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Abstract

When movement outcome differs consistently from the intended movement, errors are used to correct subsequent
movements (e.g., adaptation to displacing prisms or force fields) by updating an internal model of motor and/or sensory
systems. Here, we examine changes to an internal model of the motor system under changes in the variance structure of
movement errors lacking an overall bias. We introduced a horizontal visuomotor perturbation to change the statistical
distribution of movement errors anisotropically, while monetary gains/losses were awarded based on movement outcomes.
We derive predictions for simulated movement planners, each differing in its internal model of the motor system. We find
that humans optimally respond to the overall change in error magnitude, but ignore the anisotropy of the error distribution.
Through comparison with simulated movement planners, we found that aimpoints corresponded quantitatively to an ideal
movement planner that updates a strictly isotropic (circular) internal model of the error distribution. Aimpoints were
planned in a manner that ignored the direction-dependence of error magnitudes, despite the continuous availability of
unambiguous information regarding the anisotropic distribution of actual motor errors.
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Introduction

The motor system is exquisitely sensitive to perturbation. The

ability to sense a discrepancy between planned and executed

movement and respond accordingly is one of the hallmarks of

motor learning [1,2,3,4]. Here, we are concerned with the nature

of the error signal used to update future movement plans when the

result of a movement does not match the intended outcome. Of

course there is an infinite number of statistics of the error signal

that the CNS might use to update future motor plans, ranging

from a running average of recent errors, to nth-order moments of

the distribution of past errors. We are interested in exploring the

limits of what statistics can be modeled by the nervous system.

Previous work has focused on neuromotor corrections to

imposed bias, where corrective responses are found opposite to

the direction of previous errors, and proportional to prior error

extents [5,6,7]. This work supports motor learning models in

which future motor plans incorporate an inverse of the command

that would have produced the previous error. This deterministic

model of motor learning suggests that errors from past movements

are subtracted off of future motor plans. Such models can be

traced at least to Helmholtz [8], who used this type of model to

describe perceptual constancy following eye movements.

However, these deterministic models fail to recognize that the

CNS can neither simply ‘‘read off’’ a motor error from noisy

sensory signals, nor can it produce identical motor outcomes with

repetitions of motor commands. The relationships between

sensory signal and motor error, and between motor command

and motor outcome, must be inferred; those inferences are far

from certain. Recognizing this, current research has examined the

role of uncertainty in motor learning [e.g., 9,10]. For example,

Sheidt et al. [10] added a stochastic element to an average force

field and found that subjects adapted to the uncertain field

strength by tracking its expectation over recent errors. Here, we

are interested in the response to changes in motor uncertainty, and

ask whether these responses result from updating an internal

model of motor variance; and if so, which aspects of the variance

structure of the uncertain error signal are modeled.

In these studies, we increased motor noise anisotropically by

stimulating a reflexive motor response known to occur when

reaching in the presence of horizontal visual-field motion, or ‘drift’

[11]. From trial to trial observers were shown leftward motion,

rightward motion or a static stimulus, in random order. The

motion, if present, began at the halfway-point of the reach, and

resulted in a perturbation of the reach in the direction of the visual

motion. Subjects could not plan in advance for any particular drift

condition since these were randomly intermixed, nor could they

compensate for the drift online because the timing of the reach

and drift-onset insured that reaches were completed before

feedback correction was possible [11]. Because this reflexive

manual following response (MFR) affects only the horizontal

component of a reach, it was possible to test which aspects of the

new, anisotropic distribution of motor errors was modeled by the

CNS.

We test for changes in the internal representation of motor noise

by monitoring changes in reach plans toward visible targets, which

depend on the details of the information available to the CNS

concerning motor uncertainty. In these experiments, successful

reaches to targets earn subjects a monetary bonus; reaches that

instead intersect a neighboring region of the screen induce a
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monetary loss (Fig. 1). In two sessions, each beginning with reaches

to targets without penalties, subjects learn their natural and

perturbed (anisotropic) noise distributions, and then respond to

target-penalty pairs later in the session, allowing us to assess their

internal representation of motor uncertainty.

Our results indicate that the CNS updates a strictly circular

internal model of motor variance, even when the distribution of

actual errors is anisotropic. This result is consistent with recent

psychophysical and neurophysiological results [3,6,12,13] indicat-

ing independent encoding of the directions and extents of

movement errors, because a system that updates only a circular

internal representation of errors is equivalent to a system that

monitors only the magnitudes of those errors, ignoring their

directions.

Results

We are interested in how the CNS compensates for changing

motor uncertainty. We consider two possibilities: compensation is

mediated via a hill-climbing mechanism using incremental

corrections based on past errors [14], or alternatively by updating

an internal model of motor variance. In the latter case, we are

interested in which aspects of the variance structure of the

uncertain error signal are modeled. For the case of a hill-climbing

mechanism, incremental correction can produce anisotropic

adaptation when sensory or motor uncertainty are anisotropically

perturbed, such as observed in previous work demonstrating

adaptation to anisotropically increased sensory [15] and motor

[16; see Discussion for further detail] errors. Because compensa-

tions within a hill-climbing mechanism are based only on

incremental correction of errors rather than an estimate of

parameters describing the underlying motor system, there is no

requirement that any internal model be used or formed.

Reach endpoints
Fig. 2 shows reach endpoints from the zero-penalty blocks of the

unperturbed or ‘no-drift’ (top row) and perturbed or ‘drift’ (bottom

row) sessions from subject S4 (results from other subjects’ drift

sessions are available in Supplementary Figure S1). For all four

plots, the solid circle represents the 1 cm diameter target, while

dashed and dotted ellipses represent the covariance ellipse (drift

and no-drift, respectively) in the left column, and the dashed and

dotted circles represent circular Gaussian fits to the same endpoint

data (right column). Clearly, when there was no penalty, subjects

aimed at the center of the target circle. Bias (in any direction) from

the target center never exceeded 2 mm for any subject during

zero-penalty trials. The average bias in the (task-relevant)

horizontal and vertical directions across all subjects was less than

1 mm. For each subject, the 95% confidence interval for the

horizontal and vertical biases always overlapped zero. We

conclude that no mean endpoint was significantly different from

the center of the target for any subject or condition during zero-

penalty trials. In the no-drift session, endpoint variance was nearly

identical for the horizontal and vertical directions. During the drift

session, unpredictable MFR perturbations substantially increased

horizontal endpoint variance, but did not alter vertical variance

(Table 1). Endpoints from leftward drift are displaced to the left,

and those from rightward drift are displaced rightward, as

expected.

Covariance ellipses calculated using data from zero-penalty

blocks are shown for five subjects in Fig. 3 for the drift (dashed

ellipses) and no-drift (dotted ellipses) conditions (see Supplemen-

tary Figure S2 for remaining subjects). Because the MFR

perturbed reaches horizontally, ellipses derived from the drift

session are elongated horizontally (subjects S1–S8), but not

vertically. The ellipses of S9 show that this subject was insensitive

to the MFR perturbation.

Aimpoint planning
On each trial, a red penalty circle was located in one of four

possible positions: above, below, to the left, or to the right of the

target circle. When the imposed penalty was nonzero, subjects’

mean endpoint locations (aimpoints) differed from the center of

the target, and were located roughly along the target-penalty axis

away from the penalty. This is in qualitative agreement with the

movement plan that produces maximum expected gain (MEG,

Fig. 1). In Fig. 3 and Supplementary Figure S2, aimpoints are

plotted for each of the four penalty locations. Aimpoints to the left

of the target center resulted from trials with the penalty on the

right, and aimpoints below the target center from a penalty

positioned above the target, etc. For subject S4, small symbols

indicate mean endpoint locations for subsets of trials correspond-

ing to each of the three drift types, showing that the MFR was as

effective during nonzero-penalty blocks (Fig. 3 and Supplementary

Figure S2) as it was in the zero-penalty blocks (Fig. 2). The bar

graph shows the same aimpoints, measured as differences between

aimpoints and the target center projected onto the target-penalty

axis (Daim values). Daim values within a session were similar for all

penalty locations, whether they were positioned horizontally or

vertically relative to the target. In particular, Daim measured

during the MFR perturbation was nearly identical for all penalty

locations, even though the drift perturbation only increased

horizontal variance (S1–S8). Daim was significantly larger in the

drift relative to the no-drift session (p,.05) for these subjects

regardless of penalty location.

Simulated movement plans
We will compare our subjects’ performance to the performance

of simulated movement planners that maximize expected gain

based on an internal model of motor noise using some or all of the

covariance information available to our experimental subjects.

Note that we do not model arm impedance because impedance

control is not a strategy that appears to be engaged in response to

Author Summary

To plan effective movements of the limbs, the human
motor system must keep track of certain parameters:
Obvious examples are the lengths and masses of to-be-
controlled limb segments. In addition, the nervous system
tracks its own motor outcome noise, which is important
for selecting among movement plans where there are
substantial costs associated with movement inaccuracies
(e.g., reaching past a glass of red wine on a cluttered
dinner table). Here, we introduce a change in motor noise
in a reaching task: reaches were perturbed unpredictably
by activating a reflex that introduced unplanned horizon-
tal arm motion at the ends of reaches. We show that the
motor system updates an internal model of the overall
increase in motor noise induced by this reflex perturba-
tion, but fails to represent the anisotropic component of
the noise. This result is consistent with current theories of
motor planning and control in which reach magnitudes
and directions are represented independently, because a
system that updates only a circular representation of
recent motor errors is equivalent to a system that monitors
only the magnitudes of recent errors, and ignores their
directions.

Compensation for Changing Motor Uncertainty
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visually-induced perturbation such as used by Wong and

colleagues [17], and also during unpredictable MFR-induced

visual-motor perturbation specifically [18]. Nor do we model

corrections using joint-space coordinates, since (1) this would

require an unparsimonious increase in model variables (join-

ts6degrees of freedom), and (2) external-space frames of reference

are used in preference over joint-space coordinate frames for

predictive motor control [19].

We will compare the data to two simulated movement planners

derived from two models of the internal representation of motor

noise. Under the ‘‘anisotropic’’ model (Ma), movement planners

update an internal model based on the full covariance structure of

the observed reach errors. Under the ‘‘circular’’ model (Mc),

movement planners update an internal model consisting of a single

scalar estimate of motor variance. The latter model effectively

assumes that motor variance is isotropic (i.e., circularly symmetric).

In Fig. 2, the dotted and dashed ellipses are 2-SD contours of

bivariate Gaussians fit to the data (left column), while in the right

column those same data were fit with an isotropic Gaussian

(averaging x and y variance). As expected, in the drift session

(lower-right panel, dashed circle), the circular distribution

underestimates the horizontal variance while overestimating the

vertical variance when errors are in fact anisotropically distributed.

Note that there are no free parameters in either the circular or

anisotropic model (see Materials and Methods for details).

For each subject, we computed the ideal aimpoint maxi-

mizing expected gain for each of the four penalty locations for

the two models described above. In Fig. 4 the full covariance

ellipses (left column) and constrained circular fit (right column)

to the zero-penalty data for subject S4 are plotted (organized as

in Fig. 2). Mean endpoints (from Fig. 3, top panel) are plotted,

along with the aimpoints predicted by models Ma (left column)

and Mc (right column). Logically one might expect the endpoint

distribution from the drift session to be a probability mixture of

three Gaussians corresponding to the leftward, static and

rightward drift trials. However, a qq-plot of the horizontal

distribution of endpoints from the drift session to a Gaussian

distribution indicated no patterned deviations (note the massive

overlap of the distributions of the trials from the three

intermixed drift conditions in Fig. 2). We model all endpoint

distributions as bivariate Gaussian in computing predicted

aimpoints for each model. For the no-drift sessions (top panels)

where data covariance ellipses were nearly symmetrical, the

two models predicted similar, nearly symmetrical aimpoints;

both predicted the observed aimpoints well. For the drift

sessions, the anisotropic model predicted too large a Daim in

the horizontal direction and too small a Daim vertically. In

contrast, the circular model predicted aimpoints closely

corresponding to the observed data for all four target-penalty

configurations.

Figure 1. Example stimulus with superimposed expected gain landscape. In our task, subjects made rapid pointing movements at a
frontoparallel screen to hit a green target circle while avoiding an overlapping red penalty circle (here shown on the x-y plane). For this illustration,
hits on the green circle result in a reward of 1 point and hits on the red circle yield a penalty of 5 points. This figure shows the expected gain per trial
associated with different aimpoints for a simulated subject with a circular Gaussian movement uncertainty of 3 mm standard deviation. The optimal
aimpoint maximizing expected gain (MEG aimpoint) is the filled circle marked within the green target region.
doi:10.1371/journal.pcbi.1000982.g001

Compensation for Changing Motor Uncertainty
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In Fig. 5 we plot Daim (drift sessions only) relative to each set of

Daim values predicted by the two simulated movement planners

(5a: Ma; 5b: Mc) detailed above. Observed aimpoints that closely

approximate those predicted by Ma or Mc will fall near the identity

line. Clearly, the simulated movement planner using a circular

internal model of motor variance predicts the data better than the

simulation using an anisotropic internal model of motor variance.

The anisotropic model predicts too large a Daim for horizontally

displaced penalties, and too small a Daim for vertically displaced

penalties for all four subjects who were affected by the MFR

perturbation.

Since subjects S2 and S3 received 2 points per hit, ideal Daim

values were in general smaller than those computed for the other

subjects (who received 1 point per hit). Although not statistically

significant, subjects’ aimpoints vary according to this difference in

reward function (Fig. 3) and closely track those predicted by model

Mc (Fig. 3, filled squares), which is consistent with previous work

demonstrating that Daim scales with differences in imposed reward

[20].

Although the data are in qualitative correspondence with the

predictions of the isotropic model, we next provide a direct

quantitative comparison of the two models described above: Ma in

which predicted aimpoints are those that maximize expected gain

based on a general bivariate Gaussian (and therefore possibly

anisotropic) error distribution, and Mc in which predicted mean

endpoints are computed based on assuming covariance is isotropic

(circular). We compare the two models by computing a measure of

evidence [21]: 10log10 p(McDdata)=p(MaDdata)½ �, expressed in deci-

bels. Evidence is therefore computed by comparing the data to

predicted aimpoints derived from the two models [22]. These two

probabilities are computed using the predicted aimpoints as well as

the covariance matrix estimated from the zero-penalty data for

Figure 2. Effects of movement perturbation on movement endpoints. Movement endpoints are shown for subject S4 for zero-penalty trials
aiming at the green target circle. Solid circles represent the 1 cm target region. Upper row: no-drift session. Lower row: drift session. Left column:
dotted and dashed curves are 2-SD covariance ellipses. Right column: Dotted and dashed curves are 2-SD circles of an isotropic Gaussian fit to the
data. Different symbols indicate the drift condition.
doi:10.1371/journal.pcbi.1000982.g002
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each observer. Based on aimpoints computed from each subject’s

data, this calculation results in nearly 7000 dB of evidence in favor

of Mc, corresponding to odds in favor of Mc of 2.2610681 : 1.

We also computed a linear regression of observed Daim values to

Daim values predicted by each of the two models. The best-fit slope

and intercept to the data based on the predictions of the circular

model (a = 02, b = 0.94 provide a much better approximation to

an identity line (a = 0, b = 1) than the fit to the anisotropic model’s

data (a = 0.28, b = 0.34). This is consistent with the evidence

calculation above.

Finally, for each subject we computed the averagae, over the

vertically and horizontally displaced penalties in the drift sessions,

of the absolute value of the prediction error (observed minus

predicted values of Daim) for the two models. The difference

between these two values indicates the degree to which model Mc

was more successful at predicting the observed data as compared

to model Ma. These values were significantly greater than zero

(t(8) = 4.4, p,.01), also consistent with the evidence calculation.

Our analyses indicate strong support for the hypothesis that, in

this task, the nervous system learns and takes into account the

overall increase in motor noise affecting movement endpoints, but

not the anisotropy of the noise covariance. This is consistent with

the interpretation that observers learned that their motor variance

was increased by the perturbation, but acted as if they only

encoded the magnitudes of errors, not their directions.

The anomalous response of S9 to visual drift provides additional

support for the idea that the CNS uses an internal model of its

motor uncertainty in planning reaches that does not include

information about the shape of the error distribution. S9 was the

only subject unaffected by the MFR perturbation, and was also the

only subject that maintained an identical movement strategy

(identical aimpoints) during both the drift and no-drift sessions.

Subject S9 certainly was aware of the visual drift, yet chose

identical aimpoints over the two days. This suggests that observed

Daim in subjects affected by the MFR resulted from an updated

internal model of motor variance rather than a simple reaction to

suprathreshold visual motion per se. S9 also represents an extreme

value on the continuum of individual responses to visual drift. S9

had no detectable response, whereas our other subjects exhibited

nonzero, but nevertheless different, reflex responses to the visual

drift. Regardless of each individual’s MFR magnitude, all subjects

demonstrate appropriate scaling for a circular internal model of

motor variance in their Daim data (Fig. 5b).

Motor uncertainty
Table 1 summarizes the effectiveness of the unpredictable MFR

perturbation for increasing horizontal movement variance based

on the zero-penalty trials. Subject S9 did not respond to the MFR

perturbation. For all other subjects, horizontal variance was

greater than vertical variance in the drift condition, and horizontal

variance was increased significantly in response to the MFR

perturbation as compared to the no-drift condition. Finally, no

subject’s vertical variance differed between the drift and no-drift

conditions, and in the no-drift conditions, no subject’s horizontal

and vertical variance differed significantly.

For each of the comparisons in Table 1, we also provide an

evidence value using a Bayesian model comparison similar to that

described above to compare Mc and Ma. For example, in the

section of the table labeled ‘‘horizontal vs vertical (drift)’’ we

compare a model in which the horizontal and vertical variance are

assumed equal and a second model in which the horizontal

variance is constrained to be greater than the vertical variance.

Because only the horizontal and vertical dimensions are task-

relevant, we assume the off-diagonal components of covariance

matrices are negligible (i.e., zero correlation). In computing the

evidence, we assumed a bivariate Gaussian distribution of

endpoints and a Jeffreys prior [23] for motor error (for which

p(x)!x{1). The results of the F-tests are consistent with these

evidence calculations.

Learning anisotropy
The anisotropic increase in motor error was introduced to each

subject during a series of training reaches in which small crosshairs

served as the target, and there was no penalty or payment bonus

Table 1. Comparisons of endpoint variance.

Test Type Subject S1 S2 S3 S4 S5 S6 S7 S8 S9

vertical drift F(239,239) 0.87 1.10 1.23 0.95 0.86 1.26 1.05 0.68 1.15

vs p-value 0.86 0.235 0.055 0.646 0.873 0.038 0.365 0.999 0.134

vertical no-drift evidence (dB) 219.7 29.8 133 23.4 212.7 20.23 27.62 220.0 22.9

horizontal drift F(239,239) 3.56 3.07 3.15 2.78 3.51 3.17 3.77 2.47 0.93

vs horizontal p-value ,.001 ,.001 ,.001 ,.001 ,.001 ,.001 ,.001 ,.001 0.707

no-drift evidence (dB) 509 196 936 309 172.6 145.8 198.0 88.5 215.4

horizontal F(239,239) 0.66 0.90 1.03 0.96 0.83 0.67 0.60 0.56 0.78

vs vertical p-value 0.999 0.789 0.416 0.606 0.926 0.999 0.999 0.999 0.967

(no-drift) evidence (dB) 219.5 223.1 226.5 224.5 213.5 216.7 218.3 222.8 228.0

horizontal F(239,239) 2.73 2.52 2.63 2.82 3.33 1.68 2.17 2.07 0.635

vs vertical p-value ,.001 ,.001 ,.001 ,.001 ,.001 ,.001 ,.001 ,.001 0.999

(drift) evidence (dB) 151 25.0 266 62.5 163.5 24.8 64.6 54.7 213.1

F- and p-values are given for comparisons of the horizontal and vertical variances in the drift- and no-drift conditions (for zero-penalty trials only). No Bonferroni
corrections were applied, although no conclusions would be changed by applying corrections. For the first and third comparison, positive evidence indicates support
for a model in which the two variances are unequal vs one that assumes they are equal. For the second comparison, positive evidence supports a model that assumes
horizontal variance is greater in the drift trials than in the no-drift trials (versus a model that assumes equal variances). In the fourth comparison, positive evidence
values support a model that assumes horizontal variance is greater than vertical variance (versus a model that assumes equal variances).
doi:10.1371/journal.pcbi.1000982.t001

Compensation for Changing Motor Uncertainty

PLoS Computational Biology | www.ploscompbiol.org 5 November 2010 | Volume 6 | Issue 11 | e1000982



Figure 3. Mean endpoints and Daim values. Top graph, left: The solid circle is the target region. Dotted and dashed ellipses are 2-SD covariance
ellipses of endpoints in the no-drift and drift conditions, respectively. Open and filled circles are the mean endpoints in the no-drift and drift
conditions, respectively. Mean endpoints on the left correspond to trials with penalty to the right of the target, endpoints below correspond to
penalty above, etc. Small symbols correspond to the subsets of trials for the three drift conditions as in Fig. 2. Top graph, right: Bars indicate average
Daim values in the no-drift and drift conditions for horizontally and vertically displaced penalties. Black squares indicate predictions of the circular
model (Mc). All data for subject S4. Lower four graphs: same as above for S1, S2, S3, and S9.
doi:10.1371/journal.pcbi.1000982.g003
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for missing or hitting the crosshairs. We next test whether subjects

had enough information by the end of the training reaches to infer

that movement uncertainty had increased anisotropically with a

major axis oriented approximately horizontally, using an analo-

gous evidence calculation to that just described. As shown in Fig. 6,

the evidence in favor of inferring an anisotropic endpoint

distribution increases from 0, prior to having made any reaches

under the perturbation, to a substantial positive value for S1–S8 by

the end of the training session; the evidence continues to increase

throughout the drift session for these subjects. For subjects

displaying an MFR, this calculation results in 127, 38, 270, 66,

34, 29, 70 and 76 dB at the end of the training reaches in favor of

the model in which horizontal variance was constrained to be

larger than vertical variance, corresponding to odds of at least

about 800:1. This indicates there was overwhelming evidence for

these subjects to infer motor error anisotropy based on their

training reaches before payoffs and penalties were introduced. In

contrast, for subject S9 this value was 213.7 dB, indicating

weaker, but nevertheless substantial evidence supporting isotropy

(i.e., the opposite conclusion).

Learning Daim values
Although Daim values shown in Figs. 3–5 are consistent with the

nervous system updating a strictly circular model of motor noise,

these averages are computed over the entire drift session and may

hide temporal structure that is inconsistent with such an

hypothesis. Fig. 7a illustrates several hypothetical time courses of

Daim over the drift session. If movement planning during the drift

sessions made use of a stable circular internal model of motor

variance learned during the training reaches to crosshairs

performed at the start of each session, Daim values would be equal

for vertically and horizontally oriented penalty regions at the value

predicted by the circular model (open circles). If the circular

variance is computed only as a transitory first step, and the internal

model continues to be updated throughout training and testing,

Daim should gradually shift, and diverge for the two types of

penalty location (diamonds) over the course of testing. Finally, if a

hill-climbing strategy [14] were used for selecting aimpoints based

only on rewards/penalties, then no internal model would be

updated and one would predict a value of zero for Daim resulting

from the training session, and a gradual shift toward the respective

optimal anisotropic values during the drift session (squares).

The observed time course, with Daim averaged over successive

half-blocks of the drift session, is shown in Fig. 7b. The results clearly

indicate that subjects formed a stable, circular model of motor

variance based on the 207 training reaches aiming at crosshairs, and

show no evidence of adjusting that strategy over the 720 test

reaches. Critically, note that the observed results are inconsistent

with either of the two proposed alternatives, because both involve

gradual shifts in Daim over the course of testing, ultimately resulting

in diverging Daim values for horizontally and vertically positioned

penalties that approximate the anisotropic model predictions.

Discussion

Recent interest in probabilistic and neuroeconomic models of the

nervous system has led to a new appreciation for the use of

uncertainty information in perception and motor control

[22,24,25,26,27,28,29,30]. Here, we specifically perturb the motor

system, introducing unpredictable reach errors resulting from

unplanned motor torques. In a rapid pointing task under risk, we

determine the statistical properties of movement error the CNS uses

to correct for changing motor uncertainty. We ask whether

compensation for changing uncertainty involves updating an

Figure 4. Ideal and observed aimpoints. Observed aimpoints (circles) are plotted along with MEG-predicted aimpoints (diamonds) for subject
S4. Left column: MEG predictions based on the estimated covariance of endpoints in each condition. Right column: MEG predictions based on the fit
of an isotropic Gaussian to the zero-penalty data. Dotted and dashed curves are identical to those in Fig. 2.
doi:10.1371/journal.pcbi.1000982.g004

Compensation for Changing Motor Uncertainty
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internal model of the motor system, or simply incremental

correction via a hill-climbing process. Although previous work has

shown that the CNS can correct both a change in bias

[1,2,3,4,31,32,33] or in outcome variance [15,16,22,34,35], this is

the first demonstration that the CNS maintains an internal model of

the motor system’s error uncertainty as that uncertainty changes.

Further, by using a perturbation that resulted in anisotropic motor

noise, we were able to probe the structure of the internal model of

motor uncertainty formed by the CNS. Remarkably, a constrained

circular model of motor uncertainty was used for planning

movements under risk during changing motor noise, despite the

anisotropic distribution of endpoint errors.

Why would the CNS not encode additional statistics of the error

distribution, beyond mean and variance? Certainly, for subjects

S1–S8, the movement perturbation led to substantial error

anisotropy (Fig. 3) that was readily detectable prior to selecting

aimpoints for the various target-penalty configurations presented

here (Fig. 6). Subjects completed over 200 perturbed training

reaches at crosshairs before any reaches to target/penalty pairs

were made, which provided sufficient data to all subjects about

error anisotropy (Fig. 6). Despite over 200 reaches to crosshairs

and over 700 reaches to target-penalty pairs during which learning

could have occurred, there is no indication that reaches to

horizontally and vertically oriented target-penalty pairs were

planned differently at any point during the experiment (Fig. 7).

Given that subjects learned the change in overall variance within

approximately 200 reaches but failed to learn the anisotropy

within 900 or more reaches, we believe the circular internal model

acquired during training represents a stable response to the

imposed anisotropic motor variance (Fig. 7). However, should the

Figure 6. Evidence for anisotropic noise. During the drift session, reaches were perturbed by the manual following response. Evidence values
quantify the information available to subjects signifying that the variance along the x-direction is greater than in the orthogonal direction (as
opposed to being equal). Positive values are evidence in favor of the indicated anisotropy, and negative values are evidence in favor of equal
variances. Each subject is plotted separately. By the end of the training portion of the drift session, the evidence overwhelmingly indicates that motor
noise has become anisotropic (for S1–S8). Evidence in favor of this hypothesis continues to accumulate over the course of the session. Note that
larger positive values indicate stronger evidence in favor of anisotropic variances, and not a larger anisotropy. That is, evidence values increase as
more data consistent with the hypothesis of anisotropic variances becomes available (i.e., due to the increase of the size of the dataset with an
increasing number of trials).
doi:10.1371/journal.pcbi.1000982.g006

Figure 5. Model comparison. Daim values for vertically and horizontally displaced penalties in the drift sessions are plotted as a function of MEG
predictions based on an anisotropic estimate of endpoint variance (a, model Ma) or variance based on the fit of a circular Gaussian to the zero-penalty
data (b, model Mc). In both panels, data for subject 5 (whose reaches were unaffected by visual drift) are shown in gray.
doi:10.1371/journal.pcbi.1000982.g005
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Figure 7. Time course of nonzero-penalty aimpoints. a, Hypothetical data. Circles: aimpoints based on a stable internal model of endpoint
variance using error magnitudes only. Diamonds: based on a process that has formed a circular model of endpoint variance as a transitory first step,
but continues to update this model throughout training. Squares: based on a hill-climbing process responding solely to rewards and penalties. b,
Time course of observed Daim values. Data are averaged over successive half-blocks of the 4 nonzero-penalty blocks (separating horizontally or
vertically oriented target-penalty pairs), collapsed across subjects. Each subject was presented with 4 nonzero-penalty blocks and 2 zero-penalty
blocks. These blocks occurred at different points in the experiment for different subjects. There is no hint that the two time courses diverge at any
point during experiment.
doi:10.1371/journal.pcbi.1000982.g007
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anisotropy be eventually learned over the course of days or months

of practice, the fact that a circular internal model was formed and

maintained over a behaviorally relevant period would continue to

require explanation.

Consider, in this context, the proposal that the internal model of

motor variance is updated according to Bayes’ rule. Then, the

observed lack of learning of the anisotropic component of the

variance might be due to subjects’ use of a prior distribution that

favors isotropic descriptions of motor variance. Under this

hypothesis, failure to learn anisotropy (despite accumulated

evidence over training and experimental trials) would be due to

a failure to overcome the isotropy bias of the prior. However, the

evidence calculations shown in Fig. 6 indicate that the prior odds

of an isotropic model relative to an anisotropic model would have

needed to be about 1020:1 for the average subject affected by the

MFR, and in one case over 1035:1, to account for the lack of

learning displayed by these subjects. Given that in other

circumstances (see below) the CNS is able to make use of

information concerning anisotropic motor errors, we believe this

represents an unrealistically concentrated prior distribution. Of

course, because these prior odds estimates are derived values

(based on Fig. 6), they assume Bayesian processing of (actual)

motor errors across trials. Subjects clearly did not perform this

idealized calculation, but our data cannot determine whether they

failed to respond to anisotropy of errors due to errors in estimation

of the magnitude of motor error in each trial (unlikely, since visual

acuity is quite good), due to computational constraints, or for other

reasons.

Another hypothesis that might be proposed to explain the

isotropy of the updated noise model learned by our subjects is

based on the fact that noise distributions within each of the three

drift conditions are unchanged from the no-drift condition, and

approximately isotropic. If the CNS began tracking 3 separate

noise distributions in the drift session, the combination of these

distributions would correctly predict the isotropy of the measured

Daim values. However, this hypothesis fails in its second prediction

– that there should be no change in Daim values between drift and

no-drift sessions. Instead, Daim values change between drift and no-

drift sessions, and that change is quantitatively predicted by the

magnitude of the overall noise distribution, not the average of the

three drift-specific error distributions.

But was there a real, behaviorally relevant difference between

using a circular vs. anisotropic internal model? In short, the

answer is that subjects performed substantially worse (earned less

money) by failing to use an anisotropic model of motor variance.

We computed an efficiency measure for each condition and

subject as the ratio of the number of points/trial expected based

on observed aimpoints divided by the points/trial expected using

the ideal anisotropic internal model. Efficiencies computed from

the drift sessions were on average only 72% for subjects affected by

the MFR. Efficiencies computed from no-drift sessions averaged

97%. In other words, subjects’ earnings were substantially reduced

by failing to take the anisotropic error distribution into account;

and while it is always possible to suggest that a suboptimal result

stems from the CNS using a broader cost function than used in a

model, we see no theoretical reason why a second variance

computation would be internally costly enough to offset a 25%

drop in performance.

Subjects made optimal use of the overall variance of their motor

errors, given the reward function imposed experimentally, and

appeared to ignore the direction component of the error signal

that was available to them. Does the motor system actually lack

access to such information, or was it simply ignored? Many recent

studies have demonstrated that motor learning involves multiple

systems as seen, for example, in examining the time course of

movement error correction to an imposed bias [31,32,36,37,38].

We suggest that the present result is consistent with the idea that

the motor system encodes and represents the direction and extent

of a reach independently [12]. Here, we are concerned with

vector-coding of reach errors relative to the target, since for a

given target the only component of the overall reach vector that

differs from one reach to another corresponds to the direction and

extent of the target-relative error vector. This manner of coding

reach errors would allow the extent of motor errors to be used in

updating an internal model of motor uncertainty, independent of

direction information. Information concerning error direction is

not lost, however, and is used for other purposes such as updating

sensory-motor transforms in response to prism or other visual

feedback disturbance [3,15], or during adaptation to force

perturbations [39,40,41].

While the nervous system’s use of internal models has been

demonstrated in many motor learning contexts [42,43,44,45], in

some instances evidence for the use of an internal model is lacking,

and a simple error-corrective (‘hill-climbing’) process is a likely

explanation. For example, impedance control, which can operate

in tandem with predictive internal-model-based control mecha-

nisms [e.g., 46,47], has been shown to operate in this way [34]. As

we describe above (Results: Learning Daim values), use of a hill-

climbing mechanism would have resulted in anisotropic compen-

sations in the current study. Indeed, such anisotropic compensa-

tions have already been reported. Lametti and colleagues [34]

demonstrated anisotropic changes in limb impedance when

reaching to irregularly-shaped targets. They required subjects to

make reaches within the plane containing an oriented target.

Unlike in the present study, this allowed them to vary reach

direction relative to target orientation. They showed that changing

the orientation of an elliptical target in relation to the direction of

the reach toward that target leads to compensatory changes in

limb impedance. These changes in limb impedance result in

anisotropic reach endpoints that, with practice, become aligned

with the target orientation. The set of learned changes in limb

impedance were consistent with a hill-climbing strategy that

modifies impedance for each combination of reach direction and

target orientation separately. Gepshtein and colleagues [16] also

found anisotropic movement variance in a task in which subjects

reached within the plane of the target toward an oriented target-

penalty configuration; movement variance was larger along the

direction of the reach. As in the Lametti et al. study, the target-

penalty axis was either aligned with the reach direction or oriented

relative to it (here, perpendicular to it). Aimpoints shifted further

from the penalty for reaches aligned with the target-penalty axis

than for reaches perpendicular to it. This compensation is similar

to that found by Lametti et al. [34] in that it varied for each reach/

target orientation, and is consistent with a hill-climbing strategy.

Trommershäuser and colleagues did not provide analyses to test

this hypothesis, however.

In the present study, we have investigated the properties of

motor error signals that are used by the CNS to plan future

movements. While others have looked at adaptation to bias in the

face of stochastic perturbation [10], here we investigated what

aspects of motor uncertainty are taken into account when planning

movements. We found that movements with experimentally

altered motor uncertainty stimulate updating of an internal model

of the motor system, but only the overall variance, not the full

anisotropic covariance matrix, was modeled. This was due to a

failure to incorporate direction information from reach errors, in a

manner consistent with current theories of motor planning and

control [3,12,13].
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Materials and Methods

These experiments involved a reach paradigm that made use of

a novel visuomotor perturbation. In our task, subjects earned a

monetary reward by touching a small target circle within a short

time window. Near each target was a small penalty circle. If

subjects missed the target, they received no reward, but if they

touched the penalty region they could incur monetary penalties. In

the critical condition of the experiment, subjects made reaches that

were unpredictably perturbed leftward, rightward, or not at all at

the midpoint of the reach, using a visual-motor perturbation called

the Manual Following Response (MFR). The MFR consists of

large-field visual motion that perturbs the reach in the same

direction as the motion [11,48]. Because this unpredictable

perturbation could not be corrected in the time it took subjects

to complete these reaches [11], the perturbation had the effect of

increasing motor uncertainty, but only in the horizontal

dimension. Subjects could not plan in advance for any particular

drift condition since these were randomly intermixed, nor could

they compensate for the drift after it began due to the combination

of time constraints imposed on the reach and the timing of drift

onset (at the spatial midpoint of the reach).

With knowledge of the distribution of reach errors, it is possible

to calculate the expected monetary gain associated with any

potential aimpoint relative to a given target-penalty pair (Fig. 1).

The peak of that gain landscape indicates the aimpoint resulting in

maximum expected gain (MEG). Peaks are typically located away

from the target center opposite the penalty region, by an amount

that depends on the penalty location, penalty amount and the

endpoint variance along the target-penalty axis. We will use

evidence obtained from experimentally measured aimpoints both

to infer the existence of an internal model of motor variance that is

updated with changing motor variance, and to subsequently probe

the structure of that internal model of motor variance. The latter is

accomplished by comparing subjects’ reaches to those of simulated

movement planners that use either an anisotropic or a circular

internal model of movement covariance.

Subjects/ethics statement
Eight naive subjects and one author (S1) participated in this

experiment. All subjects gave written informed consent before

participation. Subjects were instructed to earn as many points as

possible and were paid a bonus for the total points earned. Subjects

were asked to complete two experimental sessions, over two days.

No subject waited longer than one day between sessions. All

procedures were approved by the NYU institutional review board.

Apparatus
Subjects were seated in a dimly lit room with head positioned in a

chin and forehead rest in front of a transparent polycarbonate screen

mounted vertically just in front of a 210 computer monitor (Sony

Multiscan G500, 192061440 pixels, 60 Hz). The viewing distance

was 42.5 cm. A Northern Digital Optotrak 3-d motion capture

system (with two three-camera heads) was used to measure the

position of the subject’s right index finger. The camera heads were

located above-left and above-right of the subject. Three infrared

emitting diodes (IREDs) were located on a small (.7567 cm) wing,

bent 20 deg at the center, attached to a ring that was slid to the distal

joint of the right index finger. Position data for each IRED were

recorded at 200 Hz. The cameras were spatially calibrated before

each experimental run, providing RMS accuracy of .1 mm within

the volume immediately surrounding the subject and monitor

apparatus (approximately 2 m3). A custom-made aluminum table

secured the monitor and polycarbonate screen. A calibration screen

was machined to accurately locate four IRED markers. A calibration

procedure was repeated before each experimental run to put

monitor display and Optotrak coordinates into register, based on the

calibration screen and an additional IRED located at the front edge

of the table. The distance from the starting point of the reach (near

the front edge of the table) and the screen was 34.5 cm. The

experiment was run using the Psychophysics Toolbox software

[49,50] and the Northern Digital API (for controlling the Optotrak)

on a Pentium III Dell Precision workstation.

Stimuli
Each session consisted of training and experimental trials. In

training trials, subjects aimed at crosshairs (.4 cm width and

height) whose locations were chosen randomly and uniformly

within a 565 cm rectangle centered on the screen. In experimen-

tal trials, subjects aimed at a 1 cm diameter green circle next to a

1 cm diameter red circle (target and penalty regions, respectively).

Hits within the target earned subjects one point. Hits within the

penalty cost 0 or 5 points in separate blocks. The distance from

center to center of each circle was always .75 cm. If the subject hit

within the region of overlap between the target and penalty, the

subject incurred both the gain associated with the target and the

loss associated with the penalty. The center of the target region

was chosen randomly and uniformly within a 565 cm rectangle

centered on the screen, and corresponding penalty locations were

chosen at one of 4 evenly spaced orientations relative to the target

(above, below, to the left, or to the right).

There were two sessions: drift and no-drift. In the drift session,

for both training and experimental trials, a large 0.05 cycle/deg

vertical sinusoidal grating replaced the stimulus and filled the

display at movement onset. During a reach, when the subject’s

finger traveled halfway to the screen, the grating either remained

static or began to drift either rightward or leftward (speed: 20 deg/

s); the three stimulus types occurred with equal probability. When

the fingertip reached the screen, the grating disappeared and was

replaced with the same stimulus that preceded the grating. In the

no-drift session all trials were static, and were identical to the static

trials from the drift session.

Procedure
The two sessions (drift and no-drift) took place on separate days.

Each session consisted of 3 blocks of training trials followed by 6

blocks of experimental trials. The order of the drift and no-drift

sessions was counterbalanced across subjects.

All trials. A trial proceeded as follows: subjects brought their

right index finger to the front edge of the aluminum table

triggering the beginning of the trial. Next, the stimulus was

displayed followed 50 ms later by a brief tone indicating that

subjects could begin their reach when ready. Movement onset was

defined as the moment the fingertip crossed a plane 3 mm in front

of the table edge; the fingertip was required to reach the screen

within 575 ms of movement onset. At movement onset, the grating

appeared and, depending on the session and trial, remained static

or drifted. A loud tone indicated a timeout (movement time

greater than 575 ms). After reach termination, the stimulus

reappeared in place of the grating along with a red dot (2 mm

diam) indicating the reach endpoint.

Training trials. Subjects completed 3 blocks of 69 reaches to

crosshairs to become comfortable with the task and the movement

time constraint, and to learn their own (perturbed or unperturbed)

motor noise. Subjects were instructed to try to hit the crosshairs as

accurately as possible, without incurring a timeout.

Experimental trials. Following the training trials, subjects

were introduced to the target and penalty regions, the gains and
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losses associated with them respectively, as well as the cost

incurred for a timeout (7 points). Each day there were 6 blocks of

120 experimental trials. The cost for touching the penalty region

was constant within each block and indicated to the subject

beforehand. Subjects participated in 4 nonzero-penalty blocks in

which the subject lost 5 points for touching the penalty circle, and

2 zero-penalty blocks in pseudo-randomized order such that the

first three blocks always included one zero-penalty block, as did

the final three blocks.

Subjects S1, S4–S9 earned 1 point for a hit within the target

circle. They were also explicitly told the monetary value of the

points ($.08 per point). Subjects S2 and S3 earned 2 points for a

hit within the target circle and were paid $.04 per point (this

variation in point structure allowed us to verify that responses to

the drift perturbation scaled with reward). Auditory feedback was

provided for hits within the target region and/or penalty region,

along with a display of the points earned or lost in that trial. If

subjects did not complete the reach within 575 ms, auditory

feedback was provided with the message ‘‘TIME OUT, 27’’,

regardless of the landing position of the fingertip. No subject

incurred greater than 23 timeouts in the 720 trials of each session.

Data collection
Before each experimental session, subjects (fitted with IREDs)

placed their right index finger (pointing finger) at a calibration

location on the screen while the Optotrak recorded the locations of

the three IREDs on the finger 150 times. For each set of

measurements, we computed the vectors from the central IRED to

the two others, the cross product of those vectors (thus defining a

coordinate system centered on the central IRED), and the vector

from the central IRED to the known calibration location. We

determined the best linear transformation that converted the three

vectors defining the coordinate frame into the vector indicating

fingertip location. On each trial we recorded the 3-d positions of

the IREDs at a rate of 200 Hz and converted them into fingertip

location using this transformation. Trials in which the subject

failed to reach the screen within 575 ms of movement onset were

excluded from further analysis.

Data analysis
The focus of our analysis was the finger landing point on the

screen relative to the actual target location. Thus, endpoint data

were transformed from Optotrak to screen coordinates. Data were

analyzed separately for each subject.

We computed the mean endpoint location for each target-

penalty configuration separately for each subject. As would be

expected, in zero-penalty blocks mean endpoint location (i.e.

aimpoint) never differed from the center of the target (,2 mm bias

for all subjects). We computed the sample covariance of the

bivariate distribution of endpoints from the zero-penalty experi-

mental trials (for each subject, in each session). In addition, we fit

an isotropic (circular) bivariate Gaussian to these same data by

pooling the variance in x and y ŝs2~
Pn

i~1 (xi{�xx)2z(yi{�yy)2
� �

=
�

(2n{2)Þ.
For each variance model, we then calculated the expected gain

for each of a finely spaced grid of potential aimpoints over the

target region for the nonzero-penalty conditions. Expected gain

was computed as follows:

EG(xaim,yaim,S)~Gtargetp(targetjxaim,yaim,S)z

Gpenaltyp(penaltyjxaim,yaim,S),

where (xaim,yaim) and S are the aimpoint and covariance under

consideration, the G’s are the gains associated with landing in the

target or penalty, and the probabilities of landing in each are

computed by integrating the bivariate Gaussian defined by

(xaim,yaim) and S over the target or penalty region. The MEG

aimpoint was defined as the aimpoint within the grid that

maximized EG (Fig. 1). We assumed the covariance did not differ

between zero- and nonzero-penalty blocks. Analyses based on the

ratio of sample variances between zero- and nonzero-penalty

blocks for each subject and penalty location support this

assumption (all p-values..01, 0.06,F,1.64 before correction

for multiple comparisons).

Statistical analysis
Effectiveness of the movement perturbation. When the

principal axes of the covariance ellipses (Figs. 2–4) are nearly

parallel to the x- and y-axes as they were during the drift sessions,

only the horizontal variance matters for maximizing gain in

response to the horizontally displaced penalties, and likewise only

the vertical variance matters for the vertically displaced penalties.

We compared the horizontal to the vertical marginal variances as

a test of task-relevant anisotropy and also compared each marginal

variance across the drift and no-drift sessions, separately for each

subject. This was done by determining whether the ratio of sample

variances was significantly greater than one (using an F

distribution, Table 1).

Daim values. We refer to the difference between the aimpoint

and the target center measured along the target-penalty axis as

Daim (where positive values indicate aimpoints on the side of the

target opposite the penalty region). In Fig. 3, the error bars on the

bar graphs of Daim value represent 61 standard error of the mean

across trials. When mean endpoints are compared, t-tests were

used.

Model selection. We compared two models of aimpoint

selection in the drift session. For model Ma (anisotropic error

model), MEG aimpoints were computed based on Gaussian errors

with covariance matrix Sa
id estimated using subject i’s zero-penalty

data from the drift session (Fig. 4, lower-left panel). Predicted

aimpoints for model Mc (circular error model) were computed

similarly, except a circular (isotropic) Gaussian error model with

covariance matrix Sc
id was used (Fig. 4, lower-right panel). For

each subject i and penalty offset condition j (corresponding to

penalty regions located above, below, to the left and right of the

target), model Ma predicted aimpoint location aa
ij~(xa

ij ,y
a
ij) and

similarly for model Mc. Corresponding calculations were made

using the data in the no-drift sessions based on estimated

covariance matrices Sa
in and Sc

in of the no-drift data (Fig. 4,

upper panels).

For the drift data, we calculated the likelihood of model Mm

(where m = a or c) for each subject i’s data Di as

L(MmDDi )~p(Di DMm)~P
j,k

p(dijk DMm)~P
j,k

p(dijk Dam
ij ,Sm

id ),

where dijk~(xijk,yijk) is the endpoint of the ith subject on the kth

trial in condition j. To calculate this probability, we assume only a

bivariate endpoint distribution with finite covariance matrix

(which, based on maximum-entropy arguments, defines a bivariate

Gaussian distribution), using our best estimate of the covariance

matrix for each subject in the drift session, Sm
id :

p(dijk Dam
ij ,Sm

id )~
1

2pDSm
id D

1=2
exp {(dijk{am

ij )(Sm
id ){1(dijk{am

ij )T=2
� �

:

Finally, we calculated the evidence supporting the circular model
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Mc as compared to the anisotropic model Ma as

li~10log10

p(McjDi)

p(MajDi)
~10 log

p(Mc)p(DijMc)

p(Ma)p(DijMa)
~

10 log
p(DijMc)

p(DijMa)
,

where we use a uniform prior probability over models to represent

our lack of a prior preference for one model or the other. The

resulting evidence value is in units of decibels of evidence [21] as

we have used in previous work [22].

Supporting Information

Figure S1 Best-fit 2D variance ellipses for subjects not shown in

Figure 2.

Found at: doi:10.1371/journal.pcbi.1000982.s001 (2.06 MB EPS)

Figure S2 Additional subjects not contained in Figure 3.

Found at: doi:10.1371/journal.pcbi.1000982.s002 (0.37 MB EPS)
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