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Abstract

Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades.
The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is
judged most likely to contain the target but makes use of the entire retina as an information gathering device during each
fixation. Here we show that human observers do not minimize the expected number of saccades in planning saccades in a
simple visual search task composed of three tokens. In this task, the optimal eye movement strategy varied, depending on
the spacing between tokens (in the first experiment) or the size of tokens (in the second experiment), and changed abruptly
once the separation or size surpassed a critical value. None of our observers changed strategy as a function of separation or
size. Human performance fell far short of ideal, both qualitatively and quantitatively.
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Introduction

For many detection and discrimination tasks, performance

decreases rapidly with increasing distance from the center of

vision. Observers overcome this limitation by making discrete eye

movements (saccades) as often as three times per second, in effect

scanning the environment. Such serial scanning is not limited to

humans or to the visual modality. It is commonly found whenever

the sensory range is limited spatially but the sensors can be

displaced. Examples include exploratory whisking by rats [1] echo-

location by bats [2], and haptic exploration by humans [3].

The pattern of eye movements depends on the observer’s goals

[4,5,6,7]. In visual search, for example, the observer is searching

for a specified target within the visual field. Following each eye

movement the visual system gains access to new information as a

result of the most recent eye movement and must decide whether

to terminate the search because the target has been located, to

continue the search by planning a further eye movement, or to

abandon the search. If the search is continued then a key question

is, how does the visual system plan the next saccade given the

visual information gathered so far?

Models of eye movement planning fall roughly into two

categories. The first class, salience models, uses the current retinal

image to assign a numerical measure called salience to each

location in the retina [8,9,10]. Salience is often linked to physical

measures such as luminance or local contrast. Salience models

differ in how salience is computed and in how the visual system

uses the salience map to plan the next saccade.

Models of the second class, optimal statistical models, are

designed to optimize a specified criterion [11]. These models take

into account the visual sensitivity of the eye across the retina and

make use of all of the information gained in past searches to plan a

sequence of saccades that, for example, minimizes the expected

number of saccades needed to locate the target [12,13,14,15,16].

The information gathered during initial fixation and with each

successive saccade is a measure of the likelihood that the target is

at each possible retinal location, a likelihood map (Figure 1).

While the ability of such statistical models to predict eye

movements behavior in natural scenes has been challenged

[17,18,19,20,21,22] and alternative models have been proposed,

in particular that of Tatler and colleagues [23] incorporating high

level features, statistical models allow to model ideal (optimal)

behavior and compare human performance to ideal [11].

The differences between salience models and statistical models

are less than they first appear to be. Likelihood, for example, is

arguably a candidate measure of salience. However, a major

difference between the two classes of model is the rules for

planning the next saccade. With salience models these rules are

typically ad hoc, chosen to capture known features of human

visual search. They usually propose that the next saccade go to the

currently ‘‘most salient’’ location but with some mechanism

inhibiting return to those that have already been searched

(inhibition of return [24,25]). The planning algorithms for

statistical models, on the other hand, are dictated by the

requirement that search be optimal by a previously specified

criterion. The modeler typically has no further choices once visual

sensitivity across the retina is measured and the criterion to be

optimized is selected.

Recently, Najemnik & Geisler [13] analyzed the performance

that could be expected of a statistical model designed to minimize

the number of saccades needed to locate a target. Given the

current likelihood map, it is intuitively appealing to plan the next
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saccade to the location most likely to be the target, the maximum

likelihood point denoted Lmax in Figure 1. Najemnik & Geisler

[13] demonstrate that the correct optimal strategy, minimizing the

expected number of saccades to locate a target, typically aims at a

location Pmax that need not coincide with Lmax. Pmax is the

location that allows the visual system to best use its extra-foveal

retinal sensitivity to evaluate multiple locations simultaneously as

illustrated in Figure 1 and in the accompanying inset. The

likelihood of a target at the location Pmax may be very low, as

indicated in Figure 1. Moreover, the optimal strategy also

considers possible information gathered from future searches

contingent on information gained from the current, much as a

strong chess player thinks beyond the immediate consequences of

his current move.

Najemnik & Geisler [13] compared human performance in

searching for a small Gabor patch in 1=f noise background to the

predictions of an optimal statistical model and found qualitative

agreement between the model and performance, at least in overall

performance.

One difficulty in comparing performance between human and

model is that the stimuli are complex and it is difficult, to predict

trial by trial, where the ideal observer should fixate. Here we

present a simplified visual search task which allows us to test

whether the visual system uses its extra-foveal sensitivity (as

Najemnik & Geisler [13] propose) to minimize the number of

saccades required to identify the target.

In this task, the observer makes only one saccade per trial and

we restrict the observer’s possible choices of saccadic destinations

to three. The observer must saccade to one of these three possible

locations, marked by gray squares arranged horizontally, above or

below his initial fixation (Figure 2A). When the observer has

completed the saccade, the target appears at either the left or right

Author Summary

Vision is most sensitive to fine detail at the center of gaze
(the fovea). We typically move our eyes several times a
second to build up an accurate picture of the world
around us and find objects of interest. Very recently,
researchers have developed models of how a visual system
like ours could search a scene for a specific target with the
smallest possible number of eye fixations. In two
experiments, we tested the assumptions underlying such
models. We set up visual ‘‘games’’ in which observers were
rewarded for their performance in moving their eyes once
to recognize simple targets. To do well (earn the maximum
possible reward), observers had to move their eyes
according to the predictions of recent models of eye
movement. We found that our observers failed to choose
optimal eye movement strategies and failed to maximize
their potential winnings. Our results suggest a simpler
picture of eye movement selection, driven by a few simple
heuristic rules that lead to good but not optimal
performance in everyday tasks.

Figure 1. A likelihood map. The map is a plot of the likelihood that a specified target is present at each retinal location. The task is to select the
retinal destination for the next saccade. Two strategies are illustrated. The first computes a saccade to the retinal location with highest likelihood
(Lmax). The second computes a saccade that maximizes the probability of identifying the target location after the first saccade. We refer to the
destination of this saccade as the Pmax. Najemnik & Geisler (2005) emphasized that Lmax and Pmax can be different when one takes into account the
information gathering capabilities of the retina away from fovea and considers adaptive strategies that plan future saccades based on information
gathered in previous saccades.
doi:10.1371/journal.pcbi.1002342.g001
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location, but never in the center. The trial is aborted if the

observer tries to execute a second saccade.

The target consists of a grey square and a small white dot that is

either near the top of the square (dot-up configuration) or near the

bottom (dot-down configuration). The two configurations are

shown in an inset in Figure 2A. The observer’s task is to

discriminate whether the target is dot-up or dot-down. He receives

a small amount of money for each correct discrimination.

The observer’s probability of correct discrimination is deter-

mined by his retinal sensitivity function y Eð Þ where E
(eccentricity) is the distance from the fovea to the target. For the

discrimination task we employed, y Eð Þ is a decreasing function of

E. We plot an example of y Eð Þ versus E for one observer in

Figure 2B.

The observer has only three possible choices of strategy. He

may saccade to the leftmost token, the center token, or the

rightmost. If the observer adopts the center strategy, then the

separation between where the observer is fixated and the target on

left or right is just the spacing between the locations (denoted d in

the Figure 2A). The probability of correct discrimination is

P CorrectjCenter½ �~y dð Þ: ð1Þ

If the observer adopts a side strategy then the separation will be

either 0 (if he has chosen the location where the target appears) or

2d (if he has chosen the location on the side opposite to the

location where the target appears). Since the target appears at the

left or right location with equal probability, the observer’s

probability of correct discrimination is

P CorrectjSide½ �~ 1

2
y 0ð Þz 1

2
y 2dð Þ: ð2Þ

In Figure 2C we plot P CorrectjCenter½ � and P CorrectjSide½ �
for the observer whose retinal sensitivity map is shown in

Figure 2B. If the tokens are close together (d is small) then the

probability correct is close to 1 for both strategies. When the

separation is between 50 and 120, use of the center strategy would

lead to higher probability correct. Beyond the point marked Eopt

use of the side strategy would maximize expected probability

correct. This critical value is determined by the observer’s retinal

sensitivity function. If the human observer is using his peripheral

sensitivity to maximize the probability of correct discrimination,

we would expect an abrupt change in strategy when the separation

of center and side tokens exceeds Eopt.

In Experiment 1 we first measured observers’ retinal sensitivity

functions. In the main part of the experiment, observers chose

between center and side strategies as we varied separation d over

the range 8 to 24 degrees. Observers received a small monetary

reward for each correct discrimination. We compared observers’

choices of strategy (center or side) to the choice of strategy

maximizing expected gain. The observer maximizing expected

gain would pick the strategy, center or side, offering the larger

probability correct in Equations 1 and 2, switching strategy at the

optimal switch point Eopt.

In Experiment 2 we varied the size of the targets rather than

distance to manipulate y Eð Þ. Observers chose between the same

array of tokens in Figure 2A but now the tokens varied in size.

There is still an optimal point in Sopt where the observer should

switch from a center strategy to a side strategy but now it is

expressed in size.

Each experiment consisted of three phases, sensitivity mapping,

decision, and verification, illustrated in Figure 3 and described in

the Methods section. In the sensitivity mapping phase, we

measured sensitivity for the visual task for different eccentricities

of targets (Experiment 1) and for different sizes of targets at

different eccentricities (Experiment 2). In the second (decision)

phase, we tested human ability to select eye movements that

maximize expected gain. In the last phase (verification), we

repeated the decision phase but forced the observer to make the

saccade that our model (see Methods section) predicted would

maximize expected gain. By doing so, we verified that, had they

followed this strategy, they would have increased their expected

gain to the maximum possible expected gain predicted by the

model.

In the separation and size experiments, we assumed that the

target is always presented and we considered only the first saccade.

If we were to modify the task slightly so that, although the grey

squares appeared, the target configuration (dot-up or dot-down)

was not presented on one half of the trials (that is, all of the grey

squares were uniform, without a marked configuration), then on

trials where the observer fails to detect the location of the

configuration after one saccade, he must make one or two

additional saccades to determine if the target configuration is

present at all and in what configuration. The strategy in our task

which maximizes probability correct also minimizes the number of

saccades needed to be correct in this modified task.

In the experiments reported, we interleaved separations

(Experiment 1) and sizes (Experiment 2) rather than presenting

the same separation or size repeatedly in in a single experimental

block. Observers could potentially learn the blocked task by simply

trying different saccadic strategies and seeing which is more

Figure 2. Experiment 1: The configural task and saccadic strategies. A. There were three tokens (grey squares) present in the visual search
array. They are equally spaced horizontally with separation d (deg). The observer initially fixated the fixation cross that is either above the central token or
below (shown as above). The observer chooses one of three saccadic strategies, side-left, center, or side–right, saccading to one of the three tokens. If
the observer saccaded to any other location, the trial was terminated. Once the saccade was completed, the configural target appeared with equal
probability in either the left or right token but never in the center token. The target was one of two configurations shown in the inset, labeled dot-up or
dot-down. In the figure the target appears on the right. The other side token and the center token remained grey squares. The observer’s task was to
judge whether the target is dot-up or dot-down. B. The observer’s ability to correctly judge whether the target is dot-up or dot-down depended on the
retinal eccentricity of the target E. It was captured by a retinal sensitivity function y(E) that varied from nearly 1 (fovea) to 0.5 (far periphery). The retinal
sensitivity function for one observer (S01) is shown in the figure. The retinal sensitivity function and separation d determined the choice of strategy that
maximized the observer’s probability of a correct response in the task. C. For observer S01, the expected probability correct corresponding to the center
strategy (always saccade to the center token) is plotted in blue and the expected probability correct corresponding to the side strategy (always saccade
to one of the side tokens) is plotted in red. P[Correct|Center] is greater than or equal to P[Correct|Side] from 0u to a separation Eopt, the optimal switch
point. Beyond the optimal switch point, P[Correct|Side] is greater than P[Correct|Center]. For separations between 0u and 3u about the difference between
the two strategies is slight. However, the observer seeking to maximize expected probability correct for separations between 6u and 20u (the range of
Experiment 1) should adopt the center strategy for separations less than Eopt and then switch to the side strategy. The value of Eopt depends on the
observer’s retinal sensitivity function y(E) and may differ for different observers.
doi:10.1371/journal.pcbi.1002342.g002
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rewarding as a function of separation (Experiment 1) or size

(Experiment 2). In effect they learn to pair strategy and

separation/size by reinforcement learning. But the prediction of

the class of statistical models we consider is that observers will take

into account their own retinal sensitivity in planning saccades

without an extensive history of reinforcement [26]. Reinforcement

learning plays no role in these theories.

Results

Sensitivity mapping phase
The sensitivity mapping plots are presented in Figure 4A for

Experiment 1 and in Figure 4B for Experiment 2. The maps show

the percentage of correct responses as a function of Eccentricity for

Experiment 1 and Size for Experiment 2. The results for each

observer are used to predict the ideal observer performance in the

decision phase.

Decision phase
Saccadic choices. We analyzed the experimental data by

first identifying observers’ decisions. For each trial, the saccade

was categorized as being directed to the closest token, computed in

Euclidean distance (see Figure S1 in Text S1 and discussion).

Strategy. Figure 5 shows the probability to saccade to a side

object as a function of the tokens separation for Experiment 1

(Figure 5A) or size for Experiment 2 (Figure 5B). For each observer

and experiment, we obtained Eopt and Sopt, the optimal switch

points, using the psychometric function estimated from the

mapping data. The optimal strategy is plotted as a solid line.

The optimal strategies for our choices of d are to saccade to the

middle for short separations or big sizes, and vice versa for the big

separations and the small sizes. The optimal strategy switches

(vertical line) at a specific value Eopt or Soptof the independent

variable from a 0% probability of a side saccade (i.e. 100%

probability of a center saccade) to a 100% probability of a side

saccade (either left or right).

If observers were optimal their probability of choosing a side

strategy would follow this step function, and any deviation from

this step function reduced their expected gain and probability

correct. The results, shown as blue dots (Figure 5) are unequivocal:

observers were markedly suboptimal. Not only did they fail to

switch strategy at Eopt or Sopt, but more strikingly, they did not

change their strategy at all as a function of the separation or size of

the tokens.

Saccadic latencies. Some observers took their decisions very

quickly while others were slow. Also, within a given observer there

was some variability in the speed of their decisions. We examined

whether the speed with which observers made their decision

correlated with how ‘‘good’’ the decision was by plotting the

likelihood of the saccades to be correct as a function of their

latency. As shown in Figure S2 in Text S1, the quickness of the

decision does not seem to affect whether the decision was closer to

or further from optimal or not.

Saccade length. Recall that the distances from initial fixation

to the two side objects were not the same. Whenever the observer

chose to saccade to one of the side objects, they preferred the

nearer. The proportion of side strategy saccades to the nearer of

the two objects were 0.85, 0.64, 0.95, and 0.86 for the four

observers in Experiment 1, 0.99 and 0.77 for the two observers in

Experiment 2.

Inter-trial dependencies. One possible explanation of

observers’ sub-optimal performance is that switching strategies

(side to center or vice versa) might entail a ‘‘cognitive cost’’. We

tested whether observers tended to repeat strategies by computing

the conditional frequency with which a choice of a given strategy

on one trial is followed by a choice of the same strategy on the

following across all trials. We compared this conditional frequency

to the (non-conditional) frequency with which observers used a

given strategy estimated across all trials. The conditional

frequency of using a specific strategy was significantly greater

than the non-conditional frequency: 0.76 versus 0.5 for the side

strategy and 0.6 versus 0.5 for the center strategy. One-tailed t-

tests indicated that the difference is statistically significant in both

cases with p = 0.04 and p = 0.03 respectively for side and center

strategies. We conclude that some observers tended to repeat

strategies above chance.

The observed inter-trial dependencies provide some character-

ization of human performance in our task beyond the simple claim

that it is sub-optimal. Of course, given that the trials were

randomized, any evidence of inter-trial (sequential) dependencies

Figure 3. Experiment 1: A. Retinal mapping session. The observer first fixated a fixation cross for 700 msec. Then a target appeared on the
right or left of the fixation point. The target was displayed for 500 ms and then disappeared. A response screen was displayed until observers
indicated their response. B. Decision session. The observer first fixated a fixation cross for 700 msec. Then square markers appeared at the three
locations to which the observer was permitted to saccade. Once the observer completed the saccade, the target configuration appeared at one of the
side locations chosen at random. The observer then judged whether the target was dot-up or dot-down. We compared human performance to
performance maximizing probability of correct discrimination. C. Verification session. The protocol was the same as the Decision session except for
the addition of a 400 ms phase, before the saccade, where one of the 3 tokens disappeared. This token indicated the position that the observer
should saccade to. If the observers made his saccade to another location (fixation position not within a 1u radius of the indicated object) the trial was
aborted and replayed later. Actual eye movement data for one trial for one observer is superimposed in red on the stimulus arrays.
doi:10.1371/journal.pcbi.1002342.g003
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in choice of saccadic strategy is further evidence for sub-optimal

choice of strategy. We cannot conclude that these dependencies

account for failures in human judgment in our task since any

causal connection may well be in the reverse direction: the

observer, ignorant of the correct strategy, may tend to default to

whatever he chose on recent trials.

Similarly, the experimental conditions (separation or size) were

interleaved and randomized in both experiments. On occasion, a

particular separation or size was followed by the same separation

or size. We considered the possibility that observers chose the

optimal strategy for the repeated condition with greater frequency.

It was not the case: the probability to pick an optimal saccade was

0.57 on average, and 0.59 for repeated conditions, the difference

was non-statistically significant on one-tailed t-test (p = 0.19).

Performance (Gain). In the verification phase we directly

confirmed that observers could have increased their gain by

employing the optimal strategies predicted by our model. The

trials in the verification phase were identical to those in the

decision phase excepted that on each trial the observer was

instructed to saccade to the location that we predicted would

maximize his expected gain (see Methods). We plot mean gain for

each observer in the decision phase (red circles) and in the

verification phase (blue circles) in Figure 6. In the decision phase,

observers did not maximize expected gain and their choices of

strategies reduced their expected winnings by 9% on average

(max = 17%, min = 6.1%, SD = 0.0398). When forced to choose

optimal strategies on each trial, observers’ gain increased and is

indistinguishable from maximum expected gain as predicted by

the model.

In the analyses just reported here, we used estimates of retinal

sensitivity function y Eð Þ from the Sensitivity Session to predict the

visual strategies that would maximize expected gain in the

Decision Session. However, in the Decision Session, each visual

judgment was preceded by a saccade while in the Sensitivity

Session it was not. There is considerable evidence that a preceding

saccade can briefly alter perception [27,28,29] and we can

conjecture that it may also alter sensitivity.

However, we can readily estimate y Eð Þ based on data in any of

the three sessions and use these estimates to predict the visual

strategy maximizing expected gain in the Decision Session. In the

Figure S3 of the Text S1 we compare observers’ data to these

predictions. Inspection of this plot shows that each observer’s data is

inconsistent with the optimal strategy based on y Eð Þ in any session.

Whichever session we choose to estimate y Eð Þ, we reach the same

conclusion: observers did not adapt their strategies to the separation

of the tokens (Experiment 1) or to changes in size (Experiment 2).

Figure 4. Retinal sensitivity mapping. A. Experiment 1. The observer’s probability of correctly identify the stimulus configuration (dot-up or dot-
down) is plotted as a function of the eccentricity at which the configuration was presented. Data is presented for all five observers. The smooth curve
is a maximum likelihood fit of a psychometric function. The observer’s probability of correctly identify the stimulus configuration (dot-up or dot-
down) is plotted as a function of the stimulus size for stimuli presented at each of three retinal eccentricities. B. Experiment 2. Data is presented for
both observers. Observer S04 in Experiment 2 was the same observer as Observer S04 in Experiment 1. See text.
doi:10.1371/journal.pcbi.1002342.g004
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To test whether observers maximized expected gain, we

performed a nested-hypothesis test [30] comparing each observer’s

winning to those of an observer maximizing expected gain. The

results for Experiment 1 with all observers combined indicated

that observers overall did not maximize expected gain

(x2
36~61:935; pv:0001) and that three of the four observers

considered in isolation did not maximize expected gain: S01

(x2
9~25:19; pv0:003), S03 (x2

9~45:60; pv0:0001) and S04

(x2
9~61:93; pv0:0001). The winnings of the remaining observer

S02 were not significantly different from maximum expected gain

(x2
9~6:002; p~0:74 n:s:). For Experiment 2, the overall test lead

to rejection of the hypothesis that the observers maximized

expected gain (x2
18~61:935; pv:0001) and to rejection of the

hypotheses that each observer maximized expected gain (S04:

x2
9~61:93; pv0:0001, S05:x2

9~61:93; pv0:0001).

Discussion

Summary
We reported two experiments intended to determine whether

observers correctly employed their extrafoveal retinal sensitivity to

optimize visual search. Each experiment consisted of three phases,

sensitivity mapping, decision, and verification. In the sensitivity

mapping phase, we measured each observer’s retinal sensitivity as

a function of target eccentricity (Experiment 1) and/or target size

(Experiment 2).

On each trial of the decision phase, observers first executed a

saccade to one of three retinal locations, left, center or right

(Figure 2A). Following the saccade, a target would appear at either

the left or right location but never in the center location. The

observers then attempted to discriminate whether a small white

dot within the target was near the top or bottom of the target.

Their probability of success in discriminating depended on the

location to which they had saccaded and the location at which the

target appeared. Observers received a monetary reward for each

correct discrimination and their challenge was to decide which

location to saccade to so as to maximize their expected gain. We

refer to their choices as a saccadic strategy. There were only three

possible strategies, left, center, or right, and two of these strategies,

left and right, were effectively equivalent (see Methods). We refer

to them collectively as the side strategy.

A center strategy led to better discrimination for smaller

eccentricities (Experiment 1) or larger sizes (Experiment 2).

Whether the target appeared on the left or right side, the small

eccentricity (large size) meant that the observer could discriminate

above chance while fixated at the center location. For large

enough eccentricities in Experiment 1, the center strategy resulted

in performance near chance. In contrast, either side strategy

resulted in better performance since, if the target appeared on the

same side as the observer chose to saccade to, then he could

readily discriminate it. This would occur on half the trials and on

the remaining trials, when the target appeared on the side not

chosen, the observer would be near chance in responding. Overall,

the side strategy would lead to performance better than that

expected with the center strategy. See Figure 2C. The same

conclusion holds in Experiment 2 where we varied size.

Consequently, as the experimenter increased the eccentricity of

the side locations or decreased the size of the target, the observer

Figure 5. Strategy choice. A. Experiment 1. For each observer we plot the proportion of time they picked either the side strategy as a function of
eccentricity of the side locations markers. The proportions predicted by an ideal observer maximizing probability of correct response are shown as
solid blue curves. These are step functions, going from 0 to 1 at the optimal switch point for the observer which is computed from each observer’s
retinal sensitivity function. Observers failed to shift strategy with changes in eccentricity. B. Experiment 2. For each observer we plot the proportion of
time they picked either side strategy as a function of size of the targets.
doi:10.1371/journal.pcbi.1002342.g005
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optimizing expected gain or, equivalently, probability correct,

should switch from a center strategy to either one of the side

strategies at a specific optimal switch point.

We used the data from the sensitivity mapping phase to predict

the optimal switch point as a function of eccentricity or in size for

each observer. We compared observers’ choices of strategy to the

choices predicted to maximize their probability correct in the

discrimination task.

None of our 6 observers switched strategy at the optimal point.

All had evident, idiosyncratic biases, toward either the side or

center strategies, but, most strikingly, they chose the center and

side strategies equally often for all eccentricities and sizes of target.

They did not adapt their strategy to the stimulus configuration at

all.

In a separate verification phase we reran the main part of the

experiment but now indicating to the observer where to saccade

on each trial, ‘‘forcing’’ the observer to adopt the saccadic strategy

that our model predicted would maximize probability correct and

expected gain. We found that observers’ mean gain increased

when they executed the strategy predicted to maximize expected

gain and that their mean gain was in good agreement with the

maximum expected gain predicted by the model.

In summary, observers did not respond to variations in token

separation and size at all. They apparently ignored the

independent variable in each of the two experiments. We had

expected that, for example, their performance might be qualita-

tively consistent with that of the ideal observer. That is, they might

abruptly switch strategies at some separation (size) but not at the

separation (size) that maximized expected gain. Or they might

have been inconsistent in choosing strategies but only near the

switch point so that probability of picking the side strategy might

smoothly decrease from 1 to 0 instead of following the ideal step

function. Neither of these outcomes occurred. We see no evidence

that the visual system is sensitive to the factors we varied in the

experiment.

Humans sometimes do not make single saccades even when it is

possible instead producing two or three saccades [31]. We

considered the possibility that this particular aspect of our protocol

is responsible for observed sub-optimality. An argument against

this possibility is the ease with which our subjects adapted to the

task. The ratio of excluded trials due to blinks or second saccade

combined was between 8% and 24% of the trials (15% on

average).

If the observer’s saccade did not arrive within one degree of a

token, we terminated the trial. This occurred on between 2.4%

and 34% of trials (mean 17%), across observers. However, the

horizontal and vertical standard deviations of saccades in our

experiment (see Figure S1 in the Text S1) are large compared to

the one degree cutoff we imposed and, even if the observer

attempted to saccade to the center of a token on every trial, many

Figure 6. Comparison to Maximum Expected Gain. Each observer’s mean gain in the decision phase (in red) and in the verification phase (in
blue) is plotted versus the maximum expected gain possible for that observer. The red points are consistently below the 45 degree line indicating
that observers failed to maximize expected gain as predicted by the model in the decision phase. The blue points on the other hand are scattered
around the 45 degree line. Observer’s gain approached the maximum possible gain when the observer executes the eye movement strategy that
maximizes expected gain as predicted by the model.
doi:10.1371/journal.pcbi.1002342.g006

Suboptimal Visual Search

PLoS Computational Biology | www.ploscompbiol.org 8 February 2012 | Volume 8 | Issue 2 | e1002342



of the resulting saccades would fall outside the one degree limit.

Hence, we cannot infer that a failure to saccade to within one degree

of a token (the criterion for success) indicates that the observer

intended to saccade anywhere other than to the token. In particular,

there is no basis to conclude that normal eye movement planning

and execution has been altered by the constraints we impose.

Had we used a less stringent criterion for termination of a trial

(or imposed no criterion), observers might have chosen to saccade

to a location away from any of the three tokens. Our analysis

depends on knowing what strategies are available to the observer

and which of these they chose. We also verified that the observer’s

distributions of saccades to each token were approximately

centered on the token and not off to one side. The distributions

of saccade endpoints for all observers are show in Figure S1 of the

Text S1 as well as descriptive statistics for all the observers.

If planning consumes cognitive resources then the choice of

optimal plan should reflect the ‘‘cost’’ of these resources to the

organism [32]. The key problem, though, is to develop

experimental methods that allow us to demonstrate that these

hidden costs are real and that they explain the observer’s behavior.

In conclusion, we find little evidence that observers correctly use

their visual sensitivity outside the fovea to optimize visual search.

Heuristic based planning
Our results are in apparent conflict with the predictions of

optimal statistical models discussed in the introduction

[12,13,14,15,16]. Najemnik & Geisler [13], for example, asked

observers to locate a Gabor patch in a 1/f field of noise. They

compared human performance to ideal performance minimizing

the expected number of saccades to find the target. As we

explained in the introduction, the strategy that maximizes

expected gain and probability correct in our task also would

minimize the number of saccades needed to correctly discriminate

the target configuration.

Our task is designed so that the visual system must have access

to estimates of retinal sensitivity as a function of size or eccentricity

in order to plan saccades that maximize expected gain. We, in

effect, compared choice of saccade on each trial to the choice of

saccade that would maximize expected gain, something we could

do because of the simplicity of our design.

The key predictions of Najemnik & Geisler’s model are more

difficult to match to human performance in their experiments.

They, for example, predict the length of the first saccade and find

that the distributions of lengths of first saccades are matched to

that of the ideal. However, this does not imply that any particular

saccade, triggered by a particular combination of signal and noise,

is in itself optimal or even close.

An alternative explanation for the results of Najemnik & Geisler

[13] is that human visual search is based on simple heuristics

analogous to those postulated in salience models. Tatler & Vincent

[33] for example, presented compelling evidence that saccade

selection could be better predicted by oculo-motor preferences than

by visual information or task (although they did not provide evidence

of predictive power of these biases relative to chance) Under this

account, the visual system has heuristic preferences for saccades of

certain lengths or possibly a tendency to saccade to the center of

mass of clusters of objects in the periphery [34,35]. The second

heuristic, under specific circumstances, might mimic selection of the

optimal point Pmax in Figure 1 not because it is the saccade that

minimizes the expected number of saccades but because it lies near

the centroid of a cluster of items in the visual field.

Such a heuristic-based approach may approximate ideal

performance in some tasks while failing utterly in others. The

experimenter who considers performance in a limited range of

scenes may record behavior that approximates optimal but is in

fact no more than a lucky coincidence of a heuristic rule and

experimental conditions. Such ‘‘apparent optimality’’ is not rare in

behavioral studies of animals [36] or humans [37]. And, since the

stimuli of Najemnik & Geisler [13] were chosen to mimic the

statistical properties of natural scenes, it is not surprising that

application of visual heuristics lead to good performance in such

scenes.

If human saccade decisions are based on such heuristics rather

than on a computation that requires knowledge of visual sensitivity

maps, we would expect a failure of adjustment when one’s visual

sensitivity map is changed. In fact, when observers’ foveae were

artificially shifted with gaze-contingent techniques, their perfor-

mances in visual search were significantly worse than predicted by

the ideal-observer model [38].

In contrast, we designed our simple task so that the visual system

can only succeed if it has access to estimates of visual sensitivity for

the range of sizes and eccentricities we considered. We compared

human performance to optimal on a trial by trial basis. We

conjecture that observers failed in our task because it is not well

matched to the collection of visual heuristics that guide saccadic

selection.

Methods

Apparatus
Experiments were programmed in C++ using Microsoft

DirectX APIs on a Pentium 3 computer running Windows XP.

Stimuli were displayed on a 19-inch Sony Trinitron Multiscan

G500 monitor run at a frame rate of 100 Hz with 128061024

resolution in pixels. A forehead bar and chinrest were used to help

the observer maintain a viewing distance of 57 cm. At that

distance, the full display subtended 40.4u630.3u. The observer

viewed the display binocularly. Eye movements were recorded

using an Eye Link II (SR Research, Toronto, Canada) sampling

eye position at 500 Hz.

Subjects
The subjects were NYU undergraduate students. Four subjects

participated in the Experiment 1 (3 female) and two in Experiment

2 (1 female). They were unaware of the purpose of the experiment

and all had normal or corrected-to-normal vision.

Stimuli and task
Stimuli were presented against a uniform gray background

(50% white). The target configuration, represented in the inset in

Figure 2, consisted of a light gray square with a superimposed light

gray dot at either the top (dot-up configuration) or at the bottom

(dot-down configuration). The tokens subtended 1u of visual angle

in Experiment 1 and between 0.6u to 1.8u of visual angle in

Experiment 2. The observer’s task was to report whether the target

was dot-up or dot-down. Observers responded by rotating the

mouse wheel in one direction corresponding to dot-up, the other

corresponding to dot-down. Observers were rewarded for correct

responses and they were aware that they would be rewarded.

Observers were instructed to reply as accurately as possible and

no time was imposed on their response. They were not given

any feedback regarding their response. The maximum reward was

$20.

Experimental design
Each experiment comprised three phases, sensitivity mapping,

decision and verification. We ran two experiments, in Experiment

1 we varied only the separation and in Experiment 2, only the size.
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The different separations in Experiment 1 were randomly

interleaved, the different sizes in Experiment 2 were also randomly

interleaved.

Sensitivity mapping phase (Figure 3A). In the sensitivity

mapping phase of each experiment a red fixation cross was first

displayed at the center of the screen. After the observer’s fixation

was stable (eye velocity less than 10u/s and eye position within a 1u
radius circle around the fixation cross) for 700 ms the cross turned

white and the target appeared unpredictably to the left or right of

the cross at any of five target eccentricities ranged from 0u to 12u
by steps of 3u, in Experiment 1, and from 0u to 12u by steps of 6u in

Experiment 2. After 500 ms, the stimulus was replaced by a

response screen. The observer responded whether the target was

dot-up or dot-down and had unlimited time to do so. Observer’s

fixation had to be stable during the entire trial or the trial was

discarded otherwise. Also, blinking was not allowed. The target

subtended 1u of visual angle in Experiment 1 and from 0.6u to 1.8u
by steps of 0.3u in Experiment 2. Experiment 1 had 20 ( = 56262)

conditions repeated 20 times each (400 trials total). In Experiment

2 there were 60 ( = 3626265) conditions each repeated 25 times

(1500 trials total).

Decision phase (Figure 3B). In the decision phase the

observers started by fixating a red cross, positioned vertically 64u
relative to the middle of the screen. The horizontal position of the

cross relative to the tokens was observer-specific in Experiment 1

(see details below) and 63u in Experiment 2. After 700 ms of

stable fixation, we displayed three aligned tokens 4u above or

below the fixation plane. The tokens remained visible until the end

of the trial. The central token was always centered horizontally on

the screen and the side tokens were equidistant on either side.

As mentioned above the fixation cross was not centered

horizontally but slightly offset to the right or to the left. If it were

centered horizontally it would be equidistant to each side tokens

(the potential targets) but closer to the center token. But in fact, we

are not testing the choice between the right and left targets but

between either target or the center token. Therefore the fixation

cross was displayed in a point that was equidistant to the center

token and either side token. Even if the observer preferred shorter

saccades, he would always have a choice between a side saccade

and a central that were of equal length. In addition, given that the

separations between the side token were observer specific, so was

the position of the cross.

Observers were instructed to make one and only one saccade

towards one of the tokens. Once the saccade landed and the eyes

were stable for 50 ms, a dot appeared in one of the side tokens.

The display remained visible for 500 ms if the observer’s fixation

remained stable and if the eyes remained within 1u of the position

where the eyes landed. If the observer blinked or tried to make

another saccade the trial would be aborted and replayed later in

the experiment.

We chose different separations for different observers based on

the observers’ sensitivity mapping data. We first fit the data by a

least square criterion using a four parameter psychometric

function based on the logistic cumulative distribution function

[39]:

y(E)~ymaxz
ymin{ymax

1z exp {
E{E0

s

� � ð3Þ

where E is used to denote the eccentricity of the stimulus in

degrees, the value ymax is the probability of correct classification at

the fovea (typically close to 1 for our stimuli) and ymin is the

asymptotic probability of correct classification for large eccentric-

ities, typically close to 0.5 which is chance performance. The

parameter E0 is the point where the probability of correct

detection is yminzymaxð Þ=2. The resulting fits are shown in

Figure 4. The values of ymin and ymax were typically close to 0.5

and 1 for all observers with E0 corresponding to the 75% correct

point. The parameter s controls the slope of the psychometric

function as E0. The estimated values of E0 for the four observers

were S01: 5.93; S02: 4.16; S03: 4.38 and S04: 4.83 degrees with

mean 4.82 degrees. The separations between the side tokens for

each observer included the seven values

2E0zn, n[ {3, {2, {1, 0, 1, 2, 3f g ð4Þ

and the additional values [8u, 24u]. There were therefore nine

separations in total, seven chosen based on the observers’

sensitivity mapping data and two common to all observers. For

S01 these were, for example, [8u, 8.85u, 9.85u, 10.85u, 11.85u,
12.85u, 13.85u, 14.85u, 24u]. There were 96 trials per separation

which summed to 864 trials per observer in Experiment 1. The

trials were performed in 4 different sessions preceded by training

trials (25 for the first session and 5 thereafter) that were not

included in the analysis.

In Experiment 2 the separation between the side tokens was a

constant 12u. The token sizes ranged from [0.6u, 0.9u, 1.2u, 1.5u,
1.8u] with 112 trials per size. Thus there were 560 trials performed

in 7 separate sessions preceded by training trials, as in Experiment

1.

Verification phase (Figure 3C). The purpose of this phase

was to verify that our predictions of performance in the decision

phase, based on measurements in the sensitivity mapping phase,

were accurate. Instead of allowing the observer free choice of

saccade locations, we instructed them which location to saccade to.

Here we will show data for the cases where they were instructed to

saccade to the optimal location. The design, represented in

Figure 3B, was similar to the decision phase except that at the start

of each trial the observer was instructed which of the three

locations to saccade to: after 700 ms of initial stable fixation, one

token disappeared for 400 ms and the observer could start his

saccade to this indicated token as soon as it reappeared. Once the

observer completed the saccade, we verified that the observer’s

fixation was within 1u of the indicated token.

Model
As explained in the Introduction, there is a given separation

(Experiment 1) or size (Experiment 2) at which observers should

switch strategy. We call the optimal switch point Eopt and, in

Experiment 1, it is defined as the separation between the side

tokens for which

y
Eopt

2

� �
~

y 0ð Þzy Eoptð Þ
2

: ð5Þ

The right hand side of the equation describes the observer’s

performance when he has chosen to saccade to one of the side

tokens. On half the trials, the target will appear at that side

location and he will discriminate correctly with probability

y 0ð Þ&1 (he is fixating the target). On the other half the trials,

the target will appear on the other side, a distance Eopt from

fixation. He will discriminate correctly with probability y Eoptð Þ.
The overall probability of correct discrimination is the right hand

side of Equation 3. The left hand side is the performance expected

with a center strategy. Whether the target appears on left or right,
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it is a distance Eopt=2 from fixation and the observer discriminates

correctly with probability y Eopt=2ð Þ. The switch point is the point

at which the two strategies lead to equal discrimination

performance. For eccentricities E with Ej jvEopt, saccading to

the center square results in a higher probability of correct

classification. For E with Ej jwEopt, saccading to either of the side

tokens leads to better performance.

We derived a similar equation for Experiment 2 but now in

terms of target size. The optimal switch point Sopt is defined by

y60 Soptð Þ ~
y00 Soptð Þzy120 Soptð Þ

2
ð6Þ

with y denoting the sensitivity mapping function for each observer

and yE Sð Þdenotes the sensitivity function as a function of size for

eccentricity E. At this point, both strategies have the same

probability of success. The ideal observer that maximizes expected

probability correct will switch strategy precisely at Eopt and Sopt.

We estimated Eopt and Sopt for each observer in each

experiment using Equations 5 and 6 and numerical optimization.

We also verified that the optimal point is unique. The Eopt and

Sopt for each observer are shown together with the results in the

next section.

The sensitivity functions y Eð Þ and yE Sð Þ could also be

estimated using the data from the decision or verification phase.

We used the sensitivity function derived from the sensitivity

mapping phase in the analysis reported in the main text. Using the

data from either of the other two phases only led to small changes

in estimated optimal switch point that do not affect our

conclusions. We report those in Figure S3 in the Text S1.
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