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Abstract

Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was
required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis
was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed
the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we
extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex.
We compare network performance across a sequence of spatial environments using three distinct adaptation strategies:
conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where
the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network
starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation
strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible
neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance
significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to
maximise performance of the network when operating as either a short- or long-term memory store. We also examine the
time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions.
These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally.
Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the
sparsification performed by the dentate gyrus layer.
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Introduction

The adult mammalian brain contains two neurogenic regions, the

hippocampus and the olfactory bulb. One important distinction

between these two areas is that neurogenesis in the olfactory bulb is

thought to be part of a turnover of cells while neurogenesis in the

dentate gyrus is believed to be an additive process where new units

are added to an expanding network [1–4]. Thousands of new granule

cells are produced each day in the dentate gyrus of young adult

animals, a number that declines sharply as the animal ages [5–9].

Although the majority of the new neurons die off a subset is

incorporated into the dentate gyrus and become fully functional units

incorporated into the existing network [10–12]. Surviving granule

cells have been shown to persist for at least a year [2]. In the course of

their development the new granule cells go through a period of

enhanced synaptic plasticity [13–16] and a critical time window for

their recruitment for long-term survival [17,18] as well as their

relevance for performance in selected behavioural tasks [19].

Computational models have made great progress in under-

standing the functional relevance of adult-born neurons. Models of

hippocampal networks that include adult neurogenesis have

examined neurogenesis as either part of a neuronal turnover

[20–26] or, more recently, as part of an additive process [27,28].

These studies show that incorporating neurogenesis into a network

can be advantageous in number of learning tasks, for example

when a network is required to learn a new set of input-output

relationships that overwrite a previously learned set of relation-

ships, or when a network must learn to distinguish very similar

inputs patterns (an ability known as pattern-separation). In our

own work we have examined the functional role of additive

neurogenesis in the rat dentate gyrus by modeling neurogenesis in

a simplified memory model of the hippocampus [29,30]. The

network incorporated both a divergence in unit number between

the EC and DG and sparse coding in the DG, both notable

features of the hippocampus. We required the system to correctly

encode and decode memory patterns under the constraint that the

input statistics change over time. Such a change in input statistics

might occur due to a change in the external environment, for

example when an animal moves from one laboratory enclosure to

another, producing different firing correlations in the entorhinal

cortex. In order to deal with these new correlations and correctly

encode patterns drawn from the new input statistics the network
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typically must adapt its internal connectivity. We found that

introducing a conventional form of plasticity, where existing

synaptic connections can change over time, accommodated the

new input statistics from the novel environment but led to a

breakdown of network function when retrieving and decoding

previously laid down memory patterns, a problem we referred to

as catastrophic interference between old and new encodings.

Adaptation strategies based on neuronal turnover, where neurons

in the network are allowed to die and be replaced, suffered from

similar problems for essentially the same reasons. An adaptation

strategy based on additive neurogenesis, on the other hand,

allowed the network to accommodate the new input statistics while

at the same time preserving representations of earlier environ-

ments. This came at the expense of a lower representational power

in the original environment due to the network having initially

fewer intermediate layer units, but the increase in retrieval

accuracy far outweighed this loss so that the network as a whole

operated with a much higher fidelity. Thus, additive neurogenesis

allowed the network to adapt to changes in input statistics while

preserving the retrieval properties of the network and eliminating

entirely the problem of interference. We concluded that there are

strong theoretical arguments as to why additive neurogenesis

should be observed in the dentate gyrus of the hippocampus as it

endows the network with the ability to adapt in a way that is not

possible with conventional plasticity or neuronal turnover.

A notable feature of this earlier model was the use of

multidimensional Gaussian input distributions to model the input

firing patterns that arrived at the entorhinal cortex input layer. We

made this choice for reasons of simplicity and analytical

tractability. This choice did, however, create a degree of

arbitrariness in both the definition of input statistics for a single

environment and also in how those statistics changed between

environments. This arbitrariness meant it was difficult to directly

link our results to experimental data on, for example, the amount

of neurogenesis observed experimentally in real animals (in our

case, rats). The lack of any spatial structure in our input and any

analogue of spatial position also meant that neurons in the DG

that respond to a specific spatial location of the animal (known as

‘‘place cells’’) were completely absent from our model.

Here, we extend our earlier model to incorporate realistic,

spatially driven input firing patterns in the EC in the form of grid

cells. Grid cells have been well documented in the dorsocaudal

region of the medial entorhinal cortex of awake and behaving rats,

and are comparatively well characterised experimentally [31–33].

Importantly for our model, the manner in which the grids change

when the rat enters a new environment has also been examined.

Thus, we may draw directly upon experimental data to build a

phenomenological model of grid cell firing and to define the manner

in which those statistics change when the animal enters a new

environment. This allows us to generate realistic input statistics and

to evaluate network performance in a computational task that is

much more closely related to that of the real hippocampus. This

allows us to connect our results, including the time course of

neurogenesis over the lifetime of an animal, more closely to

experimental data. It also provides us with a direct analogue of

spatial position in our model which allows us to explore spatial

properties of the network such as the appearance and refinement of

place cells in a way that was not previously possible.

Model

We are interested in examining the functional consequences of

additive neurogenesis in as wide a sense as possible. We therefore

consider a generalised memory model that is compatible with a

number of existing models of hippocampal function. This

simplified hippocampal memory model is described in detail in

Appleby and Wiskott (2009) and is illustrated in Figure 1. Briefly,

we make the hypothesis that the hippocampus acts as a temporary

memory system. We focus on the role of the EC and DG layers in

this system. We do not include areas downstream of the DG, such

as CA3 and CA1, which are left implicit in our model. Incoming

patterns arrive in layers II and III of the EC and are then encoded

by the DG. Units in the EC have a graded response, so their

activity is a real-valued number. Units in the DG are binary, so

their activity can be zero or one, a choice that reflects the bursting

nature of cells in the DG. Activity in the DG is governed by a

winner-takes-all algorithm, so that only one unit in the DG is

active at any one time, which reflects the extremely sparse activity

levels in the DG [34,35]. Each unit i in the DG layer has an

associated N-dimensional encoding vector x̂xi and encoding of EC

patterns takes place using a simple winner-takes-all mechanism.

Each input vector activates the unit in the hidden layer that has an

encoding vector lying closest to it. In other words, the activation of

the DG unit i is given by

ai~
1 if i~argminijx{x̂xij
0 otherwise

�
: ð1Þ

This activation rule induces a Voronoi tessellation of the input space

into M Voronoi cells [30]. Encoded patterns are stored down-

stream, possibly in area CA3, and later retrieved and decoded via an

associated decoding vector ~xxi, which determines the output vector x’’.
Typically, en- and decoding vectors are identical, so that ~xxi~x̂xi, but

if the network adapts at any time between storage and retrieval the

decoding vectors used during retrieval might be different from the

encoding vectors used during storage.

We measure the performance of the network with the mean

squared Euclidean distance between input vectors x and output

vectors x’’,

E : ~S x{x’’k k2Tx, x̂xi ,~xxif g , ð2Þ

where the averaging denoted by S:T is over the distribution of the

input vector x, the sets of encoding vectors x̂xif g with

Author Summary

Contrary to the long-standing belief that no new neurons
are added to the adult brain, it is now known that new
neurons are born in a number of different brain regions
and animals. One such region is the hippocampus, an area
that plays an important role in learning and memory. In
this paper we explore the effect of adding new neurons in
a computational model of rat hippocampal function. Our
hypothesis is that adding new neurons helps in forming
new memories without disrupting memories that have
already been stored. We find that adding new units is
indeed superior to either changing connectivity or
allowing neuronal turnover (where old units die and are
replaced). We then show that a more biologically plausible
mechanism that combines all three of these processes
produces the best performance. Our work provides a
strong theoretical argument as to why new neurons are
born in the adult hippocampus: the new units allow the
network to adapt in a way that is not possible by
rearranging existing connectivity using conventional
plasticity or neuronal turnover.

Adult Neurogenesis in a Hippocampal Memory Model
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i~1,2, . . . ,M, and the sets of decoding vectors, ~xxif g, if they differ

from the encoding vectors.

We consider a scenario where a virtual rat moves through a

sequence of T environments labeled Et, where t~1,2, . . . ,T .

When fully adapted to environment t the network is referred to as

network N t
. After the network has subsequently adapted to

environment tz1 it is referred to as network N tz1
. As the rat

moves through this sequence of environments we quantify the

performance of the network using two kinds of error.

(i) Recoding error, which is the error for patterns stored and

retrieved with network N t
in environment Et.

(ii) Retrieval error, which is the error when patterns stored

with network N t{i
in environment Et{i, i~1,2, . . . ,t{1,

are later retrieved and decoded with network N t
.

It is important to distinguish these two errors as the internal

state of the network will typically not be the same in environment

Et as it was in environment Et{i and the retrieval error will

therefore not necessarily be the same as the recoding error when

the pattern was initially stored.

Spatial input and grid cells
The activity of granule cells in the DG is known to have a strong

spatial dependence. Typically cells respond very strongly at a small

number of specific spatial locations in the spatial environment,

referred to as place fields, but are quiescent otherwise [36].

Experimental work has shown that there is also a strong spatial

dependence in the activity of layer II of the dorsocaudal medial

EC, an area upstream of the DG which provides much of its input

[31–33]. Cells in this region of the EC display very regular

topographically organised firing patterns that map the spatial

environment. This topographic map is in the form of a regular

triangular lattice that covers the entire spatial environment. In

contrast to place cells, which tend to have a single or very few

firing locations in any one environment, cells in the EC display

highly elevated (although not necessarily identical) firing rates at

any vertex in the triangular lattice, which has inspired the name

‘‘grid cells’’.

To introduce spatially driven activity in our model we define a

set of triangular grids that will determine firing patterns in the EC

as the rat explores its environment. To do this we require an origin

and orientation for the grid, a vertex spacing, and a description of

the peak firing rate and field sizes at each vertex. We may then

construct a triangular lattice by placing a central vertex at the

specified origin and placing six further vertices around it at the

specified vertex spacing and orientation. This process is then

repeated until the whole of the spatial environment is covered, as

illustrated in the left two panels of Figure 2. Repeating this process

for each of the N cells in the input layer gives us a set of N grids

that together determine activity in the EC in a particular

environment as a function of spatial location.

As the topographic maps that govern grid cell firing have been

experimentally well characterised we may draw directly upon

experimental data to build our model [31–33]. The main

advantage of this approach is that it reduces the degree of

arbitrariness in our choice of input patterns and allows us to

explore network performance in a much more realistic encoding-

decoding task. Grid spacing and field radii are topographically

ordered throughout the EC with strong correlations between

neighbouring cells. Grid spacing increases linearly from around

30 cm to 50 cm when recording from the dorsal to ventral ends of

the EC [32]. Field radius ranges from 10 cm to 14 cm and

increases with the grid spacing along the same dorsoventral axis.

In contrast, the orientations and peak locations of the grids are

apparently unstructured and are drawn from the whole range of

values along the dorsoventral axis, although anatomically adjacent

cells do appear to share very similar orientations. Peak firing rates

are also apparently unstructured but the mean firing rate of the

overall population follows a Gamma-like distribution [31].

Although individual cells in layer II of the EC arborise over a

considerable fraction of the DG, anatomically adjacent cells are

much more likely to share the same innervation targets. For

reasons of computational tractability we simulate a group of

neighbouring EC cells which permits us to use all-to-all

connectivity, so that every unit in the input layer is connected to

every unit in the hidden layer. We assume that this ensemble of

EC input cells comes from the mid region of the dorsocaudal

medial EC and take mid-ranged values as appropriate. We

simulate a 1 m by 1 m environment for our virtual animal to

explore, an enclosure size similar to that used in the experimental

literature from which we draw our parameters.

In summary, the parameters describing the grids are generated

according to the following scheme.

Figure 1. Our simplified hippocampal model. Left panel: We focus on the role of the EC and DG, while the remaining areas are modeled only
implicitly and are shown as grey in the figure. Connectivity that does not play a role in our model is indicated by grey arrows. Right panel: the
autoencoding network we abstract from our simplified model. A continuous N-dimensional EC input pattern, x, is generated from a
phenomenological model of grid cell firing and encoded into a binary M-dimensional DG representation, x0. The encoded pattern is stored and later
retrieved, then inverted to reproduce a continuous approximation to the original pattern, x’’. The networks we simulate in the results section have 60
units in the input layer and up to 300 units in the hidden layer.
doi:10.1371/journal.pcbi.1001063.g001

Adult Neurogenesis in a Hippocampal Memory Model
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(i) Grid origin: Independently drawn from a uniform

distribution bounded by zero and one.

(ii) Grid spacing: Independently drawn from a Gaussian

distribution with mean m~40 cm and standard deviation

s~2 cm.

(iii) Grid orientation: One global value drawn from a

uniform distribution bounded by zero and 360. Each grid

is then subjected to independent Gaussian noise with mean

m~0 degrees and standard deviation s~2 degrees.

(iv) Field size: Independently drawn from a Gaussian

distribution with mean m~12 cm and standard deviation

s~0:4 cm

(v) Peak firing rate: One global value drawn from a

Gamma distribution with shape parameter n~2 and scale

parameter h~8. Each individual peak is subject to

Gaussian noise with mean m~0 Hz and standard devia-

tion s~1 Hz.

The resulting vertices form a regular lattice of equilateral

triangles which extends across the entire spatial environment.

Representative examples are illustrated in the middle two panels of

Figure 2. Firing rates for the EC cells are generated by summing

the contributions from all the grid vertices spanning the entire

extended environment. Although we limit our spatial environment

to a 1 m by 1 m box we extend the grids an additional 1 m beyond

the box boundary to minimise edge effects produced by vertices

moving into and out of the environment.

Grid cell remapping. Our model of grid-cell firing allows us

to use realistic input statistics when generating EC input patterns

for the DG to encode. In addition to modeling the grid cells

themselves we are interested in how the grids change when the rat

moves into a new environment. Changes in the external

environment are known to drive distinct changes in activity

patterns in hippocampal areas downstream of the EC, an example

being rate- or global-remapping of place cells. Rate-remapping is

triggered by a limited change in the environment such as changing

the colour of the walls of the enclosure [33]. Global-remapping is

triggered by more profound changes in the environment such as

changing the shape of the enclosure or the room in which the

enclosure is placed. Here we are interested a global-remapping

that is triggered by entry into a novel environment that the rat has

not experienced before. Experimental work has shown that change

in the external visual environment causes the grids in the EC to

change in a structured manner [32,33]. Specifically, the grids are

coherently rotated and translated, while grid-spacing and field-

sizes remain unchanged. The grids generated in the second

environment can therefore largely be remapped to the set of grids

Figure 2. Topographic firing patterns in the EC. Top left panel: Formation of a grid governing the firing of a particular EC cell. A single vertex is
placed at the specified grid origin (solid circle) which we choose for this example to be at the centre of the environment, then surrounded by six
further vertices at the specified grid spacing (grey-filled circles). These vertices in turn are surround by twelve further vertices (white-filled circles)
which begins to cover the spatial environment with a grid of equilateral triangles. Bottom left panel: Completed grid covering the entire spatial
environment. In our simulations, the grid is extended to 1 m beyond the boundary wall to minimise edge effects. Middle panels: Two example grids
in environment Et. Firing rates range from zero Hertz (white) to twelve Hertz (black). The dashed lines indicate the ‘‘centre line’’ of each grid which
passes through the grid origin. The grids have different origins as well as vertex spacings and field sizes, but similar orientations. Right panels: The
same two grids after entry to environment Etz1 . The grids have undergone a coherent rotation of grid orientation and independent random shifts in
grid origin. The dashed lines show the new grid centre lines in environment Etz1 superimposed on the (unrotated) centre line from the previous
environment Et , shown as a dotted line.
doi:10.1371/journal.pcbi.1001063.g002
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generated in the first environment via a common rotation and

translation, although this match is not exact. The remaining

differences between the grids in the two environments could be

explained in a number of ways, for example by noise in individual

grid rotations, changes in the relative grid origins, or by some

combination of the two.

For the purposes of our model we must specify an explicit

algorithm for generating changes to the grids as a rat moves through

an extended sequence of novel spatial environments. We know that

neighbouring MEC cells (such as the group of cells we simulate)

have very similar orientations, grid-spacings and field-sizes, but

randomised grid origins relative to each other [32]. We make the

assumption that moving into a new spatial environment does not

disrupt these relationships, so that relative grid orientations, grid-

spacing and field-sizes are preserved in each spatial environment.

We make the hypothesis that the differences in the grids between

two environments that are needed to drive global remapping in our

model must therefore arise from changes in relative grid origins. For

simplicity we assume that the grid origins are simply re-randomised

in each new spatial environment. This is likely to be an over-

estimate of how much the grids differ between two environments, at

least when considering a single change of the external visual

environment while keeping the enclosure unchanged (or changing

the enclosure with a fixed visual environment) as has been examined

experimentally, and not an extended sequence of completely

distinct environments that we consider here. However, this simple

algorithm produces changes in EC firing statistics that would be

sufficient to drive global remapping in the DG and CA3 in our

model while still producing sets of grids with realistic properties in all

12 of the spatial environments we simulate.

We model the changes in grid cells due to entry into a novel

environment as a two stage process. The grids first undergo a

coherent rotation when entering a new environment, subject to

some level of noise, where the angle of rotation is randomised. The

orientation of the grids relative to some fixed landmark therefore

changes but their orientation with respect to each other is largely

unchanged. The grid origins are then randomised within this new

environment. To generate a set of T grids, one for each

environment, we generate template environment, labeled E0, as

set out above. A set of environments labeled t~1,2, . . . ,T is then

generated from this template environment by coherently rotating

the grids and then individually randomising each grid origin. The

two panels on the right of Figure 2 illustrate this process using the

two grids shown in the middle panels.

We assume that our simulated animal lives for one year, which,

in rats, is the evolutionarily relevant period for the kind of memory

task we investigate, and is actively exploring for around three

hours per day. This choice is somewhat arbitrary but not

unreasonable and in any case our simulations are largely

insensitive to this choice provided that there is enough time for

the animal to sufficiently sample each environment before moving

on to the next one. We assume that the animal lives for the same

length of time regardless of the number of environments

experienced, so the length of time spent in each environment is

inversely proportional to the total number of environments T .

When exploring the animal is assumed to randomly sample the

spatial environment, so that we do not explicitly model the

pathway that the animal traverses. Again, provided the animal has

time to sufficiently sample the spatial environment this choice has

little effect on the simulation results.

Adaptation strategies
As the virtual animal moves around an environment, Et, input

vectors are generated from the EC using the set of grids associated

with that particular environment. The network generates an

activity pattern in the DG layer using the winner-takes-all

algorithm outlined above. We assume that the network has some

target performance level for encoding and decoding new memory

patterns which we denote h. h is expressed as a proportion of the

total variance in an environment and is therefore dimensionless.

The network measures the recent time average of the recoding

error and compares it to the target recoding error. If the current

recoding error is larger than the target value the network responds

by adapting its internal structure in some way. A low recoding

error threshold requires the network to encode and decode

incoming patterns with high precision. This forces a greater degree

of specialisation to each environment by the units in the DG. A

high threshold means patterns may be stored and retrieved with

less accuracy. This requires less specialisation in the DG. In all

cases, when a new DG unit is initialised for any reason its encoding

vector x̂xi is set to the location in phase space of the current input

pattern. A initialised decoding vector is assumed to be identical to

the new encoding vector, ~xxi~x̂xi. We consider three distinct kinds

of adaptation strategy:

(a) Conventional synaptic plasticity: The network starts

with a full complement of M hidden units which are

initialised around the origin using an N-dimensional

Gaussian distribution. This produces a network that is not

specialised for any particular environment. On entry to the

first environment E1 the distribution of encoding and

decoding vectors will typically not be well suited to deal

with the input distribution and the recoding error will

therefore be initially quite high. As the animal explores the

environment the network connections are slowly adjusted

using a neural gas-like algorithm [37]. In this algorithm the

encoding vectors are compared to the input vector and

ranked according to how close they lie in input space, and

then updated so that they becomes more similar to the input

pattern. The magnitude of the updates depend exponentially

on the ranking, so that the change in each encoding vector is

given by

Dx̂xi~apeRi=lp x{x̂xið Þ, ð3Þ

where x is the input vector, Ri[ 0,1,2, . . . ,Mf g is the rank of

DG unit i, lp is the decay constant associated with the

ranking, and ap is the overall plasticity scale. We set

ap~0:01 and lp~1, choices which give a reasonable level of

plasticity given the statistics of our input. The plasticity

described by Eq. 3 causes the distribution of encoding

vectors to slowly drift towards the input distribution over

time, and the recoding error therefore falls. Unlike Martinez

et al. (1993), in our algorithm the rate of learning does not

gradually slow. Instead, when the recent-time average of the

recoding error (measured over 100 second time intervals)

drops below the specified threshold, h, the units become

frozen and remain non-plastic until the recoding error rises

above h, whereupon the connections unfreeze and become

plastic again. This typically happens when the input statistics

changes due to the network entering a new environment.

This process continues until the animal has passed through

the full set of T environments.

(b) Neuronal turnover: The network has a full set of M
hidden units which are initialised around the origin in the

same manner as for the conventional plasticity network. On

entry to the first environment the recoding error will be

Adult Neurogenesis in a Hippocampal Memory Model

PLoS Computational Biology | www.ploscompbiol.org 5 January 2011 | Volume 7 | Issue 1 | e1001063



initially high which triggers neuronal turnover, where units

are deleted from the network and reinitialised using the

current environment’s statistics. We set the average rate of

neuronal turnover to be 1% per day and consider two

variations of how units are selected for turnover. In random

turnover units are randomly selected from the network. In

targeted turnover units all DG units have a internal counter

that is incremented each time the unit is activated by an

input pattern. The internal counters decay exponentially

over time with a half-life of 20 days. When turnover occurs

the DG units are ordered by usage, then those with low

usage counters are are chosen for deletion before units with

higher usage counters. Thus, units that have not been

activated by input patterns in the recent past are selected for

deletion while units that have been recently activated are

preserved. In both cases new units are initialised using the

current input vector. The distribution of encoding vectors

will therefore gradually change to better represent the new

input distribution. We also examine a variation of turnover

where reinitialised units are plastic for a period of time

following their reinitialisation. In this case, all DG units in

the network follow the neural gas rule of Eq. 3 scaled by an

additional unit-specific time-dependent scaling factor,

bi tð Þ[ 0,1½ �. The scaling factor bi tð Þ is set to 1 when unit i
is reinitialised, then decays exponentially over time with a

half-life of 7 days. When the recent-time average of the

recoding error drops below the target threshold turnover

ceases until the recoding error rises again, typically this is on

entry to the next environment. This process continues

until the animal has passed through the full set of T
environments.

(c) Additive neurogenesis: On entry to the first environment

a single unit is added to the network. As the network has only

one DG unit the recoding error is initially very high and this

triggers additive neurogenesis, where units are added to the

network and initialised using the statistics of the current

environment. We set the average growth rate to be 1% of the

maximum DG size per day. Growth continues until the

recoding error falls below threshold whereupon neurogenesis

ceases. When the animal enters the second environment E2,

the recoding error will typically rise above the threshold and

growth starts once again. This continues until the animal has

experienced the full set of T environments. After passing

through the T environments the network will have a set of

M1 units specialised for environment E1, a set of M2 units

specialised for environment E2, and so on. We impose the

constraint
PT

t~1 MtƒM so that the network can never

grow larger than the fixed size networks. The neurogenesis

network will typically only reach a size comparable to that of

the fixed size networks near the end of the animal’s lifetime.

We also examine a variation where new units are plastic for

a period of time following their addition to the network. As

with neuronal turnover all DG units in the network follow

the neural gas rule of Eq. 3 scaled by an exponentially

decaying scaling factor bi tð Þ, which has a half-life 7 days.

A lower error threshold implies a greater degree of specialisation

of the network to each environment. In both the conventional

plasticity and neuronal turnover algorithms increased specialisa-

tion to each environment is achieved by adjusting the internal

connectivity of the network, a process which risks the disruption of

retrieval properties when patterns from earlier environments are

recalled and decoded. In the additive neurogenesis algorithm the

network avoid this problem by adding new connectivity to the

network rather than changing existing connectivity. Units that are

added in later environments do not affect the retrieval error for

earlier environments because they were not used during storage of

those patterns. However, a neurogenesis network that becomes

over-specialised for the early environments risks using up the

entire pool of new hidden layer units too quickly, leaving none

remaining for later environments.

Results

We present three main results in this section. First, we quantify

how well the network performs using one of the three different

adaptation strategies: conventional plasticity, neuronal turnover

(random or targeted), and additive neurogenesis. We also examine

pair-wise combinations of these three strategies and finally a

combination of all three operating together. Second, we examine

the time profile of neurogenesis over the lifetime of the test animal

under two different hypothetical rearing conditions: a sequence of

twelve environments, representing natural free roaming rearing

conditions, and a reduced sequence of four environments,

representing laboratory housed rearing conditions. Third, we

examine the kind of spatial structure that emerges in DG activity

in our model due to the interplay of the grid-cell like EC input

patterns and the sparsification that occurs in the DG layer.

For consistency with earlier work, we simulate a network with

60 EC cells in the input layer and restrict the DG to have a

maximum size of 300 units, a choice that also preserves the

experimentally observed 1 : 5 divergence in unit number between

the EC and the DG. We choose a target recoding error threshold

of 0:45. This provides a reasonable target level of recoding

accuracy given the network size and the input statistics we use.

Network performance with different adaptation
strategies

In our simulations the network experiences a sequence of twelve

environments over a simulated lifetime of one year. The simulated

animal spends one month (30 days) in each environment, and is

assumed to be actively exploring for around three hours each day.

When exploring the animal randomly samples the spatial

environment, appearing at a different location every second.

Fixed and reinitialising networks. Before we examine

network performance using different adaptation strategies we note

that there are two kinds of network that are of particular interest to

us as reference cases. The first is a fixed size, non-plastic network

with a full set of DG units initialised using positive values drawn

from an N-dimensional Gaussian distribution centred at the

origin. Such a network will be set up in a completely general way

and will not be specialised for any particular environment. The

recoding performance of this network provides a measure of how

well, in a general sense, a network with M hidden layer units deals

with the N dimensional input governed by the grid cell statistics

we have used. We would naturally expect that any adapting

network should achieve at least this level of performance, as

otherwise the adaptation process is actually lowering the

performance of the network and the network would be better off

remaining fixed. The second case of interest is a network that is

completely reinitialised upon entry to each new environment with

a full set of plastic DG units specialised to that environment. Such

a network will be completely specialised for the current

environment and provides us with a measure of the best possible

performance we can expect a network to achieve. As the internal

structure of the network changes completely between

environments this network also provides us with the worst

possible retrieval error we can expect to see.

Adult Neurogenesis in a Hippocampal Memory Model
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The left panel of Figure 3 shows the recoding error for the fixed

network and the recoding and retrieval errors for the reinitialising

network as the animal moves through a sequence of twelve

environments, averaged over 100 simulations. For the fixed

network the recoding error is constant across the entire set of

environments. For the reinitialising network the recoding error is

initially slightly elevated and then slowly falls as the DG units

adjust their distribution to better reflect the new input statistics.

We have also plotted the retrieval error for environments Et{i for

i~1,2, . . . ,T{1, when the network is adapted to the final

environment ET . The retrieval error is equal to the recoding error

in the final environment, but higher for all preceding environ-

ments. A similar retrieval error line may be drawn starting from

any of the twelve environments, but the ET line shows the change

in the retrieval error across the whole set of environments.

Together, the fixed and reinitialising networks provide a baseline

which places the following results in context.

Conventional plasticity. We now examine network

performance using a conventional plasticity adaptation strategy,

where the network is of a fixed size but the encoding vectors of the

DG units can change according to a neural-gas like plasticity

algorithm. The right panel of Figure 3 shows the recoding and

retrieval errors as the animal moves through the twelve

environments. When the network enters an environment the

recoding error is initially high. Over time, the plasticity of the DG

units reorganises the encoding vectors to better represent the new

input statistics, reducing the recoding error to below threshold,

whereupon plasticity ceases. However, this decrease in recoding

error has come at the price of an increase in retrieval error. This

increase in error is due to changes in the internal structure of the

network which disrupts the representations of earlier

environments, and is more pronounced for more temporally

distant environments. Conventional plasticity is therefore capable

of adapting the network to a change in input statistics but only at

the expense of disrupting the retrieval of previously stored memory

patterns.

Neuronal turnover. In the neuronal turnover algorithm the

network is fixed in size but units in the DG layer may die and be

replaced by newly initialised units. There are two variations of this

algorithm. In random turnover units are randomly deleted and

reinitialised. In targeted turnover units that have not been recently

activated by EC input patterns are deleted in preference to those

that have been recently activated. The left panel of Figure 4 shows

the recoding and retrieval errors across the twelve environments

for random turnover with an error threshold of 0:45. As with

conventional plasticity when the network initially enters an

environment the recoding error is elevated but, over time, the

error is reduced as the network adapts to the new input statistics.

Here the adaptation is not due to plasticity of the DG connections

but instead is due to units being deleted from the network and

replaced by newly initialised units. These newly initialised units

tend to have encoding vectors that lie in the more densely

occupied regions of input space and therefore better match the

input statistics than the units they replace, and the recoding error

therefore falls. As with conventional plasticity, random turnover

leads to an increase in the retrieval error due to disruption of

previously stored representations. The right panel of Figure 4

shows the same information for a network using a combination of

random turnover and conventional plasticity. Units that have been

turned over in this network are plastic for a few days following re-

initialisation. Introducing plasticity increases performance of the

network slightly as the encoding vectors are distributed more

efficiently, but the results are qualitatively the same.

Figure 5 shows the same information for a targeted turnover

algorithm. A targeted turnover algorithm is more successful than

random turnover at preserving previously stored memory patterns,

but only the most recently experienced environments can be

retrieved and decoded completely accurately. As with random

turnover, introducing plasticity improves performance of the

network somewhat but does not qualitatively change this result.

Additive neurogenesis. We now examine an additive

neurogenesis algorithm where the network starts out with a

Figure 3. Evolution of the recoding and retrieval errors over 12 environments for the fixed, reinitialising and plastic networks. Left
panel: The recoding error (lower solid line) and retrieval error after adaptation to the final environment (dashed line) of the reinitialising network are a
measure of how well a completely specialised network deals with the same kind of statistics. This is the best possible average recoding performance,
and correspondingly the worst possible retrieval performance we can expect for a network with M~300 DG units. The recoding error of the fixed
network (upper solid line) is a measure of how well a completely generic network deals with the statistics of the spatially driven input we have used.
We expect that any adaptation strategy would produce at least this level of recoding accuracy. Right panel: Evolution of the recoding error (solid line)
and the retrieval error (dashed line) as a function of environment number for a network that uses a neural gas-like plasticity algorithm with a recoding
error threshold of 0:45. In all subsequent plots we conform to the convention of plotting recoding errors with a solid line and retrieval errors with a
dashed line. The errors lie in the range 0:3 to 0:9 which we also adopt as our standard vertical scale. Conventional plasticity successfully reduces the
recoding error in each environment to the target value but only at the expense of increasing the retrieval error for previously stored memory
patterns.
doi:10.1371/journal.pcbi.1001063.g003
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reduced number of DG units but is capable of adding more units

over time. The left panel of Figure 6 shows the recoding error

across twelve environments. On entry to a new environment we

see the characteristic behaviour of an initially elevated recoding

error which is reduced over time as the network adapts. Here the

adaptation is due to the growth of new units in the DG layer which

expands over time. As discussed above, a low recoding error

threshold can cause the network to exhaust its capacity for growth

by using all its units in the early environments. We see in the inset

that this occurs part way through environment six. As there are no

more units to add in the final three environments the performance

in those environments is very poor. However, in all cases the

retrieval error is identical to the recoding error as, although the

network is growing, the parts of the network that were used to

encode patterns in earlier environments do not change over time

so there is no rearrangement of internal structure and therefore no

disruption of previously stored patterns. This is the key advantage

of using an additive neurogenesis compared to a conventional

plasticity or neuronal turnover algorithm. The right panel of

Figure 6 shows the same network except that newly grown units

are plastic for a few days following initialisation. Plasticity allows

the network to use new units more efficiently with the result that

the network can deal fairly well with the full set of twelve

environments, although after environment seven the network still

does not always achieve the target recoding error.

A combined adult neurogenesis, turnover and plasticity

algorithm. So far we have examined three distinct adaptation

strategies, in the form of conventional plasticity, neuronal

turnover, and additive neurogenesis, as well as combinations of

turnover or additive neurogenesis with plasticity. We have shown

that additive neurogenesis allows the network to adapt to new

input statistics without disrupting previously stored memory

patterns. However, we have also shown that plasticity in the

new cells allows them to adjust their synaptic connections and

better match the input statistics, thus maximising the benefit of

each unit, and that cell death allows units that have previously

been added but have since become redundant in the network to

die and make space for new units. Each of these three adaptation

strategies therefore has its own advantages and disadvantages.

Interestingly, experimental results suggest that new granule cells in

Figure 4. Performance of a network using the random neuronal turnover adaptation strategy across 12 environments. Left panel:
Random neuronal turnover successfully reduces the recoding error in each environment to the target level of 0:45 but only at the expense of
increasing the retrieval error for previously stored memory patterns. Right panel: Adding conventional plasticity improves network performance but
does not qualitatively change this result.
doi:10.1371/journal.pcbi.1001063.g004

Figure 5. Performance of a network using the targeted neuronal turnover adaptation strategy across 12 environments. Left panel:
Targeted turnover is more successful than random turnover at preserving memory patterns, especially for those stored very recently, but still suffers
from a disruption of more temporally distant patterns. Right panel: Adding conventional plasticity improves network performance but does not
qualitatively change this result.
doi:10.1371/journal.pcbi.1001063.g005
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the DG have a period of enhanced plasticity and that there is a

significant amount of cell death within the DG layer as part of its

growth. We are therefore motivated to examine a more

sophisticated neurogenesis rule that combines all three processes

together.

The left panel of Figure 7 shows the recoding and retrieval

errors for a network using a combination of additive neurogenesis

and random turnover across twelve environments. In this

algorithm the DG grows according to the additive neurogenesis

rule presented earlier except that, instead of growth ceasing when

the DG reaches the maximum size, units are randomly turned

over to make space for new units. The right panel of Figure 7

shows the same network with plasticity. As with the simple additive

neurogenesis rule this adaptation is due to the growth of new units

in the DG layer. Unlike the purely additive algorithm introducing

a degree of neuronal turnover allows the network to achieve the

target recoding accuracy in all twelve environments. This once

again leads to an increased retrieval error because the network is

once again changing its internal state over time, although the

magnitude of this error is lower compared to both conventional

plasticity and neuronal turnover algorithms operating alone.

Adding plasticity to this algorithm allows the network to make

much more efficient use of new units, producing a network that is

capable of dealing with all twelve environments while at the same

time preserving excellent representations of earlier environments.

The retrieval error is approximately constant across all previous

environments, suggesting that this algorithm might be appropriate

if the network were operating as a longer-term memory store.

Figure 8 shows the same information for a network using

neurogenesis and targeted turnover. This network is also capable

Figure 6. Performance of the neurogenesis network across 12 environments. Left panel: For the first five environments the neurogenesis
algorithm reduces the recoding error in each environment to the target level of 0:45 but from the sixth environment onwards the network starts to
run out of units to add and the network can no longer achieve this level of performance. The retrieval error for previously stored memory patterns is
identical to the recoding error when those patterns were stored, as the internal structure of those parts of the network used to originally encode
those patterns does not change over time. Inset: A plot of a single simulation shows how this breakdown of adaptation occurs in a step-like manner
when the network runs out of units to add. The gradual degradation in performance shown in the main plot is a result of averaging 100 simulations,
each of which breaks down at a different point in time. Right panel: Plasticity allows the network to make better use of the units it grows with the
result that the network can, on average, deal fairly well with all twelve environments.
doi:10.1371/journal.pcbi.1001063.g006

Figure 7. Performance of a network using a combination of neurogenesis and random turnover across 12 environments. Left panel:
The more sophisticated algorithm successfully achieves a recoding accuracy of 0:45 for all twelve environments but once again suffers from an
increased retrieval error. Right panel: Adding plasticity improves network performance considerably resulting in a network that can deal with all
twelve environments while producing a retrieval error that is consistently lower than either conventional plasticity or neuronal turnover algorithms
operating alone.
doi:10.1371/journal.pcbi.1001063.g007
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of achieving the target recoding accuracy in all twelve environ-

ments. Again, there is an increase in retrieval error due to units

dying and being replaced. In this network this is done in a targeted

manner, so that units that have not been recently used die off first.

The retrieval error is the same as the recoding error for the most

recent three environments, but then rises fairly sharply as we

examine more temporally distant environments. This algorithm

might therefore be appropriate if the network were operating as a

short term memory that placed more emphasis on more recent

environments compared to most temporally distant ones.

Time course of neurogenesis
We now turn our attention to the time course of neurogenesis

over longer periods in the lifetime of our simulated rat. We are

interested in these growth profiles for two reasons. Firstly, it explains

the time course of the recoding error for the neurogenesis network

we studied in the preceding section in terms of adding units to a

growing DG. Secondly, the profiles display several distinct features

that together form a specific theoretical prediction of our model

which could be used to test our theory experimentally.

Figure 9 shows the growth profile of the DG for two

hypothetical rearing conditions averaged over 100 simulations.

In the left panel the network experiences a sequence of twelve

environments. On entry to each new environment there is an

approximately exponentially decaying period of growth. Once

enough new units have been added to bring the recoding error

below the target error of 0:45 growth slows down dramatically,

although it does not stop entirely as fluctuations mean new units

do continue to be added. This growth pattern that is repeated on

entry to each subsequent environment. The overall amount of

growth is smaller in later environments compared to earlier

environments. This is because the network begins to build up

experience of a larger and larger number of environments and

begins to find more and more similarities between the statistics of

Figure 8. Performance of a network using a combination of neurogenesis and targeted turnover across 12 environments. Left panel:
The algorithm achieves a recoding accuracy of 0:45 for all twelve environments. The retrieval error is the same as the recoding error for the three
most recent environments then increases sharply for temporally more distant environments. Right panel: Adding plasticity improves network
performance considerably. The result is a network that can deal with all twelve environments while at the same time having a retrieval error that is
lower than either conventional plasticity or neuronal turnover algorithms operating alone.
doi:10.1371/journal.pcbi.1001063.g008

Figure 9. Time course of neurogenesis in the dentate gyrus. Left panel: Neurogenesis profile across twelve environments. On entry to each
new environment there is an approximately exponentially decaying growth period. Later environments need fewer new units to achieve the same
level of recoding error, indicated by the progressively lower peaks. This reflects an increasing level of generalisation in the network that permits the
re-use of existing units. Right panel: Neurogenesis profile across four environments. The same trends of an exponentially decaying growth pattern
and a reduction in the number of units added in the later environments compared to the earlier environments can be seen. However, the mean
overall level of growth for four environments (115 units) is lower compared to the mean overall level of growth for twelve environments (270 units).
doi:10.1371/journal.pcbi.1001063.g009
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each new environment and the statistics of the set of environments

it has already experienced. This process of generalisation means

that fewer units must be added on entry to later environments to

achieve the same target level of recoding error.

The right panel of Figure 9 shows the growth profile across a

more restricted sequence of four environments. This simulation

represents typical, laboratory housed rearing conditions where the

animal experiences very few environments over its lifetime. Again,

we see an approximately exponential growth pattern within each

environment, and that the degree of growth is slightly lower in the

last environment compared to the first one. However, the overall

level of growth in the dentate gyrus is lower, with an average of

115 units needed to deal with four environments compared to 270
units needed to deal with twelve environments. Note that the

number of units required does not scale linearly with the number

of environments due to the re-use of existing units in later

environments.

The shape of the neurogenesis profiles is strongly dependent on

our choice of additive neurogenesis rule. We have limited the

average rate of growth to 1% of the maximum DG size per day, a

choice that is broadly consistent with the experimental data. As the

amount of neurogenesis is typically measured over much longer

periods the experimental data does not provide the temporal

resolution to constrain the rule with anything more than an

average rate of growth. We have also explored the situation where

each environment is distinct from the previous environments.

There is therefore very little overlap in the statistics of each

environment. We do not therefore expect an exact quantitative

agreement between our model and experimentally measured

neurogenesis profiles. However, we expect that the principle

results would be preserved. Our model predicts that growth of the

DG should typically be triggered by entry into novel environments

that an animal has not experienced before. This growth should

follow an approximately exponential time course, and later

environments should typically induce less growth compared to

earlier environments. We also predict that the final size of the DG

for animals raised under conditions where fewer environments are

experienced, for example in laboratory housed rearing, will be

smaller compared to animals raised under richer, more complex

rearing conditions.

Place cells in DG
Modeling work has shown that a network performing

sparsification on spatially structured input can generate place-cell

like receptive fields [38]. In the model presented in this paper we

have used a phenomenological model of grid cells in the EC to

generate input firing patterns that are passed to the DG which

performs a sparsification operation. We are interested to see if the

sparsification step in the DG of our network also leads to spatially

dependent firing in the dentate gyrus, and if this spatial

dependence has similarities to the well-documented phenomenon

of place-cells [36]. Of particular interest is an evaluation of how

spatially selective units in the DG are and how this selectivity

changes and develops as the animal moves between different

spatial environments.

We examine the spatial firing properties of a group of DG cells

in simulations similar to those presented in the results section.

Briefly, the network explores two distinct spatial environment for a

period of one month (30 days), adapting its internal structure to

cope with the changes in input statistics that occur when it move

from environment one to environment two. We record DG

activity as the animal moves into the second spatial environment at

time points of 1 day, 10 days, 20 days and 30 days. We examine a

network using the additive neurogenesis with plasticity algorithm,

but results for a network that uses additive neurogenesis in

combination with some form of neuronal turnover (either targeted

or random) are qualitatively very similar.

Figure 10 shows the spatial firing response of four typical DG

units at four time points in the second environment. After one day

the input statistics have only recently changed due to entry into the

novel second environment and only a few DG cells have so far

been added to encode newly active regions of input space. Each

unit therefore handles a relatively large area of input space which

translates to it being activated by a large proportion of the spatial

environment. By day 10 further addition and optimisation of new

units has increased the size of the DG layer and the initially

broadly tuned response has refined into a number of distinct but

still quite large place fields. As more units are added these place

fields are refined further, until by day 20 we have responses that

resemble place fields as seen in experimental literature. After 30
days we have a mature network and the cells are left with one

main place field and occasionally some scattered areas of

secondary activation.

We have shown the development of a set of four fairly typical

DG cells in our network. There is a great deal of variety in the

number and size of place fields that the DG cells have, with some

having a single place field (as in the examples shown), others more

than one, and yet others having no place fields at all. The resulting

place fields are fairly realistic in appearance and correspond well

with experimental observations. However, we should point out

that the time scales involved in the emergence of place fields in our

model are rather long compared to those observed in experimental

work. Typically, place cells develop and refine over the course of a

few minutes rather than days when a rat enters a new

environment. There are several possible reasons for this

discrepancy in timescales. Perhaps most importantly, we have

made several simplifications when constructing our model

hippocampus, adult neurogenesis rule, and the statistics of the

environments which the rat experiences. Although the behaviour

of our model is qualitatively insensitive to many of these choices,

these choices have important consequences if we wish to interpret

our results in a quantitative way. For example, the statistics of the

two environments we have used are rather different from each

other. If they were very similar we would expect that less

refinement would be required and recognisable place fields would

emerge much faster. We have also made assumptions about the

amount of neurogenesis per day, limiting it to an average of 1% of

the maximum DG size per day. If new units were added at a

higher in the first few days after entry to an environment

compared to later times, then refinement would also be much

faster. Addressing these issues thoroughly is beyond the scope of

this current work. However, we are still able to show in a

qualitative sense that place-cell like responses can can emerge and

refine in our model as a natural result of the sparsification

operation of the DG operating on spatially structured EC input.

Discussion

In this paper we have extended our earlier model of additive

neurogenesis in the hippocampus to include realistic, spatially

driven input firing patterns in the form of grid cells in the

entorhinal cortex. We confirmed our earlier finding that additive

neurogenesis is a superior adaptation strategy compared to

conventional synaptic plasticity or neuronal turnover. We have

also shown that a more sophisticated neurogenesis rule that

incorporates both cell death and enhanced plasticity of new

granule cells is superior to any one of the three individual strategies

operating alone.

Adult Neurogenesis in a Hippocampal Memory Model

PLoS Computational Biology | www.ploscompbiol.org 11 January 2011 | Volume 7 | Issue 1 | e1001063



We focus on the interaction of the EC and DG layers, and leave

the remaining layers of the hippocampal network implicit. The

DG in our network encodes input patterns and forms a sparse,

binary representation of the continuous, non-sparse EC input. We

assume that CA3 then carries out a storage and retrieval function,

and that CA1 decodes the retrieved pattern, without modeling

these processes explicitly. A more complete hippocampal model

would include an explicit CA1 decoding layer and an explicit

model of storage and retrieval in area CA3, perhaps via a Hopfield

network. However, we do not believe that including an explicit

model of CA3 and CA1 will change the principal findings

presented in this paper. This is because, regardless of what

happens downstream of the DG, incoming EC input patterns will

still be encoded in the DG and the network will still face the

problem of having to adapt the DG encoding to changes in the EC

statistics without disrupting previous encodings and the retrieval of

existing memory patterns.

The nature of the rule governing the addition of new units to

the dentate gyrus has profound consequences for network

performance. In the absence of experimental data we have opted

for a simple approach where new units are added if the average

network performance falls below a given threshold. We also limit

the average rate of of neurogenesis to the experimentally observed

long-term average of 1% of the maximum DG size per day. The

benefit of this simple rule is that we do not require the network to

have knowledge in advance of the maximum size that the dentate

Figure 10. Development of spatial dependence of activity in the dentate gyrus layer of our network upon entry into a novel
environment. We show four cells (from top to bottom) at four different time points (1, 10, 20 and 30 days, from left to right). Left column: After 1
day in the new environment each DG cell us activated by a large area of the spatial environment. Middle left column: After 10 days a degree of
refinement has occurred and the place fields have become more restricted. Middle right column: After 20 days further refinement leads to activation
patterns that resemble place cells in the DG. Right column: After 30 days the final response of the cells are very similar to experimentally observed
place cells with one main place field and occasionally some scattered areas of secondary activation. The network uses an additive neurogenesis with
plasticity algorithm, but results are qualitatively the same for any of the four variations of neurogenesis we explored in the results section.
doi:10.1371/journal.pcbi.1001063.g010

Adult Neurogenesis in a Hippocampal Memory Model

PLoS Computational Biology | www.ploscompbiol.org 12 January 2011 | Volume 7 | Issue 1 | e1001063



gyrus can grow to, nor the number or complexity of environments

it will experience. The additive neurogenesis rule could in

principle be extremely complicated and take into account the

current size of the dentate gyrus and the details of the

environments the network has already experienced or, as we

believe more likely, it could be a relatively simple rule that has

evolved into a form which is appropriate for the typical life

experiences of the animal in question. Certainly there is a strong

evolutionary pressure to optimise this rule as the advantages of a

properly functioning memory system are profound. Animals with

more efficient adult neurogenesis rules would therefore be at

considerable advantage compared to those with less efficient rules.

Another possibility is that the neurogenesis rule is dynamic,

reacting to low levels of growth by lowering the recoding error

threshold or high levels of growth by raising the recoding error

threshold. Such a rule seems appropriate as the animal does not

know in advance how many and how complex the environments it

will experience. An animal that finds itself experiencing a limited

number of environments might be better off using more DG units

to improve the representation of those environments rather than

save units for future environments that it may possibly never

experience. This kind of neurogenesis rule would lower the

difference in final dentate gyrus size between the laboratory

housed and natural rearing strategies. Adult neurogenesis could

also occur at a variable rate, perhaps depending on the difference

between the measured and target recoding errors. This would

make the growth profile steeper in the first few days after entry to

the environment, so that the network adapts much more quickly to

a new environment. It would also cause place cells in the dentate

gyrus to refine much more quickly. Both possibilities are consistent

with the experimental data on growth rates which do not have the

temporal resolution needed to make a strong statement about the

time course of growth. However, we do not believe that the details

of the adult neurogenesis rule will change in a qualitative way any

of the results presented here. The advantages of the neurogenesis

strategy stem from the fundamentally different approach to

dealing with the changing statistics of the input patterns. A

network that uses conventional plasticity is faced with the problem

of having a complete network from the start and having to decide

which parts of that network to adapt. We have found in a variety

of cases [29,30] that, while the network can adapt, it is almost

certain to disrupt or even completely destroy the retrieval

properties of that network. The same is true for a network that

uses neuronal turnover for essentially the same reasons. In

contrast, with additive neurogenesis the network can patiently

add new units and grow in response to changes in the input

environment as necessary, a process which does not disrupt

retrieval of memories that have already been stored.

Experimentally it is known that the amount of neurogenesis

decreases over the lifetime of the animal. The reasons for this

decrease are not clear but there are several possible explanations.

It may be due to the increasing generalisation of the network over

time. As more and more environments are experienced the

network adds more units to the DG, each specialised for one of the

environments. Over time the distribution of the DG encoding

vector begins to reflect the statistics of the ensemble of

environments. Later environments are more likely to be

adequately handled by the existing set of encoding vectors and

fewer new units therefore need to be added. A second possible

explanation lies in the statistics of the sampling of the ensemble of

environments. If an animal experiences a set of T environments

over its lifetime, and it randomly sampled these environments at

the rate of one per day, then at first the animal would expect to see

a different environment almost every day. As time progressed it

would become more and more likely to revisit an earlier

environment compared to visiting a novel environment. Less

neurogenesis would be needed in the later stages of life because the

animal would only rarely enter a novel environment. A third

possibility is that the level of cell proliferation in the hippocampus

simply decreases over the lifetime of the animal. The effect of this

would be to place more emphasis on earlier environments

compared to later ones as more units would be available in those

early environments, but this would be a viable strategy if the

earlier environments were generally considered to be more

important than later environments. It is likely a combination of

all three that leads to the reported decrease in neurogenesis. In our

simulations the statistics of each environment is generated based

on experimental data on grid cell remapping in response to a

single change in the visual environment. It it not known exactly

how the grid cells change when a rat moves through an extended

sequence of environments. In the absence of this data we have

chosen to generate each of our environments independently, so

that each environment tends to be very different from every other

environment. The degree of generalisation we see in our

simulations is therefore fairly low. However, our simulation results

are still qualitatively consistent with the experimentally observed

trend. One of the advantages of our model is that we can push our

simulations to the extreme in a manner that is not possible

experimentally and show to what extent the DG can generalise on

the kind of statistics generated by grid cells. We will explore this

issue further, and investigate the relative contributions of other

mechanisms to the decrease of neurogenesis over the lifetime of an

animal, in future work.

Although a large number of new granule cells are produced in

the rat dentate gyrus each day, only a small number survive and

are integrated into the hippocampal network. Cells that do not

become integrated die within a few days. A large amount of cell

death therefore occurs in the dentate gyrus and is a natural part of

the neurogenesis process. In our model neurons are added to the

DG when the current recoding error rises above the target level at

an average rate of 1% of the maximum DG size per day.

Experimentally it has been shown that it takes at least one to two

weeks for a newly born cell to mature to the point at which it

becomes recruitable by the network [16,39,40]. This time scale is

too long for units to be produced only when needed. There must

therefore be a pool of new neurons available at all times, of

approximately the right size, to ensure that the dentate gyrus has

granule cells available to be recruited when needed. During

periods where no units are recruited neurons in the pool will

simply die off and be replaced the next day. Periods with very low

recruitment levels typically happen in the second half of each

epoch spent in an environment, after the network has already

adapted to that environments input statistics. In the simple

additive neurogenesis algorithm this cell death occurs only

amongst new granule cells that are not recruited into the network.

In the more sophisticated algorithms that combine neurogenesis

and neuronal turnover there is an initial period where cell death is

restricted to new unrecruited granule cells. After the DG reaches

its maximum size older cells begin to die off if they have not been

activated recently in order to make room for new cells. There is

therefore a distinct transition from a regime where only new,

unrecruited granule cells die to a regime where both new cells and

existing granule cells die. The greater the rate of neurogenesis the

sooner in an animals life the DG will reach its maximum size and

the sooner this transition will occur. Experimentally, it is still

unclear to what extent existing granule cells contribute to cell

death in the DG. It is an interesting prediction of our model that

both should occur and that there should be a transition between
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two regimes: in the early periods of an animals life cell death

should be accounted for mainly by new granule cells, while in later

periods of an animals life it should be accounted for by a mixture

of new and existing granule cells.

Our model is based on data from the rodent hippocampus. In

particular we used a model of grid-cell firing in the EC of rats to

generate input patterns that were encoded by the DG. There is

evidence for the presence of grid-cells in human hippocampus [41],

and place cells have been reported in both primate and human

hippocampus [42–44]. Spatially dependent activity therefore seems

to a part of hippocampal input and of firing downstream in the DG

and CA3 in both of these species. It is therefore natural to ask to

what extent can we relate our findings on neurogenesis to other

species. This is not a trivial question to answer, as there are

differences in adult neurogenesis between rats and even other

rodents such as mice. In rats, for example, there is strong evidence

that the dentate gryus grows, at least during the first few months of

life [5,45,46] which does not seem to be the case in mice [47],

although in terms of cell numbers the possible quantitative

contribution of adult neurogenesis is considerably lower than the

variance between animals of the same age, so that a small net

growth cannot be excluded. The long-term persistence of adult-

born hippocampal neurons certainly argues in favor of their lasting

functional contribution [2], and there is also data based on a genetic

lineage-tracing model that supports the idea of net growth in the

mouse [3]. Differences in adult hippocampal neurogenesis between

other species are even more remarkable. Several bat species show

little to no adult hippocampal neurogenesis [48] whereas foxes have

a particularly large number of immature cells despite having few

new neurons [49]. However, it is difficult to draw general

conclusions as very few species have been studied in detail. Data

on adult hippocampal neurogenesis in humans are particularly

scant [50], although we have hypothesised that, based on a large

post-mortem study, humans and mice might actually be quite

similar with respect to adult hippocampal neurogenesis [51].

Explanations of these differences have been put forward in the

literature from an evolutionary perspective, citing influences such as

the demands of spatial navigation [52] or the pressure for

orientation and exploration [53]. At present it is difficult to make

firm conclusions about relative and absolute levels of neurogenesis

in different species. However, the model we have presented based

on the rodent literature provides an excellent starting point for a

comparative analysis as more data become available.

In conclusion, we have taken our earlier model of a

hippocampal memory circuit and examined network behaviour

across a series of environments using realistic spatial input in the

form of grid cells. We have shown that allowing DG units to be

plastic, or allowing neuronal turnover where units in the network

to die and be replaced by new ones, were inappropriate ways of

adapting the network to changes in the input statistics between

environments, as both methods disrupted the retrieval and correct

decoding of previously stored patterns. An additive neurogenesis

strategy, where the network starts out with fewer initial units but

grows over time, allows the network to accommodate changes in

the input statistics while preserving representations of earlier

environments. However, an additive neurogenesis rule could not

always deal with the the full set of environments as it did not know

in advance the number and complexity of environments it would

experience and would sometimes exhaust its potential for growth

too early in the animals lifetime. A more sophisticated neurogen-

esis rule that incorporates both cell death and enhanced plasticity

of new immature granule cells solved this problem and is superior

to any one of the three individual strategies operating alone. If cell

death occurs randomly then the network has a similar level of

performance when decoding memories from any earlier environ-

ment, as might be appropriate if the hippocampus were operating

as a long-term memory store. If cell death is targeted, so that

unused DG units tend to die off and more active units are

preserved, then more recently encoded patterns are decoded more

accurately than more temporally distant one, as might be

appropriate if the hippocampus were operating as a short-term

memory store. We have also generated growth profiles for the DG

over the lifetime of an animal under different hypothetical rearing

conditions. These profiles generate several distinct theoretical

predictions that can be used to test our theory experimentally.

Finally, we have explored the formation, development, and

stability of place cells in the dentate gyrus, and shown they could

emerge and refine in a natural manner. Sparsification in our

model is interpreted as a preprocessing step performed on behalf

of CA3 [38] which raises the possibility that place cells in the DG

might be a result of sparsification operating on spatial input, rather

than a specific computational goal of the network.
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