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Abstract

To understand the complex relationship governing transcript abundance and the level of the encoded protein, we integrate
genome-wide experimental data of ribosomal density on mRNAs with a novel stochastic model describing ribosome traffic
dynamics during translation elongation. This analysis reveals that codon arrangement, rather than simply codon bias, has a
key role in determining translational efficiency. It also reveals that translation output is governed both by initiation
efficiency and elongation dynamics. By integrating genome-wide experimental data sets with simulation of ribosome traffic
on all Saccharomyces cerevisiae ORFs, mRNA-specific translation initiation rates are for the first time estimated across the
entire transcriptome. Our analysis identifies different classes of mRNAs characterised by their initiation rates, their ribosome
traffic dynamics, and by their response to ribosome availability. Strikingly, this classification based on translational dynamics
maps onto key gene ontological classifications, revealing evolutionary optimisation of translation responses to be strongly
influenced by gene function.
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Introduction

The expression of genes can be considered as a two-stage

process, beginning with transcription and the production of an

mRNA, followed by translation of that mRNA into protein by the

cell’s ribosome population. Gene expression must be tightly

regulated to control protein composition, enabling the cell to

rapidly respond to a wide range of environmental conditions. For

this reason, cells exert fine control over gene expression, both at

the transcriptional [1,2] and post-transcriptional level [3–6].

One key mechanism of post-transcriptional control of gene

expression is translational regulation. The process of translation

can be divided in three main phases, namely initiation, elongation

and termination. Whereas termination is generally believed to be a

fast process and therefore not limiting for translation [7], the

respective contributions of initiation and elongation to transla-

tional regulation are still under debate [8].

On one hand, the translation initiation rate, or the rate at which

ribosomes access the 59 untranslated region (59 UTR) and start

translating the ORF, is regulated in part by formation of

secondary structures in the 59 leader [9,10]. The presence of

secondary structures inhibits the ability of an mRNA to sequester

ribosomes, thereby lowering the effective translation initiation

rate. The 59 leader composition is characteristic of each mRNA,

resulting in a heterogeneity of the ribosome recruitment process

among the transcripts [11,12]. Despite the importance of this

process in gene expression regulation, there are currently no

estimates of in vivo, mRNA-specific translation initiation rates

based on refined traffic models, and how they regulate genome-

wide patterns of protein expression. On the other hand, there is

increasing evidence that translation elongation itself controls gene

expression, being regulated by the rate of supply of tRNAs,

particularly in microorganisms with codon biased genomes.

Within families of isoacceptor tRNAs, members are not all present

at the same concentration in the cell, leading to variation in

delivery times, and the introduction of stochastic pauses [13]. Such

pauses control ribosome transit, regulating ribosome queue

formation. There is evidence that a ramp of slow codons near

the 59 end of some open reading frames regulates the flow of

ribosomes onto an mRNA [14,15], and pausing during elongation

on any mRNA will affect queue dynamics, and thus the flux (or

current) of ribosomes along the mRNA. However, there is no

knowledge of how, on a genome-wide scale, the dynamic flux of

ribosomes along an mRNA might be crucial in regulating protein

expression.

Here, we address these two problems: first, we estimate mRNA-

specific in vivo translation initiation rates on a genome-wide basis

by integrating a computational model of mRNA translation with
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experimental datasets of ribosome occupancy. Crucially, we show

that translation initiation rates are correlated with gene function.

Second, we show that the translation dynamics response of each

mRNA is characteristic of its gene ontology, by elucidating how

ribosome traffic, moving with variable speed across the codon

field, responds to a range of initiation rates. We also show that

codon arrangement rather than codon usage, clearly separates

mRNAs into distinct classes typified by their responses to

variations of the translation initiation rate. This suggests that not

only codon usage but also codon arrangement is a selectable

determinant of gene expression.

Results

The model
Our model describes how ribosomes bind to the mRNA, move

along it performing the translation, and dissociate from the mRNA

at the stop codon, releasing the finished protein into the cytoplasm

[16]. The mRNA is represented by a unidimensional lattice, with

each site denoting a codon. Ribosomes are represented by

particles occupying 9 codons [15] that attempt to bind the mRNA

with a rate a, provided that the binding region is not obstructed by

another ribosome. The particle on-rate a mimics the initiation of

translation, in which several processes have been condensed into

just one step. The factors influencing the initiation of translation,

such as secondary structures in the 59UTR, concentration of

initiation factors and ribosome availability, are all included in this

parameter and will be discussed below. Subsequently, ribosomes

advance on the polynucleotide chain (elongation) following a two-

state dynamics: (1) recognition of the cognate tRNA with rate ki

depending on the codon i, and (2) translocation towards the next

codon with rate c (see Figure 1). At the last codon, the ribosomes

detach and release the protein with a rate b (termination).

The cognate tRNA-capture rates ki can be estimated from data

on tRNA abundances, which are assumed to be proportional to

their gene copy numbers [17], and by considering further

corrections such as the wobble base pairing (see Supplementary

Information, Text S1). Effects of competition for near-cognate and

non-cognate tRNAS were found not to materially affect any of the

conclusions of this study (see Supplementary Information, Text

S1), and are therefore neglected. The translocation rate c has been

measured to be 35 s{1 [18], and is codon independent. The

termination rate is determined by the concentration of the release

factors; the termination process is assumed to be fast, comparable

to the translocation [7].

Moreover, the model takes into consideration steric interactions

between ribosomes, so that even if a ribosome sitting on codon i
has already captured the cognate tRNA, it cannot translocate if

the next codon is occupied by another ribosome. Hence, it is an

exclusion process [19] exhibiting different regimes characterised

by the flow of particles and by their density along the lattice. In

particular, if the sequence contains slow sites, then queues of

particles behind the slow sites or high density phases appear when

the on-rate of particles is of the same magnitude as the bottleneck

rate.

In contrast to commonly used exclusion models [14,20], our

model accounts for the processes involved in the mechano-

chemical ribosome cycle, condensing them in two main steps:

capture of the tRNA and translocation. It includes the crucial fact

that ribosomes can capture a cognate tRNA while they wait for the

next lattice position to become vacant. In contrast, ribosomes from

simpler exclusion models unrealistically ‘‘lose’’ immediately the

captured tRNA if they cannot move to the next codon. This is a

key difference, which leads to different dynamics of ribosome

traffic and transitions between traffic regimes [16]. This effect is

further enhanced by the fact that the time scales related to the

capture of the tRNA and translocation are strongly separated, with

the translocation being much faster. Furthermore, the two-state

ribosome reproduces the dwell-times observed in single-molecule

experiments [21].

In summary, our model predicts the current of ribosomes J or

translation rate, and the density r of ribosomes on a particular

mRNA (number of ribosomes divided by the ORF length), taking

as input the specific sequence of codons of the mRNA. Both the

translation rate J and the ribosome density r are predicted as a

Figure 1. The model. Particles representing ribosomes move along a
unidimensional lattice (the mRNA chain) in which each site represents a
codon. For the sake of illustration, in the sketch a particle covers 3
codons, while in the model we considered particles occupying 9 codons
[15]. (A) Schematic representation of ribosome dynamics: along the
mRNA, ribosomes with the A site on codon i capture the cognate tRNA
with a rate ki , then keep it and advance with a rate c, provided that the
following codon is empty. (B) The entire translation process can be
viewed as particles moving on a lattice. Ribosomes attempt to initiate
the translation with a rate a. Then they move according to the
dynamical rules introduced above and at the end of the lattice the
ribosomes detach with a termination rate b. Particles can queue if the
bottlenecks in the lattice cannot support the incoming flow.
doi:10.1371/journal.pcbi.1002866.g001

Author Summary

Gene expression regulation is central to all living systems.
Here we introduce a new framework and methodology to
study the last stage of protein production in cells, where
the genetic information encoded in the mRNAs is
translated from the language of nucleotides into function-
al proteins. The process, on each mRNA, is carried out
concurrently by several ribosomes; like cars on a small
countryside road, they cannot overtake each other, and
can form queues. By integrating experimental data with
genome-wide simulations of our model, we analyse
ribosome traffic across the entire Saccharomyces cerevisiae
genome, and for the first time estimate mRNA-specific
translation initiation rates for each transcript. Crucially, we
identify different classes of mRNAs characterised by
different ribosome traffic dynamics. Remarkably, this
classification based on translational dynamics, and the
evaluation of mRNA-specific initiation rates, map onto key
gene ontological classifications, revealing evolutionary
optimisation of translation responses to be strongly
influenced by gene function.

Ribosome Traffic on mRNAs Maps to Gene Ontology
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function of the translation initiation rate a, i.e. the rate at which

ribosomes arrive at the start AUG codon; their functional

dependence on the initiation rate thus varies from sequence to

sequence as a consequence of different codon compositions and

codon arrangements.

Genome-wide prediction of translation initiation rates
The translation initiation rate a, i.e. the rate at which ribosomes

start translating the ORF, depends on many factors, such as the

rate at which ribosomes attempt to bind the mRNA, the

concentration of initiation factors and the presence of secondary

structures in the 59UTR region [9,11,12]. Despite the key role of

this parameter, direct experimental evaluations are intractable,

both in vivo and in vitro, with no direct measurements having been

carried out to date.

Previous works, such as [20], could only estimate the translation

initiation rate as the value that maximised the predicted

correlation of the ribosome current with experimental data.

Furthermore, a has usually been considered as a unique, fixed

value (the same for each of the mRNAs), but it is well known that

the translation initiation rate depends on several mRNA-specific

factors, such as the structural properties of the mRNA leader

region. Knowledge of mRNA-specific values of a, therefore, would

provide important insight into control of gene expression at the

level of translation. Siwiak and Zielenkiewicz [22] present specific

initiation rates, however with a simple model that neglects

ribosome kinetics and traffic (the comparison is discussed in the

Supplementary Text S2). Here we present a novel approach to

identify the initiation rate of each individual mRNA for the whole

genome.

We first apply our translation model to all mRNA sequences of

S. cerevisiae. The model predicts the translation rate J and the

ribosome density r on each mRNA as a function of the translation

initiation rate a. Then, by utilising genome-wide experimental

data of ribosome density rQ from [23] for yeast grown under non-

stressed conditions, we identify the physiological translation

initiation rate aQ as the one which, when used in our simulations,

replicates the experimentally observed density:

r(aQ)~rQ: ð1Þ

This yields a value of the translation initiation rate for each mRNA

aQ as shown by the genome-wide distribution in Figure 2. Using

the genome-wide experimental data of ribosome density from

Arava et al. [7] yields a very similar distribution of initiation rates

(see Section 4 of Supplementary Text S1). The knowledge of this

distribution reveals how translational regulation of gene expression

works at the level of initiation by correlating the values of aQ with

the biological functions of the corresponding genes, encoded in

their Gene Ontology (GO) annotations. In Figure 2 we split up this

distribution in four parts, from small to high aQ (i)–(iv). Strikingly,

significantly enriched GO annotations are identifiable in each of

the regions. Messenger RNAs with an initiation rate below 0:1s{1

(region (i) of Figure 2) contain a highly disproportionate number of

regulatory proteins and proteins linked to transcription from Pol II

promoters, mainly located in the nucleus, chromosome, mem-

brane or protein complexes. In the range of aQ from 0:1 to 0:2s{1

(region (ii) of Figure 2) we find other significantly over-represented

terms such as cytoplasmic translation, ribosome biogenesis or

oxoacid metabolic process, while genes with aQ from 0:2 to 0:3s{1

(region (iii) of Figure 2) are primarily constituents of ribosomes.

Very large initiation rates (region (iv) of Figure 2) are characteristic

of genes associated with the respiratory chain. However, most of

genes falling in this region are not annotated (a complete list of aQ

can be found in the Supplementary Table S1 and the details of the

GO analysis, with the annotations found in each region and their

enrichments, can be found in the Supplementary Table S2).

The assignment of initiation rates correlates with protein

abundances typical of given GO categories: regulatory proteins

are usually present at low levels. In contrast, proteins involved

in translation, ribosome biogenesis and metabolic processes are

abundant. This result is a signature of the divergent transla-

tional control that distinct genes exhibit at the level of

initiation, suggesting that factors influencing a, such as

secondary structure in the 59 leader region, have been shaped

by evolution to contribute to the delicate balance of cellular

protein composition.

To show that the procedure introduced above can be applied

under different conditions, we carry out a similar analysis under

pheromone treatment by using the corresponding measurements

of ribosome densities from [23], and estimate the initiation rates at

under these conditions. The initiation rates do not substantially

change, consistent with the finding by Mackay et al. [23] that only

a small number of mRNAs exhibit altered densities after

pheromone treatment. However, with our analysis we identify

two mRNAs, SAG1 and HO, which exhibit a radical change in

their initiation rate value under pheromone treatment. Impor-

tantly, these two mRNAs have been shown to present altered

59UTR sequences that explain their significant ribosome density

change [24].

Translation initiation rates correlate with the lengths of
the transcripts

Now we analyse the influence of the physical properties of the

mRNA on the translation initiation rate by analysing the

correlations of the identified aQ rates with the presence of

secondary structures in the 59UTR and the length of the

transcript. The physiological estimates of the initiation rate show

a small but significant correlation with the free energy of the

secondary structures in the 59UTR (Spearman’s rank~0:25, p-

valuev10{6) confirming that secondary structures may have an

important regulatory role, as already suggested [9,25,26], see

Supplementary Information Text S1.

Figure 2. Distribution of the estimated initiation rates in S.
cerevisiae. The mean initiation rate is 0:12s{1 and the median is
0:09s{1. Most of the mRNAs have an estimated initiation rate aQv1 and
therefore we show only this range.
doi:10.1371/journal.pcbi.1002866.g002

Ribosome Traffic on mRNAs Maps to Gene Ontology
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Remarkably, we find a strong negative correlation between the

initiation rate and the length of the ORF (Spearman’s

rank~{0:69, p-valuev10{6), see Figure 3. Of relevance to this

observation, Arava and coworkers [7] found that ribosome density

counter-intuitively and systematically decreases with increasing the

ORF length. In a subsequent work [27], they reported that the

explanation most consistent with their experimental investigation

was that lower initiation rates predominate on longer mRNAs,

exactly as we estimate in this work.

mRNA-specific responses of ribosome traffic correlate
with gene ontology

Smooth and abrupt sequences. Our genome-wide simula-

tion generates, for each transcript, curves describing how the

ribosome density r (polysome size) and the ribosomal current J
depend on the initiation rate a. According to these characteristic

curves, mRNA sequences fall predominantly into either of two

categories (Figure 4): the ribosome density of some mRNAs

presents a steep increment with increasing a (we refer to these

sequences as abrupt), while others present a gradual increase of the

density with the initiation rate (smooth sequences). This classifica-

tion coincides with the characteristic curve obtained for the

ribosomal current J against a. In abrupt sequences the current

presents a kink before reaching its saturation value, whereas in

smooth sequences, the saturation value of J is reached gradually

[28]. Therefore, mRNA sequences can be classified into two

different types depending on how their overall translation rate and

polysome size vary upon changes in the initiation rate.

The origin of these two types of ribosome traffic lies in the

codon arrangement: smooth behaviour mRNAs contain either rare

codons at the 59 end, or no rare codons at all, whereas abrupt

behaviour mRNAs contain rare codons or clusters of rare codons

within the main body of the mRNA. These rare codons act as

bottlenecks, causing queues to build up and consequently a-

dependent abrupt phase transitions to occur. In contrast, if the

bottleneck is right at the beginning of the mRNA, no queue can be

formed and therefore the polysome size increases smoothly with

the initiation rate a [28].

The curves for the ribosome density versus a for the more than

6,000 S. cerevisiae mRNAs were analysed with an automated

clustering algorithm [29] to classify them into abrupt or smooth

sequences. The algorithm clearly classified 35% sequences to

belong to the abrupt category, and 38% to the smooth category. The

remaining 27% sequences were marked as hybrid since they did not

show pronounced features to justify a discrimination between the

two categories (Supplementary Information Text S1).

Strikingly, these two categories, each with distinct initiation rate

response criteria (smooth or abrupt) correlate with the biological

function of the encoded proteins: GO annotations (process) related

to translation are significantly over-represented in smooth sequences

(cytoplasmic translation, P-value 7:04|10{14, translation, P-value

8:58|10{8). Conversely, abrupt sequences are connected to several

processes, mainly involving regulation, e.g. biological regulation, P-

value 1:74|10{11, metabolic process, P-value 7:72|10{9 or cellular

response to stimulus, P-value 1:79|10{8. More details about the

enrichment in each category can be found in the Supplementary

Table S3.

If one considers the abundance of the transcripts in the cell (data

from [30]), then 68% of the total mRNA population belongs to the

smooth type. This indicates that highly transcribed genes have

preferentially slow codons at the 59 end rather than in the main

body of the mRNA. In this way, highly transcribed genes avoid

having queues of ribosomes which might deplete a large amount of

essential cell resources. Abrupt sequences, on the other hand,

constitute only 14% of the transcribed mRNAs; this is consistent

with the fact that abrupt sequences typically encode regulatory

proteins, which are in general of low abundance.

Responsiveness of translation rate to changes in initiation

rate. A further characteristic we can conjecture from our

Figure 3. Scatter plot of the ORF lengths L against the
estimated aQ’s. The log-log scatter plot shows possible signatures of
a power-law dependence.
doi:10.1371/journal.pcbi.1002866.g003

Figure 4. Outcomes for some mRNAs obtained by stochastic
simulations of the model. Panels (A) and (C) show a sketch of the
two different behaviours one can obtain for the density of ribosomes r
and the current J , respectively. The genes are divided in two categories,
according to the shape of r(a), as shown in (A): abrupt mRNAs (red,
colour online) present a steep increase of the polysome size with
increasing the initiation rate. On the other and, smooth sequences (blue,
colour online) do not show this feature. The current (C) is also affected,
with abrupt genes exhibiting a sudden change, or ‘kink’ in the current,
while the current of smooth mRNAs does not suddenly saturate. Panels
(B) and (D) show the outcome of numerical simulations of real
sequences from S. cerevisiae. Genes YGL103W and YBL027W are
ribosomal proteins while YHR030C and YBL105C are kinase regulatory
proteins. Jmax indicates the saturation value of the current (see text).
doi:10.1371/journal.pcbi.1002866.g004

Ribosome Traffic on mRNAs Maps to Gene Ontology
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genome-wide simulations, is how the translation rate changes upon

variations in the initiation rate around the physiological value aQ

quantified above. As previously mentioned, the value of the

translation initiation rate a depends on several factors, such as the

amount of free ribosomes, initiation factors, and folding features of

the 59 UTRs, all of which are strongly influenced by stress and

nutrient conditions [31]. The knowledge of the responsiveness of

translation rate to variations of the initiation rate, therefore,

theoretically provides key insight into the mechanisms of

translational regulation of gene expression.

In order to study translation rate change responsiveness, or

‘gearing’, we study the combined role of aQ and the presumed

gradient J ’(aQ) of the translation rate, which quantifies the

responsiveness of J around the physiological value of the initiation

rate (see ‘Materials and Methods’). We find that these two

quantities are highly correlated (Spearman’s rank~{0:88, p-

valuev10{6), Figure 5. This indicates that, according to our

model, genes characterised by a small initiation rate, such as

regulatory genes, have in general a high translation rate gradient,

suggesting that the corresponding proteins are produced at low

levels under normal conditions but their synthesis can be rapidly

increased upon changes in the initiation rate. Conversely, genes

characterised by a high initiation rate, such as genes encoding

proteins involved in translation and ribosome biogenesis, exhibit in

general a medium-to-low value of the translation rate responsive-

ness, implying that their synthesis is tuned to be efficient, but stable

against variations in initiating ribosomal subunit availability.

Moreover, by dividing the distributions into quartiles, we identify

sixteen different regions; a number of them exhibit significant

enrichment in specific GO annotations determined principally on

the basis of aQ (Figure 5). However, by constraining the genes

analysed to those with an aQ value lying within a specific range, the

specific contribution of J ’(aQ) could be identified. This revealed

that there is a further, separable enrichment of GO categories on

the basis of J ’(aQ). This in turn indicates that the gearing function,

or responsiveness to ribosome availability, is also coupled to gene

function. Thus regions 4, 7, 8, 12 and 16 from Figure 5 (regions

are numbered starting from the top left one and proceeding left to

right) show a significant enrichment in specific GO annotations

with a P-value smaller than 0.01 (see Supplementary Table S4).

The genes exhibiting a significant enrichment in region 16 were

un-annotated. The results in Figure 5 (the estimated aQ plotted

against the J ’(aQ) values) are annotated with GO category

enrichments influenced by the combination of the physiological

initiation rate and the gearing factor.

We would like to emphasise that, unlike all other results shown

in this work, the gearing factor J ’(aQ), i.e. the responsiveness

capacity of the mRNAs, remains a speculative and theoretical

outcome of the model. Since genome-wide experimental setups

changing the initiation rates of single transcripts and observing the

variation of translation remain are nowadays a challenge, its

biological relevance remains to be proven.

Maximal translation rate. We also perform a genome-wide

analysis of the maximal translation rate Jmax that a sequence can

achieve, when an increase in the initiation rate a does not yield

any further change in J (see ‘Materials and Methods’). We extract

Jmax for each mRNA sequence from our genome-wide simulations

and analyse the mRNAs with largest and smallest Jmax (first

quartiles). We find that sequences with the largest maximal

production rate are mRNAs involved in cytoplasmic translation

(P-valuev10{70), such as ribosomal and translational proteins.

Conversely, proteins with regulatory functions (such as nucleic acid

binding transcription factor activity, P-value 1:57|10{6) are encoded by

sequences with the smallest Jmax. Supplementary Table S5

summarises this GO analysis.

In summary, our genome-wide analysis shows that the type of

ribosome traffic on mRNA is significantly correlated with the

biological function of the encoded protein: essential proteins that

need to be constitutively produced, such as ribosomal proteins and

proteins involved in translation, typically exhibit a smooth increase

of polysome size upon increments of the initiation rate, a large

physiological initiation rate and a high maximal overall translation

rate. In contrast, proteins such as the ones involved in responses to

stimuli typically exhibit an abrupt increase of the polysome size

with the initiation rate, present a small physiological initiation rate

and a low maximal overall translation efficiency. In the next

section we discuss the fundamental role of codon arrangement in

determining the translation efficiency.

Codon arrangement versus codon usage
In order to show that the genome-wide correlation between

translational efficiency and biological function obtained above is

not only the consequence of codon usage but is strongly influenced

by the order in which codons are used in the mRNA, we simulate

the translation of a library of randomised ORFs such that both

amino acid sequence and codon composition remain identical.

That means, two ORFs belonging to the library have exactly the

same codon usage but the arrangement of these codons is different.

Here we show that, even though all these randomised ORFs have

exactly the same codon usage indices such as the CAI, codon

adaptation index [32], and tAI, tRNA adaptation index [33], their

predicted protein production rate can be very different. Figure 6

shows how the different values of predicted protein production

rate (ribosomal current J for a fixed initiation rate) are distributed

for 2,000 synonymous randomised codon sequences of a typical

Saccharomyces cerevisiae gene (YPL106C).

Figure 6 clearly shows that the relative positioning of codons has

a crucial effect on the translation efficiency, suggesting that very

Figure 5. Scatter plot of the estimated initiation rates aQ versus
the slope of the protein production rate J evaluated at aQ. Both
distributions of initiation rates and slopes have been subdivided in
quartiles (dashed lines), defining 16 regions. Boxed annotations indicate
those GO categories that are overrepresented in each quartile sector (P;
GO process, F; function, C; component) with the P-value indicated as a
power 10 exponent (E). The enrichments in each region are indicated in
the square brackets as xx/yy, where ‘xx’ is the number of genes with
that specific annotation and ‘yy’ the total number of genes in the
region.
doi:10.1371/journal.pcbi.1002866.g005

Ribosome Traffic on mRNAs Maps to Gene Ontology
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different cellular production rates can be achieved through

evolution of the codon arrangement. For instance, in the case

shown in Figure 6 there is an increase of about 80% from the

lowest to the highest value of the translation rate. The variation of

J for different codon arrangements is a general result and does not

depend on the gene or the chosen initiation rate a (for more

information see Supplementary Information, Text S1). We thus

show that by randomising codon arrangement (i.e. randomly

exchanging the position of synonymous codons in a sequence),

different protein production rates are obtained, even though

codon usage remains fixed. This indicates that the codon

arrangement has a highly significant role in determining the

efficiency of translation.

Validation of genome-wide translation rate prediction by
experimental data

While several models of protein synthesis have been developed

over the last decades [34], the role of codon sequence and

stochastic ribosomal movement has been investigated only

recently. But even recent models typically treat the initiation rate

as a fixed parameter, identical for all mRNAs, despite its key role

in determining translational efficiency. In contrast, our model

predicts the protein production rate J(a) as a function of the

initiation rate. By then integrating genome-wide simulations with

datasets of polysome sizes, we have identified the physiological

value of the initiation rate aQ for each mRNA. This set of values aQ

then leads to the prediction of the protein production rate

P : ~J(aQ) for each transcript. This allows us to validate our

model predictions with experimental data.

Figure 7A is a scatter plot of the genome-wide simulations

versus measured protein abundance from [30]. The model

predictions for P|M, where M denotes mRNA abundance,

correlate very well with the experimental protein abundances

(Spearman’s rank = 0.64, p-valuev10{6), compared to other

attempts such as the tAIc (Spearman’s rank = 0.38, p-

valuev10{6). Our outcome is further improved when considering

just transcripts loaded onto polysomes (Spearman’s rank = 0.66, p-

valuev10{6), see ‘Materials and Methods’ and Supplementary

Information, Table S1. Moreover, as it can be appreciated from

Figure 7A, the predictions from our model correlate very well with

measured protein abundance for all ranges of gene expression, in

contrast to other translation efficiency indices (panels B,C,D),

which exhibit a poor correlation for lowly expressed genes.

Discussion

The phenotype exhibited by any cell is dictated by its proteomic

composition. How much of each type of protein is expressed is

governed by a range of factors, including the level of transcription

and stability of the encoding mRNA, the half-life of the protein,

and how efficiently its mRNA is translated. A number of strategies

have been employed to predict translational efficiency, many of

which utilise the observation that not all codons are used with

equal frequency, and that codon usage frequency is proportional,

at some level, to the abundance of the corresponding decoding

tRNA species [35,36]. Initially, measures such as the codon

adaptation (CAI) index were developed [32], which correlate high

protein abundance with over-use of the sub-set of codons found in

a group of very-highly expressed genes, normally those encoding

the ribosomal proteins. However, such approaches frequently

struggle to predict the expression level of less abundant proteins.

More recently, dynamic TASEP (Totally Asymmetric Simple

Exclusion Process) models have been employed to simulate the

flow of ribosomal traffic, including queuing interactions between

adjacent ribosomes on the polysome [20,37–41]. Even though

these models represent a big step towards a more complete

description of the translation process, most of them miss one

essential component, namely the mechano-chemical ribosome

cycle. By including this mechanism into an exclusion process we

Figure 6. Normalised histogram of the simulated protein
production rates of the YPL106C randomised ensemble. We
constructed the randomised ensemble by shuffling the YPL106C codon
choice at each sequence position, generating 2,000 different variants,
each time keeping the amino acid sequence and overall codon
composition constant. For example, for the chosen gene, CAI = 0.521.
The value of the chosen initiation is a~10s{1 .
doi:10.1371/journal.pcbi.1002866.g006

Figure 7. Scatter plots of different estimators of protein
production rates. (A) P|M versus abundance of proteins. The
mRNA abundances are from [30] and the experimentally measured
protein levels from [51]. The plot shows a clear correlation between the
model prediction of the amount of proteins in the cell and the
experimental values. (B) CAI from [30] versus protein abundance. (C)
and (D) show different variants of the tRNA adaptation index, tAIc and
tAIp from [30], vs protein abundance. Our approach yields a better
correlation between the predicted and measured protein abundance.
doi:10.1371/journal.pcbi.1002866.g007
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showed that the mathematical description of translation becomes

much more accurate [16]. Here we applied this model to simulate

the translation of every mRNA in the transcriptome of S. cerevisiae

leading to the estimates of the individual translation initiation rates

unique to each of the 6,000 genes in yeast. We furthermore

showed that mRNA sequences can be classified according to their

ribosome traffic characteristics, and crucially, this classification

maps to gene ontology assignments.

Even though the role of the translation initiation rate has been

shown to play a central role in translational control of gene

expression [9], to our knowledge no genome-wide estimations of

these rates have been reported, considering ribosome traffic

effects. The translation initiation rate, i.e. the rate at which

ribosomes start translating the ORF, condenses many factors, such

as cytoplasmic ribosome availability, initiation factors and

secondary structures on the 59UTRs, all of them strongly

dependent on nutrients and stress conditions. Some approaches

consider the translation initiation rate to be fixed for every

transcript, thereby neglecting the key factors that make the

initiation rate unique to each transcript. In contrast, by

considering traffic dynamics, we determined the first genome-

wide estimate of initiation rates aQ for each and every mRNA

(Figure 2) by integrating our stochastic model of ribosome traffic

with data of ribosome densities across all mRNAs [23]. Our

analysis showed a wide range of aQ values under these non-stress

conditions. Importantly, the aQ values are strongly correlated with

gene function, explaining for example why translation of

ribosomal protein mRNAs, which typically have a very high aQ

value, is very efficient. These values of aQ are expected to be

influenced by the degree of secondary structure of the 59 leader

sequence, and indeed we did find a significant correlation with the

free energies of the secondary structures. The strongest connection

involving aQ was however a negative correlation with mRNA

length, mirroring the findings from experimental research that

described lower ribosome densities on longer mRNAs [7,15]. In

contrast to the explanation that the effect could be caused by

bottlenecks of slow codons [15] (see Supplementary Information

Text S1) this negative correlation supports the idea that due to the

circular structure of mRNAs, the ends of shorter mRNAs can

interact more easily than longer mRNAs, thereby promoting

ribosome recycling [7,42,43]. Indeed following detailed experi-

mental analysis using ribosome density mapping, Arava and

colleagues concluded that lower densities on longer mRNAs are

best explained by lower rates of translation initiation [27],

mirroring our findings in this work. To summarise, we interpret

the correlation between the estimated initiation rates and the ORF

lengths as a possible indication of a regulatory mechanism that

allows circularised mRNAs to load ribosomes more efficiently onto

their transcripts, leading to the observed ribosome-ORF length

relationship.

Our analysis furthermore identified two main distinct classes of

mRNAs regarding their responsiveness to changes in the initiation

rate a: some sequences exhibited an abrupt change in the polysome

size upon a change in a, whereas smooth sequences showed a

gradual increase. Calculations with artificial sequences revealed

that sequences with rare codons in the main body of the ORF

belong to the abrupt class, whereas sequences with either no rare

codons or rare codons at the 59 end belong to the smooth class [28].

Crucially, we note that the classification of mRNAs into smooth and

abrupt responders maps onto particular gene ontological classifica-

tions. Smooth responder mRNAs as a class are highly over-

populated with ribosomal protein mRNAs and translation factors.

Conversely, the abrupt class contains disproportionate numbers of

regulatory proteins, including nucleic acid-binding transcription

factors, and cell cycle proteins. One reason why ribosomal protein

mRNAs are predominantly of the smooth response type might

relate to the massive manufacturing scale of ribosome biosynthesis;

in yeast, ribosomal protein mRNAs account for nearly 30 percent

of all mRNAs [44,45]. Smooth-type responses to a must be of

selective advantage for a cell, since if ribosome queues were

established on such a large proportion of the cell mRNA

population they would sequester a large numbers of ribosomes,

with deleterious consequences for cell fitness. On the other hand, it

has been recently found that cell-cycle regulated genes predom-

inantly adopt non-optimal codon usage (with no ramp of slow

codons at the beginning, and therefore of the abrupt class) to

achieve elongation-limited mRNA translation; this can generate

cell cycle-dependent oscillations in protein abundance induced by

changes in the tRNA pool [46]. Therefore, it is apparent that the

cell coordinates codon usage and codon arrangement to achieve

translational gene expression control.

Our results also showed important differences in the computa-

tionally deduced slope of the J production rate curve in response

to increasing a. Some mRNAs are what we term highly geared,

that is, small increases in a produce relatively large increases in J.

This type of super-responsive mRNA was significantly enriched in

regulatory proteins, which also have a relatively small initiation

rate. We speculate that this might be a mechanism to facilitate

rapid responses to changed environmental conditions, allowing,

for example, rapid synthesis of transcriptional repressors that in

physiological conditions are severely limited by the initiation (low

a). Conversely, low geared mRNAs, where increases in a produce

proportionately lower responses in J, were enriched in ribosomal

proteins. Since ribosomal proteins are used to manufacture

ribosomes, lower gearing of the J responsiveness to a may help

prevent undesirable positive feedback effects. We furthermore

classified mRNA sequences according to the maximal translation

rate that they can achieve, i.e. their saturation value, and our

analysis revealed that abrupt sequences have predominantly a small

Jmax, whereas smooth sequences are characterised by a large Jmax.

This correlates with the levels of the corresponding proteins:

regulatory proteins are typically present in low abundance,

whereas ribosomal proteins are highly abundant. Moreover, this

might prevent possibly deleterious consequences of over-producing

regulatory proteins, including cell cycle factors, during occasional

bursts of ribosomal availability that would lead to a very large

increase in the value of a. In S. cerevisiae for example, this occurs

upon sudden glucose depletion: translation initiation is rapidly

inhibited [47] but some mRNAs (including those involved in

carbohydrate metabolism) continue to be translated [48], thereby

being exposed to a spike in ribosome availability. Similar complex

translational re-programming, coincident with a partial cell-wide

shut down of translation initiation, occurs in response to oxidative

stress [49]. Hence, by having a high responsiveness to a and a low

Jmax, abrupt sequences can have a very rapid gene expression

upregulation, on one hand, but a controlled maximum translation

rate, on the other hand. Figure 8 summarises our findings on the

initiation rates and the consequences of different (mRNA-specific)

dependencies of the protein production rate on the initiation step.

Incidentally, this classification of proteins according to their

translation dynamics, coincides with the classification according to

protein stability. In [50], the S. cerevisiae proteome was analysed

using a clustering approach to classify proteins according to half-

life, and the stable protein cluster was enriched with proteins

involved in protein production, including ribosomal proteins and

enzymes involved in amino acid metabolism. Moreover, the

unstable protein cluster was enriched with cell cycle proteins and

proteins involved in transcriptional regulation. Therefore, our
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analysis indicates that stable proteins tend to have a low

responsiveness in their production rate to external changes which

change the initiation rate, whereas unstable proteins production

responses very effectively to external changes. Hence, our analysis

strongly suggests that the cell coordinates dynamics of protein

degradation with the dynamics of protein production.

In summary, we have shown how our stochastic model

representing the ribosome traffic flow on mRNAs is able to

discern and describe the biological interplay between translation

initiation and elongation, at a single-codon level. We have

illustrated how the application of this model across the entire

genome can be used to infer mRNA-specific translation initiation

rates in vivo, and that selection of codon arrangement is likely to be

an important mechanism to tune the translation system to meet

the competing demands of ribosome biosynthesis and translation

of all other mRNAs in the cell. With our approach, mRNA

sequences can be classified according to their translation

dynamics, mapping to key gene ontological classifications; codon

arrangement plays a fundamental role in this classification,

indicating that it is optimized through evolution to match the

corresponding gene function. Moreover, gene-specific physiolog-

ical values of initiation rate can be used to determine the

translational efficiency for each mRNA; this allows the prediction

of genome-wide protein abundances with a significant increase in

correlation when compared with previous approaches (Figure 7).

We foresee this type of analysis will be of great value to understand

how the economics of translation are regulated on a cell-wide

basis, and how codon arrangement is optimised to control gene

expression in response to the translational remodelling that occurs

in response to many environmental stresses.

Materials and Methods

Stochastic simulations
For each mRNA sequence of S. cerevisiae we performed a

stochastic simulation of translation, one mRNA at a time,

following the rules explained above and summarised in Figure 1.

Our algorithm is a continuous time Monte-Carlo based on the

Gillespie algorithm, and therefore it gives the real-time dynamics

of the system.

In each simulation of individual mRNAs we let the system reach

the steady-state. Then we measured, at constant interval times,

two quantities: the current J of ribosomes along the mRNA, i.e.,

how many ribosomes per unit time finish translation, and the

density r of ribosomes on the mRNA, i.e., the total number of

ribosomes N divided by the length L (in codons) of the mRNA.

Therefore, the current J gives the translation rate, and the density

r determines the polysome size. We then averaged these quantities

over the entire time interval of the simulation. We ran the

simulations for a broad range of initiation rates a between 0 and

5 s{1, making sure that the plausible physiological regime for a
variation was covered, and we fixed the other parameters as

explained in the previous sections. The obtained curves r(a) and

J(a) were then smoothed with a ten-points running average.

Figure 8. Initiation rate: summary of the findings. (A) For a given ‘physiological’ number of ribosomes n we found mRNA-specific initiation
rates, distributed over a broad range of values (Figure 2). Different regions of the distributions can be mapped to certain GO annotations. For
example, mRNAs with small physiological initiation rate aQ are regulatory proteins while genes involved in translation have a larger initiation rate. (B)
Changes in initiation (induced, for instance, by variations in the ribosomal pool, e.g. available ribosomes increase to a value of n’) are estimated by our
modelling and theoretically perceived by the transcript in different ways, according to their current-initiation relationship J(a). In particular, some
mRNAs have a large gearing factor J ’(aQ), such as regulatory proteins, while other messengers, such as translation associated ones, are less sensitive
to changes of the initiation rate. (C) For very large initiation rates the protein production rates reach a maximal elongation-limited value, i.e. only
depending on the sequence of codons. We discover that translation associated genes have a larger maximal production rate when compared to
other mRNAs, such as regulatory proteins, whose production might need to be capped. (D) In general we find two main groups of sequences
classified according to their current-initiation relationship J(a). Abrupt sequences, usually regulatory proteins, present an abrupt ‘kink’ in J(a),
meaning that the protein production rate can quickly saturate above specific values (sequence-dependent) of the initiation rate. Genes involved in
translation like ribosomal proteins are instead classified as smooth sequences, since their sequences are such that this abrupt crossover does not exist.
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The gradient J ’(aQ) of the translation rate at the physiological

initiation rate is defined, for each mRNA, as the numerical

derivative of the relation J(a), computed at aQ. It geometrically

represents the slope of the curve J(a) at the physiological value aQ.

Since both the distributed physiological values of the initiation

rates and different codon sequences cause a different dependence

of J on a, the derivative J ’(aQ) differs from mRNA to mRNA.

The maximal values Jmax and rmax were defined as the mean of

the last five simulation points of the current and the density,

respectively, corresponding to the five largest values of a
considered.

Translation rate prediction
The translation efficiency P of a transcript is defined as the

protein production rate J computed at the physiological value aQ,

P : ~J(aQ). Denoting by M the amount of a specific mRNA in

the cell (data from [30]), for any protein the quantity P|M is an

estimate of the protein abundance, see [20]. We also considered

the effective amount of transcript involved in polysomes, M|r,

where r can be found in [23]. The prediction P|M|r slightly

improves the correlation with measured protein abundance, as

discussed in the ‘Results’ section.

Supporting Information

Table S1 Dataset for the classification of the transcripts in the

abrupt, smooth and hybrid classes, and values of the physiological

and maximal quantities (initiation rates and ribosomal current)

characteristic of each mRNA. In the second sheet one can find the

database for the different estimators of protein production rates

used in Fig. 7.

(XLS)

Table S2 GO annotations of genes found in regions (i)–(iv) of

Figure 2. Each sheet is named with the corresponding region (i)–

(iv) of Figure 3, and with the GO aspect (process, function,

component).

(XLS)

Table S3 GO annotations of genes found in the smooth, abrupt

and hybrid classes. Each sheet is named with the sequence type

(smooth, abrupt, hybrid), and with the GO aspect (process,

function, component).

(XLS)

Table S4 GO annotations of genes found in different regions of

Figure 5. Each sheet is named with the corresponding region (4-7-

8-12-16) of Figure 5, and with the GO aspect (process, function,

component).

(XLS)

Table S5 GO annotations of genes belonging to the top and

bottom quartile of the Jmax distribution. Each sheet is named

according to their Jmax (top quartile = 25% of genes having the

largest Jmax, bottom quartile = 25% of genes having the smallest

Jmax), and with the GO aspect (process, function, component).

(XLS)

Text S1 Detailed description of the approaches used in the main

text and regarding (1) the estimate of the hopping rates in the two-

state model; (2) the method to classify sequences in abrupt, smooth

and hybrid class; (3) other examples of randomisation (with

constant amino-acid sequence) of codon arrangement and

expected protein production rates (similar to Figure 6); (4)

numerical details for the quantification of the initiation rates; (5)

details on the computed energy of secondary structures ; (6) an

accurate explanation of the alternative hypothesis for the ORF-

length dependence of the initiation rate; (7) description of the

computation of the p-values.

(PDF)

Text S2 Comparison with the previous model by Siwiak and

Zielenkiewicz [22].

(PDF)
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