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Abstract

Self-organized criticality refers to the spontaneous emergence of self-similar dynamics in complex systems poised between
order and randomness. The presence of self-organized critical dynamics in the brain is theoretically appealing and is
supported by recent neurophysiological studies. Despite this, the neurobiological determinants of these dynamics have not
been previously sought. Here, we systematically examined the influence of such determinants in hierarchically modular
networks of leaky integrate-and-fire neurons with spike-timing-dependent synaptic plasticity and axonal conduction delays.
We characterized emergent dynamics in our networks by distributions of active neuronal ensemble modules (neuronal
avalanches) and rigorously assessed these distributions for power-law scaling. We found that spike-timing-dependent
synaptic plasticity enabled a rapid phase transition from random subcritical dynamics to ordered supercritical dynamics.
Importantly, modular connectivity and low wiring cost broadened this transition, and enabled a regime indicative of self-
organized criticality. The regime only occurred when modular connectivity, low wiring cost and synaptic plasticity were
simultaneously present, and the regime was most evident when between-module connection density scaled as a power-
law. The regime was robust to variations in other neurobiologically relevant parameters and favored systems with low
external drive and strong internal interactions. Increases in system size and connectivity facilitated internal interactions,
permitting reductions in external drive and facilitating convergence of postsynaptic-response magnitude and synaptic-
plasticity learning rate parameter values towards neurobiologically realistic levels. We hence infer a novel association
between self-organized critical neuronal dynamics and several neurobiologically realistic features of structural connectivity.
The central role of these features in our model may reflect their importance for neuronal information processing.
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Introduction

Self-organized criticality is increasingly postulated to underlie

the organization of brain activity [1–2]. The notion of self-

organized criticality describes an unsupervised emergence of

critical dynamics in complex systems dominated by internal

interactions [3–4]. Critical dynamics emerge at the transition

between randomness (subcritical dynamics) and order (supercrit-

ical dynamics), and are characterized by self-similar (power-law-

distributed) spatial and temporal properties of system events (e.g.

neural activations). The occurrence of these dynamics in the brain

is theoretically appealing and is increasingly empirically supported.

Theoretically, and increasingly empirically, critical dynamics are

associated with optimized information transmission and storage

[5–8], maximized dynamic range [9–10] and successful learning

[11]. Empirically, multielectrode array recordings of spontaneous

activity from organotypic cortical slice cultures [5–6] and

dissociated cortical neuron cultures [12–13] show power-law

scaling of distributed ‘‘avalanche’’ activity of neuronal ensembles.

Multielectrode array recordings of spontaneous cortical activity in

the awake rhesus monkey also show power-law scaling of

avalanches [14], suggesting that these dynamics are not confined

to in vitro preparations. The temporal and spatial statistics of EEG,

ECoG, MEG and fMRI signals likewise show power-law scaling

[15–18], although the relationship of these large-scale brain signals

to avalanches of neuronal ensembles may not be straightforward.

Brain dynamics are thought to be strongly influenced by

neuroanatomical connectivity [19–22]. Consequently, self-orga-

nized critical brain dynamics may be influenced by properties of

neuroanatomical organization, such as hierarchical modularity,

small-worldness and economical wiring [23–26]. Hierarchical

modularity is a self-similar organization in which functionally

specialized neural clusters (e.g. cortical lobes) contain smaller and

more specialized neural clusters (e.g. cortical nuclei, cortical

columns) at multiple spatial scales. Small-worldness is an

organization which combines modularity and robust between-

module connectivity. Economical wiring is an organization which

contains predominantly short connections.

The presence of an intuitive association between self-similar

brain structure (i.e. hierarchical modularity) and self-similar brain

dynamics (i.e. self-organized criticality), has not been previously

examined. The relationship between brain structure and dynamics
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is reciprocal: while the structure strongly constrains the dynamics,

the dynamics continuously modify the structure through mecha-

nisms such as activity-dependent synaptic depression [27] and

spike-timing-dependent plasticity [28–29]. We previously showed

that this reciprocal relationship is associated with an unsupervised

emergence of modular small-world structural connectivity, in a

large-scale model of spontaneous brain activity [30]. We now ask

whether realistic structural organization is associated with the

emergence of self-organized critical dynamics.

A number of modeling studies recently reported self-organized

critical avalanche dynamics in neuronal networks with nontrivial

topology and activity-dependent plasticity [31–33]. These studies

focused on conceptual features of network organization and

plasticity, and hence omitted neurobiologically realistic features

such as membrane leakage, axonal delays and spike-timing-

dependent plasticity. Other studies are increasingly beginning to

examine these relationships in more realistic networks [34–35].

Most studies however, remain constrained by assessment of power-

law distributions with unreliable linear least-squares-based meth-

ods [36]. In contrast, we aim to systematically and rigorously

examine the relationship between anatomical connectivity,

synaptic plasticity and self-organized criticality, in a realistic

network model of neuronal activity. To this end, we extend a

recent model of nonperiodic synchronization in networks of leaky

integrate-and-fire neurons [37] to incorporate large, sparse,

hierarchical modular connectivity, spike-timing-dependent plas-

ticity and other neurobiologically realistic features such as axonal

conduction delays and neuronal inhibition. We hypothesize that

the neurobiologically realistic features of our model will facilitate

the emergence of self-organized critical dynamics.

Methods

The fundamental organizational unit of our network model is a

densely connected 100-neuron module [37]. All networks

comprised 128 of these modules, and the modules were organized

into seven hierarchical levels (Figure 1a). The number and location

of intermodule connections in these levels was determined by

specific (power-law, exponential or linear) scaling functions.

Neuronal subthreshold membrane dynamics were integrated

exactly and neuronal spike times were interpolated between fixed

time steps. Network dynamics were characterized by probability

distributions of module avalanche sizes and durations. For each

configuration, the presence of power-law scaling in these

distributions was rigorously assessed. All computations were

performed in Matlab using custom-written compiled C-language

code (provided as supplementary information to this article, Text

S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15,

S16, and S17).

Spiking neuron model with synaptic plasticity
The studied leaky integrate-and-fire neuron evolves according

to

C
dV

dt
~{g V{Eð ÞzIextzIsyn,

where V is the membrane potential, C is the membrane

capacitance, g is the leakage conductance, E is the resting

potential and Iext and Isyn are the external current and synaptic

current, respectively. When V exceeds a constant threshold Vthr,

the neuron is said to spike and V is reset to the value Vreset for an

absolute refractory period Trefr. The external current maintains a

constant low level of background neuronal activity, while synaptic

currents couple anatomically connected neurons. In the model, we

set Vreset~E and Vthr~Vresetz18. We set Vreset~0 for clarity,

but any other value (e.g. Vreset~{70) results in equivalent

dynamics, as long as the above relationship between Vreset, E and

Vthr holds. We discuss these and other aspects of the integration

scheme in the Supplementary Information (Text S1).

For a postsynaptic neuron i, we modeled synaptic currents with

decaying exponentials,

Isyn,i tð Þ~
X

j

wjiV0

X
tj

exp {
t{tj

t1

� �
{exp {

t{tj

t2

� �� �
,

where the outer sum is over all presynaptic neighbors of i, the

inner sum is over all previous spike times tj of each presynaptic

neighbor j, wji is the synaptic weight from j to i, t1 and t2 are the

slow and fast decay constants, and V0 is a magnitude parameter.

Synaptic coupling incorporated axonal delays, set to uniformly

distributed random integers between 1ms and 10ms. These values

are in the range of empirically estimated axonal delays [38]. For

computational simplicity we used the same distribution of axonal

delays for all hierarchical levels. We note that long-range cortical

connections are often more thickly myelinated than short-range

connections so there is no simple relationship between inter-level

distance and axonal delay.

Synaptic weights changed at every spike of a neuron incident to

the synapse, according to a spike-timing-dependent plasticity

(STDP) rule (Figure 1b). The STDP rule potentiates wji when the

postsynaptic neuron i spikes shortly after the presynaptic neuron j,

and depresses wji when neuron i spikes shortly before neuron j.

More specifically, when i or j spike, wji changes as wjizDwji?wji,

with

Dwji~

Az wij

� �
exp

tj{ti

tz

� �
,tjvti

{A{ wij

� �
exp

tj{ti

t{

� �
,tj§ti

8>>><
>>>: ,

Author Summary

The intricate relationship between structural brain con-
nectivity and functional brain activity is an important and
intriguing research area. Brain structure (the pattern of
neuroanatomical connections) is thought to strongly
influence and constrain brain function (the pattern of
neuronal activations). Concurrently, brain function is
thought to gradually reshape brain structure, through
processes such as activity-dependent plasticity (the ‘‘what
fires together, wires together’’ principle). In this study, we
examined the relationship between brain structure and
function in a biologically realistic mathematical model.
More specifically, we considered the relationship between
realistic features of brain structure, such as self-similar
organization of specialized brain regions at multiple spatial
scales (hierarchical modularity) and realistic features of
brain activity, such as self-similar complex dynamics poised
between order and randomness (self-organized criticality).
We found a direct association between these structural
and functional features in our model. This association only
occurred in the presence of activity-dependent plasticity,
and may reflect the importance of the corresponding
structural and functional features in neuronal information
processing.

Self-Organized Criticality in Networks of Neurons
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where ti and tj are the latest spike times of i and j, t{ and tz are

time constants and Az wij

� �
and A{ wij

� �
are weight dependence

functions,

Az wij

� �
~gwz 1{

wij

wmax

� �
gz and A{ wij

� �
~gw{

wij

wmax

:

The weight dependence functions keep all weights between 0 and

wmax, and rescale weight changes by the weight constants wz and

w{, and by the rate constant g. The above functions enable soft

weight bounds, or multiplicative weight dependence. Alternative

functions,

A
0
z wij

� �
~gwzH wmax{wij

� �
and A

0
{ wij

� �
~gw{H {wij

� �
,

where H xð Þ is the Heaveside step function, enable hard weight

bounds, or additive weight dependence. The choice between soft

and hard weight bounds has important implications for synaptic

weight distributions (Figure 1c–e). The unimodal distribution

associated with soft weight bounds has more experimental support

[39], although both hard and soft weight bounds are extensively

used in computational studies. We used soft bounds in most

simulations, but also explored the robustness of our results to the

presence of hard bounds.

Parameter values of the model were adapted from the Thivierge

and Cisek [37] study and are shown in Table 1. In the present

study, we find that the postsynaptic-response magnitude and

STDP learning rate parameters facilitate important internal

interactions in the network. We show that high values of these

parameters are required to compensate for the relatively small

number of neuronal synapses in our networks. We also show that

these values may be substantially reduced in larger networks with

greater numbers of synapses.

Hierarchical modular connectivity
Each network comprised 12800 neurons, subdivided into 128

modules. Each module comprised 100 neurons, of which 20
neurons were inhibitory and 80 excitatory. Inhibitory neurons

only formed synaptic connections with all 80 excitatory within-

module neurons. On the other hand, excitatory neurons could

potentially form synaptic connections with excitatory or inhibitory

neurons in all modules. Initially, excitatory neurons only formed

synaptic connections with all 99 other within-module neurons.

Subsequently, excitatory synapses were probabilistically rewired

within seven hierarchical levels (Figure 1a). The density of

intermodular connections, d(h), within each level h~1,2, . . . ,7,

was set using power-law (d hð Þ!h{a), exponential (d hð Þ!e{ch) or

linear (d hð Þ!{bhzk) scaling functions, with a, b and c
determining density drop-off rates (Figure 2a). Synapses were

rewired in a way that preserved the total number of synapses per

Figure 1. Hierarchically modular connectivity and spike-timing-dependent plasticity. (a) An illustrative connectivity matrix of a
hierarchical modular network. This network consists of sixteen 100-neuron modules, organized into four hierarchical levels. Squares in the
connectivity matrix outline the nesting of hierarchical level 1 (small orange squares) inside hierarchical level 2 (large yellow squares). In the present
study we considered networks of 7 hierarchical levels and 12800 neurons. (b) An illustration of the synaptic plasticity rule used in the study. (c) Weight
frequency distributions for the STDP rule with soft bounds (used in most simulations). (d) Weight frequency distributions for the STDP rule with soft
bounds and reduced learning rate (used in some simulations). (e) Weight frequency distributions for the STDP rule with hard bounds (used in some
simulations). Error bars represent the standard deviation.
doi:10.1371/journal.pcbi.1002038.g001

Table 1. Default parameter values of the spiking neuron
model.

Integration parameters C~0:01, g~0:01, E~0, Iext~1:2mV

Neuronal spike parameters Vthr~18mV , Vreset~0, Trefr~3ms

Post synaptic response parameters t1~3ms, t2~1ms, V0~20mV

STDP parameters t{~30ms, tz~15ms, wmax~1,
wz~0:75, w{~0:5, g~1

doi:10.1371/journal.pcbi.1002038.t001

Self-Organized Criticality in Networks of Neurons
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neuron [40] but not connection reciprocity. For each network,

rewiring occurred progressively from the outermost to the

innermost hierarchical level. The location of synapses in each

network was kept fixed during simulations.

The wiring cost associated with each scaling function was

computed by estimating the number of synapses in each

hierarchical level for that function, equating the cost of each

synapse with the number of its hierarchical level (e.g. synapses in

level 1 were assigned a cost of 1), and averaging the cost over all

synapses. Higher density drop-off rates were associated with

lower wiring cost (Figure 2b). The low wiring cost was in turn

associated with higher clustering coefficients and higher charac-

teristic path lengths in the network (Figure 2b–d). Clustering

coefficients and characteristic path lengths are simple measures

of modular organization and between-module connectivity,

respectively [41].

Figure 2. Properties of hierarchically modular connectivity. (a) Power-law, exponential and linear density scaling functions of the networks used
in this study. (b) Dimensionless measures of wiring cost for each density scaling function in (a). The wiring cost was computed by equating synaptic cost
with hierarchical-level number, and averaging the cost over all synapses. Hence, synapses in hierarchical level 1 were assigned a cost of 1,
synapses in hierarchical level 2 were assigned a cost of 2, etc. Approximate values of the network (c) clustering coefficient and (d) characteristic path
length across a range of randomizations of each hierarchical topology. Color-coding is the same as in (a).
doi:10.1371/journal.pcbi.1002038.g002

Self-Organized Criticality in Networks of Neurons
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Network dynamics and module spikes
We integrated subthreshold neuronal dynamics exactly, inter-

polated neuronal spike times between 1ms intervals and recorded

neuronal activity at 1ms bins [42]. We began all simulations by

setting all synaptic weights to 0 and setting all membrane

potentials to uniformly distributed random values from 0 to 5.

We discarded five minutes of initial activity, ensuring in each case

that synaptic weights converged to a stable distribution. We

recorded five minutes of subsequent activity and described this

activity in terms of module spikes. Module spikes represent

simultaneous activations of large numbers of within-module

neurons, and hence correspond to network spikes described in

empirical data [43–44]; we used the term module spike, rather

than network spike, to avoid potential confusion with global

network synchrony. We explicitly note that module spikes are

conceptually distinct from individual neuron spikes. We deter-

mined the occurrence of module spikes with a shuffling algorithm

that preserved individual spike frequency but destroyed global

patterns of network activity. In this algorithm, spike times of all

excitatory within-module neurons are randomly shuffled between

active time bins. Module spikes are then said to occur when the

number of simultaneously active neurons in the original data

exceeds a threshold corresponding to the number of simulta-

neously active neurons in 95% of the shuffled data. For each

module, we averaged the spike threshold from 100 shuffled

matrices.

It is also possible to describe network activity in terms of

individual neuron spikes, rather than in terms of module spikes. In

our simulations, neurons were likely to spike in module-specific

groups, and neuronal spikes were hence strongly correlated with

module spikes (Figure 3). We concentrated on module spike

patterns because these describe activations of neuronal ensembles

and have clear parallels with population spikes observed through

changes of local field potentials in empirical studies of self-

organized criticality [5,12]. Neuronal spike patterns are studied in

more detail elsewhere, e.g. in memory consolidation [45]. We also

note that neuronal activity is likely to occur at every time point in

large networks; consequently descriptions of avalanches of

individual neuron spikes require a global network threshold to

remove background activity. In our simulations, this threshold

resulted in minimal event sizes of e100 neurons, which, together

with maximal event sizes of w10000 neurons, made rigorous

detection of power-law scaling computationally prohibitive.

Avalanche distributions and assessment of power-law
scaling

We defined an avalanche as a sequence of temporally

continuous (in 1ms bins) module spikes, preceded and followed

by a period of inactivity [5]. Correspondingly, we defined the

avalanche size as the number of module spikes in the avalanche,

and the avalanche duration as the total time between onset and

conclusion of the avalanche. The minimal avalanche has size 1
module and duration 1ms. The maximal avalanche may be

arbitrarily large because modules can be potentially active multiple

times in the same avalanche. More realistically, the overwhelming

majority of avalanches in our simulations, especially in simulations

with neurobiologically realistic connectivities (Figure 7a), did not

exceed the system size of 128 modules.

Probability distributions of avalanche sizes and durations allow

a concise quantification of network dynamics. For instance,

subcritical dynamics are characterized by small avalanche sizes

and rapidly decaying avalanche size distributions, while supercrit-

ical dynamics are characterized by large avalanche sizes and

slowly decaying avalanche size distributions. Critical dynamics are

characterized by avalanche sizes and durations that follow power-

law distributions,

p xð Þ~ x{s

f s, xminð Þ{f s, xmaxz1ð Þ ,

with a cumulative distribution function,

P xð Þ~ f s, xð Þ{f s, xmaxz1ð Þ
f s, xminð Þ{f(s, xmaxz1)

,

where x is avalanche size or duration, s is the scaling exponent,

xmin and xmax are upper and lower cut-offs and f s,xð Þ~P?
n~0

nzxð Þ{s
is the generalized Hurwitz zeta function. The

functions explicitly incorporate an upper cut-off xmax, as

distributions are necessarily bounded by system size [46]. In the

Figure 3. Relationship between neuron spikes and module spikes. (a) An illustrative scatter plot of the numbers of neuron spikes and
module spikes at sampled 1ms intervals. Integer spike numbers were jittered by the addition of uniformly distributed random numbers between 0
and 1. (b) Correlation coefficients between numbers of neuron spikes and numbers of module spikes as a function of network randomization.
Correlations were computed from five-minute spike rasters. Error bars represent the standard error of the mean from 20 simulations.
doi:10.1371/journal.pcbi.1002038.g003

Self-Organized Criticality in Networks of Neurons
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following, we set xmax to the maximal event size in each

distribution.

We rigorously assessed the presence of power-law scaling in

avalanche distributions, by adapting the methods described in

Clauset et al. [36]. We hence estimated s using the method of

maximum likelihood. This method is mathematically robust and

accurate for large number of samples n (in our simulations n e104),

unlike linear least-squares-based methods commonly used in

previous studies. For a given xmin, we estimated s by numerically

maximizing the log-likelihood function,

L s xijð Þ~{n ln f s, xminð Þ{f s, xmaxz1ð Þ½ �{s
Xn

i~1

ln xi,

where xi, i~1,2, . . . n are the observed values of x, such that

xminƒxiƒxmax for all xi. We imposed the condition

xminƒ
1
10

xmax and this conservative condition ensured that we

considered a wide range of events. We then chose the s, xmin pair

that minimized the Kolmogorov-Smirnov statistic,

KS~ max
xminƒxƒxmax

S xð Þ{P xð Þj j,

where S(x) is the cumulative distribution function of the data and

P(x) is the cumulative distribution function of the fitted model.

We formally assessed the power-law goodness-of-fit, by

generating 1000 synthetic power-law distributions with equivalent

n, xmin, xmax and s. For each generated dataset we individually

estimated s and xmin, and computed the KS statistic as above. This

procedure gives a p-value as the fraction of instances in which the

KS statistic of the generated data exceeds the KS statistic of the

original data. We deemed that pw0:05 [47] did not allow to reject

the power-law hypothesis, and hence suggested power-law scaling.

Smaller or larger p-values (0:01ƒpƒ0:1) did not qualitatively

change our results.

We imposed three additional conditions to ensure meaningful

power-law scaling. Firstly, we required that maximal avalanche

sizes approach system limits (xmax 6v128 modules), to ensure that

power laws did not reflect rapidly decaying subcritical dynamics.

Secondly, we required that avalanche distributions extracted from

corresponding shuffled module spike matrices had goodness-of-fit

pv0:05. Thirdly, we directly compared power-law and exponen-

tial distribution fits, by computing the log-likelihood ratio for the

best-fitting power-law and exponential distributions. The corre-

sponding probability distribution, cumulative distribution and log-

likelihood functions for the exponential distribution are,

p xð Þ~ 1{e{rð Þe{rx

e{rxmin{e{r xmaxz1ð Þ ,

P xð Þ~ e{rx{e{r xmaxz1ð Þ

e{rxmin{e{r xmaxz1ð Þ and

L~n ln 1{e{rð Þ{n ln e{rxmin{e{r xmaxz1ð Þ
h i

{r
Xn

i~1

xi,

respectively, where r is the exponential parameter. The log-

likelihood ratio compares two distributions and identifies a

distribution which fits the data better. A significance test on the

log-likelihood ratio gives a p-value on the statistical significance of

this comparison [48,36]]. We deemed that pv0:05 indicated a

statistically significant difference in fit between distributions. We

did not attempt to compare power-law and log-normal distribution

fits because it is very difficult to differentiate these two distributions

and hence such comparisons are typically inconclusive [36].

We summarized the presence of power-law scaling in each

distribution with a single statistic p�. For each distribution, p�

equaled the goodness-of-fit p-value for the power-law model if the

distribution additionally fulfilled the above three conditions;

alternatively p� was set to 0. We averaged p� over 20 independent

simulations for each type of connectivity, and considered p�w0:05
to indicate power-law scaling.

Results

Synaptic plasticity enabled a phase transition from
subcritical to supercritical dynamics

We initially examined dynamics emergent on nonhierarchical

modular networks (Figure 4a). We gradually randomized these

networks by rewiring excitatory connections in a way that

increased the number of connections between modules. At one

extreme, ordered nonhierarchical networks had no intermodule

synapses. At the other extreme, random nonhierarchical networks

had homogeneously distributed intra- and intermodule excitatory

synapses. Between these two extremes, nonhierarchical networks

had a varying number of homogeneously distributed intermodular

excitatory synapses. The location of synapses in each network was

fixed during simulations, but synaptic weights continuously

fluctuated according to the STDP rule.

All nonhierarchical networks had a connectivity-independent

neuron spike rate of 1:5Hz, and a stable weight distribution

(Figure 1b). In addition, these networks had module spike rates of

2{2:5Hz. Ordered networks had no intermodular connections,

and correspondingly showed subcritical uncoordinated dynamics.

Random networks had large numbers of intermodular connections

and correspondingly showed supercritical globally synchronous

dynamics. A narrow range of network topologies between these

two extremes was associated with critical dynamics, characterized

by power-law distributions of avalanche sizes and durations

(Figure 4b,c). Distributions of inter-avalanche intervals likewise

changed from subcritical to supercritical, but did not follow

consistent power laws at this transition (Figure 4b).

Despite the stable weight distributions, activity-dependent

fluctuations in synaptic weights continuously occurred

(Figure 5a,b). In order to investigate the impact of these

fluctuations on global network dynamics, we examined the effect

of freezing plasticity after five minutes of initial transient

simulation. This procedure fixed the values of individual weights,

and hence preserved the same neuronal spike rate of 1:5Hz.

However, this procedure dramatically disrupted within-module

neuronal synchrony: module spike rate dropped to less than 0:1Hz

and dynamics on all networks became highly subcritical

(Figure 5c,d). Module spike rate remained negligible despite

increases in external current, and consequent increases in

neuronal spike rate. Furthermore, module spike rate remained

negligible with an even more stringent control condition, which

allowed synaptic weight changes at spike times, but made these

changes by randomly drawing weights from the distribution in

Figure 1c, rather than according to the STDP rule (results not

shown). On the other hand, as we show below, a change from soft

to hard bounds in the STDP rule preserved equivalent dynamics,

despite changing the weight distribution (Figure 1c–e). In addition,

halving the STDP learning rate preserved equivalent dynamics

when network size was doubled. Together, these findings indicate

that the precise patterns of STDP-driven fluctuations enabled the

formation of coherent within-module dynamics in our model.

Self-Organized Criticality in Networks of Neurons
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Hierarchical modularity and low wiring cost enabled a
broad critical regime

Nonhierarchical connectivity is neurobiologically implausible,

because of the high wiring cost associated with a large number of

long-range connections, and because hierarchical modularity is

evident in multiscale neuroanatomical organization [25]. We

hence examined a more plausible connectivity by defining a

framework in which connections were probabilistically placed

within explicit spatial hierarchical levels, according to predefined

power-law, exponential and linear scaling functions (see Methods

and Figure 2). Figure 6 compares the critical regimes associated

with nonhierarchical connectivity (Figure 6a), and with hierarchi-

cal power-law, exponential and linear (Figure 6b–d) connectivities.

The rows in Figure 6b–d represent different wiring costs for each

hierarchical organization. Most strikingly, low-cost power-law and

exponential connectivities were associated with a broad critical

regime. This regime was especially evident for the power-law

connectivity with a~8=3 (fourth row in Figure 6b), as this was the

only studied connectivity simultaneously associated with a broad

regime of power-law distributed avalanche sizes and power-law

distributed avalanche durations. Connectivities with higher wiring

cost, such as all linear connectivities, showed narrow critical

regimes. Connectivities with very low wiring cost did not show

broad critical regimes, presumably because the numbers of long

range connections in these connectivities were insufficient to

enable the emergence of large events.

Figure 7a,b shows statistically significant power-law distribu-

tions of avalanche sizes and durations for the optimal power-law,

exponential and linear connectivities. The greater number of

power-law distributions for the power-law and exponential

connectivities, compared with linear connectivity, is clearly visible.

Figure 7c illustrates the values of power-law exponents for

connectivities in which avalanche sizes and durations simulta-

neously followed statistically significant power laws. Exponents of

avalanche size distributions associated with power-law connectiv-

ities were close to 2 and hence accurately resembled empirically

estimated exponents of neuronal avalanche size distributions at the

same bin size [5,14]. Exponents decreased with increasing network

randomization.

We sought to disambiguate the association between modularity

and the broad critical regime by examining dynamics emergent on

lattices with optimal power-law connectivity, but no explicit

modular structure (Figure 8a). For this purpose, we constructed

lattices of the same size and degree as the hierarchical connectivity

networks, and we randomized these lattices by distributing off-

diagonal connections according to the power-law density scaling

Figure 4. Phase transition from subcritical to supercritical network dynamics. (a) Illustrative ordered (left), intermediate (center) and
random (right) nonhierarchical connectivity matrices. Nonhierarchical networks are characterized by a homogeneous density of between-module
excitatory connections (Figure 2a, blue lines) (b) Cumulative probability distributions of avalanche sizes, avalanche durations and inter-avalanche
intervals emergent on nonhierarchical networks. Subcritical dynamics (concave distributions) correspond to less randomized networks, supercritical
dynamics (convex distributions) correspond to more randomized networks, while critical dynamics (linear-like distributions, in bold) occur between
these two extremes. Gray, pink and light blue distributions correspond to random networks (concave distributions) and ordered networks (convex
distributions). (c) An illustrative module spike raster of critical dynamics.
doi:10.1371/journal.pcbi.1002038.g004
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function with a~8=3. In this way, we could focus on the effect of

hierarchical modularity by retaining most other features of original

network organization, including wiring cost. Dynamics on these

lattice networks had substantially reduced module spike rates

(0:5{1:5Hz) and were associated with a rapid phase transition

and a loss of the broad critical regime (Figure 8c, top). An increase

in external current restored the original module spike rate of 2Hz

and consequently broadened the critical regime, although not to

the original level (Figure 8c, middle). On the other hand, when

modularity was implicitly reintroduced by rearranging inhibitory

synapses into modules (Figure 8b), a broad critical regime

reappeared without changes in external current (Figure 8c,

bottom). These findings suggest that modularity of inhibitory

connections facilitated coherent within-module dynamics.

We explored robustness of the broad critical regime (for the

optimal power-law density scaling function) to other meaningful

changes in neurobiologically relevant parameters, such as changes

in external current, changes in conduction delays, changes in the

postsynaptic response, presence of neuronal inhibition, changes in

the STDP rule and changes in network size (Figure 9).

Theoretically, self-organized criticality emerges in systems with

low external drive and strong internal interactions, and the

responses of our model to variation of parameters were meaningful

in this context. It is worth noting that we assessed the strength of

external drive by the associated neuronal spike rate. Specifically,

we considered the external current of 1:2 to represent a low

external drive even though this value substantially exceeds the

minimal value of 0:18 required to sustain neuronal activity (see

Text S1 for details). In our simulations the broad critical regime

was robust to moderate variations of external current and delays

(Figure 9a,b), but began to disappear when external current

exceeded 1:6 (as external drive became too strong), or when delay

lengths were quadrupled to the range of 1{40ms (as internal

interactions lost spike precision). The regime was narrowed when

Figure 5. Relationship between spike-timing-dependent synaptic plasticity and network dynamics. (a) Fluctuations of within-module
synaptic weights over a 20 second period. Synaptic weights were rank-ordered and assigned a rank-specific color at the first sampled time step. At
subsequent steps, weights were re-ranked and therefore reordered, but the color-coding remained fixed. The mixing of colors hence represents
fluctuations in rank positions. Stable synaptic weight distributions allowed the inference of weight fluctuations from these rank fluctuations. Weights
were sampled at 50ms intervals. (b) Illustrative fluctuations in the number of module spikes (top) and in the mean within-module excitatory synaptic
weights (bottom), recorded over a 5 minute period from a single module. Module spikes were binned at 1 second intervals, and synaptic weights
were sampled at 1 second intervals. (c) Cumulative probability distributions of avalanche sizes, avalanche durations and inter-avalanche intervals and
(d) an illustrative module spike raster of dynamics emergent on nonhierarchical network topologies in Figure 4a, with frozen synaptic weights.
doi:10.1371/journal.pcbi.1002038.g005
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the postsynaptic response weakened (Figure 9c, top), but was

preserved when the STDP learning rate was reduced (Figure 9c,

bottom). In both cases, we controlled for changes in neuronal spike

rate by increasing external current. The regime was broadened by

a stronger postsynaptic response and by a higher STDP learning

rate (results not shown, as the associated parameter values are

unrealistically high).

We hypothesized that our network models required strong

postsynaptic responses and fast STDP learning rates to compen-

sate for the small number of synaptic connections of each neuron.

Excitatory neurons in our model connected with only 99 other

neurons, while in vivo each neuron is thought to have thousands of

synapses. We compensated for the small number of connections in

our model by setting the postsynaptic-response magnitude of each

neuron to a value which could theoretically exceed the neuron

spike threshold and by using an instantaneous STDP learning rate

that substantially exceeds empirically observed values (Table 1).

When we doubled our module size to 200 neurons, and

consequently doubled our network size to 25600 neurons, we

were able to simultaneously halve the values of postsynaptic-

response magnitudes and STDP learning rates and hence bring

these values much closer to empirically observed values [49].

Specifically, the broad critical regime in these larger networks was

preserved when the postsynaptic-response magnitude was halved,

the STDP learning rate was halved, and the external current was

reduced from 1:2 to 0:9 (Figure 9d, top). Alternatively, the regime

was preserved when the postsynaptic-response magnitude was

halved, the STDP learning rate remained unchanged, and the

external current was halved (Figure 9d, bottom). These findings

show that realistically large numbers of synaptic connections are

Figure 6. Relationship between hierarchical modularity, wiring cost and network dynamics. Statistical significance of power-law
distributions of avalanche sizes (black) and durations (red) as a function of network randomization, for (a) nonhierarchical and hierarchical (b) power-
law, (c) exponential and (d) linear density scaling functions. Gray lines show the p�~0:05 threshold for power-law scaling. Error bars represent the
standard error of the mean from 20 simulations.
doi:10.1371/journal.pcbi.1002038.g006
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likely to facilitate strong internal interactions in the presence of

biologically realistic parameter values.

In addition to these variations, the broad critical regime did not

qualitatively change when inhibitory synapses were removed,

provided the loss of inhibition was controlled by reductions in

external current (Figure 9e). The broad critical regime was likewise

preserved when soft weight bounds were changed to hard weight

bounds in the STDP rule (Figure 9f).

Discussion

Despite increasing theoretical support and empirical evidence

for critical brain dynamics, most models of these dynamics have

been fairly abstract, and have largely not considered the influence

of neuroanatomically realistic determinants. In this study, we

employed a realistic model of neuronal network dynamics, and

discerned an association between modularity, low cost of wiring,

spike-timing-dependent synaptic plasticity, and a dynamical

regime indicative of self-organized criticality. We hence discerned

an intriguing and novel association between multiple neurobio-

logical features of complex brain structure and dynamics,

including self-similarity of structure (power-law connectivity) and

self-similarity of dynamics (self-organized criticality). We now

discuss the mechanisms behind this association, and the implica-

tion of our findings for empirical research.

Synaptic plasticity and neuronal ensemble
synchronization

We found that despite seemingly stable neuronal activity, spike-

timing-dependent plasticity enabled coherent within- and be-

tween-module neuronal activity. Furthermore, we showed that two

variations of the STDP rule produced distinct weight distributions,

but enabled a broad critical regime on conducive network

topologies. In contrast, fixed or randomly altered synaptic weights

were associated with subcritical dynamics and negligible module

Figure 7. Illustrative power-law distributions of avalanche sizes and durations. Cumulative probability distributions of avalanche (a) sizes
and (b) durations for the optimal power-law (a~8=3), exponential (c~4=5) and linear (b~4:72|10{2) density scaling functions. Gray and pink
distributions correspond to random networks (concave distributions) and ordered networks (convex distributions). (c) Mean exponents of statistically
significant power-law distributions of avalanche sizes (black) and durations (red), as a function of network randomization. Error bars represent the
standard error of the mean from 20 simulations.
doi:10.1371/journal.pcbi.1002038.g007
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spike rates. STDP may facilitate coherent within-module activity

by intermittently potentiating and depressing synapses between

reciprocally connected neurons. In small networks, simulations

showed that intermittent synaptic potentiation and depression was

associated with pairwise neuronal synchrony, fluctuations of

synaptic weights and continuous reversal of phase differences

between reciprocally connected pairs of neurons (results not

shown). In our networks, within-module weights were potentiated

during module spikes, and depressed between module spikes

(Figure 5b). These activity-dependent fluctuations hence clearly

played an important role in facilitating neuronal ensemble

synchronization.

Recent studies have shown the importance of short-term

synaptic depression in self-organized critical dynamics in networks

of spiking neurons, but have not concurrently considered the

effects of STDP [33,35]. Our study illustrates the importance of

STDP in self-organization and hence provides a alternative

generative model of critical dynamics in networks of spiking

neurons. A principled comparison of the role of these two forms of

plasticity in self-organized criticality is hence an important subject

of future research. The distinct mechanism of these forms of

plasticity may also allow to disambiguate their role empirically

with pharmacological manipulations in real neuronal systems.

Modularity, low wiring cost and self-organized criticality
Modular networks with low wiring cost showed a broad critical

regime. Modular networks with high wiring cost showed a narrow

critical regime, possibly due to high numbers of costly long-range

connections, which enabled a rapid onset of globally synchronous,

supercritical dynamics. Lattice networks with low wiring cost

showed a narrowed critical regime due to uncoordinated

inhibition and a consequent loss of coherent ensemble dynamics.

Modularity and low wiring cost were hence simultaneously

required for self-organized criticality to emerge. This simultaneous

requirement is notable, as both properties are thought to be

ubiquitously present in neuroanatomical organization.

Dependence on parameters and other neurobiological
features

In an early comprehensive exposition, Jensen [4] addressed the

potentially confusing meaning of self-organization to criticality:

‘‘[s]elf-organization to criticality will definitely occur only under

certain conditions; one will always be able to generalize a model

sufficiently to lose the critical behavior. Hence the question

becomes just what is relevant in a given context. This is where a

super-general approach must be supplemented by insight from the

specific science to which a given system belongs.’’ In this spirit, we

examined neurobiologically meaningful variations in parameters

such as external current and conduction delays. We found that the

broad critical regime was generally preserved despite variations of

these parameters and, consequently, finetuning was not required

for self-organized critical dynamics to emerge. More specifically,

strong synaptic interactions with low external current (i.e. short

delays, strong postsynaptic responses, high STDP learning rate)

favored a broad critical regime, while weak synaptic interactions

with high external current (i.e. long delays, weak postsynaptic

response, low STDP learning rate) favored a narrow critical

regime. These findings indicate that critical dynamics primarily

emerged through internal interactions, rather than external drive.

The findings hence provide further evidence for the self-organizing

nature of the observed dynamics. The strong postsynaptic response

and STDP learning rate in our model compensated for the

relatively low synaptic connectivity, and could be markedly

lowered in larger networks without detriment to the broad critical

regime.

We found that inhibitory neurons in our model did not

explicitly enable a broad critical regime. In contrast, recent

network simulations of simple stochastic neurons by Benayoun

Figure 8. Role of modularity and low wiring cost in emergence of self-organized critical network dynamics. (a) An illustrative lattice
connectivity matrix with the optimal power-law (a~8=3) density scaling function. Presumed network modules are shown in yellow, while inhibitory
synapses are shown in red. Note the presence of significant numbers of intermodule inhibitory synapses. (b) A variant of the connectivity matrix in (a),
with modularity of inhibitory neurons. (c) Statistical significance of power-law distributions of avalanche sizes (black) and durations (red) for the
lattice (top), the lattice with restored module spike rate (center), and the modified lattice, in which inhibitory neurons were arranged into explicit
modules. Gray lines show the p�~0:05 threshold for power-law scaling. Error bars represent the standard error of the mean from 20 simulations.
doi:10.1371/journal.pcbi.1002038.g008
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et al. [50] show that inhibitory neurons enable self-organized

criticality by balancing the network. However, the differences in

neuronal dynamics, and the absence of statistically significant

power laws in the Benayoun et al. study, make it difficult to

directly compare our findings. We do show however, that the

presence of inhibitory neurons in our networks was compatible

with self-organized critical dynamics only if these neurons were

organized in modules. These modules correspond to realistic local

inhibitory connectivity, rather than the less realistic long-range

inhibitory connectivity. Inhibitory neurons may also play a more

prominent role in other types of network dynamics, such as

oscillations.

Implications for empirical research
Our findings may be used to generate empirically testable

hypotheses of the relationship between anatomical connectivity

and emergent network dynamics. For instance, we hypothesize

that self-organized critical dynamics in dissociated neuronal

cultures emerge on a low-cost modular neuroanatomical connec-

tivity. Recent studies show that dissociated neuronal cultures self-

organize towards a critical state, via subcritical and supercritical

states [12–13,51]. Cultured dissociated neurons self-organize by

forming axonal and dendritic arborizations, and synaptic connec-

tions [44]. In the first week of culture, self-organization is non-

activity-dependent, and may show preference towards spatial

Figure 9. Robustness of self-organized critical network dynamics. Statistical significance of power-law distributions of avalanche sizes (black)
and durations (red) as a function of network randomization for the optimal power-law (a~8=3) density scaling function associated with (a) changes
in external current (default Iext~1:2), (b) changes in conduction delays (default delays are uniformly distributed between 1ms and 10ms), (c) weaker
postsynaptic response (default V0~20) and slower STDP learning rate (default g~1) (d) doubling of module size to 200 neurons and network size to
25600 neurons and reductions in postsynaptic response, STDP learning rate and external current (e) changes from soft to hard STDP weight bounds,
and (f) removal of inhibitory synapses. Gray lines show the p�~0:05 threshold for power-law scaling. Error bars represent the standard error of the
mean from 20 simulations.
doi:10.1371/journal.pcbi.1002038.g009
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proximity. After the first week of culture, the network becomes

spontaneously active, and self-organization becomes activity-

dependent.

Our findings may hence be used to explicitly compare structure

and dynamics of dissociated neuronal cultures, throughout this

period of self-organization. A recent study found that functional

activity patterns of dissociated neuronal cultures constitute a small-

world network [52]. Novel methods of network reconstruction

from avalanche dynamics [53] may allow to study structural

network properties of these cultures. For instance, future empirical

work may study the relationship between specific anatomical

measures (e.g. wiring cost) and dynamical measures (e.g. exponent

values of power-law distributions) in such networks, throughout

self-organization. Alternatively, it may be possible to study

dynamics in real neuronal networks with externally controlled

anatomical connectivity [54].

Limitations and methodological considerations
A clear limitation of our study is the oversimplified symmetric

hierarchical organization and the relatively small size of our

model. Substantial increases in the number of modules, and in the

number of neurons within modules, are required to make realistic

inferences about neuronal dynamics at larger scales. The study

hence sets the groundwork for simulations of large networks of

spiking neurons and for characterization of spatiotemporal activity

patterns emergent on these networks. Such simulations may be

conducted on increasingly detailed maps of large-scale anatomical

connectivity in healthy subjects [55–57] and in subjects with

connectivity disorders, such as Alzheimer’s disease [58] and

schizophrenia [59]. These simulations will be the subject of future

studies.

Studies of neuronal dynamics often employ numerical integra-

tion schemes (such as the Euler method), and manually store all

previous spike times to compute synaptic currents. An advantage

of the integrate-and-fire neuron model is the ability to integrate

subthreshold activity exactly and incorporate effects of all previous

spikes without the need for explicit summation at each step [60].

In addition, interpolation of spike times between time steps avoids

artefactual synchrony and is especially important in simulations

with spike-timing-dependent plasticity. Hence, while our results

remain subject to numerical error, the particular integration

scheme we employ [42] substantially reduces the possibility of

numerical artefacts.

Despite growing empirical evidence for self-organized criticality,

several important studies argue against this evidence, by either

noting the potential for spurious reports of power-law scaling, or

by attributing such scaling to simpler mechanisms, such as

diffusive processes [47,61–62]. Two observations favor the

presence of self-organized criticality in our model. Firstly, we

estimate power-law scaling with rigorous statistical tests [36],

rather than the more commonly used unreliable linear least-

squares-based methods. We use a method with very high

specificity and we can hence be highly certain that the detected

power-law distributions are genuine. On the other hand, the

method may have potentially low sensitivity, and may hence

underestimate the presence of power laws in our data. Secondly,

we find that these power-law distributions are associated with a

phase transition, suggesting that dynamics evolve at the critical

point. In addition, we note that it is not straightforward to

compare findings between studies that focus on different scales and

types of neuronal activity. Hence, while much evidence for critical

brain dynamics comes from studies of low frequency spatiotem-

poral dynamics (as in this study), these dynamics cannot be trivially

related to other phenomena, such as noise-like processes in

recordings of high frequency neurophysiological signals [62].

In conclusion, we show an association between modularity, low

cost of wiring, synaptic plasticity and self-organized criticality in a

neurobiologically realistic model of neuronal activity. Our findings

theoretically reinforce the reciprocal relationship between con-

nectivity and dynamics on multiple spatial scales.
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