion of

cells are permanently quiescent to a regime where almost all cells

are involved in bursty activity. Remarkably actual striatal

connectivity of around r~0:17 appears to be in the transition

regime.

Figure 5(b,d) show the same quantities but versus the

connection strength parameter k for network simulations of

connectivity r~0:2. Again network dynamics shows a transition.

In the approximate region 0:25vkv1, (so that peak IPSP sizes

vary between 60 mV and 250 mV and peak synaptic conductances

vary between 0:085 nS and 0:34 nS), the network shows a winners-

take-all behaviour. This can be seen from the broad distribution of

minimum ISI (Figure 5(b), black points) with some very long

Figure 5. Dynamical regime transition in network activity. (a) Black circles: minimum observed ISI for each active cell in network simulations
of different connectivity. Red line: mean of minimum observed ISI across all cells for each network simulation. Synaptic strength parameter k~1 so
that peak synaptic conductance varies as 3:4=(50r)nS and peak IPSP size &(50=r)mV. (b) Same as (a) but versus synaptic strength parameter k for
connectivity r~0:2. Actual peak synaptic conductance is given by k0:34 nS and k~1 generates realistic peak IPSP sizes of around 250 mV. (c) Green
line: mean ISI coefficient of variation (CV) across all cells in network simulations of different connectivity corresponding to (a) (bars indicated sem).
Black line: proportion of active cells (those that fire at least three spikes in the 168 second time series). Red line: mean relative entropy, SRET of
100 msec firing rate distribution across all cells rescaled by 8=log(N) where N is the number of active cells (see text) (bars indicated sem). (d) Same as
(c) but corresponding to (b). (a,b,c,d) N~500 cell network simulations under constant (randomly fluctuating) excitation without stimulus switching.
180–12 second time series. Inhibitory neurotransmitter timescale tg~50 msec.
doi:10.1371/journal.pcbi.1002954.g005
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minimum ISI, the very high mean ISI (Figure 5(b), red line), the

proportion of active of cells (Figure 5(d), black line) indicating that

less than 75% of the network is active, and the low mean ISI

CVv1 (Figure 5(d), green line), indicating that network simula-

tions include many relatively regularly firing cells. At higher kw1,

(peak IPSP size w250 mV and peak synaptic conductance

w0:34 nS) on the other hand, the network appears to be in a

highly active state with many burst firing cells. This is indicated by

the high ISI CVw1, the narrow distribution of minimum ISI with

low mean ISI and the fact that most of the network cells are active.

At very low kv0:25 (peak IPSP size v60 mV and peak synaptic

conductance v0:085 nS) however we find another regime where

connection strength vanishes and thus all cells in the network fire

perfectly regularly (except for stochastic fluctuations in excitatory

input).

Remarkably again the transition between the winners-take-all

like regime and the bursty active regime appears to be close to

k&1, in the striatally relevant parameter region where presynaptic

spikes generate realistically sized IPSP *250 mV. Notice also that

in both the connectivity r variation and synaptic strength k
variation the transition occurs close to a minimum of approxi-

mately 50% in the quantity of active cells (Figure 5(c,d) black lines).

This is also where the mean ISI CV is close to or slightly larger

than unity (see Discussion).

Finally, as an illustration of the different activity in the two

regimes, Figure 6 shows rate time series for several cells from a

high connectivity (Figure 6(a)) simulation in the winners-take-all

regime and a low connectivity (Figure 6(b)) simulation in the active

bursty regime. As can be seen, in the winners-take-all regime

(Figure 6(a)) firing rates seem to fluctuate mildly around well-

defined seemingly stable mean levels. Individual cells appear to

have narrow firing rate distributions which overlap only weakly

with other cells rate distributions. In contrast in the bursty regime

firing rates fluctuate wildly between zero and maxima defined by

the cells driving cortical excitations, and appear very unstable, so

that cells have broad strongly overlapping rate distributions.

This observation can be quantified by the relative entropy RE
(see Methods) between a cell’s firing rate distribution and the

combined firing rate distribution of all active cells in a given network

simulation. This relative entropy is zero when the firing rate

distribution of a single cell coincides with the combined firing rate

distribution across all cells. On the other hand it reaches a value

log(N) when the firing rate distributions of the N active cells are

entirely non-overlapping. The quantity 8SRET=log(N) (the factor

8 is included simply for convenient scaling on the figure) is shown

averaged across all cells in the network versus connectivity in

Figure 5(c) and versus connection strength in Figure 5(d) by the red

lines. As can be seen it also exhibits the transition at striatal

relevant parameter settings of r&0:2 and k&1. At lower

connectivity or higher connection strength the firing rate

distributions of single cells are similar to the distribution across

all cells combined. In contrast at higher connectivity or lower

connection strength the rate distributions of individual cells are

much less overlapping.

Rate dynamics is marginally stable at striatally relevant
connectivity and connection strength

Above we have shown that the MSN network displays a

transition between a bursty active regime and a winners-take-all

like regime as connectivity and connection strength are varied.

The transition occurs at striatally relevant parameter settings.

Here we demonstrate that the rate dynamics generated by the

MSN network model is unstable and chaotic in the bursty active

regime but stable in the winners-take-all like regime and thus

marginally stable at striatally relevant parameter settings.

The postsynaptically bound inhibitory neurotransmitters gj vary

slowly in the MSN network model [26] and essentially act as a

low-pass filter of presynaptic spiking activity [26]. By replacing the

detailed dependence on presynaptic activity with the presynaptic

firing rate we obtain a reduced rate model describing the

dynamical activity of the postsynaptically bound inhibitory

neurotransmitters gj (see Methods.) The reduced model has

exactly the same parameters as the full spiking network model

including the inhibitory connectivity structure and excitatory

driving. However in order to study the stability of network

generated deterministic rate dynamics the noise in the excitatory

driving is not included. Again the excitatory driving is fixed for the

duration of the simulation without stimulus switching. The

conductance based synapses are also replaced by current synapses

which do not depend on the postsynaptic membrane potential.

The deterministic rate model shows a very similar qualitative

dependence of the number of active cells on connectivity (Figure 7(a)

black circles) and connection strength (Figure 7(b) black circles) as

the full spiking model (Figure 5(c,d)). A weak minimum is shown at

striatally relevant connectivity around r&0:17 and a marked

minimum at striatally relevant connection strength k&1. The same

is true for the variation of the relative entropy RE with connectivity

and connection strength, (Figure 7(a,b) red diamonds.) As in the full

spiking model a fairly sudden transition is seen at striatally relevant

connectivity and connection strength.

Figure 6. Firing rate time series show qualitatively different behaviours dependent on connectivity. (a,b) Firing rate time series
segments based on 400 msec moving window for several randomly chosen cells from 500 cell network simulations under constant (randomly
fluctuating) excitation without stimulus switching. Inhibitory neurotransmitter timescale tg~50 msec. (a) Connectivity r~0:75, synaptic strength
parameter k~1 so that peak synaptic conductance is 3:4=(50|0:75)~0:09 nS and peak IPSP size &65 mV; (b) Connectivity r~0:07, synaptic
strength parameter k~1 so that peak synaptic conductance is 3:4=(50|0:07)~0:98 nS and peak IPSP size &720 mV.
doi:10.1371/journal.pcbi.1002954.g006
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The reduced model is deterministic and since it also lacks the

strong instability of the spike generating mechanism we are able to

compute the maximal Lyapunov exponent for the rate dynamics

of 500 cell networks. This quantity characterises the stability of the

rate dynamics. When it is positive the network rate dynamics is

chaotic. When it is negative however the network has a found a

fixed distribution of firing rates or alternatively some, or all, of the

cells firing rates may be varying periodically. As can be seen by the

blue crosses in Figure 7(a,b) network rate dynamics is unstable and

chaotic in the active bursty regime but stable in the winners-take-

all regime. Only in the striatally relevant parameter regime is the

maximal Lyapunov exponent close to zero indicating the network

is marginally stable. This point is also known as the ‘edge-of-chaos’

[36–39]. The other quantities, the relative entropy RE and the

proportion of active cells show strong fluctuations across simula-

tions when the Lyapunov exponent is close to zero. This is due to

the simultaneous proximity of stable and unstable states.

Time series examples from simulations of this reduced rate

model displaying fixed point, periodic and chaotic activity are

shown in Supplemental Text S1. The distribution of fixed point,

periodic and chaotic states under variation of connectivity r and

connection strength k is also shown in Supplemental Text S1.

Stimulus onset locked reproducible dynamics mediated
by coherently activating cell populations

Above we have demonstrated that temporally extended

reproducible sequential dynamics can occur locked to stimulus

switches. We have shown this activity occurs maximally near a

transition in network activity where rate dynamics is marginally

stable and which occurs in the striatally relevant parameter range.

However in principle sequential activity could be mediated by a

chain of single cells activated in sequence. Coherent activity of cell

assemblies [14,15,23–25] has also been observed in the striatum

and such population activity could provide a potent force to inhibit

and disinhibit downstream targets. Here we investigate whether

stimulus onset locked sequential dynamics is also shown by cell

assemblies, as well as by individual cells.

The cell spike raster plot time series segment from the

intermediate connectivity, r~0:22, 500 cell simulation shown in

Figure 1(a) seems to indicate that reproducible stimulus onset

locked dynamics is indeed mediated by cell assemblies rather than

single cells. Indeed the network appears to switch through different

sequentially activated distributions of active and quiescent cell

assemblies (indicated by ellipses) throughout stimulus B, which

approximately repeat across different presentations of stimulus B.

On the other hand, at high and low connectivity reproducible

sequentially activated distributions of active and quiescent cells are

not observed (see time series described in Supplemental Text S1.)

To investigate this further here instead of using k-means clustering

we employ principal component analysis (PCA) of 500 cell network

simulations. Principal components are linear combinations of single

cell firing rates with fixed coefficients such that the resultant

component activity time series are uncorrelated with each other.

PCA is closely related [40] to the k-means clustering methodology

used as an illustration of time series above (Figure 1(a)) but is non-

parametric and does not require either a choice of cluster quantity

nor does it depend on the initial conditions of the algorithm. Like k-

means clusters components are generated from the correlation matrix

of firing rates of all active cells based on a long 100 msec time

window. Thus components here do not reflect precise spiking

relationships. Rather principal component time series can be

considered to describe population firing rates where however cells

can contribute both positively or negatively to any component. When

the components are ordered by variance of their rate time series’,

largest first, the smallest numbered (highest) components are the ones

containing the major contributions to the variance.

Using component analysis we can demonstrate that network

dynamics can evolve in a much smaller dimensional space than the

number of cells [41,42]. Figure 8(a,c,e) show peri-stimulus time

histograms (PSTH) of component time series calculated in exactly

the same way as PSTH for single cell time series for high, low and

intermediate connectivity simulations under the 2|2 second

input switching protocol used above (see Methods).

At high connectivity, r~0:84, (Figure 8(a)) only the three

highest components seem to show activity reflecting stimulus

switching in their PSTH. The first component (black) is positively

driven by cells continuously active in one stimulus and negatively

driven by cells continuously active in the other stimulus. The next

two components (red and green) only activate for a short period

after stimulus switches. These components are composed of cells

rapidly activated by the cortical stimulus but then more slowly

suppressed by the winner cells composing the first component.

These two components differ in that one (#2, red) activates in way

which is dependent on the direction of stimulus switching, while

Figure 7. MSN network rate dynamics is marginally stable at striatally relevant connectivity and connection strength. (a,b) Black
circles : proportion of active cells. Red diamonds : mean relative entropy SRET rescaled by 2=log(N) where N is the number of active cells. Blue
crosses : maximal Lyapunov exponent rescaled by 32. Solid lines show three point averages. (a) Variation in connectivity r for many simulations.
Synaptic strength parameter k~1 so that peak synaptic conductance varies as 3:4=(50r)nS and peak IPSP size as (50=r)mV (b) Variation in
connection strength k for many simulations of connectivity r~0:2. Actual peak conductance is given by k0:34 nS and k~1 generates realistic peak
IPSP sizes of around 250 mV. (a,b) N~500 cell deterministic reduced rate network simulations (see main text) of length 110 secs. Initial 100 secs
discarded from analysis. Inhibitory neurotransmitter timescale tg~50 msec.
doi:10.1371/journal.pcbi.1002954.g007
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the other (#3, green) does not. Lower components seem to show

only high frequency fluctuations and thus the dynamics is

effectively only three dimensional. Thus, consistent with the

transition analysis above, the dynamics at high connectivity seems

to be a ‘k-winners-take-all’ state [43] where the first component

(black) represents the winning set of cells. Activity seems to relax

rapidly within about 50 msec after a stimulus switch suggesting

that the winners-take-all state is very stable at this high

connectivity. This can also be directly observed in the spike raster

plot segment from this network simulation shown in Figure S1(a)

of the Supplemental Text S1 and the corresponding mean

similarity matrix (Figure S2(a) Supplemental Text S1).

These observations are reflected in the corresponding power

spectral density (PSD) of the first ten components shown in

Figure 8(b). The first two components (black and red) show a

strong stimulus driven peak at 0.25 Hz while the third component

(green) shows a peak at 0.5 Hz. The background activity, which is

network generated, shows the flat spectrum characteristic of white

noise. Much lower components, such as #306 and #347 also

display white noise like spectra, but with only very weak peaks.

In contrast to the high connectivity situation at very low

connectivity, r~0:06, PSTH of population components

(Figure 8(c)) seem to display large slow random-walk like

fluctuations. The PSTH appear random even though many (here

42) stimuli presentations are averaged and the component

variations appear not well-locked to stimulus onset times. These

observations are also directly evident in the spike raster plot

segment from this network simulation shown in Figure S1(b) of the

Supplemental Text S1 and the corresponding mean similarity

matrix (Figure S2(b) Supplemental Text S1).

This can also be seen by the weakening of the 0:25 Hz, and

absence of the 0:5 Hz peaks in the corresponding PSD of the

Figure 8. Population component dynamics shows strong stimulus interaction at intermediate connectivity. (a,c,e) PSTH for several
principal components (see key) locked to stimulus onset in the 2|2 second input switching protocol calculated from 180–12 second time series
including 42 presentations of each of the two stimuli. 500 cell network simulations. Synaptic strength parameter k~1. Inhibitory neurotransmitter
timescale tg~50 msec. (b,d,f) PSD of components corresponding to (a,c,e) in log-log axes. (a,b) High connectivity r~0:84, so that peak synaptic
conductance is 3:4=(50|0:84)~0:08 nS and peak IPSP size &60 mV; (c,d) low connectivity r~0:06, so that peak synaptic conductance is
3:4=(50|0:06)~1:14 nS and peak IPSP size &830 mV; (e,f) intermediate connectivity r~0:22, so that peak synaptic conductance is
3:4=(50|0:22)~0:31 nS and peak IPSP size &230 mV.
doi:10.1371/journal.pcbi.1002954.g008
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higher components (Figure 8(d)). The network generated back-

ground activity of the higher components also shows a region of

growth on intermediate frequencies 1*10 Hz, absent at high

connectivity (Figure 8(b)). This will be discussed further below (see

Discussion.) Thus at low connectivity, as at high connectivity,

stimulus switching does not strongly interact with many compo-

nents of the MSN population activity.

The situation is more interesting in the intermediate connec-

tivity, r~0:22, network simulation whose spike raster plot

segment is shown in Figure 1(a) with corresponding similarity

matrix in Figure 1(b). The PSTH of multiple components,

Figure 8(e), display slow oscillations lasting over a second after

stimulus onset, created by waves of inhibition and disinhibition

between cell populations. The higher frequency fluctuations

around these slow variations appear strongly suppressed for the

first half a second after stimulus switching, compared to the low

connectivity example, Figure 8(c). However after switching

through several states the network does appear to eventually relax

to a stable stimulus dependent equilibrium.

The increased complexity of the population dynamics is also

apparent in the PSD, Figure 8(f), which shows many components

with strong stimulus driven peaks at 0.25 Hz and also many with

peaks at 0.5 Hz. Thus in this intermediate connectivity regime the

stimulus switching interacts with many more components of the

population activity than at high or low connectivity.

Multiple population components show suppressed noise
at striatal connectivity

The stimulus locking of population activity components

described above can be quantified by the variance of the

component PSTH fluctuations, here termed ‘PSTH variance’,

and the variance of the component time series fluctuations around

the mean PSTH activity, here termed ‘noise variance’ calculated

across the first 400 msec after stimulus onset (see Methods).

In Figure 9(a) we show PSTH variance (dashed lines) and

PSTH noise (solid lines) versus component number for the three

different network simulations of different connectivity investigat-

ed in Figure 8. At intermediate connectivity, r~0:22, PSTH

noise (solid red) is significantly suppressed below PSTH variance

(dashed red) up to about component #10. On the other hand at

high connectivity r~0:84 (green) only the first three components

show suppressed noise while at low connectivity, r~0:06, (black)

little noise suppression is evident for any components except the

first.

To quantify noise suppression in Figure 9(b) we show the ratio

of PSTH variance to noise variance versus connectivity for several

components. At high connectivity this quantity is large for only the

first three components while as connectivity decreases more and

more components start to show considerable noise suppression.

The higher the component the greater the noise suppression in

general. At connectivity around r~0:2, 10 components show

noise suppression. Interestingly there appears to be quite a sudden

transition from high noise suppression to low noise suppression

around component number 10. Noise suppression weakens again

as connectivity decreases further however. Again the peak of noise

suppression in most components occurs in the transition regime

close to the striatally relevant connectivity region.

Discussion

In this paper we investigate how a minimalistic model of a local

striatal MSN network responds to variations in cortical driving.

We first illustrate using a spike raster plot and mean similarity

matrix that the MSN network model can display cell assembly

population dynamics locked to stimulus onset times, as previously

demonstrated in [29]. We next investigate under what network

conditions the reproducibility of stimulus onset locked dynamical

evolution across repeat presentations of a given stimulus is

maximized and for how long the reproducible patterns persist

after stimulus onset. To this end we analyse how 500 cell networks

respond to temporally varying cortical driving using a 2|2 second

input switching protocol. As discussed in the model section MSN

networks of size 500 with connectivity around 0:17 and IPSP sizes

around 200*300 mV provide a reasonable representation of real

local MSN network connection structure. By varying parameters

individually, so that other factors are kept constant, around this

striatally relevant regime we show that dynamical evolution is

significantly reproducible for up to about a second after stimulus

onset, but, remarkably, only at striatally relevant connection

probability and IPSP size. These behaviourally relevant time scales

are much longer than any represented in the model parameters.

Dynamical evolution is most reproducible soon after stimulus

onset and decays thereafter. Outside the striatally relevant

parameter range reproducibility is much weaker for all epochs

after stimulus onset.

We also investigate how stimulus distinguishability depends on

IPSP size. Soon after stimulus onset the current stimulus is only

weakly distinguishable from the previous one for all connection

strengths. Distinguishably increases with time elapsed from

Figure 9. Ratio of signal to noise variance maximal at striatal connectivity in first 10 principal population components. (a)
Component PSTH variance (dashed) and noise variance (solid) versus component number for three simulations of different connectivity r (see key)
corresponding to Figure 8 with the same parameters. (b) Ratio of signal variance to noise variance for several components (see key) versus
connectivity r. Peak synaptic conductance varies as 3:4=(50r)nS and peak IPSP size as &(50=r)mV. (a,b) 500 cell network simulations of 168 seconds
under 2|2 second input switching. Synaptic strength k~1. Inhibitory neurotransmitter timescale tg~50 msec.
doi:10.1371/journal.pcbi.1002954.g009
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stimulus onset. Most remarkably we find that the background

activity (at long times after stimulus onset) generated by different

stimuli shows a maximal distinguishability and this maximum

occurs at striatally relevant IPSP size. In the striatally relevant

parameter regime stimulus distinguishability takes about a second

after stimulus onset to saturate at its maximal value.

To shed light on the origin of these optimal properties we

investigate how the network generated dynamical activity of 500

cell network simulations under constant (fluctuating) excitatory

drive, without input switching, depends on connectivity and

connection strength. We find a transition in network generated

dynamical activity around 17% connectivity. At connectivity

greater than this we find a winners-take-all like regime where some

cells fire fairly regularly and the rest are quiescent. On the other

hand at lower connectivities we find that most cells participate in

network activity but fire in a very bursty way. We also find that the

MSN network under constant (fluctuating) excitatory drive shows

a connection strength dependent transition when IPSPs have size

around 200*300 mV, also separating a winners-take-all like

regime from a regime where most cells are actively burst firing.

Interestingly in both transitions the proportion of active cells shows

a minimum, approximately 50%, close to where the mean cell CV

crosses unity. Most remarkably both transitions occur in the

striatally relevant parameter range. CVs somewhat greater than

unity are also commonly observed for MSN cells [13,15,26] and

our results are thus in good agreement with observations.

To understand the network transition in more detail we

investigate a simplified deterministic model of the network rate

dynamics with parameters set exactly as in the full model. We are

able to accurately reproduce the connectivity and connection

strength dependence of network statistical quantities as well as the

transition at striatally relevant parameter settings. We also

numerically compute the maximal Lyapunov exponent and show

that the network is marginally stable at striatally relevant

parameter settings, separating a chaotic from a stable regime. In

the stable regime the vast majority of network simulations show

fixed point dynamics, especially at high connectivity, (see

Supplemental Text S1). However at lower connectivity in the

stable regime just above the transition to chaos some simulations

display periodic dynamics. These interesting transitions will be the

subject of future studies.

There are quantitative differences in the behaviour of the

relative entropy and proportion of active cells between the rate

and spiking models however. This is mainly due to the absence of

dynamical effects induced by the spiking. Spiking causes noisy

fluctuations around the fixed point states which reduces the

relative entropy and may affect stability of attractors in the rate

model. The periodic dynamical states are less likely to be observed

in the full spiking network. Also transient periods of spike phase

locking which may occur in the full spiking model [44] are absent

in the rate model. Differences also result from approximating the

firing rate dependence of the conductance based synapses by a

fixed value (see Methods), and from the absence of noise in the

excitatory driving.

We next ask whether stimulus onset locked reproducible

dynamics is mediated by single cells or by MSN cell assemblies

with coherent slowly varying rates. To investigate this we apply

principal component analysis to firing rate time series generated

using a long 100 msec time window. Temporal variation in

principal components is generated by the coherent activity of

populations of cells. We show that at high connectivity only the

first three population components show strong dependence on

cortical variations. The first component represents the winning set

of cells while the next two only activate transiently at stimulus

switches. Network dynamics appears very stable and activated

components rapidly relax between two fixed point states, one for

each stimulus, characterised by different stimulus dependent

distributions of regularly firing and quiescent cells across the

network. As connectivity decreases more and more population

components display reproducible dynamics after stimulus switches,

peaking at around 10 at striatally relevant connectivity. The

temporal variations of these components are generated by the

coherent activation and deactivation of different subpopulations of

cells which inhibit and disinhibit each other. At connectivities near

the transition the network successively visits different transient

distributions of active and quiescent cells before eventually finding

a stable distribution. As connectivity decreases further population

components appear to become unstable, wandering apparently

randomly without locking to stimulus onset times. Thus cortical

driving interacts maximally with network generated population

activity at striatally relevant connectivity.

Now we discuss how these results can be explained within the

framework of dynamical systems theory. There have been many

investigations of dynamical regime transitions in networks of

excitatory and inhibitory neurons. Regimes of synchronous and

asynchronous irregular activity as well as oscillatory regimes have

been found [45–48]. Sompolinsky et al. [49] found a transition

from a stationary phase to a chaotic phase in a network of

nonlinear elements interacting via random asymmetric couplings.

The random firing activity in the asynchronous regime was shown

to be generated by chaos produced by the quenched random

network structure. The transition from synchronous to asynchro-

nous activity which occurs when the network balance changes

from excitatory to inhibitory is accompanied by a sudden

transition in ISI CV from a value close to zero to one much

larger than unity. However these studies treat a network in the

limit of sparse connectivity rvv1 so that correlations in

fluctuations in input a cell receives can be neglected. In this

sparse limit the inputs to each cell from the rest of the network are

described by a single common time varying firing rate. The

calculations do not apply when significant correlations appear

beyond those induced by this common rate. The network studied

here with r&0:2 is far from this limit. Indeed we specifically

investigate the dynamical switching of cell assemblies [26] which

are groups of transiently strongly correlated cells. Moreover

different cells have very different temporal modulations of their

firing rates. However our results, in particular the fact that CV

values are close to unity, so that spiking activity is Poissonian, and

the fact that 50% of the network is active in the transition regime,

suggest that the network may be close to balanced in the transition

regime.

In more recent work closely related to the present study,

Buckley and Nowotny [50] investigated a bifurcation in stability in

two asymmetrically connected populations of inhibitory conduc-

tance based neurons. The neurons were coupled by more

biologically realistic conductance based synapses (as they are in

the present work) where the synaptic current depends on

postsynaptic membrane potential. This can produce effects not

accounted for by current based synapses [51–53]. They also

included a slow inhibitory neurotransmitter decay timescale as we

do here. They show that near the bifurcation where the globally

stable fixed point is close to losing stability the inhibitory network

has optimal properties, maximizing dynamic range, and displaying

slow transient dynamics after excitatory input pulses. They relate

this behaviour to critical phenomenon occurring near phase

transitions and show that the bifurcation results from the

competition between inhibitory populations. When the fixed point

is unstable the system exhibits oscillations, chaos or saturating
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dynamics depending on the connectivity matrix. The present work

extends this study to a random inhibitory network modeling the

striatal MSN network and investigates its behaviour under

variation of connectivity and connection strength. Performance

has been shown to be optimal in the marginally stable state known

as the ‘edge of chaos’ in several studies of networks which exhibit a

transition from stable to chaotic dynamics [36–39]. In recent work

Toyoizumi and Abbott [37] determine analytically that the signal-

to-noise ratio of large randomly connected networks diverges in a

critical state near the edge of chaos, and the memory lifetime of

the network also diverges. In fact they find performance is optimal

in the chaotic regime close to the transition.

Here we offer the following rough explanatory scenario. Our

simulations of the deterministic reduced rate network suggest that

the phenomenon we observe here is related to ‘critical slowing

down’ occuring in marginally stable weakly chaotic transient

dynamics close to the edge of chaos. Indeed (at least) two factors

seem relevant for the generation of complex reproducible

dynamics in the present random network model under the

periodic forcing of the stimulus switching. First the dynamical

trajectories generated by the network dynamics should remain

quite complex and high dimensional for long periods after stimulus

onset. If this is not the case multiple different states in a sequence

cannot be discriminated or the elapsed time represented in this

random network model. Second network dynamics in the

periodically forced system should be stable with period of the

forcing stimulus. The stability of dynamics under periodic forcing

depends of course on the stability of dynamics generated by the

autonomous network in both the stimuli in the absence of forcing.

However it also depends on other factors such as the period of the

forcing stimulus. In general periodic driving can cause stable

activity states to become chaotic and vice-versa. Indeed Rajan et

al. [42] have recently shown that periodic forcing can suppress

neural network generated chaotic dynamics in a frequency

dependent way. They also show suppression of chaotic activity

depends on the strength of the forcing.

One way in which activity in the transition regime between

stable and unstable behaviour can be both complex and

reproducible is due to temporally extended activity which would

be transient to a stable fixed point in the unforced system. Indeed

deep in the winners-take-all regime, far from the transition,

network activity in the unforced system is characterised by a very

stable stimulus dependent fixed point. In the periodically forced

system after the excitatory input is switched the system moves to a

new fixed point. The system moves rapidly between the fixed

points due to their strong stability and with a highly reproducible

trajectory due to the consistency of initial state across repeat

stimulus presentations. Reproducibility is reflected in the strong

noise suppression seen in all activated components (Figure 8(a)),

but only three components are activated and only briefly. Thus

dynamical evolution is highly reproducible but low dimensional

and short lived. As the transition is approached from the winners-

take-all regime by varying the network parameters the fixed points

become less stable and the system takes longer to relax to the new

fixed point after the stimulus is switched, lingering in the vicinity of

the old fixed point. This dynamical slowing near the transition can

generate complex transients on timescales much longer than those

represented in the model parameters. Thus for extended transient

periods after stimulus onset firing activity resembles the previous

stimulus. Indeed in our simulations stimulus distinguishability

increases with time elapsed after a stimulus switch.

On the other hand deep in the unstable regime reproducible

stimulus locked dynamics does not occur even in the completely

deterministic reduced rate network simulations (data not shown.)

Here dynamical activity is complex and high dimensional,

requiring many principal components to explain is variance, and

thus can easily generate a sequence of strongly differing states.

However since nearby trajectories rapidly diverge the network

activity state at stimulus onset is strongly varying across repeat

presentations and reproducibility is lost.

Transient activity in the unforced system may be complex and

higher dimensional close to the transition due to the proximity of

periodic and chaotic states and the prescence of attractor ruins.

Attractor ruins are regions of phase space where attractors are

weakly destabilized and close to which the flow is still very slow

[54]. Indeed in the deterministic simulations of the reduced rate

network we also find stable periodic states, limit cycles (torii), as

well as chaotic states in the transition regime (see Supplemental

Text S1), suggesting the proximity of Hopf bifurcations. In this

case transients initiated after stimulus changes may decay to the

new fixed point in an oscillatory fashion. Indeed the particular

example of principal component time series shown Figure 8(e), in

the transition regime, may indicate persistent oscillatory waves of

inhibition and disinhibition between cell populations. More

complex scenarios include slow switching along sequences of

metastable ‘saddle-sets’ via heteroclinic channels, as has been

shown to occur in asymmetrically coupled inhibitory rate networks

(like the reduced rate network studied here) by Rabinovich and

coworkers [55,56] in the paradigm of winnerless competition.

Here the trajectory remains in the vicinity of a metastable saddle-

set for an extended period before suddenly moving off to the next

one. Saddle-set states may be fixed point like, corresponding to

firing rate cell assemblies, particular transient short-lived distribu-

tions of active and quiescent cells, or more complex dynamical

attractor ruins. Rabinovich et al. [56] also demonstrate that this

scenario can be preserved even in the presence of noise. Deco and

coworkers [57,58] have also studied switching between ‘ghost

attractors’ in a critical regime near a transition to a multistable

state. However besides transient activity we should also mention

that in the transition regime activity generated by one stimulus

may be chaotic while in the other stable fixed point thus the

periodically forced activity will be stable but complex. In general

we suggest the MSN network is in a marginally stable regime

facilitating the generation of weakly chaotic and complex transient

activity. When the network is periodically forced by the stimulus

switching this activity can produce complex but stable periodic

activity.

This scenario is consistent with the observation that the

transition seems to occur when the network is just balanced, as

discussed above. In the winners-take-all state the permanent

quiescent component allows the remaining active cells to fire fairly

regularly, thus reducing the mean CVv1, while in the chaotic

switching state the transient activation of sets of cells in assemblies

produces the highly bursty CVw1 values. The transition thus

occurs when CV*1. That this transition happens to occur in the

striatally relevant parameter regime is non-trivial and unexpected.

Suggestions of critical dynamics can be seen in the the PSD of

the higher components in the intermediate (Figure 8(d)) and low

(Figure 8(f)) connectivity simulations. These display a region of

rapid growth in the range 1*10 Hz which appears approximately

linear in the log-log plot, so that PSD(f )*1=f k, where kw0. PSD

profiles like these are often observed in empirical neuroscience

studies [59–61]. For example the periodogram of spike trains of

retinal ganglion cells studied in [59] (Figure 8(a)), shows a region of

power-law like growth over one order of magnitude from a

minimum at some intermediate frequency before saturation at low

frequencies. Even though the power-law like behaviour is evident

over only a fairly narrow frequency range the authors [59] claim it
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is evidence of fractal self-similar dynamical behaviour over this

range of time scales. It should be remembered however that the

PSD we calculate here are for principal components not single

cells, and thus represent aggregate fluctuations of many cells.

Nevertheless similar results are observed for single cells (data not

shown.)

Indeed we observe (Figure 8(b,d,f)) that the slope of the power-

law of the PSD of the highest components in this frequency range,

1*10 Hz, increases with decreasing connectivity. At low connec-

tivity slopes exceed two, kw2, (data not shown). If power-law

scaling is present on all timescales a slope of k~2 is consistent with

Brownian motion. Our PSD results at low connectivity, where

kw2, suggest that the higher components behave ‘locally’ (on

short timescales) like random walks [62], so that the expected size

of component fluctuations across an interval of time

SDx(t2){x(t1)DT increases with the time interval Dt~t2{t1 for

intermediate timescales Dt&0:1{1 secs, before saturating at a

constant level for longer time scales, as shown by the saturation of

the PSD at low frequencies. This is also consistent with our

observation of chaos (which generates fractal dynamical trajecto-

ries) [62,63] in the rate dynamics at low connectivities. At high

connectivity we find slopes k&0 indicating a white noise like

process. This is consistent with the observation of stable fixed point

like rate dynamics decorated by high frequency fluctuations

generated by random spike arrival times. At striatally relevant

connectivities slopes k are close to 1 (data not shown) as in [59]

(Figure 8(a)). Although there are various origins of 1=f noise [61],

it has been associated with criticality [64] and thus our PSD results

may also be consistent with the scenario of critical slow dynamics

near a transition.

Neural activity has often been modeled as a marginally stable

critical process. Usually this is based on spiking activity. For

example in a ‘critical branching process’ [65–67] spiking activity

‘just propagates’ across a network without exploding or dying, but

slower rate variations can also be marginally stable [37,50]. Since

the dynamics is between a stable pattern of activity and random

behavior spatiotemporal activity is highly susceptible to perturba-

tions and the macroscopic behaviour of large cell populations can

be affected by small events. Even though interactions are only local

critical systems develop correlations which extend over large

temporal and spatial scales compared with the scales represented

in the system parameters. These characteristics make make

criticality an attractive scenario to embed neural information

processing.

We have shown that in the vicinity of the transition the network

displays optimal properties. A variety of optimal properties have

been associated with marginally stable and critical behaviour in

neural systems [68,69]. It has been suggested to optimize

information transmission [70–73], sensitivity to sensory stimuli

and dynamic range [50,74], or memory size and computational

abilities [38]. Critical and metastable dynamics [75] can also

facilitate rapid adaptation to changes in processing demands

[60,76–80]. Self-organized critical systems include mechanisms to

maintain themselves in the critical state [60,64]. In a similar way

the MSN network may remain critical by dynamically self-

regulating its properties, through growth, pruning or plasticity

[33,81,82], for example.

Chaotic balanced networks [46,83] are thought to be respon-

sible for the irregular bursty activity which has often been observed

throughout the brain [84–87]. Furthermore neuronal variability is

also often observed to be task dependent [84–91]. A sudden

reduction in firing variability after stimulus onset has been

observed in several recent studies [92–97]. Although there is no

striatal study available our results of noise suppression after

stimulus onset, previously reported in Ponzi and Wickens [98], are

in good agreement with these studies.

Many in-vivo behavioural studies, in particular of reinforcement

learning and temporal credit assignment tasks, show that coherent

slowly varying activity in cortico-BG microcircuits is important in

the encoding of movement [2,15,99–103] and the execution of

learned motor programs and sequence learning [1,104–114]. The

quantities we chose to investigate here, the reproducibility of

stimulus onset locked activity and stimulus distinguishability, are

both highly relevant for such tasks. Our cortical input switching

protocol, although it is the simplest conceivable, may still

approximate the sudden stimulus changes which occur in such

tasks. Such stimuli changes include the sudden appearance of

visual cues typical in primate studies and sharp onset auditory

tones in rodent maze tasks. The spatio-temporal dynamics

[55,56,69,115–120] generated by this network could be utilized

in such behavioural tasks or in ‘reservoir computing’ style

cognitive processing [27,38,39,55,121,122]. In particular since

network activity generates a diverse set of both stimulus and

temporally specific cell responses [27,123–125] it could be useful

to provide fluctuations at specific times after a specific behavioural

event, necessary to facilitate exploration of both sensory input and

motor response [126–129] or simply to drive temporally delayed

motor response or to control the timing of a dopamine signal in

temporally delayed reinforcement learning.

In agreement with this work a variety of diverse response

profiles with phasic activity peaks covering a wide spectrum of

delays after task events has been observed in such tasks [8–10]. Jin

et al. [8] found MSNs with responses so diverse that they suggested

the cells could have encoded time as a population, even though the

animals were performing a simple task that did not have precise-

timing requirements. The authors concluded that their results

could not be accounted for by a distribution of response latencies

to visual inputs. They suggested additional mechanisms were

needed to generate the observed response profiles, which had

timescales much longer than the visual response range, and that

the brain may intrinsically have properties for forming the basis of

temporal computations even when not needed by the task.

Recently Adler et al. [13] addressed whether MSN activity is

internally generated within the striatum, or whether it is driven by

cortex. They found MSN cell assemblies which were activated at

different latencies after cue presentation in a behavioural task. The

cell assemblies were not differentiated by intrinsic MSN cell

properties, nor were such assemblies found for the other striatal

cell types investigated. For example the tonically active interneu-

rons activated rapidly on cue presentation without distinct

clustering, while clusters of globus palidus cells also did not show

different activation latencies. The authors suggested that the

sequential MSN cell assembly activations could be a result of MSN

network dynamics. Here we show that such activity could in

principle be generated internally by the MSN network and

furthermore that cortical input may be transformed by the

striatum in a complex way.

The principal components representing population activities

which we study here might be functionally and behaviourally

relevant themselves and their activity might be indirectly observed

through local field potential activity. Component activities are

weighted summations of MSN activities with both positive and

negative coefficients, a computation which could perhaps be

performed by inhibition and disinhibition of globus palidus targets.

In theory their activation could be utilised by the animal to

represent stimulus onset and offset in behavioural tasks. Waves of

cell assemblies could be used by an animal to mark time epochs

from salient stimulus switches as well as the directionality of the
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switching and modulate central pattern generators by inhibition

and disinhibition of downstream targets.

In the simulations reported here we use excitatory drive with a

fairly broad distribution of excitations across cells, quantified by

the input specificity parameter a~1:75 (see Model.) In previous

work, Ponzi and Wickens [26], we showed that when excitatory

drive was weakly above firing threshold and took a more equal

value across cells network dynamical activity showed a smoother

dependence on connectivity, with episodic bursting activity

decreasing with increasing connectivity. In contrast here we find

a more sudden transition in network activity. Indeed we find (data

not shown) that decreasing the stimulus specificity by increasing a
reduces the stability of the winners-take-all state, generating higher

CV values, closer to 1 in this regime while in the unstable regime

CV values are unchanged or slightly decreased. The regularly

firing and permanently suppressed cell populations occur more

strongly when input specificity is increased (av2) [29] and only

then does stimulus onset locked dynamics occur in the transition

regime. At higher a activity is chaotic throughout the whole

connectivity range. It should also be noted that increasing the

average excitatory input strength (as opposed to its distribution

across cells) can suppress the chaotic side above a critical value of

the input strength, as shown in [29] and by Rajan et al. [42].

Indeed experimental studies show that learning to perform

procedural tasks alters neural firing patterns in the sensorimotor

striatum as behaviour becomes more stereotyped [112], the task

related activity of some cells enhanced and others suppressed.

Input specificity and strength could be under the control of

neuromodulators affecting corticostriatal transmission. As learning

proceeds the MSN network generated fluctuations may be reduced

and the network ‘locked’ when excitatory input strength or

specificity is increased. Levi et al. [130] have also modeled how

changes in input to a network can switch between regular and

random motor behaviour. The proximity of the striatum to the

transition may facilitate the rapid switching between exploratory

and exploitative modes.

The model may be tested experimentally by comparing single

cell MSN responses to manipulations of cortical input induced by

stimulus changes in behavioural tasks, or by optogenetic activation

in slices, before and after exclusively blocking lateral inhibition

between MSNs. If blocking lateral inhibition changes MSN time

courses then the model is supported. Due to noise suppression we

also predict a sudden decrease in MSN Fano factors after stimulus

onset which may be removed by blocking inhibition. However

stimulus onset locked dynamics only occurs for stimuli of sufficient

specificity a [29], thus experimental confirmation may only be

possible with sufficiently salient stimuli, either due to ‘surprising-

ness’ or reward association.

There are many good models of the striatum, for example [131–

136]. Like all neural models the model presented here simplifies

much. However this local MSN network model is not intended to

be a complete model of the striatum which in reality includes

several types of interneurons, spatially organized different MSN

types, feedback from extra-striatal areas etc. In general synaptic

input to MSNs can be divided into two types, feedback and

feedforward. Although we do not do this explicitly here purely

feedforward input could simply be considered to be included in the

feedforward excitatory cortical driving. However probably all

synaptic input is ultimately feedback if long enough timescales are

considered. For example the thalamo cortical loops will provide

feedback to MSNs on long timescales in certain circumstances.

Other nuclei of the BG may be involved in feedback interactions

with MSNs on intermediate timescales. Striatal interneurons such

as the FSIs can also provide feedback, although their main role

seems to be a more global feedforward regulation of cortical

driving. In this sense the feedforward component of FSI activity

can also be considered an offset in the excitatory driving current.

However we do not claim that these factors will not alter MSN

network activity. Rather this work is an attempt to understand the

recurrent dynamical properties of the local MSN network itself as

a first step to understand how other striatal cell types may

modulate its basic behaviour. McCarthy et al. [137] also recently

investigated the MSN network in isolation. The use of a different

MSN cell model leading to different types of network behaviour

illustrates how useful minimal models may be for making different

predictions about (some aspects of) network dynamics which can

be easily traced back to differences in the elements of the model.

Here we have demonstrated that the MSN network itself can show

behaviour as complex as observed in experimental studies. We

hope the appreciation of this complex behaviour may afford

insight into the role interneurons and other striatal complexities

perform in its dynamical control.

Methods

Model
The network is composed of model MSNs with parameters set

so they are in the vicinity of a bifurcation from a stable fixed point

to spiking limit cycle dynamical behaviour [26,44]. This models

the dynamics in the UP state when the cells are all receiving

excitatory drive to firing threshold levels of depolarization. To

describe the cells we use the INa,pzIk model described in [138]

which is two-dimensional and given by,

C
dVi

dt
~Ii(t){gL(Vi{EL){

gNam?(Vi)(Vi{ENa){gkni(Vi{Ek)

dni

dt
~(n?{ni)=tn

ð1Þ

having leak current IL, persistent Naz current INa,p with

instantaneous activation kinetic and a relatively slower persistent

Kz current IK . Vi(t) is the membrane potential of the ith cell, C
the membrane capacitance, EL,Na,k are the channel reversal

potentials and gL,Na,k are the maximal conductances. ni(t) is Kz

channel activation variable of the ith cell. The steady state

activation curves m? and n? are both described by,

x?(V )~1=(1zexpf(Vx
?{V )=kx

?g) where x denotes m or n

and Vx
? and kx

? are fixed parameters. tn is the fixed timescale of

the Kz activation variable. The term Ii(t) is the input current to

the ith cell.

All the parameters are set as in [138] so that the cell is the

vicinity of a saddle-node on invariant circle (SNIC) bifurcation,

characterising a Type 1 neuron model. As the current Ii(t) in

Eq.1 increases through the bifurcation point a limit cycle having

zero frequency is formed [138], whose frequency increases slowly

with increasing current. This is an appropriate model to use for an

MSN in the UP state, since its dynamics are in qualitative

agreement with several aspects of MSN firing. Firstly the SNIC

bifurcation allows firing at arbitrarily low frequencies [138] which

is important since MSNs are known to fire with very low

frequencies [139]. Secondly MSNs do not show subthreshold

oscillations [140,141] under normal circumstances (but see [137]).

Finally the SNIC bifurcation does not allow bistability between a

spiking state and a quiescent state [138] in agreement with studies

of MSNs [140–142]. However detailed channel properties such as
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the interaction of L-type Ca2z and slowly-inactivating Kz

channels in the MSN have not been included in the model.

The input current Ii(t)~IM
i (t)zIC

i (t) in Eq.1 is composed of

two parts. Component IM
i (t) is the inhibitory feedback term which

comes from the recurrent collaterals of the MSN inhibitory

network and component IC
i (t) represents the current from

excitatory feedforward sources, the cortex and the thalamus (see

below). In the real striatum another component of the input

current would come from other cells such as fast spiking

interneurons (FSIs) which could be both feedforward or feedback.

This component of the input current is not included in the present

model, although its feedforward component can be considered

simply as a constant offset term to be included in the feedforward

driving IC
i (t). In this paper we investigate the effect MSN spiking

has on other MSNs in the local MSN recurrent network to

understand the dynamic feedback properties of the MSN network

itself. We do not consider secondary feedback effects MSNs may

have on each other via other more complex secondary pathways

such as via other cell types in the striatum or via cells in other

nuclei such as the Globus Pallidus, dopaminergic systems or the

cortex etc.

We describe the inhibitory MSN component IM
i (t) first. The

inhibitory current to an MSN cell is provided by the GABAergic

collaterals of the striatal MSN network. Our representation of the

MSN network is constrained by the experimentally determined

biological facts. These concern : (i) the network structure which

determines the typical quantity of synapses an MSN makes with

other MSNs, the distribution of this quantity across MSNs and the

local connection probability which determines the amount of

‘recurrency’ within the local network of an MSN; (ii) the

proportion of MSN cells driven by excitatory cortical and

thalamic input to a state where they would be actively firing in

the absence of inhibition from within the striatum; (iii) the synaptic

strengths which determine the peak IPSP size elicited by a

presynaptic spike on a postsynaptic cell and their distribution

across network connections; (iv) the approximate time scale of

decay of an IPSP back to the resting membrane potential. In this

paper we vary these different parameters individually around their

approximate experimentally determined values while keeping

other parameters fixed to assess their individual influence on MSN

network dynamics and to show that the experimentally determined

values represent a rather special and unusual network configura-

tion. In the following we explain how these experimentally

determined facts are represented in the model.

The MSN network synapses are described by Rall-type synapses

[143] and the input current is given by,

IM
i (t)~{(Vi(t){VM )

PN
j kM

ij gij(t). The input current to a

postsynaptic neuron i is summed over all inhibitory presynaptic

neurons j where N is the number of cells in the network simulation

and VM~{65 mV is the synaptic reversal potential. gij(t) is the

quantity of neurotransmitter bound to postsynaptic cell i emitted

from presynaptic cell j. It is given through,

tg

dgij

dt
~H(Vj(t){Vth){gij . Here Vth~{40 mV is a threshold,

tg is a timescale (see below) and H(x) is the Heaviside function.

Since the initial value of the neurotransmitter gij(0) decays

exponentially with timescale tg, then gkj(t)~g1j(t) for all k at

times twwtg and we only need to keep track of a single gj(t) for

each cell j. The inhibitory current into postsynaptic cell i is then,

IM
i (t)~{(Vi(t){VM )

X
j

kM
ij gj(t), ð2Þ

and gj is simply an exponentially weighted moving average of cell j

firing, given by,

tg

dgj

dt
~H(Vj(t){Vth){gj : ð3Þ

Time series of gj(t) are shown in Supplemental Information, as

can be seen gj(t) fluctuates around the cell j firing rate.

The representation of the MSN network is determined by the

synaptic strengths kM
ij in Eq.2. These determine the peak synaptic

conductance generated by a single spike which is given by

(T=tg)kM
ij where T&1 msec is the time the membrane potential

exceeds Vth during a spike. They are given by,

kM
ij ~k(kM=r)EijZij : ð4Þ

Here Zij is a parameter which takes the value Zij~1 if cells i and j

are connected and zero otherwise. Eij is another connection

specific parameter which allows us to set individual connection

strengths between connected cells i and j. r~SZijTij is the

network connection probability. kM is a fixed peak conductance

parameter and k is an overall connection strength scale parameter

(see below).

(i) Network structure. This is determined by Zij . In general the

connection probability between any two MSNs depends on the

size of the overlap of the dendritic arborization of one cell with the

axonal arborization of the other cell [34,144–147]. Typical

arborization diameters are around 400 mm, while MSN density

is around 84,900 mm{3 and MSN synaptic density around

3:8|107 mm{3 [147]. Thus within the dendritic arborization of

a single MSN there are approximately 2843 other MSN of which

about 448 are likely to contact (and be contacted by) the given

MSN. Cells separated by larger distances than the typical

arborization size have very low or zero probability to be

connected. In this paper we do not consider effects arising through

the long-range spatial distribution of cells across the striatum,

which may for example produce complex travelling spatial

temporal patterns etc, but investigate the cell assembly dynamics

of a local randomly connected neighbourhood without a spatial

dimension. Indeed this approximation is perfectly valid since the

448 connections a cell makes appear to be established randomly

within a local neighbourhood without preferential attachment to

cells already strongly connected to others for example.

Knowledge of the mean size of an IPSP generated on a

postsynaptic cell by a presynaptic cell together with the expected

quantity of active inhibitory inputs gives us the expected level of

total inhibition on a cell. In our network simulations we want to

respect this level of total inhibition and thus use the approximately

correct IPSP size (see below) and approximately the correct

number of active synapses. In our random network simulations we

can respect the figure of 450 connections by choosing a network of

size N with connection probability r~SZijTij so that Nr&450.

Of course this constraint can be satisfied for any network of size

Nw450 by appropriate choice of r. However it is clear that the

connection probability r itself is an independent and important

quantity, since it controls other properties such as the network

‘recurrency’. For example the quantity of inputs a pair of cells

receives in common from other cells is given by Nr2~450r and

the ratio of common inputs to all inputs a cell receives is simply r.

In this paper we are investigating cell assembly dynamics where

cells receive strongly correlated inputs. It can thus be expected that

r is an important parameter in this investigation. If the network
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size N is too large the connection probability r will be

unrealistically small.

How do we make a striatally relevant choice for N and thus r?

The striatum is divided into macroscopic compartments called

striosomes with width about the same as a typical dendritic

arborization, 200*600 mm [148,149]. It is known that the

majority of MSNs have dendritic arborizations [148,149] and

axonal arborizations [149] which remain within their striosome of

origin and thus this region can form a local recurrent network.

Thus we choose a local network the size of a typical dendritic

arborization with around 2800 cells. A striatally appropriate value

for the connectivity r is then around 450=2800~0:16

Since MSN network structure within a striosome does not

indicate anything other than a random process of connection

growth we connect pairs of cells randomly with probability r
which generates networks with binomial degree distributions.

There are no self-connections, Zii~0.

(ii) However in this calculation there is a factor we have not yet

included. This arises from the fact that during the course of any

particular type of behaviour only a small proportion of MSNs are

ever excited to levels above firing threshold by cortical or thalamic

excitation. Such cells which can never fire can be left out of

simulations altogether. Based on studies [142] we suppose that

only about 10{30% of MSNs are cortically excited to firing

threshold [142] during the task period and accordingly perform

simulations of N~500 MSNs, while the remaining &2000 cells

are considered silent. Thus at connectivity r~0:15 each cell

receives about 75 connections from other MSNs which are

cortically excited during the same period and another 300
connections from cells not cortically excited across this period,

which are left out of the simulation.

(iii) Connection strength and IPSP size. Synaptic conductance

and IPSP size are controlled by the factor k(kM=r)Eij in Eq.4.

The factor Eij in Eq.4 is a uniform quenched random variable

drawn from the interval ½0:8,1:2� independent in i and j, so that

the expectation SEijTij~1, which produces a more realistic

random distribution of connection strengths. Importantly this

implies that even reciprocally connected cells have asymmetric

inhibition, (Eij{Eji=0), as is the case in reality.

IPSPs generated by a spike on a postsynaptic MSN close to

firing threshold tend to have peak sizes of around 170*340 mV
[35,146]. Synaptic conductances in this network model are chosen

so that IPSPs generated have around this size. However in this

paper we investigate how variation in connectivity r of the local

neighbourhood affects network dynamics. In order to control for

the total quantity of inhibition a cell feels when varying r we

rescale the connection strength by r, as can be seen in Eq.4, so

that when the network connectivity is varied the average total

inhibition on each cell is constant independent of its expected

number of connections Nr. This allows us to investigate variation

in local connectivity independently of the total inhibition on a cell.

However it does imply that the strength of an individual synapse

varies with the local connectivity r and therefore that the size of an

IPSP evoked by a spike also depends on connectivity r. The

parameter k is a scale factor which allows us to vary the total

inhibition on a cell independently of the connectivity r. The

synaptic conductance parameter kM is set so that when k~1
IPSPs generated by a spike on a postsynaptic cell close to firing

threshold take the realistic peak size of &250 mV at striatally

realistic connectivities of around r&0:15{0:2 (see IPSP time

courses in Supplemental Information) and at inhibitory neuro-

transmitter timescales tg~50 msec. It turns out that the value

needed for this is kM&3:4 nS. Maximal conductances at r~0:2

and tg~50 are then 3:4(1=(0:2|50))~0:34 nS. k~1 throughout

this paper except where otherwise stated.

(iv) IPSP time course. In our network model we intend to

reproduce the time course of recovery of the membrane potential

to firing threshold after a spike from another MSN. This, together

with the peak IPSP size and quantity of cortically excited incoming

synapses, controls the total inhibition a postsynaptic cell receives

from presynaptic spiking. This is controlled by the dynamics of the

inhibitory neurotransmitter gj . The timescale of inhibitory

neurotransmitter decay tg in Eq.3 has been adjusted so that the

IPSP decay time scale is near that observed in experimental

studies. In simulations here we generally use the value tg~50 so

that postsynaptically bound neurotransmitter exponentially decays

to half its value in time tgln(2)&34 msec. This choice was

motivated by Janssen et al. [30] which shows a time course of

MSN IPSP with a half life of recovery of about 30–40 msec.

However since a fairly large range of values has been found in

various studies depending on experimental conditions as well as on

cell type (D1 or D2), and also dependent on facilitating and

depressing properties [31–35] we also investigate network

dynamical properties when tg is reduced by 60% to 20 so that

the half-life is 14 msec [31].

When changing the timescale tg we do not change other

quantities such as the synaptic strengths kM
ij . Indeed when

investigating the effects of changing the timescale we need to

conserve the total quantity of neurotransmitter g(t) generated by a

presynaptic spike, so that the level of inhibition in the network is

not changed by the variation in tg. This is the quantity
Ð?

0
g(t)dt.

When the integral includes a single presynaptic spike this quantity

is simply equal to T where T is the time period the membrane

potential V (t) exceeds Vthr~{40 mV during a spike and is

independent of the timescale tg. Conserving the level of inhibition

does however change the peak depth of the IPSP generated by a

small amount &60% so that IPSP sizes at connectivity r~0:2 are

around 400 mV at tg~20 msec. This is shown in the Supplemen-

tal Information where time courses of IPSP’s generated by a single

presynaptic spike on a postsynaptic cell close to firing threshold are

shown for both values of tg. Although the quantity of inhibition is

conserved, varying tg does strongly affect the size of the

fluctuations in the quantity of inhibitory neurotransmitter g(t)
however. Time series of g(t) for a single cell spiking regularly are

also illustrated in the supplemental information for both values of

tg. As can be seen the average levels are the same for both tg but

the variance is much larger for smaller tg. In fact both these tg

timescales are fairly large and in the network model the

postsynaptic conductance can be seen to follow the exponentially

decaying time average of multiple preceding presynaptic relatively

high frequency spikes [44].

We model the excitatory driving IC
i (t) as a stochastic process. In

general the excitatory component will also be given by Rall type

synapses [143,150] IC
i (t)~(VC{Vi(t))Xi(t) where

Xi(t)~
P

l bilail(t). VC is the excitatory reversal potential, set

here to the realistic value 0:0 mV. The ail(t) are the quantities of

postsynaptically bound neurotransmitter from the lth excitatory

input to the ith MSN cell. They are given by

ta
dail

dt
~
P

m d(t{tilm){ail where the Dirac delta function d()

part represents a series of spikes from the lth input to the ith cell at

times tilm and ta is a time scale which we set to the realistic value of

10 msecs. The bil are the maximal conductance parameters from

the lth excitatory cortical or thalamic input to the ith MSN cell.

They are fixed in our simulations reported here, although in
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reality they may vary with short term facilitation and suppression

as well as by LTP and LTD.

We assume the input spikes d(t{tilm) follow independent Poisson

process with time varying rates ril(t). This is a simple and compact way

to describe the input activity in the simulation and is not supposed to be

necessarily perfectly biologically realistic. This model is an attempt to

understand how the MSN network behaves under the simplest

assumptions, which do not include correlation between inputs. The

contribution provided by many such independent Poisson spiking

processes can be replaced by a term given by the mean rate plus a

fluctuation proportional to the standard deviation, assuming spikes are

independent across l [29,48]. Therefore we calculate Xi(t) using,

tadXi~(
XNC

l

bilril(t){Xi)dtzEi(t)½dt
XNC

l

(bil)
2ril(t)�1=2: ð5Þ

MSN cells are each contacted by around 10000 cortical and

thalamic cells and we therefore set NC~10000 in Eq.5. These

excitatory inputs l are considered to be non-overlapping between the

MSN cells i. Indeed while a given corticostriatal axon will often be

providing input to a substantial number of cells (about 800 on average)

within the volume of the arborization zone of a typical corticostriatal

axon there are about 68,000 striatal spiny neurons, making the average

common input about 1:2% or less [151]. Our assumption of zero

common input is not, however, supposed to be a statement of biological

fact. We wish to investigate how correlated activity arises from local

interactions among MSNs, rather than via common input.

Here we investigate how the MSN network model responds to

the simplest kind of temporally varying cortical input. This is just a

sequence of different stimuli, such as might occur in a visual

attentional task where a shape suddenly changes colour, for

example. To model this we simply change all the cortical input

rates ril suddenly, hold them fixed for a period of time, then

change them again suddenly. Each given set of rates rS
il , held fixed

for a period of time, is denoted a stimulus, S. In the simulations

reported here we generate two stimuli rA
il and rB

il which are then

applied alternately and repeatedly for two seconds each.

For each stimulus S the 10000|N input rates rS
il , where N~500 is

the number of MSN cells, are drawn independently from a fixed

distribution, a normalized Pareto distribution, fc,a(x)~ca=

(1zcx)1za, with tail parameter a and expectation 1=(c(a{1)).
The normalized Pareto distribution with power-law tail parameter

av2 is chosen so that even though there are many, 10000, inputs to

each cell the mean input strength can still show reasonably sized

fluctuations across cells. Sums of power-law distributed variables (with

finite variance, aw1) do still converge to the Gaussian distribution, but

the convergence rate is very slow. If instead the ril are chosen from a

narrow distribution, for example the Gaussian, when many inputs are

averaged all the cells will have approximately the same input strength

and stimulus specificity will not be generated. Variation of the tail

parameter a controls the size in fluctuations in input strength across

cells and therefore the amount of input specificity. When av2 stimuli

will have specificity which increases as a decreases towards unity. If

aw2 stimuli will only be very weakly discriminable since input strength

SXiT~
PNC

l bil ril(t) increases with NC while the fluctuations in SXiT
across cells i increase only with (NC)1=2.

We have chosen to use the Pareto distribution as a device to

produce a large variation in excitation strength across MSN cells

as only the simplest of several possibilities. There are others which

may be biologically plausible, for example correlation in inputs to

a single cell [12]. However since we do not consider correlations in

input across different MSNs which method is chosen is not central

to the modeling described here.

In this paper we do not vary the parameters of the Pareto

distribution a and c and set a~1:75 in all simulations. c is set so

that the input rates ril have expectation 0:02 spikes per msec (due

to the Pareto distribution the fluctuations across cells around this

mean value will be significant). We choose all the channel

parameters bil independently from a uniform distribution on

½0,2b�. The parameter b is set so the expectation of bil is

b~0:0006. These parameters result in a mean input current of

0:32 nA with standard deviation of temporal fluctuations in input

current 0:0053 nA. If a cell j has a mean input current below the

firing threshold 0:2 nA its rjl and bjl are redrawn until otherwise.

Thus all cells are driven above firing threshold by the cortical

excitation.

All simulations of the spiking network model were carried out

with the stochastic weak second order Runge-Kutta integrator

described in [152] with integration time step 0:1 msec. All

simulations are of length 180 seconds with an initial 12 second

transient discarded from analysis.

Clustering algorithm
Here we explain how the k-means algorithm is used in this

paper. The number of clusters k is chosen to be N=k&15 where

N is the number of cells used in the simulation. The cross

correlation matrix of cells’ firing rates is calculated based on a

100 msec moving window. Each cell i has a vector of cross-

correlation coefficients ~cci. Each cluster centroid’s initial location
~ddj , j~1,:::,k is chosen randomly as one on the cells’ vector of

cross-correlation coefficients~cci. All cells i are assigned to be in the

cluster j whose centroid is nearest to their cross-correlation

coefficient vector, argminj(D~cci{~ddj D) where D~xxD is length of ~xx. Any

empty clusters are removed. New cluster centroid vectors are

calculated as the mean vector of cells assigned to the cluster

dj~S~cciTcellsi[clusterj
. The process is repeated until there are no cells

which change their assigned clusters. Notice the final amount of

clusters may be (and usually is) less than the original k. In

Figure 1(a) all presentations of one of the two stimuli (here B) are

combined into a single time series, and clusters calculated on all

cells which fire at least one spike during that stimulus.

Similarity matrices
An informative way to visualize at the time series is using firing rate

similarity matrices, D(t1,t2)~Sri(t1)ri(t2)Ti=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sri(t1)2TiSri(t2)2Ti

q

where ri(t1) is the firing rate of cell i in a 100 msec time bin centered

on t1 and in this expression S::Ti denotes average over all active cells i
(those that fire at least one spike during the 168 second time series).

This is just the overlap, taking values between 0 and 1, of the vectors of

firing rates at two different times. Figure 1(b) shows a 8|8 second mean

similarity matrix, M(x,y)~SD(tjzx,tjzy)Ttj
where 0vx,yv8

and S::Ttj
denotes averaging over tj~j|4 seconds, j~0,1,2,:::,41,

through the whole 168 second time series. That is an eight second

segment is moved through the similarity matrix in steps of four seconds

to create an average similarity with periodicity of the stimulation

period.

Mean similarity profiles MT (t)~M(Tzt,T)~
SD(Tztjzt,Tztj)Tj , where S:::Ti denotes averaging over all

tj~(j|2) seconds, j~0,1,2,::, shown in Figure 2(a) are obtained

by calculating the similarity between the firing state for a 100 msec

time series segment centered on a reference time T msec after the

onset of a stimulus and later 100 msec time series segments at time

lags of t msecs (in increments of 10 msec) and averaging over all
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stimuli presentations. Time lags t extend for 5 seconds, i.e until

towards the end of the next presentation of the current stimulus.

(This is the profile along a horizontal (or vertical) slice from the

point t1~t2~T through a mean similarity matrix like the one in

Figure 1(b))

Principal component analysis
Components are generated from the correlation matrix of firing

rates of all N active cells (those which fire at least one spike in the

observation period) based on a 100 msec time window. The

principal components labeled j~1,:::N are eigenvectors such that

their time series C
j
t generated by the projections of network

activity onto the component eigenvectors, C
j
t~
P

i X i
t v

j
i where X i

t

is the spike count of the ith cell at time t and v
j
i is the ith entry of the

jth eigenvector, are not correlated with each other. Components

are ordered by their associated eigenvalues, largest first, which are

the variances of the principal component time series C
j
t .

PSTH variance and noise variances
To calculate these quantities first calculate the X i

ymt, the spike

counts in 100 msec windows centered on 50z10t msec after the

onset of the mth presentation of stimulus y~A,B for all active cells

i. Then calculate the corresponding component time series,

C
j
ymt~

P
i X i

ymtv
j
i , where v

j
i is the jth eigenvector (see above).

The component j PSTH is then C
j
yt~SC

j
ymtTm where the

expectation S:::Tm is taken over all stimulus y presentations m.

Noise variance of component j is then defined through the

fluctuations around the PSTH, N
j
yt~S(C

j
ymt{C

j
yt)

2Tm. This

quantity is then averaged over both stimuli y and the appropriate

time t range, t~0,1,:::,30, to yield the noise variance for

component j, Sj . On the other hand the PSTH variance of

component j is defined through the fluctuations around the mean

activity across the period that is Sj
y~S(C

j
ymt{Cj

y)2Tmt where

Cj
y~SC

j
ymtTmt and the expectations S:::Tmt are now taken over all

stimulus y presentations m and the appropriate times t~0,1,:::,30.

This quantity Sj
y is then averaged over both stimuli y to yield the

PSTH variance for component j, Sj .

Relative entropy
The relative entropy (Kullback-Liebler divergence) on two normal-

ized distributions Pi and Qi is defined as RE~
P

i Pi log(Pi=Qi).
Here Pi is the binned distribution of 100 msec spike counts

(incremented in 10 msec steps) for a single cell. To calculate this we

first find the maximum 100 msec spike count and minimum 100 msec

spike count among all N active cells in a simulation (those that fire at

least one spike during the period). Then we divide this range into

500 bins i and calculate the distribution Pi for a single cell using these

bins. Qi on the other hand is the distribution of 100 msec spike counts

for all N active cells in a simulation combined, using the same bins. We

calculate RE for all N active cells in a simulation (those which fire at

least one spike during the 168 second time series) and average the

results to give SRET. If Pi~Qi for all bins i then RE~0. On the

other hand if all cell firing rate distributions are entirely non-

overlapping then when Pi is non-zero, Qi~Pi=N where N is the

number of active cells, so RE~log(N). The quantity shown in

Figure 5(c,d) is 8SRET=log(N) where the factor 8 is included for

convenient scaling of the figure.

Reduced rate model
The reduced rate model is obtained from the equation for the

postsynaptically bound neurotransmitters gj , Eq.3, by replacing

the Heaviside function H(V (t){Vthr) with Td(ti). d() is the Dirac

delta function and ti are spike times. T is the time period the

membrane potential V (t) exceeds Vthr~{40 mV during a spike,

which turns out to be T&1 msec for this cell model. This

approximation is valid here since Tvvtg. Then d(ti) is replaced

by cell j spiking probability per msec, in other words its firing rate,

at time t, Fj(t) to obtain,

tg

dgj

dt
~TFj(t){gj ð6Þ

Since Fj(t) varies slowly compared to tg, gj(t)&Fj(t) and gj(t)

follows the firing rate Fj(t). Then Fj(t) is replaced its value

determined from the cell’s input current to give,

tg
dG

dt
~{GzTs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(VC0X{VM0KG{Ibif )

p
z

ð7Þ

where G~fg1,g2,:::gNg are the postsynaptically bound neuro-

transmitters for the N~500 cells. K~fkM
ij g is the fixed

connection matrix, determined exactly as in the simulations for

the full model. X~fXig, where Xi~
PNC

l bil ril are the expected

values of the excitatory inputs determined exactly as in the full

model, neglecting the noise term. VC0 ,M0 are fixed scalar

parameters accounting for the conductance based synapses. These

are set as the difference between the resting potentials and reversal

potentials, VC0~60:0 mV for excitatory synapses and

VM0~5:0 mV for inhibitory synapses. tg~50 msecs as in the full

simulations. The function s
ffiffiffiffiffiffi
(x)

p
z

, (s
ffiffiffi
x
p

for xw0 and zero

otherwise), is the dependence of firing rate on input current for

Type 1 cells and the parameter s is estimated from the current

versus firing rate plot for these cells to be s~0:09. Ibif ~0:2 nA is

the current at the firing threshold.

Statistical quantities are calculated using procedures analogous

to those of the full spiking model. The proportion of active cells is

calculated from the number of quiescent cells - those whose firing

rate does not exceed a small value in the simulation period. A

similar procedure is used to calculate the relative entropy for the

reduced rate model (see above). The rates of all cells are sampled

every time increment of the numerical integrator to generate the

appropriate distributions. The minimum bin rate is set to zero

and the maximum bin rate slightly greater than the observed

maximum rate in the simulation. Quiescent cells, whose rates

never exceed a small value, are not included in the relative

entropy calculation. The maximal Lyapunov exponent is

calculated in the standard way, as described in [29]. Numerical

integrations of the deterministic system are performed using a

fourth order Runge-Kutta for 110 secs and a transient of of

100 secs is discarded from the analysis. The integration time step

is 1 msec, except for Lyapunov exponent calculations when it is

set as 0.1 msec.

Supporting Information

Figure S1 Time series examples from 500 cell network
simulations. Cell raster plot time series segment and mean

8 second similarity matrix M(t1,t2) averaged across the whole 168

time series, including 42 presentations of each stimulus for 500 cell

network simulations. Connection strength k~1 and connectivity:

(a,b) r~0:84 corresponding to main paper Figure 8(a,b), (c,d)

r~0:06 corresponding to main paper Figure 8(c,d). (a,c) Time

series with all active cells shown. 2|2 second input switching

stimuli A and B are indicated on bottom axis. Cells are grouped
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and coloured by k-means clusters with 30 clusters applied to only

stimulus A. (b,d) Corresponding mean similarity matrices with

colours shown in key.

(TIF)

Figure S2 IPSP and inhibitory neurotransmitter dy-
namics. (a) Time course of IPSPs generated on a postsynaptic cell

by a presynaptic spike (black) when the postsynaptic cell is just

below firing threshold for connection strength as in a 500 cell

connectivity 0:2 network simulation with connection strength

parameter k~1 for neurotransmitter g(t) timescale tg~50 (red)

and tg~20 (green) (b) Time series of neurotransmitter g(t) for a

cell firing regularly when tg~50 (red) and tg~20 (green).

(TIF)

Figure S3 Time series examples for the reduced rate
model. Time series segments for several randomly chosen cells

from 500 cell simulations of the deterministic reduced rate model

for parameters as in Figure 6 of the main paper. Inhibitory

neurotransmitter timescale tg~50 msec. Synaptic strength scale

parameter k~1. (a) Fixed point. Connectivity r~0:75 so that

peak synaptic conductance is 3:4=(50|0:75)~0:09 nS. (b)

Chaotic. Connectivity r~0:07 so that peak synaptic conductance

is 3:4=(50|0:07)~0:97 nS. (c) Periodic. Connectivity r~0:3 so

that peak synaptic conductance is 3:4=(50|0:3)~0:23 nS.

(TIF)

Figure S4 Distribution of fixed, periodic and chaotic
states in the reduced rate model. Variance of individual cell

firing rate time series averaged across all cells for many 500 cell

simulations of the reduced rate model, corresponding to Figure 7

of main text. Black circles correspond to simulations with positive

Lyapunov exponent. Red squares correspond to simulations with

negative Lyapunov exponent. Time series had length 10 secs after

discarding a 100 sec transient. Bars indicate the spread in

variances across cells in the simulations. y axis log scale. All

results have had a small amount added to them, 10{10, so that

simulations with zero variance can be shown in the log scale.

Inhibitory neurotransmitter timescale tg~50 msec. (a) Connec-

tivity r variation for synaptic strength scale parameter k~1 so that

peak synaptic conductance varies as 3:4=(50r)nS. (b) Synaptic

strength scale parameter k variation for connectivity r~0:2.

Actual peak synaptic conductance is given by k0:34 nS.

(TIF)

Figure S5 Deterministic simulations of the spiking
model show stochastic stimulus response. (a) Mean

8 second similarity matrix M(t1,t2) averaged across the whole

168 time series, including 42 presentations of each of the two two

second stimuli for a 500 cell connectivity r~0:16, deterministic

spiking network simulation without fluctuations in excitation.

Connection strength parameter k~1, neurotransmitter timescale

tg~50 msec, so that peak synaptic conductance is

3:4=(50|0:16)~0:43 nS. (b) Similarity matrix D(t1,t2) (see

Materials and Methods) for a 22 second segment from the

168 second time series used to generate the mean similarity

matrix in (a). (Colours shown in key.)

(TIF)

Text S1 Optimal balance of the striatal medium spiny
neuron network, supplemental. Sections: (1) Network

simulations at unrealistically high and unrealistically low connec-

tivity. (2) Effect of reduction in inhibitory neurotransmitter

timescale tg on IPSP. (3) Time series examples for reduced rate

model. (4) Distribution of fixed points, periodic and chaotic states

in reduced rate model. (5) Stimulus response remains stochastic in

deterministic spiking network model.

(PDF)
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