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Abstract: High-throughput proteomics experiments in-
volving tandem mass spectrometry produce large vol-
umes of complex data that require sophisticated compu-
tational analyses. As such, the field offers many challenges
for computational biologists. In this article, we briefly
introduce some of the core computational and statistical
problems in the field and then describe a variety of
outstanding problems that readers of PLoS Computational
Biology might be able to help solve.

This is an ‘‘Editors’ Outlook’’ article for PLoS Computational

Biology

Introduction

DNA gets a lot of attention these days, in whole genome

sequencing projects, genome-wide association studies, and exper-

iments measuring transcription factor binding, chromatin acces-

sibility, DNA methylation, and histone modification profiles. But

proteins are the molecular workhorses of the cell, and proteo-

mics—the systematic study of the complete set of proteins

expressed in a given cell, tissue, or organism—is poised to become

the next hot topic.

Just as next-generation sequencing tehcnology is driving the

current genomics boom, so improvements in tandem mass

spectrometry technology are leading to more comprehensive and

precise proteomics assays. Like a short-read sequencing machine,

a mass spectrometer runs 24 hours a day, producing a huge

quantity of data. And like short-read sequencing data, mass

spectral data sets exhibit complex dependencies and patterns of

missing data. In both fields, the underlying technologies, along

with the characteristics of the resulting data sets, change rapidly,

requiring constant development of new analytical methods.

Strikingly, however, relatively few bioinformatics researchers

work on methods for analyzing mass spectrometry data. PLoS

Computational Biology published only two papers on the topic in

2010 [1,2]. At the Intelligent Systems for Molecular Biology

(ISMB) conference, none of the designated subject areas for

submitted manuscripts is relevant to mass spectrometry analysis,

and over the last three years, a total of four mass spectometry

papers were published at ISMB, each appearing in the ‘‘Other

bioinformatics applications’’ category. Meanwhile, the annual

American Society for Mass Spectrometry conference draws more

than 6,000 attendees, and the society boasts 7,000 current

members.

Some of the forces preventing people from entering the mass

spectrometry research arena are social. As a field, mass

spectrometry is older than genomics, and as such, the norms

around the sharing of mass spectrometry data are less open. In

addition, intellectual property issues, such as the SEQUEST

patents held by the University of Washington, may have

discouraged some researchers from entering the field.

An equally important impediment, however, is the ‘‘energy

barrier’’ associated with starting out in mass spectrometry. In the

late 1990s, microarray analysis took off with surprising rapidity, in

part because the data could be fairly accurately summarized in

matrix format, and manipulating matrices is familiar to computer

scientistics, electrical engineers, and physicists. This is not the case

with mass spectrometry data. If you show someone with no

relevant background knowledge a DNA sequence or a microarray

image, explaining what they are looking at will take less time than

explaining to that same person what a peptide fragmentation

spectrum is.

The goal of this article is to lower that energy barrier by

explaining in simple terms how a tandem mass spectrometry

experiment works and what are the key research problems

associated with this type of data.

A Typical Shotgun Proteomics Experiment

A typical shotgun proteomics experiment proceeds in three

steps, as illustrated in Figure 1A. The input to the experiment is a

collection of proteins, which have been isolated from a complex

mixture. A typical complex mixture may contain a few thousand

proteins, ranging in abundance from tens of copies to hundreds of

thousands of copies.

In the first experimental step, the proteins are digested into

peptides using a protease. This digestion is necessary because

whole proteins are too massive to be subject to direct mass

spectometry analysis without using very expensive equipment.

Second, the peptides are subjected to liquid chromatography, in

which the peptides pass through a thin glass column that separates

the peptides based on a particular chemical property (e.g., the

hydrophobicity). This separation step reduces the complexity of

the mixtures of peptides going into the mass spectrometer. The
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third step, which occurs inside the mass spectrometer, involves two

rounds of mass spectrometry. Approximately every second, the

device analyzes the population of *20,000 intact peptides that

most recently exited from the liquid chromatography column.

Then, based on this initial analysis, the machine selects

approximately five distinct peptide species for fragmentation.

Each of these fragmented species is isolated and subjected to a

second round of mass spectrometry analysis. The resulting

‘‘fragmentation spectra’’ are the primary output of the experiment.

A sample fragmentation spectrum is shown in Figure 1B.

During the fragmentation process, each amino acid sequence is

typically cleaved once, so cleavage of the population results in a

variety of observed prefix and suffix sequences. Each of these

subpeptides is characterized by its mass-to-charge ratio (m/z,

shown on the horizontal axis) and a corresponding intensity

(unitless, shown on the vertical axis). The primary analysis

challenge is to infer, for each observed fragmentation spectrum,

the peptide sequence that was responsible for generating the

spectrum.

Peptide and Protein Identification

The Spectrum Identification Problem
The spectrum identification problem is difficult to solve

primarily because of noise in the observed spectrum. In general,

the x-axis of the observed spectrum is known with relatively high

precision. However, in any given spectrum, many expected

fragment ions will fail to be observed, and the spectrum is also

likely to contain a variety of additional, unexplained peaks. These

unexplained peaks may result from unusual fragmentation events,

in which small molecular groups are shed from the peptide during

fragmentation, or from contaminating molecules (peptides or other

small molecules) that are present in the mass spectrometer along

with the target peptide species.

In practice, solutions to the spectrum identification problem fall

into four general categories. By far the most commonly used

approach is database search. The first computer program to use a

database search procedure to identify fragmentation spectra was

SEQUEST [3], and SEQUEST’s basic algorithm (not including the

function used to score individual peptide-spectrum matches) is still

used by essentially all database search tools available today. The

approach is as follows. We are given a spectrum S, a peptide database

P, a precursor mass m (i.e., the observed mass of the intact peptide),

and a user-specified precursor mass tolerance d. The algorithm

extracts from the database all peptides whose mass lies within the

range ½m{d,mzd�. These comprise the set of candidate peptides

C(m,P,d)~fp : p [ P; jm(p){mjvdg

where m(p) is the calculated mass of peptide p. In practice, depending

on the size of the peptide database and the precursor mass tolerance,

the number of candidate peptides ranges from hundreds to hundreds

of thousands. Each candidate peptide p is compared to the observed

spectrum using a score function J(:,:). Frequently, the score function

generates a theoretical spectrum for the given peptide and then

compares the observed and theoretical spectra to one another. The

program reports the candidate peptide that scores highest with

respect to the observed spectrum:

Figure 1. Overview of shotgun proteomics data production. (A) Schematic of a typical shotgun proteomics experiment. The three steps—(1)
cleaving proteins into peptides, (2) separation of peptides using liquid chromatography, and (3) tandem mass spectrometry analysis—are described
in the text. (B) A sample fragmentation spectrum, along with the peptide responsible for generating the spectrum.
doi:10.1371/journal.pcbi.1002296.g001
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arg max
p[C(m,P,d)

J(S,p):

Database search methods differ primarily in their choice of score

function.

An alternative to database search is de novo spectrum

identification, in which the ‘‘database’’ of candidate peptides

consists of the entire universe of possible amino acid sequences. A

variety of graph-based dynamic programming methods can

efficiently solve this problem, but in practice many spectra do

not contain sufficient information to uniquely identify the correct

peptide. Consequently, de novo identification methods generally

fail to provide as many correct identifications as database search

methods. Conversely, of course, de novo approaches are necessary

when a peptide database is unavailable—i.e., for analysis of

organims whose genomes have not yet been sequenced—or when

the user is interested in identifying novel protein isoforms or

polymporphisms.

Tag-based methods occupy an appealing middle ground be-

tween database search and de novo methods. Here, the basic idea

is to use de novo analysis to identify a collection of subpeptides

(‘‘tags’’) that are hypothesized to occur in the sequence, and then

extract candidates from a database that contain the tags. Tag-

based methods can be quite fast, and retain the ability to partially

identify spectra for which the corresponding peptide is not in the

database.

Finally, so-called library search methods identify spectra by

comparing them to a library of previously identified spectra. These

methods suffer a bit from a chicken-and-egg problem, in the sense

that you must first somehow identify the spectra that go into the

library. However, once you have successfully built such a library,

searching an observed spectrum against real spectra is likely to give

better results than searching against theoretical spectra. The

caveat is that you have to be sure that your library does not

contain false positives or chimeric spectra, i.e., spectra that were

generated by a heterogeneous population of two or more co-

eluting peptides.

Machine learning methods have been applied extensively to

the spectrum identification problem, primarily as post-processors

that discriminate between correct and incorrect identifications.

Using methods such as support vector machines [4], linear

discriminant analysis [5], or decision trees [6], these methods can

dramatically increase the percentage of spectra from a given

experiment that are confidently identified. Particularly powerful

are semi-supervised learning methods [7,8] that dynamically

adjust their ranking scheme on the basis of characteristics of a

given data set.

Protein Identification
Once the peptide responsible for generating each observed

spectrum has been identified, the downstream task of deciding

which proteins are present in the sample seems like it should

involve a straightforward process of aggregating evidence over all

the spectra associated with a given protein. Unfortunately, this task

is made much more difficult by the presence of so-called

degenerate peptides, i.e., peptides that occur in multiple proteins.

Protein identification algorithms have improved significantly

over the last decade. Early methods used simple heuristics to

identify high-confidence proteins that contain a specified number

of high-confidence peptide assignments [9]. A more sophisticated

version of this approach employs a parsimony argument and

attempts to find a minimal set of proteins that explain the observed

identified spectra [10]. The most widely used method is pseudo-

probabilistic, employing an expectation-maximization-like proce-

dure to apportion evidence from each degenerate peptide among

its corresponding parent proteins [11]. Other, related approaches

either handle peptide degeneracy in a similar, heuristic fashion

[12–14] or ignore the degeneracy entirely [15,16]. Only recently

have several groups proposed algorithms that directly solve the full

protein identification problem within a rigorous probabilistic

framework [17,18].

Computational and Statistical Challenges
Despite the almost dizzying array of existing methods for

identifying peptides and proteins from shotgun proteomics data

(reviewed in [19]), many significant analytical challenges remain.

Perhaps most ob-

vious is the need for algorithms that successfully identify proteins

that are not in the database, either because they are polymorphic

or because they contain post-translational modifications. The

difficulty here is two-fold: how to make the search efficient, and

how to successfully control the rate of false positive identifications,

especially in the case when a wide variety of polymorphisms or

modifications are allowed.

More fundamentally, the spectrum identification problem could

likely benefit from the application of a rich, generative model of

the peptide fragmentation process. Several such models have been

described in the spectrum identification literature [20,21], but

none take into account the relatively rich literature on peptide

fragmentation (reviewed in [22]).

A source of ongoing confusion and controversy in the field is the

assignment of statistical confidence estimates to spectrum, peptide,

or protein identifications. Varying protocols have been proposed,

based upon empirical null distributions created by searching the

spectra against a ‘‘decoy’’ database of shuffled or reversed peptide

sequences [23,24], upon procedures that involve fitting a para-

metric distribution to the empirical score distribution [25–27], or

upon score functions for which exact p-values can be calculated

under a simple zero-order Markov null model of peptides [28].

Critical assessment and comparison of many of these methods,

especially with respect to potential biases incurred during eva-

luation of new algorithsm, is lacking in the literature. Furthermore,

extending a statistic that is calculated with respect to individual

spectra up to the peptide and protein levels is a non-trivial and

relatively unexplored subject.

Historically, the development of tools for analyzing shotgun

proteomics data has occurred in a stepwise fashion. The result is

that small subtasks—assigning charge states to spectra, mapping

peptides to spectra, re-ranking and assigning statistical confidence

to spectrum identifications, and computing protein-level posteri-

ors—have been solved separately. Clearly, in the long run, this

piecemeal approach should be replaced by a joint model in which

all relevant aspects of the experiment are taken into account. Such

a joint model has the potential to model dependencies among

variables at the spectrum, peptide, and protein level that are

currently decoupled.

A perhaps equally challenging task is to convey the results of

such a rich model to the user in a useful fashion. With current

probabilistic protein identification tools, the standard approach of

reporting a ranked list of proteins is insufficient. Even when we

allow the list to contain groups of redundant proteins (i.e., protein

isoforms that are indistinguishable on the basis of the observed

spectra), crucial information about dependencies among the

protein identifications is lost. For example, it is difficult to convey

the information that, e.g., either protein A or protein B was

present in the sample, but probably not both.
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Another area where proteomics is in great need of guidance is

experimental design. Proteomics experiments can be expensive

and time consuming, yet most are being pursued without proper

care in minimizing batch or systematic effects. Furthermore, most

proteomics experiments are not powered correctly. Like gene

expression analyses previouly, proteomics practices could benefit

greatly from lessons learned in experimental design from classical

statistics.

Protein Quantification

The next logical step, after developing methods to identify the

proteins in a complex mixture, is to develop methods to quantify the

proteins. Quantification provides a more complete picture of the

molecular contents of the cell, and allows us to generate or test

specific hypotheses regarding the relationship between protein

abundance and fundamental cellular processes or disease states.

Existing methods for protein quantification fall into three

categories. Stable isotope labeling methods [29] perform relative

protein quantification by incorporating a distinct heavy isotope tag

to a sample to use as an internal standard. This labeled internal

standard is then mixed into one or more other samples, and the

relative signal intensity of the peptide measured by the mass

spectrometer is compared to the measured intensity of the same

peptide containing the heavy stable isotope label. This type of

approach is quite powerful but the isotopic labeling step imposes

significant overhead and limits the general applicability of these

methods. Spectral counting methods [30–33] rely on counting the

number of spectra that map to a given protein across multiple

experiments. Spectral counting methods are not very accurate,

because these methods fail to take into account the data-dependent

acquisition that leads to the selection of peptides for fragmenta-

tion. However, spectral counting is appealing because the required

counts are relatively easy to compute. Finally, peptide chromatographic

peak intensity methods [34–37] use the area under the precursor ion

peak as a proxy for peptide abundance. In contrast to spectral

counting, methods based on peak areas are potentially much more

accurate, but these methods require highly reproducible liquid

chromatography as well as accurate methods for chromatographic

alignment and identification of relevant spectral features.

Most of the mass spectrometry quantification literature focuses

on measuring the relative abundance of the same protein across

different samples. This allows, for example, comparing protein

expression across different patients, tissues, or developmental

stages. More difficult is estimating the relative abundance of two

proteins within the same sample. For this task, the most commonly

used, low-throughput approach is to calibrate the response of an

individual peptide in a targeted selective reaction monitoring

method (described in the next section). For large-scale quantifi-

cation of many proteins, a few methods use a standard shotgun

proteomics experiment, and either use a simple learning procedure

[30] or rely on the observation that the three most intense peptides

ionize similarly between proteins [38,39].

Targeted Proteomics

Many high-throughput proteomics experiments aim to identify

or quantify all proteins in a complex sample. In contrast, selected

reaction monitoring (SRM) experiments [40,41] seek to quantify a

smaller, specified set of proteins, e.g., a panel of biomarkers or

members of a pathway of interest.

In an SRM experiment, the mass spectrometer is set to monitor

the m/z values for a small number of peptides, as well as a specific

fragment ion for each peptide. Each m/z pair, corresponding to

the intact peptide and its fragment ion, is called a transition.

Monitoring a small number of transitions, rather than scanning

the entire m/z range, yields dramatically increased sensitivity

relative to conventional ‘‘full scan’’ techniques. The goal of SRM

is to select transitions that best detect the proteins of interest,

subject to the constraint that such experiments can monitor only

*1,000 transitions per run in an automated fashion [42]. Thus,

two complementary criteria must be optimized: (1) detect as many

proteins of interest as possible and (2) accurately estimate the

abundance of the monitored proteins.

Existing SRM pipelines typically focus on so-called proteotypic

peptides [43] that can be easily observed in a mass spectometry

experiment and that uniquely identify a specific protein. A variety

of methods exist for identifying proteotypic peptides, either based

on empirical rules [44,45] or machine learning methods

[43,46,47]. After identifying these peptides, SRM protocols

typically use them as independent protein identifiers [48], with

each peptide contributing equally to the evidence for that protein.

What is missing is a method to search for a panel of peptides that

jointly provide high quality quantification information about all of

the target proteins.

Outlook

Traditionally, most proteomics analysis has been carried out

using relatively inexpensive ion trap instruments, which offer fairly
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low precision and accuracy on the m/z axis. Higher resolution

instruments, which achieve precision of ,10 ppm, were expensive

and hence more rare. However, with the introduction of Orbitrap

and improved quadrupole time-of-flight mass spectrometers [49],

high-resolution instruments have become much more common-

place. Corresponding analytical methods that fully exploit the

information available from high-resolution spectra have not used

these data to their full potential.

In a mass spectrometer, intact peptides are characterized in an

initial scan, followed by a series of secondary scans that cha-

racterize fragmented versions of the same peptides. The most

common means of fragmenting peptides between the two scans is

collision-induced dissociation, in which the charged peptides

collide with neutral molecules such as helium, nitrogen, or argon.

However, a variety of other fragmentation methods have been

developed, including electron-capture dissociation, electron-trans-

fer dissociation, and infrared multiphoton dissociation [50], and

these can provide fragmentation spectra with quite different

properties. More recently, some protocols have been developed to

alternate between different types of fragmentation methods, with

the aim of observing two complementary spectra representing

each peptide [51]. Most existing analysis pipelines are tuned to

handle one or two of the resulting types of spectra. Although some

search engines allow users to select which types of fragmentation

ions are included in the search, and some progress has been made

recently toward developing score functions that can be adapted to

various types of spectra [52], the field is still missing a generic

analysis platform that can be adapted automatically and in a

principled fashion to handle spectra produced by any given

fragmentation protocol.

An interesting consideration is that as the scan speeds of tandem

mass spectrometers increase, the difference between targeted and

discovery proteomics will become more and more blurred. As an

instrument becomes capable of collecting MS/MS spectra contin-

uously across the chromatographic time-scale on an increasingly

larger number of peptide precursors, the ‘‘m/z space’’ that remains

unsampled will become less significant. Approaches that improve

sampling by multiplexing the collection of fragmentation data are

promising, but require methods to deconvolve the resulting mixed

spectra. Such approaches fall under a general category known as

data-independent acquisition because they collect their fragmentation

data independently of whether a signal is observed within a par-

ticular precursor m/z window. Some initial attempts to interpret

these data have shoe-horned traditional proteomics analysis pipe-

lines to handle these data [53,54]. Other workflows that have been

developed specifically for these unique data have remained pro-

prietary and, thus, not attracted much effort from the academic

community to build and improve on these analyses.

One challenge that remains is enabling computational and

experimental scientists pursuing proteomics to interact effectively.

Frequently, experimentalists design new experiments using subop-

timal analysis tools because they do not have the skills or knowledge

to pursue alternatives. Likewise, computational scientists can ex-

pend a large amount of energy developing solutions to problems

that are not interesting to experimentalists. The challenge remains

how to get scientists from different disciplines that are based on

different cultures and who speak different scientific languages to

communicate and collaborate effectively. The RECOMB Satellite

Conference on Computational Proteomics is one attempt to solve

this problem. Speakers are brought from both the computational

and experimental backgrounds. This meeting provides a forum for

experimentalists to present problems that they are facing and for

computational scientists to present algorithmic and statistical

approaches that they have been developing. Ultimately, we need

more meetings that foster collaboration between disciplines.
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