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Abstract

Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus
properties. It has been argued that synchronized oscillations contribute to these gamma-band activity. However, analysis of
Local Field Potentials (LFPs) across different experiments reveals considerable diversity in the degree of oscillatory behavior
of this induced activity. Contrast-dependent power enhancements can indeed occur over a broad band in the gamma
frequency range and spectral peaks may not arise at all. Furthermore, even when oscillations are observed, they undergo
temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma
oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study
a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the
stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without
developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes
synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a
consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the
oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. We show that the strength of the inter-
layer coupling crucially affects this spatiotemporal structure. We predict that layer VI inactivation should induce global
changes in the spectral properties of induced LFPs, reflecting their slower temporal decorrelation in the absence of inter-
layer feedback. Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in
fact very general. It stems from the fact that gamma oscillations induced by local delayed inhibition tend to develop chaos
when coupled by sufficiently strong excitation.
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Introduction

An increase of activity in the gamma band (30–100 Hz) is

observed in Local Field Potential (LFP) and Multi-Unit Activity

(MUA) recordings [1–14], as well as in EEG and Electrocortico-

gram studies [15,16] in primary visual cortex (V1) upon visual

stimulation. Gamma activity is modulated by properties of the

presented stimulus, such as orientation [2,14,17], contrast [7,9,18],

velocity [3,4] or size [12], much more strongly than the change in

power in other frequency bands [19,20]. Local GABA-ergic

interneuronal networks are thought to play a key role in the

production of neuronal activity in the gamma range ([21], see [22]

for a review), as upheld as well by recent results obtained through

optogenetic techniques in-vivo [23,24].

Modeling works have provided a theoretical basis to account for

the way in which networks of inhibitory interneurons can generate

synchronous oscillatory activity in the gamma range [25–30]. In

brief, in one possible scenario, the dynamics of the inhibitory post-

synaptic currents is non-instantaneous (due to axonal delays, but

also simply to finite synaptic time-constants). This contributes to

create narrow time-windows in which excitatory and inhibitory

neurons can fire closely in-phase, before being prevented to do so

by a delayed inhibitory feedback. Therefore delayed inhibition,

without need of an active involvement of excitatory populations, is

capable inducing collective synchronous oscillations in neuronal

activity. The frequency of these oscillations falls in the gamma

band if the synaptic time constant of the inhibition is in an

appropriate range. If a network operates in such a synchronous

regime the neurons are engaged into approximately periodic

collective oscillations involving a macroscopically large number of

neurons. Therefore these oscillations are weakly affected by local

noise and they maintain coherence over arbitrarily long time

intervals. Power spectra of population observables of the network

activity (e.g. LFP or MUA) exhibit narrow harmonic-like peaks

and the damping of the corresponding autocorrelograms is slow.

Peaks in the gamma-band have been identified in the LFP or

MUA spectra of induced activity in-vivo in V1 [1–4,12]. However,

in general these peaks are very broad and in many cases they are
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virtually indistinguishable as the stimulus-modulated gamma

power of the signals spreads across a broad-band frequency

interval [7,9,10,31–33]. Characterization of the spatio-temporal

structure of the gamma induced activity by means of auto-

correlations (AC) and cross-correlations (CC) of single-unit, multi-

unit and LFP signals has also revealed that the neuronal activity

has a tendency to oscillate, which can be stronger or weaker,

depending on the considered experiment. In some cases the

oscillatory components of ACs and CCs of the induced activity

display many cycles before getting damped [1,2,12,14]. In other

cases, however, the oscillations are completely damped after one

or two cycles [3,8,13,17]. The existence of different dynamical

regimes might underlie this observed diversity.

For the mathematical abstraction of infinitely large networks,

sharp boundaries between asynchronous and synchronous dy-

namical states exist [34], but for networks of a finite size such

transitions are fuzzier [25,34,35]. Consequently, if the network

does not operate too far from the instability to collective

oscillations, in a regime which is formally defined as asynchronous

–see [34,35] and below for the definition–, the dominant normal

modes of the network, which describe its response to small

perturbations, can display damped oscillations at gamma frequen-

cies. Local noise can excite these modes, inducing short-lived

episodes of synchronous oscillatory activity. However, since these

episodes are transient, the subsequent increase in power at gamma

frequencies is broad-band. Induced broad band gamma power

increases in V1 can therefore be accounted for if one assumes that

the V1 network operates in such an asynchronous regime at the

edge of developing synchrony [36–38]. In this regime, correlations

in the spikes as well as in the membrane potentials of pairs of

neurons are in general weak unless the neurons are connected via

strong and direct synapses. However, in order to get a significant,

although damped, oscillatory component in the macroscopic

activity, the network must be ‘‘at the edge of synchronization’’. In

models, parameters have to be tuned in such a way to be close to

an instability toward fully-developed synchronous oscillations, and

this tuning have to be tighter, the larger the size of the recruited

network [25,29]. It is not clear how the required fine tuning would

be satisfied given the range of experimental conditions in which

gamma oscillations have been observed.

In the present study we explore another scenario which

reconciles collective synchronous activity with broad-band spectral

modulations and robust fast decoherence. It is based on a

mechanism proposed recently for the emergence of synchronous

chaos in recurrent neural networks [39–41]. In this mechanism,

clusters of neuron undergo a synchronous gamma oscillation due

to local mutual inhibition. These collective gamma oscillations

become chaotic when the neuronal clusters are allowed to interact

through longer-range excitation. The resulting overall patterns of

activity are characterized by synchrony at the population level, but

at a same time display a characteristic lack of temporal regularity

due to chaos. As a consequence, the power of this activity spreads

over a broad interval of frequencies and the oscillatory

components of the autocorrelograms of neuronal activity and

LFP signals are rapidly damped within a few tenths of a

millisecond. In this alternative regime, correlations in the spikes

of pairs of neurons are still weak and go together with the

sparseness of the firing, but correlations in their membrane

potentials can be strong.

We present here a model of a hypercolumn in V1, endowed

with a simplified multi-layer architecture. In order to explain

broad-band contrast-dependent spectral modulations in terms of

synchronous chaos, we need to identify distinct interacting

oscillators within the local cortical circuit. We hypothesize that

neuronal populations within different thalamo-recipient cortical

layers are set into oscillation by increased driving and that the

mutual interaction between these populations, mediated by inter-

layer synaptic connections, supports the development of synchro-

nous chaos. This hypothesis is backed up by anatomical evidence.

Thalamo-cortical synapses, providing direct sensory-induced

driving, indeed target cortical layer IV but also, to a lesser extent,

layer VI [42–46]. Extensive networks of recurrent inhibitory

connections are present within each thalamo-recipient layer

[45,47,48], supporting local generation of oscillations at multiple

depths in the cortical tissue. Finally, stereotyped circuit motifs

provide a bidirectional poly-synaptic connection loop between

thalamo-recipient layers [44–46,49–51].

Relying on extensive numerical simulations, we show that our

model displays broad-band gamma modulations of the spectra of

LFPs upon stimulation of the network at low as well as at high

contrast. Whereas this induced activity is asynchronous at low

contrast, it develops synchrony on a macroscopic scale when the

contrast increases. Therefore we argue that the broad band

gamma power observed in recorded LFP spectra in V1 is

compatible with the existence of visually induced synchronous

oscillatory neuronal dynamics.

Results

Multi-layer hypercolumn model
We model a functional hypercolumn in primary visual cortex as

a large recurrent network of spiking integrate-and-fire-type

neurons. To account in a simplified way for the layered structure

of the visual cortex –a cartoon of which is shown in Figure 1A– the

model network consists of two sub-networks, schematically

representing layers I to IV and layers V to VI. We denote these

two sub-networks as the upper and lower layer respectively

(Figure 1B). Each of these layers comprises NE excitatory and

NI inhibitory neurons, for a total number of N~2(NEzNI )
neurons in the network. Most of the simulations in this study are

performed taking NE~4000 excitatory and NI~1000 inhibitory

Author Summary

Visual stimulation elicits neuronal responses in visual
cortex. When the contrast of the used stimuli increases,
the power of this induced activity is boosted over a broad
frequency range (30–100 Hz), called the ‘‘gamma band.’’ It
would be tempting to hypothesize that this phenomenon
is due to the emergence of oscillations in which many
neurons fire collectively in a rhythmic way. However,
previous models trying to explain contrast-related power
enhancements using synchronous oscillations failed to
reproduce the observed spectra because they originated
unrealistically sharp spectral peaks. The aim of our study is
to reconcile synchronous oscillations with broad-band
power spectra. We argue here that, thanks to the
interaction between neuronal populations at different
depths in the cortical tissue, the induced oscillatory
responses are synchronous, but, at the same time, chaotic.
The chaotic nature of the dynamics makes it possible to
have broad-band power spectra together with synchrony.
Our modeling study allows us formulating qualitative
experimental predictions that provide a potential test for
our theory. We predict that if the interactions between
cortical layers are suppressed, for instance by inactivating
neurons in deep layers, the induced responses might
become more regular and narrow isolated peaks might
develop in their power spectra.

Chaotic Gamma Activity in a Multi-Layer V1 Model
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neurons per layer, leading a total of N~10000 neurons in the

model hypercolumn. This number is one order of magnitude

smaller than estimates of the number of neurons in a real V1

hypercolumn based on neuronal densities recently measured by

[52]. However, it leads to dynamical behaviors similar to larger

network sizes (see following scaling analyses) and constitutes a

compromise for efficient and fast simulations.

Each layer is described by a network with the geometry of a ring

as depicted in Figure 1C, with neurons labeled by angular

coordinates, q, ranging from 290 to +90 degrees [53,54]. The

connections between neurons within each layer are random, with

connection probabilities that depend on the angular distance

between pre- and post-synaptic neurons. Spatial averages and

spatial modulations of connection probabilities are set indepen-

dently for the various kinds of connections (e.g. excitatory-to-

excitatory, excitatory-to-inhibitory, inhibitory-to-excitatory or

inhibitory-to-inhibitory), thus making it possible to vary the spatial

profiles of net synaptic interactions (see Figure 1D, E, F).

Excitatory and inhibitory inter-layer connections are also random

and spatially modulated. All the external inputs to the network are

modeled as stochastic processes (see Methods section). The

neurons receive an external non-selective noisy current represent-

ing background inputs to V1 from other brain areas and a weakly

tuned noisy current which represents visually induced inputs to V1

from converging Lateral Geniculate Nucleus (LGN) synapses [55].

Note that the two main thalamo-recipient layers, i.e. layers VI and

IV, are embedded within two distinct model layers.

Our two-layer circuit embeds in a simplified manner several

known features of the stereotypical interlaminar anatomy of the

columnar microcircuit, in particular, the existence of a layers IV to

VI to IV feedback loop [44,46,50]. Furthermore, a different

degree of spatial modulation for inter-layer excitation and

inhibition mimic the on-center off-surround arrangement of layers

VI to IV projections [56]. In the simulations described below we

assume that the LGN input to the lower layer is weaker (by a

factor of 2) than the input to upper layer to account for the fact

that thalamo-cortical synapses reaching layer VI are smaller in

number than those reaching layer IV [45]. We also assume that

latencies for inter-layer connections are longer than for intra-layer

connections, thus accounting for the multisynaptic nature of this

coupling. Our assumptions on the connectivity, external inputs

and latencies are further commented upon in the Discussion section.

Figure 1. Schematic drawing of the model hypercolumns. A: cartoon of the loop circuit among the 6 layers of striate cortex. Thalamo-recipient
layers are indicated by pink shading. B: two-rings network, corresponding to a hypercolumn with interacting layers. LGN inputs are weaker toward
the lower layer than toward the upper layer. C: the single ring network for each layer of the model hypercolumn. LGN inputs target both excitatory
and inhibitory neurons. D: spatial profile of LGN input. E: spatial modulation of the probability of connections between two cells in the same layer,
separated by an angular distance Dq. Red line: excitatory connections. Blue line: inhibitory connections. F: spatial modulation of the probability of
connections between two cells in different layers, separated by an angular distance Dq. Red line: upper-to-lower layer excitatory connections and
lower-to-upper excitatory connections toward excitatory neurons. Magenta line: lower-to-upper layer excitatory connections toward inhibitory
neurons. Blue line: lower-to-upper and upper-to-lower layer inhibitory connections.
doi:10.1371/journal.pcbi.1002176.g001

Chaotic Gamma Activity in a Multi-Layer V1 Model
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In order to analyze the role of the interlayer interactions in

shaping the spatiotemporal dynamics of our model hypercolumn,

we introduce a parameter 0ƒCƒ1 which homogeneously rescales

the strength of excitatory and inhibitory connections between

layers. For C~1 the interactions between the layers assume their

maximum strength. For C~0 the layers are completely indepen-

dent. In the following, we consider first the dynamics of the

network at full coupling strength, C~1.

Orientation tuning and contrast dependence of induced
response

In absence of ‘‘visual’’ stimuli (contrast level C~0%), the model

hypercolumn is driven only by the non-selective background input.

The resulting spontaneous activity is heterogeneous across the

neurons with average firing rates of 1:2+0:4 Hz and 5+3 Hz for

excitatory and inhibitory neurons, respectively. Differences in the

spontaneous firing rate distributions for upper and lower layers are

not statistically significant at the 5% confidence level. The

spontaneous firing of the neurons is highly irregular due to the

stochasticity of the inputs. For instance, the average coefficient of

variation (CV) of the interspike histogram of excitatory and

inhibitory neurons in the upper layer is CV~0:9+0:2. More

details about rate and CV distributions can be found in Figure S1.

The profile of the activity induced by an oriented stimulus in

both layers, is localized and centered at an angular coordinate

corresponding to the stimulus orientation. Hence, the neuronal

responses are selective to the stimulus orientation. The tuning

curves of individual neurons display some heterogeneity in their

broadness, as exhibited by distributions of peak response rates,

circular variance and skewness of the tuning curves (reported in

Figure S2).

Figure 2A displays the population average tuning curve for

various contrast levels for excitatory neurons in the upper layer.

Comparison between tuning curves at different contrasts reveals

that tuning width is approximately contrast invariant and that the

larger deviations are observed for small contrast levels (tuning

curves normalized to the peak are plotted in Figure S3). This

invariance is achieved as an effect of noise in synaptic inputs

[57,58].

The preferred responses of the excitatory neurons vary non-

linearly with the contrast as depicted in Figure 2B, where the

population average Contrast Response Functions (CRFs) are

plotted for excitatory neurons in the upper layer. It can be fitted by

an hyperbolic ratio function (see Methods section), with mid-range

contrast C50&15% and an exponent of n&5 (upper layer

neurons). This nonlinear dependence stems from the fact that

increased sensory-driving yields larger inhibitory neurons activity

which in turn is responsible for the saturation of the excitatory

population response [59]. The CRFs of inhibitory neurons show a

much weaker tendency to saturation at large stimulus contrasts

which is due to the logarithmic dependency on the contrast of their

external input. The CRFs of single neurons are heterogeneous, in

qualitative agreement with experimental reports [60] (see Figure

S4). The contrast response functions of the lower layer are

homologous, but the induced responses are approximately twofold

smaller, due to the weaker LGN driving.

The dynamical state of the network depends on the
stimulus contrast

For zero contrast, the synchrony level in the spontaneous

neuronal activity is small, as denoted by a small value of the

synchrony factor x. This factor, defined in the Methods section,

quantifies global synchrony over a network and is bounded

between 0 and 1. For a network of size N~10000, the synchrony

factor for spontaneous activity assumes the value x~0:02.

Furthermore, it vanishes consistently as x!
1ffiffiffiffiffi
N
p for larger network

sizes, allowing us to classify formally the state of the network as

‘‘asynchronous’’ (see later discussion, Methods section and

[34,35]).

The single neuron and population responses of the network

induced by visual stimulation are illustrated in Figure 3, for a low

contrast stimulus (C~2%), and in Figure 4, for a large contrast

stimulus (C~95%). We focus first on the low contrast case. The

raster plot of the spike activity of all the excitatory neurons in the

upper layer is plotted in Figure 3A. It suggests that the firing is

highly irregular (the mean CV of the upper layer excitatory

neurons is 0:9+0:1, see Figure S1) and that the network activity of

the network is only weakly synchronized. This is confirmed in

Figure 3B where the spike trains of six upper layer cells stimulated

within +50 from their preferred orientation are plotted. The

neurons fire without any noticeable synchrony. Figure 3C displays

the voltage traces of two of these neurons. The comparison

between the sub-threshold fluctuations in the two traces does not

reveal any significant correlation. To further quantify the

correlations in the supra and subthreshold activity of the neurons

we compute the zero delay pairwise correlation coefficients (CCos)

of the spikes and the membrane potential traces for a large

number of pairs formed by highly active neurons with preferred

orientation within +90 from the presented stimulus (see Methods

section and Figure S5 for details). The resulting histograms are

shown in Figure 3D (spikes: left, cyan color; voltage: right, blue

color). They are peaked around zero with a mean statistically

indistinguishable from zero (0:000+0:001 for spikes and voltage).

Figure 2. Response tuning and contrast response. A: tuning curves for different contrast levels (re-centered average over NE = 4000 excitatory
neurons in upper layer). Solid lines represent Gaussian fits. B: contrast response functions. Blue curve: average over NI = 1000 inhibitory neurons in the
upper layer. Red curve: average over NE = 4000 excitatory neurons in the upper layer. Solid lines represent hyperbolic ratio fits.
doi:10.1371/journal.pcbi.1002176.g002

Chaotic Gamma Activity in a Multi-Layer V1 Model
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Almost all the CCos are weak for the spikes as well as for the

voltage traces (CCos larger than 0.25 occur only for 2% of the

pairs when considering spike CCos, and for 0.1% of the pairs

when considering voltage trace CCos). These results are consistent

with a very weak synchronization in the network activity. This is in

line with the small value of the synchronization factor, which is

only x~0:03. Auto- and crosscorrelograms of spike trains and

membrane potential traces of three representative neurons are also

shown in Figure 5A,B. The pairwise crosscorrelograms of both

spikes and voltages do not display any persistent oscillatory

component, even when two cells share a same orientation

preference.

The dynamical state of the network is qualitatively different for

a high contrast stimulus. For C~95% the neurons are engaged

into a collective pattern of synchronous oscillations in contrast to

what happens for C~2%. This is clear from the raster plot in

Figure 4A. Figure 4C plots the membrane potential traces of two

neurons. Comparison of these traces suggests that now the

subthreshold membrane fluctuations of the neurons are strongly

correlated across the network. As a matter of fact, the synchrony

factor, x, which characterizes the degree of synchrony in the

subthreshold activity at the network level, is x~0:75. However

action potentials are much less synchronized, as suggested by the

comparison of the spike trains of the six neurons plotted in

Figure 4B: although multi-neuron coincidences in firing (denoted

by vertical grey bars) can be detected, the overall synchrony is

weak. This substantial difference in the strength of the pair

correlations in supra and subthreshold activities is clear in

Figure 4D. All the CCos of the subthreshold membrane potentials

(red histogram) are large and sharply distributed around 0.75

(standard deviation of +0:03) whereas the distribution of the spike

trains CCos (magenta histogram) has a mean which is only

Figure 3. Low contrast dynamics. Dynamics of the upper layer for the presentation of a 2%-contrast stimulus. A: raster plot of the excitatory
population activity and associated time-histogram of the rate of spiking cells. The histogram bar heights denote the fraction of upper layer excitatory
cells that fire in the bin. Bin-size is 2 ms. B: spike trains of 6 excitatory cells highly activated by the presented stimulus. C: membrane potential traces
for two neurons stimulated simultaneously at close-to-preferred orientation (2 top neurons of Panel B in red and green). D: pairwise correlations
between spike trains (left, cyan histogram) and membrane potentials (right, blue histogram) of highly active neurons.
doi:10.1371/journal.pcbi.1002176.g003

Chaotic Gamma Activity in a Multi-Layer V1 Model
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0:097+0:002. Remarkably, the firing activity continues to be

highly irregular, despite the high degree of synchrony (mean CV of

upper layer excitatory neurons is CV~1:0+0:2, see Figure S1).

Auto- and crosscorrelograms of spike trains and membrane

potential traces of three representative neurons are shown in

Figure 5C,D. The pairwise crosscorrelograms of voltages display

now a clear oscillatory structure, which is however completely

damped after only two or three cycles. Note that oscillatory

correlations are evident even when the difference of preferred

orientation is large (w200). Note however that pairwise cross-

correlograms of spike trains do not display any marked oscillation

even when the two considered cells have similar preferred

orientations. We stress that the small mean value CCos and the

lack of a clear oscillatory structure in the crosscorrelograms for

spike trains, in both the low and the strong contrast case, is

associated to the irregularity and the sparseness of single neuron

firing.

These results indicate that synchrony in the population activity

increases with the contrast. As a matter of fact, the synchrony

measure x varies abruptly around a contrast value of *10%, as

shown in Figure 6A. This is even sharper with larger network sizes

(compare in Figure 6A, the solid line which is for N~10000 with

the dashed line which is for N~40000). Moreover, a systematic

analysis of the dependency of x on the size N reveals that for

C=10%, x (low contrast regime) vanishes consistently with N,

x!
1ffiffiffiffiffi
N
p , while for C>10% (large contrast regime) it converges toward

a constant non zero value (Figure 6B). Hence, the network operates

in qualitatively different regimes at low and high contrast. Whereas

the network state can be classified as asynchronous in the low

contrast regime (and in the spontaneous activity regime), it is

synchronous in the high contrast regime. This sharp variation of

synchrony is indicative of a phase-transition occurring for increasing

contrast, due to an increased drive to the network (see Discussion).

Figure 4. High contrast dynamics. Dynamics of the upper layer for the presentation of a 95%-contrast stimulus. A: raster plot of the excitatory
population activity and associated time-histogram of the rate of spiking cells. The histogram bar heights denote the fraction of upper layer excitatory
cells that fire in the bin. Bin-size is 2 ms. B: spike trains of 6 excitatory cells highly activated by the presented stimulus. C: membrane potential traces
for two neurons stimulated simultaneously at close-to-preferred orientation (2 top neurons of Panel B in red and green). D: pairwise correlations
between spike trains (magenta histogram) and membrane potentials (red histogram) of highly active neurons.
doi:10.1371/journal.pcbi.1002176.g004

Chaotic Gamma Activity in a Multi-Layer V1 Model
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To characterize further how the population dynamics depend

on the contrast we compute the autocorrelation, AC(t) of the LFP

signals induced by stimuli oriented at the preferred orientation of

the recording site (see Methods for the way we define the ‘‘LFP’’

signals in the framework of our model and Figure S6 for examples

of LFP traces). The result for low contrast, C~2%, is plotted in

Figure 7A, B. The amplitude of the (non-normalized) AC at zero

delay, AC(0), is small and decreases with the network size as

1=
ffiffiffiffiffi
N
p

. Similarly, the small oscillatory component of the AC

disappears gradually for increasing network sizes (Figure 7B). This

Figure 5. Pairwise crosscorrelations of spike trains and membrane potentials. Autocorrelograms and pairwise crosscorrelograms of spiking
activity and membrane potentials for three upper layer excitatory neurons. A: spiking activity, low contrast, C = 2%. B: membrane potential, low
contrast, C = 2%. C: spiking activity, high contrast, C = 95%. D: membrane potential, high contrast, C = 95%. Auto- and crosscorrelograms are
normalized (for zero time-lag, autocorrelograms peak at one and crosscorrelograms at the correlation coefficient). The units for the time-lag axis are
ms. Colors are as in Figures 3D and 4D. Rows and columns correspond to different neurons. The angular coordinates of the three neurons are 0u,
210u and 10u.
doi:10.1371/journal.pcbi.1002176.g005

Figure 6. The Measure of synchrony as a function of the contrast and different network size. A: The synchrony measure, X , increases
abruptly with the stimulus contrast N = 10000 (solid line) and N = 40000 (dotted line). B: The synchrony measure X as a function of the network size
for spontaneous activity (zero contrast, grey line), low contrast (blue line) and high contrast (red line). The dashed line corresponds to a power-law
decay with exponent 20.5, denoting a regime of asynchronous activity.
doi:10.1371/journal.pcbi.1002176.g006

Chaotic Gamma Activity in a Multi-Layer V1 Model
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is because the network state is asynchronous and in a larger

network more cells contribute to the LFP signal (see also Methods

section).

The fact that at high contrast, C~95%, the network is engaged

in collective synchronous activity is manifest in Figure 7C,D:

AC(0) is now large, it does not vanish in the large N limit and is

almost independent of N for Nw10000. However, and remark-

ably, the induced dynamics exhibit a spatio-temporal structure

which is more complex than a periodic regular oscillation of the

population activity: the time interval between consecutive episodes

of synchronous activity displays cycle-to-cycle fluctuations as can

be observed in the raster plotted in Figure 4A). As a result, the LFP

autocorrelogram is rapidly damped. Although it displays some

secondary peaks their amplitudes are very small as shown in

Figure 7C. The damping of the AC oscillations is even faster for

larger network sizes (Figure 7D). Note that autocorrelations for

intermediate contrast values are also rapidly damped (see Figure

S6). A moderate tendency to period doubling, manifested by a

second autocorrelogram peak slightly larger than the first

autocorrelogram peak, is observed in our model. To our

knowledge this has not been observed in experimental studies.

However, this feature disappears for larger network sizes or

stronger inter-layer coupling.

LFPs induced by non-preferred stimulus directions display as

well oscillatory components, for both low and high contrasts.

Induced LFPs are correlated over the entire ring network as

revealed by crosscorrelation analysis, confirming that sub-

threshold coherence can exist independently from correlations in

spiking activity (see Figure S6).

Finally, we consider the spectral properties of induced LFPs,

and their relation with MUA observed at a same location. The

dependency on the contrast of the power spectra of the LFPs

induced by preferred-orientation stimuli is shown in Figure 8A.

The low-frequency part of the power spectra is weakly dependent

on the stimulus contrast. Rather, it is shaped by the properties of

cortical background activity, modeled as a stochastic Ornstein-

Uhlenbeck noise with a frequency cutoff (see Methods section and

[61]). This should be compared to the boosting of the power as the

contrast increases for frequencies w30 Hz. Although the network

activity becomes much more synchronous at large contrast as

explained above, power spectrum modulations are not limited to

narrow peaks, but, even at the highest contrast, the whole

frequency range comprised between 30 and 100 Hz is boosted. In

this same broad frequency range in which contrast-dependent

power modulations occur, the LFP displays phase-synchronization

with the MUA at a same location, as measured by a MUA-LFP

coherence increasing with contrast (see Figure 8B). Interestingly,

the MUA-LFP coherence, even at full contrast, rises only at an

average peak level of approximately 0.3, compatible with

physiologic ranges of synchronization [9,62]. This can be

explained by the random-like variability of single neuron firing –

inherited by the MUA signal, which reflects the spiking activity of

only a limited number of single units (see Methods section)–, but

also by the lack of phase autocoherence in the LFP signal itself (see

[63]).

The spatio-temporal structures of the induced activity in the

lower and in the upper layers are similar. In our simulations, the

lower layer average firing rate is approximately half of that in the

upper layer, reflecting weaker driving from LGN. Cross-

correlation analysis of the LFPs in the two layers shows that the

lower layer oscillations lag behind those in the upper layers (see

Figure S7). Note that larger response latencies in deep layers have

been experimentally observed in specific conditions [64,65].

However, the multi-layer structure in our model is too schematic

to capture quantitatively such inter-layer relations. In particular,

the difference in response rate and the exact locking pattern

between layers depend in our model on the parameters of LGN

input and inter-layer coupling. On the contrary, the synchroni-

Figure 7. The autocorrelograms of the local field potentials. A–B: low contrast, C = 2%. C–D: high contrast, C = 95%. Scalings of non-
normalized autocorrelograms are shown in B and D. In both cases the damping of secondary peaks is faster for larger network sizes. Zero-lag
autocorrelation vanishes for large sizes at low contrast but not at high contrasts. Non-normalized autocorrelations are measured in nA2.
doi:10.1371/journal.pcbi.1002176.g007
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zation and the fast decorrelation of induced oscillations are robust

against changes in these parameters (see later Discussion).

The role of inter-layer coupling in destroying the
temporal coherence of the oscillations

In order to explore the role played by the inter-layer

interactions, we investigate in the following how the dynamics in

the high contrast regime is affected by a change of this coupling.

More specifically, we rescale the peak conductances of all the

synapses between cells in different layers by a same factor

0vCv1 (C~1 and C~0 correspond respectively to fully coupled

and fully decoupled layers).

Upon layer-decoupling the mean firing rate of the excitatory

and inhibitory cells increases in the upper layer (Figure 9A).

However response rate changes are highly heterogeneous across

cells and, in some cases, the peak rate is even slightly reduced. An

analogous heterogeneity is observed in the changes in the

preferred orientation, skewness and tuning width. However, even

though changes after complete layer decoupling can be significant

for specific cells, the distribution of tuning curve parameters over

the entire upper layer excitatory neurons population is only weakly

altered. Details are shown in Figure S8.

Another effect of layer decoupling, albeit moderate, is that the

degree of synchrony in induced activity decreases monotonically

with C (Figure 9B). For instance, the synchrony factor is x~0:75
for C~1, but decreases to x~0:71 when C~0:5, and drops

further to x~0:67 for fully decoupled layers.

The most striking consequence of the reduction in inter-layer

coupling is the progressive qualitative change in the shape of the

LFP autocorrelograms and power spectra as C decreases. This is

depicted in Figure 9. For 80% coupling strength (C~0:8), the

autocorrelogram of LFP and the corresponding power spectrum

are similar to what is found in the fully-coupled case (fast temporal

decorrelation and broad plateau-like peak in the gamma spectral

band, see Figure 9C, D). However, for a 60% coupling strength

(C~0:6), the LFP temporal decorrelation becomes considerably

slower and the envelope of the autocorrelogram displays

amplitude modulations indicating that the LFP signal is quasi-

periodic. In parallel, the gamma-band spectral plateau is replaced

by a system of narrow peaks at incommensurate frequencies. The

raster plot of activity (not shown) continues to display a temporally

irregular oscillation; however spatial fluctuations in the width of

consecutive bumps of spiking activity are reduced with respect to

the fully-coupled case. For further reduction of the interlayer

Figure 8. Spectral properties of the LFP and MUA for different contrasts. A: Power spectra for the LFP induced by a stimulus at preferred
orientation. Isolated peaks do not appear even for very high contrast stimuli. B: Average coherence spectra between the MUA and the LFP induced at
a same location by a stimulus at preferred orientation. MUA-LFP coherence and LFP power are modulated by contrast changes in the same broad
frequency range in the gamma band (30–100 Hz).
doi:10.1371/journal.pcbi.1002176.g008
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coupling to C~0:2, the LFP autocorrelogram starts revealing

periodicity of the signal over long time scales. The multiple narrow

spectral resonances merge into a single prominent resonance in the

gamma-band and secondary harmonic peaks also appear. Finally,

for C~0 (Figure 9E, F), the LFPs are still substantially

autocorrelated after several hundredths of ms. Spectra in the

synchronous regime are harmonic at any contrast level. More

details about the high contrast regime for completely uncoupled

layers are presented in Figure S9.

Interestingly, qualitative modifications of the population

dynamics when C is varied do not occur in the low contrast

regime, in which collective oscillations do not develop. As a matter

of fact, independently of the coupling strength C, induced activity

is asynchronous. Spiking and LFP responses to a low contrast

stimulus between completely uncoupled or fully coupled layers are

practically indistinguishable (not shown).

Stimulus repetition and chaotic sensitivity to initial
conditions

Up to now we have focused on the response of the network to a

time independent stimulus. Here we show that the inter-layer

coupling also strongly affects the response of the model

hypercolumn induced by an external input which varies

periodically, representing visual stimuli to V1 in the form of

flashed or drifting gratings. In this situation, we characterize the

neuronal responses by means of peristimulus time histograms

(PSTHs) which express the probability of observing the firing of a

spike at a given time relative to the onset of each stimulus

presentation (see Methods section). In the following, we focus on

high contrast stimuli.

The PSTH for C~1 is shown in Figure 10A. At the onset of the

stimulus the probability of firing increases sharply, followed by a

transient phase of reduced firing. This feature is not evident in

experimental PSTHs. It is due to the strongly synchronous

recruitment of recurrent inhibition which follows the initial burst

of activity, triggered by the rise of external inputs (instantaneous in

our model). Notwithstanding, after a few tenths of a ms the firing

probability rises again and remains then almost constant. This

reflects the fact that the population responses are highly variable

across trials as is clear in Figure 10B. In each trial the response of

the network consists of a sequence of episodes in which the

neurons tend to fire together. However, there are substantial trial-

Figure 9. Effects of the layer decoupling on the dynamics of the hypercolumn. Changes for decreasing inter-layer coupling and for a
stimulus at high contrast with preferred orientation. A: population average peak firing rate for the excitatory neurons in the upper layer. B: synchrony
level X . C: autocorrelograms of LFPs for intermediate strengths of the inter-layer coupling (C= 0.8, 0.6 and 0.2). D: corresponding LFP power spectra.
E: autocorrelograms of LFP for preferred stimulation at high contrast for the case of fully uncoupled layers (C= 0:0). F: corresponding LFP power
spectrum. Spectra are also plotted for lower levels of contrast and are characterized by a narrow peak at a contrast-dependent frequency.
doi:10.1371/journal.pcbi.1002176.g009

Chaotic Gamma Activity in a Multi-Layer V1 Model

PLoS Computational Biology | www.ploscompbiol.org 10 October 2011 | Volume 7 | Issue 10 | e1002176



to-trial fluctuations in the timing of these episodes and their

amplitude (i.e. the numbers of recruited cells). Consequently,

although the presentations of the stimulus do give rise to

synchronous activity, the PSTH histogram averaged over many

trials is almost flat after a peri-stimulus time on the order of the

short temporal decorrelation time of the induced oscillation.

In contrast, for fully decoupled layers (C~0), the PSTH

averaged over many trials exhibits a long-lasting, although

damped population oscillation, as plotted in Figure 10C. This is

because when the layers are decoupled the oscillations generated

inside the layers are close to being periodic and they maintain

coherence over several hundred milliseconds. Hence the timing of

the oscillations does not fluctuate much across trials (Figure 10D).

Population oscillations are thus masked by averaging across

multiple stimulus repetitions only after many cycles.

The large trial-to-trial variability displayed by the network for

C~1 (Figure 10C) indicates a strong sensitivity to initial conditions

(i.e. the network configuration at the onset of the stimulus). To

further illustrate this sensitivity, we perturb the dynamics of the

system by omitting artificially a single spike in a single neuron (out

of N~10000) at the center of the bump of induced activity and we

compare then the perturbed and the unperturbed dynamics. The

results of this numerical simulation are illustrated by Figure 11. As

visible from the raster plot (Figure 11A) and the population rate

histogram (Figure 11B) of the upper layer induced activity (at full

contrast), the perturbed and the unperturbed collective oscillations

can be distinguished already after one oscillation cycle. After a few

cycles, they have completely diverged. Such extreme sensitivity to

perturbations or initial conditions is strongly indicative of

dynamical chaos [66]. The sequence of states observed in our

model for decreasing C (from irregular to quasi-periodic to

periodic, see Figure 9C,D) also suggests that chaos might emerge

for strong inter-layer coupling and that its onset might occur

according to a quasi-periodic scenario [66,67]. This is indeed one

of the possible scenarios for the transition to chaos occurring in a

related rate model [41]. As we discuss in detail in the Text S1 and

in the Figure S10, the chaotic nature of the dynamics of the

network for C~1 and high contrast stimuli can be assessed by an

estimation of its largest Lyapunov exponent lmax [66]. A positive

value of this Lyapunov exponent is the manifestation of

deterministic chaos, denoting exponentially fast separation of

trajectories. Using techniques of non-linear time-series analysis

[68] applied to very long stationary time-series of LFP from our

model (see Methods section, Text S1), we obtain the estimate

lmax~2:2+0:6 ms{1, which is indeed positive. Interestingly, the

dynamics of the network with uncoupled layers (C~0) fails to

display a positive Lyapunov exponent (see Figure S10), and it is

therefore non chaotic, confirming the role of inter-layer coupling

in inducing (see also the Discussion section).

Discussion

The structure of the model
Multi-layer architecture. The reduction of the full multi-

layer structure of primary visual cortex (a cartoon of which is shown

in Figure 1A) to a simpler two-layer network (Figure 1B) is a drastic

simplification. Throughout this paper, we have emphasized that the

two main cortical thalamo-recipient layers, i.e. IV and VI

[42,43,45] are included within distinct model layers, correspon-

ding respectively to the upper and the lower ring in our network

Figure 10. Short-term response. Population firing responses to repeated presentations of a high contrast stimulus for fully coupled layers (A–B,
C= 1) and for fully uncoupled layers (C–D, C= 0). A and C: peristimulus-time (PST) histograms, based on the firing responses of 500 cells to 1000
presentations of stimuli with optimal (or close to optimal) orientation. B and D: examples of upper layer excitatory population responses for three
presentations of the same stimulus.
doi:10.1371/journal.pcbi.1002176.g010
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architecture. We do not include separate rings for each of the six

cortical layers. However, in order to reflect the poly-synaptic nature

of the pathway from cortical layer IV to VI –passing through layers

II/III and V [45,46,49–51]– we have made the latency of the

connections from the upper to the lower model layer larger than for

the connections from the lower to the upper model layer. The

incorporation of additional layers within our model is in principle

possible, but at the price of increasing further an already large

number of parameters. Our choice of introducing just two layers

was guided by the need to keep the model as simple as possible,

while retaining a multi-layer structure.

In the simulations described above, the external drive is smaller

to the lower layer than to the upper layer. This choice was

motivated by the fact that thalamic projections toward layer IV are

more numerous than toward layer VI [45]. Nevertheless, it should

be noted that layer VI neurons have dendritic arborizations

extending into layer IV where they can receive additional

thalamo-cortical inputs [69]. However, as illustrated in Figure

S11, the behavior of the network remains qualitatively the same, if

one adopts identical external drives for the two layers. A second

aspect that we have neglected about differences in the external

drive to different layers, is the fact that the size of receptive fields

depends on laminar location. In particular the receptive fields of

layer VI neurons can be larger than the ones of layer IV neurons

[70,71]. However, a proper description of the stimulus-size

dependence of the inputs would require as well to take into

account horizontal interactions between different layer IV

receptive fields fitting into a same larger layer VI receptive field,

a modeling aspect that we hope to address in future investigations.

Connectivity. In our model intra-layer excitation is

modulated more strongly with angular distance than intra-layer

inhibition. However, the probability of inhibitory connections is

larger than the probability of excitatory connection at any angular

distance (Figure 1E). In addition, we choose conductance

parameters such that individual inhibitory PSPs are stronger

than excitatory PSPs [72]. Thus, intra-layer inhibition dominates

intra-layer excitation at any distance. As a consequence, in the

regimes explored in this paper, recurrent interactions are not

sufficient to generate a tuned response by themselves. However

they sharpen the tuning already present in the spatially-patterned

feed-forward LGN input. We use probabilities of connection

compatible with the wide ranges reported by [73,74]. Other

studies, like [72], find a larger probability of inhibitory connection.

We verified however that the qualitative properties of the induced

regimes of activity are preserved when inhibitory connections are

consistently densified (see Figure S12).

The dominantly inhibitory nature of mutual local interactions is

essential in our model for the emergence of prominent collective

oscillatory behaviors in our network. Oscillations are generated by

mutual delayed interactions between inhibitory neurons, accord-

ing to a standard mechanism already described in [25,27–30]. In

our model, excitatory neurons are not required for the generation

of oscillations. Excitatory neurons are entrained by the oscillation

paced by inhibitory cells. Indeed, if the activity of excitatory

neurons is completely suppressed, or if synapses from excitatory to

inhibitory neurons are removed, while increasing the drive to

inhibitory neurons in order to maintain their rate of activity

unchanged, the oscillations continue to exist and their frequency

increases of less than five percent (see Figure S13). We mention

here that an alternative scenario exists in which the inhibitory-to-

excitatory-to-inhibitory neurons feedback loop plays an active role

in the generation of synchronous oscillations [27,30,75–77]. In this

scenario delayed inhibitory feedback is still the cause of the

oscillation, but the delay arise from the disynaptic nature of

effective mutually inhibitory interactions, leading to a slower

collective frequency. However, the analysis conducted in Figure

S13 clarifies that the scenario implemented in our model relies

primarily on inhibitory interneurons alone.

Inter-layer connections in our model are as dense as intra-layer

connections, but inter-layer excitation is more sharply modulated

than intra-layer excitation. This results in a smooth arrangement

of vertical excitatory synapses reminiscent of the organization of

cortex into a continuum of anatomical columns without rigid

boundaries [78]. This arrangement is critical for the fast temporal

decorrelation of induced oscillations at high contrast (see below).

Whereas the net inter-layer coupling is moderately excitatory in

a local center, it is inhibitory in the surround, as a combined effect

of the broad profile of inter-layer inhibition and of the fact that

lower-to-upper excitation toward inhibitory neurons (i.e. disynap-

tic inhibition) is less sharply modulated than lower-to-upper layer

Figure 11. Chaotic sensitivity to a single spike perturbation. A black triangle denotes the time of a small perturbation to the network
dynamics (for 95% of contrast stimulus and fully-coupled layers, C= 1), in which a single spiking event is omitted. Already after the second oscillation
cycle, the unperturbed and perturbed population dynamics have diverged, as visualized by the raster plot (A) and the population rate histogram (B)
of the upper layer excitatory population. Blue color denotes unperturbed dynamics and red color perturbed dynamics.
doi:10.1371/journal.pcbi.1002176.g011
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excitation toward excitatory neurons. This is required in our

model to account for the increase in mean firing rate observed in

layer inactivation experiments [79] (case C~0 in our model).

The low and high contrast regimes
Most of the simulations described above were performed in

networks with a significantly smaller number of neurons

(NE~4000 excitatory neurons and NI~1000 inhibitory neurons

per layer) than in a real hypercolumn in V1. However, we checked

that our results are robust against increases in network size. In

particular, this is the case for the existence of two dynamical

regimes induced respectively by low and high contrast stimulations

and for the two distinct mechanisms underlying the fast temporal

decorrelation and broad-band spectral modulations in these two

regimes.

In the low contrast regime, the dynamics are asynchronous.

However, the network tends to resonate at a specific frequency,

producing an increase of power in the gamma frequency band,

without developing stable oscillations. Weakly coherent oscillatory

modes are excited only transiently by local noise and then quickly

damped.

On the other hand, in the high contrast regime the network

activity is synchronous. However the collective rhythm undergoes

random variations in the time interval between consecutive

activity episodes in the network. This temporal irregularity is not

due to local noise (note that, in our model, recurrent inputs

dominate over feed-forward inputs at low as well as at full

contrast). It is produced intrinsically by the dynamics by virtue of

the interaction between distinct oscillating populations localized in

the two subnetworks representing different depths in the cortical

section. This results in rapid temporal decorrelation of the induced

activity.

The contrast at which the transition between these two regimes

takes place depends on the strength of fluctuations in the

background noise. For our choice of parameters, the transition

occurs for C&10%. However, as discussed in detail in Figures

S14, S15 and S16, if the variance in the LGN input current is

increased consistently without changing its mean value (Figure

S14, parameters in Table S1), the transition can occur for an

external drive, which is so large that it cannot be reached even for

stimuli at full contrast (Figure S15). In such a condition, the

induced activity is still asynchronous at high contrast and only

transient oscillations can be detected (Figure S16), as in the recent

modeling study by Mazzoni et al. [37].

It has been observed experimentally that the gamma-band

synchronization of membrane potential fluctuations of nearby cells

in V1 is larger in visually-induced activity than in spontaneous

activity. Furthermore it is sustained over long stimulation

durations, independently from stimulus properties or from the

simultaneous observation of synchronized spiking activity. This

leads to voltage crosscorrelograms with a manifest oscillatory

component at gamma-range frequencies, damped quickly within

only two or three oscillation cycles [80]. These observations are

compatible with the occurrence of a transition between an

asynchronous low contrast regime and a synchronous high

contrast regime. Indeed, pairwise CCos between membrane

potentials are small in the low contrast regime (Figures 3D and

5B), but large in the high contrast regime (Figure 4D and 5D),

even if spike CCos are always small, in agreement with many

experimental reports [5,13,81–86]. We remark that if the

dynamics at high contrast would be asynchronous as the dynamics

in absence of stimuli or for low contrast stimuli, then the pairwise

crosscorrelations of both spikes and voltages should be weak.

Therefore, the coexistence of weak correlations between spikes

with stronger correlations between membrane potentials (display-

ing furthermore a damping oscillatory component) is suggestive of

the existence of a synchronous, rather than of an asynchronous,

regime. The dynamics at high contrast of our model, characterized

by irregular spiking (leading to weak spike crosscorrelations) and

by temporally irregular collective oscillations (leading to quickly

damped oscillatory voltage crossocorrelograms) is therefore

compatible qualitatively with the experimental regime observed

in [80]. Conversely, this compatibility could not be claimed for the

other two types of induced dynamics that our model can generate

at full contrast, i.e. asynchronous, in the case of a large variance

noise, or synchronous but approximately periodic (and therefore

too slowly decorrelating), in the case of suppressed inter-layer

interactions (C~0).

Synchronous chaos underlies the temporal decorrelation
of the network collective oscillations in the high contrast
regime

The rapid loss of temporal coherence of the synchronous

induced activity at high contrast is a remarkable property of our

model. Features of the model such as inter-layer inhibition,

asymmetric interaction latencies in the lower-to-upper or in the

upper-to-lower direction or different LGN driving levels to the

different layers are not required for this decoherence to occur. In

contrast, the strong local inhibition responsible for the local

generation of the rhythm within each layer and the net excitatory

interactions between neurons in close vertical alignment are

crucial for this to occur. In fact, if the inter-layer excitation profile

is altered by suppressing its modulation with orientation distance

while keeping its average strength constant, the decorrelation does

not take place (see Figure S17).

A similar mechanism underlies the temporal decorrelation of

synchronous oscillations in the network models studied by [39–

41]. These papers showed that collective oscillations induced in

two populations of neurons by local delayed inhibitory feedback

can lose coherence when the two populations interact in an

excitatory manner. In [41], we studied a rate model consisting of

two networks, each composed of one excitatory and one inhibitory

populations. Each of the networks was able to sustain synchronous

oscillatory activity by virtue of the local inhibition. We computed

the maximum Lyapunov exponent of the system (see e.g. [66]) to

show that it undergoes a transition to a chaotic dynamical state

when the two networks are coupled by sufficiently strong

excitatory connections. In this state the network displays

synchronous activity, but instead of being periodic, the temporal

variations of the network activity are chaotic and thus the

oscillations that the network tends to develop lose temporal

coherence within a few cycles. A network operating in such a

regime is said to be in a synchronous chaotic state. In [39,40] a single

ring network with strong local inhibition was considered. The

decoherence of the oscillations occurred as the network underwent

a spontaneous clustering into groups of oscillating neurons

effectively interacting in an excitatory manner.

In agreement with the positivity of its largest Lyapunov

exponent, also the dynamics of our hypercolumn model in the

high contrast regime displays typical features of chaos: exponen-

tially fast damping of the local oscillations autocorrelograms

(Figure 7C,D), spreading of the oscillation-related power over an

extended continuous interval (Figure 8), and extreme sensitivity to

initial conditions (Figure 10B and Figure 11). Therefore the

decoherence of the population activity which occurs at high

contrast stems in the present model from the fact that the network

operates in a synchronous chaotic regime. We cannot exclude,

obviously, that other mechanisms are contributing to the
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decorrelation of synchronous cortical oscillations. However, such a

global decorrelation, characterized by the coexistence of elevated

instantaneous synchrony and fast loss of collective phase

autocoherence, could not be induced by local external noisy

inputs, unless they are spatially correlated over a range matching

the size of the local circuit which generates the ongoing

soscillation.

We also conjecture that the underlying mechanism of

synchronous chaos is very general as it occurs in models in which

neurons are described in term of rate, integrate-and-fire or

conductance-based dynamics, with a simplified as well as more

complex multi-layer network architecture. We also conjecture that

a similar mechanism should act in even more realistic models,

incorporating for instance a two-dimensional spatial structure,

similarly to the one used in [87,88], provided that local inhibition

is strong enough to induce local oscillations and that excitation

couples these local oscillators at a longer range.

Comparison with previous works
Chaotic dynamics as well as stable chaotic-like dynamics can

occur in asynchronous states of activity [89–97]. In this cases, the

network dynamics explores a high-dimensional manifold in the

phase-space, while, in our model, the irregular sparse firing of

many neurons give rise to collective synchronous chaos (SC) with a

lower dimensionality [98–100] (the fractal dimension of the

chaotic attractor is likely to be smaller than five, as discussed in

Figure S10).

SC has also been found in previous models of local circuits in

V1 which consisted of only one single network with a ring

architecture. The model studied by Hansel and Sompolinsky in

[101] considered one neuronal population coupled with excitatory

instantaneous synapses. It displayed a SC state in some

appropriate range of parameters. However, in this model, SC

was sensitive to the incorporation of synaptic time constants since

it was destroyed with the introduction of synaptic time constants as

small as 0.5 ms. The model by the same authors considered in [34]

considered two populations of neurons, one excitatory and one

inhibitory, coupled via synapses with realistic synaptic time

constants. The dynamics of the neurons were based on a

Hodgkin-Huxley type model with several cellular and synaptic

conductances. The pattern of connectivity had a ‘‘Mexican hat’’

with local excitation and broad range inhibition. Numerical

simulations of the model showed that in an appropriate parameter

range, the network settled in a SC state, characterized by strong

temporal variability of the neural activity which was correlated

across the hypercolumn.

In both of these models, the SC state was characterized by

strong neuronal pairwise spike correlations and wide variability in

the firing of individual neurons which was induced by the chaotic

nature of the population activity. This is essentially different from

what happens in our two layers hypercolumn, in which, in the SC

state at high contrast, the spike pairwise correlations are only

slightly larger than in the low contrast asynchronous state, whereas

the degree of irregularity in the spike trains are similarly large in

both states (CV&0:9). As a matter of fact, in the present model,

the spike train irregularities are mostly due to the local noise

generated by the external inputs and to a lesser extent by the

internal dynamics. Voltage CCos are large due to macroscopically

correlated chaotic sub-threshold fluctuations, but spike CCos are

still small. Another essential difference is that in [34] the excitation

was local and inhibition was broad, whereas the opposite is

required in the present model, as well as in the single ring model in

[40]. Last but not least, it is not clear to what extent the chaotic

dynamics found in [34,101] were specific to the model adopted

there for the single neuron dynamics.

Predictions and perspectives
The increase in synchrony of the activity with the contrast

displayed by our model is in agreement with experimental results

reported recently in monkey V1 [9,18]. More generally we should

expect that varying a feature of a stimulus in a way that increases

the external drive on V1 network should have a similar effect. This

is consistent with other recent results showing that varying the size

of a visual stimulus [12] or attention [6,11] strengthens the

coherence in the activity of V1 neurons.

In the low and large contrast regimes identified in our model the

increased gamma power in the LFP spectra is broadband. At low

contrast, the loss of coherence of the oscillations in the LFP in a

few tenths of a milliseconds is due to noise. At large contrast, it is a

consequence of the chaoticity of the LFP time-series. The behavior

of our model in both these regimes is compatible with recent

results by Burns et al [63], because of its lack of sustained auto-

coherence of induced oscillations.

Our simulations predict that infra-granular layer inactivation

should globally affect the experimentally observed spectral

properties of induced LFPs by enhancing its periodicity. Single-

layer inactivation experiments based on pharmacological or local

cooling techniques [79,102,103] or with optogenetic techniques

[23,24] might be used to test this prediction. Furthermore,

manipulations in which the firing of a single additional spike is

induced (or suppressed, analogously to the simulation of Figure 11)

can be performed. Extreme sensitivity to single-spike perturbations

was experimentally proved using such a manipulation in the case

of asynchronous spontaneous cortical dynamics [104]. It would be

interesting to repeat similar experiments in a stimulus-induced

regime of oscillatory activity, in order to study the impact of the

addition of a single spike on the time-course of ongoing LFPs.

In the present study we focused on the role of the interactions

between cortical layers in promoting temporal decoherence of

gamma oscillations via the generation of synchronous chaos in a

network with the size of a typical classical receptive field in V1. It

would be interesting to investigate whether horizontal interactions

which extend at distances beyond the classical receptive field also

contribute to the loss of temporal coherence via a similar

mechanism when the visual stimuli are extended. The basic two-

ring network developed in this paper can be replicated into a bi-

dimensional architecture including long-range excitatory interac-

tions in order to investigate this potential contribution. This

framework can be also applied to assess how the phase relationship

between activity at different locations in V1 (e.g. between center

and surround of an extended stimulus) depend on the polarity of

long range interactions. Furthermore, an additional source of

decorrelation might be inter-areal interactions occurring at an

even longer range.

Finally, we have here considered temporal decorrelation

induced by excitatory interactions between populations oscillating

due to delayed mutual inhibition between interneurons. It would

be interesting to investigate whether a similar decorrelation

phenomenon can arise when the mechanism for the local

generation of oscillations is different, and is based for instance

on circuit loops with active involvement of pyramidal cells

[27,30,75–77,105–107].

Methods

Our model of a functional hypercolumn in V1 consists of two

interacting rings of neurons, an upper and a lower ring, each

Chaotic Gamma Activity in a Multi-Layer V1 Model
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comprising NE excitatory and NI inhibitory neurons connected

recurrently. We denote by N~2(NEzNI ) the total number of

neurons in the network. Each neuron is labeled by its location on

the ring to which it belongs; i.e. by an angular coordinate q,

ranging conventionally from 290 to +90 degrees [53,54]. All the

neurons receive an external input composed of two contributions.

One represents the LGN input to V1. It depends on two

parameters C and hstim corresponding to the contrast and the

orientation of a visual stimulus. The other contribution accounts

for the background inputs V1 receives from subcortical regions.

Single neuron dynamics
We use single-compartment Exponential Integrate-and-Fire

model neurons (EIF; [108]). In this model the membrane potential

V is given by the equation:

dV

dt
~{

1

tm

(V{VL)zy(V )z
Isyn(t)

C
ð1Þ

where C is the membrane capacitance, tm the membrane time-

constant, VL the leak potential, Isyn the total synaptic input current

to the neuron. The function y(V ) is:

y(V )~
DT

tm

exp
V{VT

DT

� �
ð2Þ

For a constant input above a threshold current (*0:113 nA for

the parameters adopted here) the solution of (1) diverges to infinity

in finite time. This divergence is identified with the firing of a

spike. The parameters DT and VT characterize how sharp the

initiation of the spike is and the voltage at which it occurs. The

spike downswing is not explicitly modeled. After each spike event,

the voltage needs to be reset. A refractory period must then follow.

We model this refractoriness in a different way for excitatory

and inhibitory neurons. In the case of excitatory neurons,

following the emission of a spike at time tspike, the parameters

tm, VT and VL are updated according to the equations [109],

VL~V0
LzAVL

exp {
t{tspike

tA,VL

 !
{BVL

exp {
t{tspike

tB,VL

 !
ð3Þ

VT~V0
TzAVT

exp {
t{tspike

tA,VT

 !
ð4Þ

1

tm

~
1

t0
m

zA1=tm exp {
t{tspike

tA,1=tm

� �
ð5Þ

The membrane potential is reset to a value Vreset which is sub-

threshold. Furthermore VT is strongly depolarized after a spike.

Therefore the event that two spikes are closely emitted in time by a

same neuron is extremely unlikely and, in practice, never occurs.

For inhibitory interneurons, we use a ‘‘hard’’ refractory period

instead, suspending the numerical integration for a time tref after

voltage reset [108]. Therefore, VL~V0
L, VT~V0

T and tm~t0
m.

Parameters for excitatory neurons are chosen to coincide with

fits of pyramidal neurons traces, following [109]. We use

analogous parameters for inhibitory neurons, apart from halved

membrane capacitance and time constant tm, consistent with

experimental evidence [110] and fits of interneuronal traces

presented in [111]. All single neuron parameters are given in

Tables 1 and 2.

The synapses
We use three kinds of synaptic currents, modeling inhibitory

(GABA-type), fast excitatory (AMPA-type) and slow excitatory

(NMDA-type) synaptic inputs. No voltage dependence is intro-

duced for the parameters of the slow excitatory synaptic current. A

spike in an inhibitory pre-synaptic neuron evokes a GABA-type

post-synaptic potential (PSP) in all the post-synaptic neurons; a

spike in an excitatory presynaptic neurons evokes composite

AMPA- and NMDA-type PSPs.

The synaptic current produced by a single incoming spike is

described as Isyn,spike(t)~{gsyn(V{Vsyn)s(t), where gsyn is the

peak synaptic conductance, Vsyn the reversal potential of the

synapse (VAMPA~VNMDA~0:0 mV, VGABA~{75 mV). Denot-

ing as tspike the time of pre-synaptic firing and with d the synaptic

latency, the function s(t) is:

s(t)~
1

N e
{

t{(tspikezd)

td {e{
t{(tspikezd)

tr

" #
ð6Þ

where the constant N is such that it normalizes to unity the peak

of s(t). All the synaptic conductances in the network are calibrated

to give unitary PSPs at resting potential in a range compatible with

experimental observations [72].

The values of the synaptic times and synaptic peak conduc-

tances are given in Table 3, for a network including NE~4000
excitatory neurons and NI~1000 inhibitory neurons per layer.

Synaptic peak conductances are rescaled for larger networks,

according to Eqs. (8) and (9). Synaptic latencies are given in

Table 4.

Table 1. Parameters for model neurons.

Excitatory Inhibitory

t0
m

23.30 ms 11.65 ms

C 0.26 nF 0.13 nF

V0
L

257.8 mV 257.8 mV

V0
T

245.2 mV 245.2 mV

DT 1.2 ms 1.2 ms

Parameters (without time dependency) of model excitatory and inhibitory EIF
neurons.
doi:10.1371/journal.pcbi.1002176.t001

Table 2. Soft refractoriness parameters.

x Ax tA,x Bx tB,x

VL 22.9 mV 14.7 ms 13.5 mV 76.2 ms

VT 10.0 mV 17.7 ms — —

1=tm 0.14 ms21 14.3 ms — —

Parameters of time-dependent after-spike relaxation of excitatory EIF model
neurons.
doi:10.1371/journal.pcbi.1002176.t002
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Network connectivity
Each of the two layers of the hypercolumn is modeled by a ring-

network [34,53,54,112]. Unless specified otherwise, the simula-

tions described in this paper were performed for a network

comprising NE~4000 excitatory cells and NI~1000 inhibitory

cells per ring, for a total of N~2(NEzNI )~10000 neurons in the

hypercolumn. Note that a very similar network architecture was

used in [113,114] but with a completely different interpretation.

Intra-layer and inter-layer excitatory and inhibitory connections

are random. The probability of connection between two neurons is

spatially modulated and depends on the angular coordinates qpre

and qpost of the pre- and post-synaptic neurons. It also depends on

the nature (excitatory or inhibitory) of pre- and post-synaptic cells

and on their absolute (lower or upper layer) and relative (intra-

layer or inter-layer) depth. All the profiles of connection

probability are parameterized as:

P(qpre,qpost)~ p(0)zp(1) cos 2(qpre{qpost)
� �

z
ð7Þ

Here, ½:�z denotes rectification; i.e. ½x�z~0 if xv0, else ½x�z~x.

The probabilities of connection for intra-layer excitatory and

inhibitory connection are identical for each of the two layers.

In order to study the scaling properties of the dynamics it is

important to guarantee that the spatial mean and spatial

fluctuations of the time averaged recurrent synaptic currents

received by each neuron are preserved when considering networks

of different sizes. This requires a suitable modification of the

probabilities of connection and of the peak synaptic conductances

when passing from a network of size N to a network of size N ’
[35]. For an arbitrary peak recurrent synaptic conductance gx, the

probabilities of connection (and, correlatively the average number

of pre-synaptic cells of each type) are scaled as:

1

N ’
1

P’x
{1

� �
~

1

N

1

Px

{1

� �
ð8Þ

and peak conductances as:

PxNgx~P’xN ’g’x ð9Þ

Here the index x stands for different kinds of synaptic connections,

each one potentially characterized by different mean probabilities

of connections and connection strengths (i.e. originating from

upper or lower layer excitatory or inhibitory neurons and directed

toward upper or lower layer excitatory and inhibitory neurons).

Sizes between NE~1000 –for a total network size of N~3000
neurons– and NE~32000 –for a total network size of N~80000

neurons– are compared in scaling analysis of synchrony properties.

The parameters for NE~4000 and NI~1000 are given in

Table 5. Probabilities of connection are compatible with the

ranges reported by [73,74].

Model of the LGN input
We assume that the firing rate of a single LGN neuron, r(C) is

related to the stimulus contrast, C, (C~17100%) by the equation

[112]:

r(C)~r0zr1 log10 (1zC) Hz ð10Þ

where r0 is the spontaneous activity of the neuron in dark

conditions. Subsequently, we model the LGN input to a cortical

cell as an AMPA-type synaptic connection with peak conductance

gLGN , driven by homogeneous Poisson spike trains with rate

RLGN (q,qstim,C),

RLGN q,qstim,Cð Þ~R0z R1 Cð Þ 1{EzE cos2 q{qstimð Þð Þ½ �z ð11Þ

with:

R1(C)~�RR1 log10(1zC) ð12Þ

Here the parameter E controls the broadness of tuning of the LGN

input. It is set to 1 in all our simulations. Note that RLGN is

maximum when qstim~q. The contrast C and, correspondingly,

the term R1(C) can also be time-dependent (see later section on

peristimulus time histograms). The LGN input targets both layers.

There is anatomical evidence that thalamo-cortical synapses target

mainly layer IV and to a lesser extent layer VI [42,45].

Accordingly, in all the simulations presented in this paper, gLGN

in the lower layer is smaller by a factor of two than in the upper

Table 3. Synaptic time-constants and efficacies.

tr msð Þð Þ td msð Þð Þ g (nS) PSP (mV)

AMPA on excitatory 1 3 1.0 0.84

AMPA on inhibitory 1 3 1.5 2.07

GABA on excitatory 1 4 4.0 1.13

GABA on inhibitory 1 2 4.0 1.36

NMDA on excitatory 3 80 0.14 0.50

Synaptic parameters for a network of NE = 4000 neurons and NI = 1000 neurons:
synaptic rise (tr) and decay (td ) times, peak synaptic conductance (g) and peak
postsynaptic potential PSP.
doi:10.1371/journal.pcbi.1002176.t003

Table 4. Synaptic latencies.

d (ms)

Intra-layer synapse 1.0

Inter-layer synapse (upper to lower layer) 3.0

Inter-layer synapse (lower to upper layer) 1.0

Synaptic latencies (d) depending on the relative position of pre- and post-
synaptic neurons.
doi:10.1371/journal.pcbi.1002176.t004

Table 5. Probabilities of connection.

p 0ð Þ p 1ð Þ

Mean
target E
cells

Mean
target I
cells

Intra-layer E to E or I 0.06 0.06 ,240 ,60

Intra-layer I to E or I 0.24 0.12 ,960 ,240

Upper E to Lower E or I 0.06 0.18 ,240 ,60

Lower E to Upper E only 0.06 0.18 ,240 —

Lower E to Upper I only 0.07 0.16 — ,70

Inter-layer I to E or I 0.12 0.00 ,480 ,120

Probabilities of connection. The connection probability parameters p(0) and p(1)

are given for a network size of NE = 4000 and NI = 1000 per layer.
doi:10.1371/journal.pcbi.1002176.t005
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layer. Parameters describing LGN input properties are given in

Table 6.

For the adopted parameters, feed-forward inputs from LGN

never dominate over recurrent inputs from the two layers of the

network, consistently with the massively larger number of cortico-

cortical synapses than thalamo-cortical synapses in the primary

visual cortex [45]. The relative weight of feed-forward inputs with

respect to recurrent inputs depends on contrast, doubling in our

model from no more than 20% at low contrast to no more than

40% at high contrast stimulation (not shown).

An alternative parameter choice for the tuned component of the

LGN input, leading to noisy input current with a larger variance,

is reported in Table S1. For the noisy inputs used in this paper as

well as for the ones of Table S1, the resulting sub-threshold voltage

fluctuations are on the order of *6 mV at full contrast, compatible

with experimentally observed fluctuation ranges [115,116].

Voltage fluctuations are comparable in the two regimes, because

the increase in amplitude of external input current fluctuations is

paralleled by a decrease in amplitude of net input conductance

fluctuations, due to reduced synchrony among the recurrent inputs

(see Figure S14).

More details about the mapping from stimulus contrast to input

rates can be found in Text S2 and Tables S2 and S3.

Background cortical noise
In addition to the LGN input, excitatory and inhibitory cells are

driven by an untuned noisy input, representing the background

firing of other cortical areas. This input is modeled by a single

AMPA-type synapse per cell, with peak conductance gbg activated

by Ornstein-Uhlenbeck processes [61]. Input spikes are generated

independently for each cell; however all the cells share the same

instantaneous input rate Rbg(t) obeying the stochastic differential

equation:

dRbg(t)

dt
~{

1

tbg

(Rbg(t){mbg)z

ffiffiffiffiffiffiffiffiffi
2s2

bg

tbg

s
j(t) ð13Þ

where j(t) stands for Gaussian white noise and mbg is the mean,

sbg the volatility and tbg the filtering time-constant of the

stochastic process. Parameters are given in Table 7.

Numerical integration scheme
The dynamical equations are integrated using a fourth-order

non-adaptive step Runge-Kutta scheme. Integration step was

0.2 ms. Because of the exponentially fast divergence of the

membrane in relation with firing, particular care is needed to

ensure the stability of the numerical integration of equation (1).

Following [108], the numerical integration of the membrane

potential V of a given neuron is stopped as soon as V reaches a

finite cutoff voltage V?. In our simulations, we use V?~{30 mV.

This choice ensures that the non-linear term y(V?) is the

dominant contribution to the neuronal currents for VwVth.

Under this condition, the leakage and the synaptic currents can be

neglected, making it possible to compute analytically the time left

before the actual divergence of the potential. Assuming that the

integration is stopped at t~tstop when V~VstopwV?, the time of

the next spike is given by tspike^tstopztme(VT {Vstop)=DT . In

addition, for our choice of V?, tspike{tstop is large compared to

the integration-step Dt, thus avoiding numerical errors in spike-

time estimation due to the exponentially fast growth of V in

proximity of the divergence. The membrane potential is then reset

to a value Vreset immediately after a spike.

The Ornstein-Uhlenbeck process giving Rbg(t) is computed

using the properties of the exact solution to equation (13). This

means that Rbg(tzDt) is normally distributed with mean

m̂m~Rbg(t)e{Dt=tbg zmbg(1{e{Dt=tbg ) and standard deviation

ŝs~sbg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{e{2Dt=tbg

p
[117].

Response tuning and contrast response function
In order to study the tuning properties of the neuronal responses

we present stimuli at 12 different orientations qstim in an interval

between 290 degrees and +90 degrees, at least five different

contrast values C per each orientation.

Tuning curves are derived for each neuron by measuring their

average firing rate for each of the tested orientations and contrasts

and are characterized by computing their skewness and their

circular variance [118]. The peak rate Rpeak is defined as the

maximum response rate generated by each single neuron over the

stimulus set. Denoting by Rn the response firing rate for a stimulus

of orientation hn, we define the complex vector:

V~

P
n Rne2ihnP

n Rn

ð14Þ

The broadness of a tuning curve is quantified by circular variance

(Mardia 1972; Ringach et al. 2003):

Circ:Variance~1{jV j ð15Þ

where jV j is the modulus of V . It is therefore a quantity bounded

between 0 and 1. Deviation from symmetric tuning is quantified

by a circular skewness coefficient (Kenney and Keeping 1962):

Skewness~
mod(arg(V ){hpeak,3600)

3600:Circ:Variance
ð16Þ

where arg(V ) is the angle (in degrees) of the complex vector V and

hpeak the preferred stimulus orientation. A skewness of 0 means a

symmetric tuning curve and larger (or smaller) values denote

tuning curves skewed toward the right (or the left). Single neuron

tuning curves and the corresponding parameters for the upper

Table 6. LGN input.

gLGN 1 nS

R0 150 Hz

R1 2850 Hz

r0 5 Hz

r1 48 Hz

Parameters of the LGN input to the network RLGN(C). See Text and Tables S10 for
more details.
doi:10.1371/journal.pcbi.1002176.t006

Table 7. Background cortical noise.

gbg 10 nS

mbg 10 Hz

sbg 1 Hz

tbg 10 ms

Parameters of the background cortical input Rbg.
doi:10.1371/journal.pcbi.1002176.t007
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layer excitatory population are shown in Figure S2. Population

average tuning curves are computed after rotating single neuron

tuning curves so that their maximum is at q~0 (see Figure 2A).

The contrast-response functions, CRF(C), are computed for

each neuron by measuring its peak firing rate (i.e. its firing

response to a preferred orientation stimulus) at each given level of

contrasts. Each individual CRF is fitted to a hyperbolic ratio

function [60]:

CRF(C)~Rmax

Cn

CnzCn
50

ð17Þ

Single neuron CRFs and the corresponding parameters for the

upper layer excitatory population are shown in Figure S4 and

population average CRFs in Figure 2B.

Measures of synchrony
To measure the degree of macroscopic synchrony in the steady

state of a network comprising an arbitrary number N of neurons,

we follow the method used in [34,35]. It is grounded on analysis of

the temporal fluctuations of macroscopic observables of the

networks such as the instantaneous activity or the instantaneous

membrane potential averaged over a population of neurons of size

K . For instance, for the latter, one evaluates at a given time, t, the

quantity:

V (t)~
1

K

XK

i~1

Vi(t) ð18Þ

The variance of the time fluctuations of V (t) is

s2
V ~S V (t)½ �2T{ SV (t)T½ �2 ð19Þ

where v . . . w~
Ð T

0
dt . . . denotes time-averaging over a large

time, T . After normalization of sV to the average over the

population of the single cell membrane potentials:

s2
Vi

~S Vi(t)½ �2T{ SVi(t)T½ �2 ð20Þ

one defines a synchrony measure, x(K) by:

x2 Kð Þ~ s2
V

1

K

XK

i~1
s2

Vi

ð21Þ

This measure takes values between 0 and 1. In the limit K?? it

behaves as:

x Kð Þ~x ?ð Þz affiffiffiffi
K
p zO

1

K

� �
ð22Þ

where a is some constant, between 0 and 1. In particular, x(K)~1,

if the system is fully synchronized (i.e., Vi(t)~V (t) for all i), and

x Kð Þ~O(1=
ffiffiffiffi
K
p

) if the state of the system is asynchronous.

Asynchronous and synchronous states are unambiguously charac-

terized in the thermodynamic limit (i.e., when the number of

neurons is infinite). In the asynchronous state, x(?)~0. By

contrast, in synchronous states, x(?)w0.

To characterize the degree of synchrony in the membrane

potentials of neurons i and j, we compute the cross-correlation

function:

CC(Vi,Vj)½t�~
S(Vi(t){SVi(t)T):(Vj(tzt){SVj(t)T)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
Vi (t)s

2
Vj (t)

q ð23Þ

The value of the normalized cross-correlogram for zero time-lag

gives the pairwise crosscorrelation coefficient (CCo):

CCo(Vi,Vj)~CC(Vi,Vj)½t~0� ð24Þ

To estimate the degree of synchrony in the spiking activity of these

neurons, discrete spike trains are first convolved with a square

window of width B, thus generating a continuous spike-count

signal. Equations (23) and (24), with Vi replaced by such smoothed

spike trains, is used to compute crosscorrelograms and CCos for

spiking activities [119]. We use a smoothing window size of

B~20 ms.

CCos and crosscorrelograms are estimated over simulated

recordings lasting 100 s of real time. For CCos between

membrane potentials only pairs of neurons within a 180 region

centered on an angular coordinate matching the orientation of

the presented stimulus are considered. In the case of spike

trains, neurons in this region whose spike train contained fewer

than 100 spikes are further excluded. Various stimulus

orientations are pooled together to improve the estimation of

CCo distributions.

Local field potentials
LFPs are believed to be an aggregate measure of the synaptic

activity of several hundreds of neurons in the vicinity of the

recording electrode [120,121]. To evaluate the LFP in a given site,

we thus arbitrarily average input synaptic currents in a small

angular sector of 90 centered on the considered angular position.

LFPs are estimated over neurons of the upper layer only, reflecting

the fact that superficial neurons should supply the largest

contribution to the signal recorded by an applied recording tip.

For the normally used size of NE~4000 excitatory neurons and

NI~1000 inhibitory neurons per layer, this corresponds to

averaging over 200 excitatory and 50 inhibitory upper layer

neurons for each considered LFP recording site.

Autocorrelograms of the LFPs are computed as:

AC½LFP�(t)~SLFP(t):LFP(tzt)T{SLFP(t)T2 ð25Þ

the zero-lag value AC½LFP�(t~0) measures the variance of the

temporal fluctuations of the LFP and has known size-scaling

properties, which are different in synchronous and asynchronous

regimes (see previous discussions and [35]).

Power spectra are computed using conventional FFT tech-

niques, as the square modulus of the Fourier Transform of signal

autocorrelation. Windowing is applied to LFP-like signal time-

series to reduce unwanted frequency leakage, following the Welch

method [122]). An additional moving average smoothing is

applied for visualization purposes. We measure power in arbitrary

logarithmic units. Since we are interested in qualitative analysis of

the overall shape of the spectra rather than in absolute power

estimations, for each considered regime we assign a unit value at

the power at 0 Hz frequency for 0% of contrast.

Autocorrelation and spectral analysis of LFP-like signals are

based on time-series lasting 100 s of real time, with a sampling rate

of 5 kHz.
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Multi-unit-activity
The MUA signal reflects the spiking activity of few neurons in the

immediate vicinity of the recording electrode [123]. Typically, the

recorded MUA is separated in only a small number of contributing

single units [124]. To evaluate MUA at a given site, following [114],

we sum together the spike trains of three randomly selected cells

within a small angular sector of 90 centered on the considered

angular position (the same used for the evaluation of the LFP). This

discrete signal is then transformed into a continuous signal by

convolving it with a gaussian window (1 ms of variance).

We compute then the coherence [125] between the LFP and the

MUA at a same site by taking the modulus of the normalized

product of their complex Fourier Transform, using the Welch

method [122], as in the case of the LFP power spectrum

estimation:

C(f )~
SLFP(f ):S�MUA(f )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSLFP(f )j2:jSMUA(f )j2

q ð26Þ

where SLFP(f ) and SMUA(f ) denote the (complex) Fourier

transform of the autocorrelograms of the LFP and of the MUA

signals, respectively. Such MUA-LFP coherence is a real quantity

in the unit interval 0ƒC(f )ƒ1, and provides an absolute (linear)

measure of the phase synchronization between the two signals in

different frequency bands. We average then the result over twenty

different randomly chosen triplets of cells, in agreement with the

experimental habit to average together different MUA recordings

with only approximately similar selectivity properties [114].

Inter-layer coupling strength and layer decoupling
Layer decoupling experiments are performed by multiplying the

peak conductances of all the AMPA-type, NMDA-type and

GABA-type synapses from the lower layer to the upper layer by a

factor C varying between 1 and 0. A value of 1 corresponds to the

case of fully-interacting layers, and a value of 0 corresponds to fully

uncoupled layers.

For each excitatory neuron in the upper layer, at high contrast,

the peak response after layer decoupling is compared with the

peak response of the same neuron in the fully coupled network

case. In comparing peak responses, we take into account the fact

that the tuning curves of many neurons change their preferred

orientation after full or partial lower layer inactivation.

Peristimulus time histograms
To simulate the flashing of a grating, for a given network

realization we perform numerical simulations in which the tuned

LGN input rate is not constant. More specifically, this tuned

component is modeled according to equations (11) and (12), with a

contrast modulated in time:

C~C(t)~
0% n:1:5 sƒtv(n:1:5z0:5) s

95% (n:1:5z0:5) sƒtv(nz1):1:5 s

�
,n~0,1,2, . . . ð27Þ

Phases lasting 0.5 s in which R1~0:0 are therefore alternated with

phases lasting 1 s in which R1~R1(95%), leading to a square wave

time-course of the input LGN rate. We consider only cells whose

preferred orientation falls within a sector 90 wide centered on the

orientation of the presented stimulus and we use four different

stimulus orientations. For each of the orientations, the stimulus is

flashed 1000 times. An overall sample of 800 cells (200 per

orientation) is thus considered. Spikes across stimulus repetitions

and cells are binned into 2 ms bins according to their timing

relative to stimulus onset. The bars in the peristimulus time

histograms (PSTHs) are then evaluated as (number of spikes in a

time-from-stimulus bin)/(number of stimuli repetitions)/(number

of sampled cells).

Single spike perturbation
To study the sensitivity of induced dynamics to a small

perturbation, we perform a simulation in which just a single

spiking even is omitted and we compare it with the unperturbed

simulation. We select a putative spiking time of a neuron whose

preferred orientation matches the one of the applied 95% of

contrast stimulus. No spike is then sent to the post-synaptic targets,

we only reset the potential and the other time-dependent

parameters of the failing presynaptic neuron to their just-after-

spike values. Precisely the same realizations for all the stochastic

noisy input processes are taken for the unperturbed and the

perturbed dynamics.

Estimation of the largest Lyapunov exponent
We measure the largest Lyapunov exponent of the induced

dynamics of the system at high contrast through a non-linear

analysis of a long time-series (600 minutes of real time) of the

associated LFP signal. For a thorough introduction and a rationale

to the used methodologies the reader is invited to refer to

textbooks like [68]. The first step is the construction of proper

‘‘embeddings’’ of this time-series. Given a discretely sampled time-

series ‘t~LFP(t), a reconstruction delay t and an embedding

dimension m, we construct a new m-dimensional sequence:

~‘‘t~ ‘t{(m{1)t,‘t{(m{2)t, . . . ,‘t

� 	
ð28Þ

It can be proven [126,127] that the latter time-delay embedding

provide in general a one-to-one image of the original phase-space

attractor of the dynamics generating the measured time-series,

provided that the used embedding dimension m is large enough.

The general idea of the method is then to identify by systematic

search pairs of points ~‘‘t and ~‘‘t’ which lie at a (euclidean) distance

in the delay-embedding space smaller than a specified very small E.
Such points are said to be neighbors. It is therefore possible to

consider the distance d0~E~‘‘t{~‘‘t’E as a ‘‘small perturbation’’,

which should grow exponentially in time if the dynamics is chaotic.

The eventual divergence of the trajectories originating by neighbor

points can be monitored by the quantity dk~E~‘‘tzk{~‘‘t’zkE. If

there is a time range for which dk!d0 exp(lk) then l coincides

with the maximum Lyapunov exponent lmax [128,129].

We select a reconstruction delay of t~400 ms, much larger

than the decorrelation time of the induced LFP oscillation. The

minimum embedding dimension for a consistent estimation of the

largest Lyapunov exponent can be estimated by monitoring the

fraction of ‘‘false neighbors’’ pairs, i.e. pairs of points that are

neighbors in a D-dimensional embedding (due to a projection of

the attractor to a space with a too small dimensionality) but that

there are no more such in an embedding with a larger dimension

D’ [130]. Such analysis, summarized in Figure S10, indicates a

critical embedding dimension lower than five and probably larger

than three (even if a precise estimation is difficult due to the

presence of noise). Practically, we estimate the largest Lyapunov

exponent by evaluating the quantity:

ln
dk

d0
(E,m,k)~ ln

1

jU t(E)j
X

~‘‘t’ [Ut(E)

E~‘‘tzk{~‘‘t’zkE

0
@

1
A

t

ð29Þ
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for various E, m and k, where U t Eð Þ is the set of points at a distance

dƒE from ~‘‘t and S:Tt denotes average over time. If ln
dk

d0

(E,m,k)

displays a linear increase in a reasonable range of k with matching

slopes for different sufficiently large m and for few decades of E,

then the average slope of the linear sections of ln
dk

d0
(E,m,k)

provides a robust estimation of lmax. More details on our

estimation of lmax for the high contrast induced LFPs for C~1
and C~0 are given in the Text S1.

Supporting Information

Figure S1 CV and firing rate distributions. Distributions of CVs

and firing rates for highly active upper layer excitatory neurons

(orientation preference within 65u from stimulus) are here shown

for the spontaneous activity (C = 0%), for the low contrast regime

(C = 2%) and for the high contrast regime (C = 95%). Distributions

of CVs (A–C) and of firing rates (D–F), from top to bottom, for the

spontaneous activity, for the low contrast regime and for the high

contrast regime.

(EPS)

Figure S2 Heterogeneity of single neuron tuning curves. A: re-

centered single neuron tuning curves for 3 upper layer excitatory

neurons. B: distribution of peak rates. C: distribution of tuning

width. D: distribution of tuning skewness. Distributions are relative

to the upper layer excitatory population.

(EPS)

Figure S3 Contrast invariance of tuning width. Tuning curves

normalized to peak height, for: fully coupled layers case (A), fully

uncoupled layers case (B) and strong noise case (C; see Figures S13

and S14). In cases A and B, contrast invariance is only

approximate and does not hold for weak contrasts. Contrast

invariance at low contrasts is improved in the strong noise case, in

agreement with theory.

(EPS)

Figure S4 Heterogeneity of single neuron contrast response

functions. A: single neuron CRFs for 3 upper layer excitatory

neurons. B: distribution of saturation rates. C: distribution of CRF

steepness. D: distribution of mid-range contrasts. Distributions are

relative to the upper layer excitatory population.

(EPS)

Figure S5 Correlation coefficients for spontaneous activity. A:

pairwise correlations (CCos) between membrane potentials. B:

pairwise correlations between spike trains. CCos are computed as

described in the Materials and Methods section of the main article.

(EPS)

Figure S6 Oscillatory structure of induced LFPs. A–B: example

LFP traces from our model, evoked by a stimulus with 2% of

contrast (A) or 95% of contrast (B). C–D: autocor-relograms and

crosscorrelograms of evoked LFPs. For a fixed stimulus orienta-

tion, we monitor ACs and CCs of LFPs in regions responding

preferentially to this stimulus orientation or to an orthogonal

stimulus orientation. The analysis is performed for 2% of contrast

stimuli (C) or for 95% of contrast stimuli (D). An oscillatory

structure is present in LFP independently from spiking and is

correlated over the entire ring. E–F: LFP temporal decorrelation

at intermediate contrast levels (E: C = 20%; F: C = 4%). Damping

of secondary peaks is fast at any contrast. Units are nA2.

(EPS)

Figure S7 Dynamics of the lower layer. A: raster plots of the

activity of the lower layer excitatory neurons (lower raster) and the

upper layer excitatory neurons (upper raster) in the high contrast

regime dynamics (C = 95%). B: the latency between induced

oscillations in the upper and in the lower layer is estimated

through the crosscorrelogram of LFPs in the two layers (high

contrast regime, C = 95%). The upper layer advances the lower

layer ,2:8 ms on average.

(EPS)

Figure S8 Induced responses for fully uncoupled layers: changes

in tuning curves. For C= 0 (full layer uncoupling), the dynamics of

the upper layer is equivalent to the case where there is full

inactivation of the lower layer. After layer uncoupling, and

consistently with reference [79] (Allison and Bonds, 1994), we

observe changes in preferred orientation, peak response rates and

tuning curve width and skewness of single neuron tuning curves.

We report here distributions of parameter changes (vertical dotted

lines denote average parameters for fully coupled layers, C= 1). A:

distribution of preferred orientation shifts. Preferred orientation of

individual cells can move clockwise or anti-clockwise within a

range of ,630u but the distribution of shifts is symmetric, with no

significant change at the population level. B: distribution of peak

firing rate changes. The mean peak rate change is weakly positive,

reflecting the overall inhibitory nature of inter-layer coupling. C:

distribution of broadness changes. On average, the width of tuning

curves is slightly increased. D: distribution of skewness changes.

Skewness changes are observed in both directions and their

distribution is symmetric, with no significant change at the

population level. In general, the large heterogeneity in the effects

of layer uncoupling on tuning properties must be noted.

(EPS)

Figure S9 Induced responses for fully uncoupled layers:

dynamical properties. Response of the upper layer for the

presentation of a 95%-contrast stimulus. A: raster plot of the

excitatory population activity and associated time-histogram of the

rate of spiking cells. The histogram bar heights denote the fraction

of upper layer excitatory cells which _ring in the bin. Bin- size is

2 ms. B: spike trains of 6 excitatory cells highly activated by the

presented stimulus. C: membrane potential traces for two neurons

stimulated simultaneously at close-to-preferred orientation (2 top

neurons of Panel B in red and green). This dynamics is strongly

synchronous and approximately periodic. For increasing network

size, oscillations tend to become more periodic, and collective

synchrony does not vanish (not shown).

(EPS)

Figure S10 Numerical experiments for chaos assessment. All the

methods are described in Text S1. A: estimation of the minimal

embedding dimension. The fraction of false neighbors is plotted

against the embedding dimension for a LFP time-series generated

by a full contrast preferred orientation stimulus (C= 1, C = 95%).

N = 1000 pairs of candidate neighbor points have been considered

for each embedding dimension (E,1029). A threshold of R* = 103

has been taken. A single LFP time-series long 10 hours of real

time, with a sampling rate of 0.01 ms has been used for the

estimation. The resulting embedding dimension appears to be

m$4. B–C: extraction of the largest Lyapunov exponent l�m�a�x for

the dynamics induced by a full contrast preferred orientation

stimulus. The relative growth in time
dt

d0
of the average separation

between LFP trajectories originated from neighbor points is

plotted against time, for various embedding dimensions (average

over at least N = 1000 pairs of neighbors per considered

embedding dimension). A section of exponentially fast growth

Chaotic Gamma Activity in a Multi-Layer V1 Model

PLoS Computational Biology | www.ploscompbiol.org 20 October 2011 | Volume 7 | Issue 10 | e1002176



(linear growth in a semilogarithmic plot, denoting deterministic

chaos) is identified for sufficiently large embedding dimension in

the case of a hypercolumn with interacting layers (C= 1, panel A),

but not in the case of a hypercolumn without inter-layer

interactions (C= 0, panel B).

(EPS)

Figure S11 Alternative parameter choices: network with increased

symmetry. We assumed in the main text that the LGN input to the

lower layer is weaker. We show here results for 3 the case in which

the LGN input rate to lower layer is the same as to the upper layer

and in which the latency of the upper-to-lower layer connections is as

short as the latency of lower-to-upper layer connections. A: raster

plot of the evoked activity of the upper layer excitatory population

for a 95% level of contrast stimulus. B: autocorrelogram of the

evoked LFP. Units are in nA2. Note that synchronous chaos is still

present, as evidenced by the fast damping of LFP autocorrelogram.

The lower and the upper layer have now the same average firing rate

and are on average in an in-phase locking.

(EPS)

Figure S12 Alternative parameter choices: network with densi-

fied inhibition. We assumed in the main text that the probability of

inhibitory connection is four times larger than the probability of

excitatory connections. Some Experimental studies like reference

[72], however, report a probability of inhibitory connection ten

times larger than for excitatory connections. We show here results

for a 1:10 ratio of excitatory to inhibitory connection probability

(probabilities used are p(0) = 0:6 and p(1) = 0.3 for intra-layer

inhibitory connections and p(0) = 0:3 and p(1) = 0:0 for inter-layer

inhibitory connections). A: raster plot of the evoked activity of the

upper layer excitatory population for a 95% level of contrast

stimulus. B: autocorrelogram of the evoked LFP (for different

network sizes). Units are in nA2. Note that synchronous chaos is still

present, as evidenced by the fast damping of LFP autocorrelogram,

accelerating for larger network sizes. An additional effect of

increased inhibitory density is a stronger tendency to resonate for

low contrast stimuli. A weak ‘‘hump’’ at frequencies close to 45 Hz

is visible even in the spectrum of spontaneous activity (not shown).

(EPS)

Figure S13 E-I connectivity is not required for the generation of

oscillations. With our parameter choices, oscillations are generated

thanks to delayed mutual inhibition. Excitatory neurons indeed are

not required for the generation of oscillations, but are entrained by

the oscillation paced by inhibitory cells. This can be proven by

numerical simulations in which the activity of excitatory neurons is

completely suppressed by a strong hyperpolarizing current (raster

plot in panel A) or in which synapses from excitatory to inhibitory

neurons are removed (raster plot in panel B). In both cases the drive

to inhibitory neurons in order to maintain their rate of activity

unchanged. Note that oscillations continue to exist and their

frequency does not increase consistently.

(EPS)

Figure S14 Fluctuations for different noise regimes. The

fluctuation level of input currents can be controlled by acting on

the input rates and peak synaptic conductances. Small peak

coupling conductances and large input rates yield a quasi tonic

input (‘‘small’’-variance noise). Conversely, stronger peak coupling

conductances and smaller input rates give rise to input currents

with similar average value but stronger fluctuations in time

(‘‘large’’-variance noise). The net input conductance (red = exci-

tatory, blue = inhibitory) of an upper layer excitatory neuron

driven by a full contrast stimulus is shown in panels A (small-

variance noise) and C (large-variance noise). Subthreshold voltage

fluctuation strength is plotted against tuned LGN input rate in

panels B (small-variance noise) and D (large-variance noise). The

rate ranges are different for small- and large-variance noises, but

are meant to correspond conventionally in both cases to the 0%–

100% contrast range (see Tables S2 and S3). For both noise

regimes, the mean excitatory conductance is of ,3–5 nS for the

spontaneous activity and of ,20 nS for full contrast stimuli and

the mean inhibitory conductance is of ,4–6 nS for the

spontaneous activity and of ,40–50 nS for full contrast stimuli.

At high contrast, however, fluctuations in conductance are much

stronger for small-variance input noise, because recurrent inputs

are highly synchronous. Sub-threshold voltage fluctuations at high

contrast are comparably strong for both noise regimes, because for

small-variance noise weaker fluctuations in the input are amplified

by strong conductance fluctuations. At low contrast, when the

dynamics is asynchronous for both noise regimes, voltage

fluctuations are stronger for large-variance noise.

(EPS)

Figure S15 High contrast dynamics for large-variance noise.

Dynamics of the upper layer for the presentation of a 95%-

contrast stimulus. Input noise parameters are reported in Table

S1. A: raster plot of the excitatory population activity and

associated time-histogram of the rate of spiking cells. The

histogram bar heights denote the fraction of upper layer excitatory

cells firing in the bin. Bin-size is 2 ms. B: spike trains of 6

excitatory cells highly activated by the presented stimulus. C:

membrane potential traces for two neurons stimulated simulta-

neously at close-to-preferred orientation (2 top neurons of Panel B

in red and green). This dynamics is asynchronous, as indicated by

the scaling analyses of Figure S16 C–D.

(EPS)

Figure S16 Temporal decorrelation and spectra of LFPs for

large-variance noise. Input noise parameters are reported in Table

S1. A: autocorrelogram of the LFP evoked by a high contrast

stimulation. Units are nA2. B: power spectra of evoked LFP for

various contrast levels. C: scaling with network size of the 95%-

contrast synchrony factor X . D: scaling with network size of the

95%-contrast LFP autocorrelogram. The dashed line is a power-

law with exponent 20.5. This scaling is indicative of an

asynchronous state. Units are nA2.

(EPS)

Figure S17 Alternative parameter choices: network with a non

modulated spatial profile of inter-layer excitation. With the

parameter choices assumed in the main text, the integrated effect

of the inter- layer coupling is inhibitory. It is however moderately

excitatory between neurons in close vertical alignment, due to the

strong spatial modulation of the inter- layer excitation profile. We

show here results for the case in which the spatial modulation of

inter-layer excitation is removed and an equivalent average level of

inter-layer excitation is used, but spread across all the angular

distances (i.e. p
1ð Þ

inter{layer,E~0). A: raster plot of the evoked activity

of the upper layer excitatory population for a 95% level of contrast

stimulus. B: autocorrelogram of the evoked LFP. Note that

synchronous chaos disappears, replaced by almost periodic

oscillations, very similar to the case of uncoupled layers (C= 0,

see Figure S9). Conversely, removal of inter-layer inhibition would

further strengthen synchronized chaos (not shown).

(EPS)

Table S1 Strong noise LGN input parameters. Parameters of

the LGN input to the network for the high contrast strong noise

regime. See Table S3 for more details.

(PDF)
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Table S2 Correspondence between C and RLGN
0 for small-

variance noise. Correspondences are computed approximately,

assuming that each cell receives 30 independent AMPA synaptic

inputs from LGN (see Text S2). For the response of a single LGN

cell we assumed r0 = 5 Hz and r1 = 48 Hz.

(PDF)

Table S3 Correspondence between C and RLGN
0 for large-

variance noise. Correspondences are computed approximately,

assuming that each cell receives 10 AMPA synapses from 3

independent LGN neurons (see Text S2). For the response of a

single LGN cell we assumed r0 = 5 Hz and r1 = 32 Hz.

(PDF)

Text S1 Detailed methods for chaos assessment. Section 1:

Determination of the minimum embedding dimension. Section 2:

Extraction of the largest Lyapunov exponent lmax.

(PDF)

Text S2 Correspondence between contrast and LGN input rate.

Extended description of the rationale behind the mapping between

contrast and noise input parameters.

(PDF)
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