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Abstract

Quantitative models of cis-regulatory activity have the potential to improve our mechanistic understanding of
transcriptional regulation. However, the few models available today have been based on simplistic assumptions about
the sequences being modeled, or heuristic approximations of the underlying regulatory mechanisms. We have developed a
thermodynamics-based model to predict gene expression driven by any DNA sequence, as a function of transcription factor
concentrations and their DNA-binding specificities. It uses statistical thermodynamics theory to model not only protein-DNA
interaction, but also the effect of DNA-bound activators and repressors on gene expression. In addition, the model
incorporates mechanistic features such as synergistic effect of multiple activators, short range repression, and cooperativity
in transcription factor-DNA binding, allowing us to systematically evaluate the significance of these features in the context
of available expression data. Using this model on segmentation-related enhancers in Drosophila, we find that transcriptional
synergy due to simultaneous action of multiple activators helps explain the data beyond what can be explained by
cooperative DNA-binding alone. We find clear support for the phenomenon of short-range repression, where repressors do
not directly interact with the basal transcriptional machinery. We also find that the binding sites contributing to an
enhancer’s function may not be conserved during evolution, and a noticeable fraction of these undergo lineage-specific
changes. Our implementation of the model, called GEMSTAT, is the first publicly available program for simultaneously
modeling the regulatory activities of a given set of sequences.
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Introduction

Transcriptional gene regulation is largely achieved by binding of

transcription factors (TFs) to their cognate sites in regulatory

sequences (called binding sites), followed by interaction of the

bound factors with the basal transcriptional machinery. Precise

spatial-temporal patterns of a gene’s expression, such as those seen

for developmental genes, are the result of simultaneous action by a

combination of TFs and their respective binding sites located

within modular DNA segments called ‘‘cis-regulatory modules’’

(CRMs, also called enhancers). Tools of genetics and molecular

biology have been used through years of painstaking experimen-

tation to reveal examples of CRMs and their regulatory

interactions with TFs [1]. Despite the empirical knowledge of

such examples, our understanding of the rules by which various

TFs, some activators and others repressors, work together to drive

the precise expression pattern of a gene remains rudimentary.

Biochemical experiments [2] and genetic assays of synthetic

CRMs [3,4] have been two successful paradigms for exploring the

mechanisms of transcriptional regulation. At the same time, there

is widespread recognition [4] that such experimental paradigms

need to be complemented with quantitative analyses, since the

underlying rules of combinatorial regulation are themselves

quantitative in nature. A quantitative model that relates regulatory

sequences to their functional outputs [5,6] can be a powerful tool

in teasing out mechanistic insights from gene expression data.

Additionally, it may allow us to predict the function of an

uncharacterized piece of DNA, and may be harnessed to discover

novel CRMs in a genome, as well as to predict the expression

pattern driven by a known CRM in conditions where aspects of

the input information differ from those in wild type.

The precise ‘‘quantitative modeling’’ problem we consider is the

following: given the sequence of a CRM, the concentration profiles (in space

or time) of a set of transcription factors (TFs) and their respective DNA-

binding specificities, predict the expression profile driven by the CRM, also

called the ‘‘readout’’ of the CRM. This expression profile can be tested

experimentally by a reporter gene placed near the CRM. The

quantitative model is the mathematical function that maps the

input data to the CRM’s readout. Such a model is typically based

on the following, widely-accepted characteristics of the process of
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transcriptional regulation: (a) transcription factor (protein) mole-

cules bind DNA, to an extent that depends on their concentration,

binding specificity and the sequence of the binding site, and (b)

gene expression (readout) depends on the combination of

transcription factors bound to the DNA. The bound TF molecules

act in concert to recruit the basal transcriptional machinery (BTM)

to the promoter, thus initiating transcription [5].

Statistical thermodynamics provides a natural framework for

quantitative models of transcriptional regulation, by modeling

DNA binding and protein interactions in equilibrium conditions.

In the theory laid out by Shea & Ackers and formalized by Buchler

et al. [5,7],

N Statistical thermodynamics (in particular, the Boltzmann

distribution law) was used to compute the relative probability

of every molecular configuration involving binding sites,

transcription factors and the basal transcriptional machinery

(BTM), and

N Gene expression was modeled as being proportional to the

‘‘fractional occupancy’’ [8] of the BTM at the promoter, i.e.,

the total probability of all configurations where the BTM is

bound to the promoter.

This framework allows one to incorporate the competition

between TFs for overlapping binding sites, as well as cooperative

interactions between TFs bound at nearby sites. Sequence-specific

TF-DNA binding can be incorporated into the framework as

proposed by Berg & von Hippel [9], through the use of ‘‘position

weight matrices’’ (PWMs) that represent the TFs’ binding

specificities [10].

In this work, we have developed and implemented quantitative

models to predict expression from sequence, based on the

statistical thermodynamics framework outlined above. Previous

publications [6,11–14] have adopted various aspects of the

framework and applied them successfully to different gene

expression data sets from yeast and fruit fly. However, most of

these models cannot be applied to arbitrary sequences, or gloss

over important mechanistic details such as the distinction between

activator and repressor action (see below). To the best of our

knowledge, the computational method we present here is the first

implementation of the Shea-Ackers model that can be applied to

any given sequence, with binding sites of varying affinities for their

respective TFs. Furthermore, it models mechanistic details of

activation and repression that were missing in the original Shea-

Ackers model (which was developed for prokaryotic gene

regulation) and which we expect to be relevant in the context of

metazoan regulatory systems. The method involves summing the

relative probabilities of all possible molecular configurations of the

DNA segment. Since strong as well as weak binding sites may be

crucial for the readout of a CRM [12,15], and since a CRM may

harbor generous numbers of such sites [16], there are an

enormous number of possible configurations, leading to a severe

computational challenge. We meet this challenge by devising

efficient (dynamic programming) formulations of all of our model

calculations. We apply our models to existing expression data from

Drosophila embryonic development, to investigate mechanistic

aspects of transcriptional regulation in this system. By comparing

how well different models or models with different parameter

settings explain the data, we attempt to understand the importance

of various aspects of the model in light of the available data.

The Shea-Ackers model was developed for prokaryotic gene

promoters, and lacks certain mechanistic aspects that have been

much debated in the context of metazoan regulatory systems. One

such aspect is the mechanism of transcriptional inhibitors

(commonly called ‘‘repressors’’), where several different possibil-

ities have been suggested. Gertz et al. [12] modeled the repressive

action of a TF through direct destabilizing interactions with the

BTM, while Janssens et al. [13] assumed a ‘‘quenching’’

mechanism where a bound repressor molecule shuts off activator

binding within a limited distance, e.g., 100 bp, around itself

[17,18]. A third possible mode of repressor action is through direct

competition with activating TFs for binding at overlapping sites, as

suggested by the observation that activator and repressor sites

often overlap [19]. In the segmentation system in Drosophila,

existing experimental work on a few well-characterized or

synthetic CRMs seemed to suggest that repressors act through

the quenching, or short-range mechanism. However, it is not

known whether this is true for all CRMs. Also, it is possible that

the same repressor works though multiple mechanisms (e.g., Kr, a

well known short range repressor [20] may also repress through

interaction with BTM [21]). Here, we begin to address these

questions by implementing all of the above modes of repressor

action within a common framework, and allowing any of them to

be used in fitting the model to available data. A significantly better

agreement between data and model may then be interpreted as

evidence in favor of the chosen model of repression, since all other

aspects of the model remain fixed.

Another mechanistic question that has repeatedly surfaced in

the study of metazoan regulation pertains to the role of multiple

activator sites often present in the same regulatory sequence.

One line of thought has been that this enables cooperative

DNA-binding by multiple activator molecules [22,23], i.e.,

DNA-binding of one activator molecule facilitates binding of

other ones, and is key to achieving the highly non-linear

response to an activator concentration gradient that underlies

certain gene expression patterns in development [2]. However,

such a non-linear response may also be achieved by another

mechanism called ‘‘transcriptional synergy’’ [24]. If multiple

activator molecules simultaneously interact with the BTM, the

result may be a kind of synergistic activation where the

activation effect of two binding sites is greater than the sum of

each [25], even in the absence of DNA-binding cooperativity.

Author Summary

The development of complex multicellular organisms
requires genes to be expressed at specific stages and in
specific tissues. Regulatory DNA sequences, often called
cis-regulatory modules, drive the desired gene expression
patterns by integrating information about the environ-
ment in the form of the activities of transcription factors.
The rules by which regulatory sequences read this type of
information, however, are unclear. In this work, we
developed quantitative models based on physicochemical
principles that directly map regulatory sequences to the
expression profiles they generate. We evaluated these
models on the segmentation network of the model
organism Drosophila melanogaster. Our models incorpo-
rate mechanistic features that attempt to capture how
activating and repressing transcription factors work in the
segmentation system. By evaluating the importance of
these features, we were able to gain insights on the
quantitative regulatory rules. We found that two different
mechanisms may contribute to cooperative gene activa-
tion and that repressors often have a short range of
influence in DNA sequences. Combining the quantitative
modeling with comparative sequence analysis, we also
found that even functional sequences may be lost during
evolution.

Regulatory Sequence Modeling
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Not only are these two mechanisms different biochemically,

they respond differently to the change of TF concentrations

[26]. (Also see Text S1 and Figure S1 for a discussion of how

the two mechanisms affect transcriptional activation differently,

using a sequence with multiple identical binding sites as an

example.) Despite a number of experimental studies [2,8,27,

28], the relative importance of each is unclear and represents a

major gap in our understanding of transcriptional regulation

[26]. We implemented both modes of multi-activator synergy in

our model. As with repressor action, we sought to assess their

relative contributions systematically by testing which variant of

the model agrees best with the data.

Summary of results
We began by examining whether our models agree with existing

data on transcriptional gene regulation during Drosophila embryonic

development (anterior–posterior axis specification). This involved

training our model on 37–44 experimentally characterized CRMs

and 6–8 transcription factors. The overall quality of fit as well as

predictive ability of our models was remarkably high. Next, we

applied different model variants to investigate mechanistic ques-

tions. We found that the transcriptional synergy arising from

simultaneous contact of activators with the BTM contributes

significantly to the accurate specification of expression patterns, and

this contribution extends beyond the contribution from mutual

interactions (DNA-binding cooperativity) between activators. Shift-

ing attention to repressors, we then found that competition between

repressors and activators for binding sites is an insufficient

mechanism of repression [29]. We found evidence in favor of a

short range repression mechanism for two of the TFs, consolidating

experimental evidence that exists for this mechanism. However, our

results also raised the possibility that long-range mechanisms (such

as direct interaction with the BTM) may also contribute to the

repressors’ function. We also studied the importance of cooperative

DNA-binding (of both activators and repressors) in this system. Our

results provide clear evidence of cooperative effects of some TFs but

give mixed signals with respect to other TFs.

We also used our model to examine a contentious evolutionary

issue. Several studies [30–32] have reported that TF binding sites

undergo rapid turnover (loss and/or gain) during evolution.

However, due to the difficulty of establishing true functionality of

binding sites in practice (e.g., binding to a TF does not necessary

lead to regulatory function [33]), it is not clear whether such

turnover is largely limited to non-functional sites. We investigated

this issue using our model in conjunction with evolutionary

sequence comparison, and found that lineage–specific losses affect

functional sites to a noticeable extent.

Comparison to previous models
As mentioned above, a few thermodynamics-based models

have been proposed in the past, which we now review briefly.

The approach of Reinitz and colleagues exploits physicochem-

ical principles, and includes important mechanistic aspects such

as short range repression through quenching [13,34]. However,

the Reinitz model does not consider all possible molecular

configurations, a fundamental tenet of the statistical thermody-

namic treatment. Also, cooperative DNA-binding by TFs is not

included in the model. Segal et al. [6] presented a model based

on enumeration of all configurations of bound and unbound

TFs. This model uses statistical thermodynamics to model TF-

DNA interactions and to compute relative probabilities of

configurations, but models the mapping from these configura-

tions to their transcriptional output in a heuristic manner. Also,

the Segal model ignores important mechanistic issues such as

transcriptional synergy (discussed above) and short range

repression. Furthermore, the formulation of transcriptional

output in this model makes the computational task intractable.

(The authors adopted sampling methods to deal with this issue,

thereby sacrificing exactness of the model computation.) The

models developed by other researchers make various simplifying

assumptions, e.g., binding of a single activator is strong enough

to activate transcription [14], and their implementations are

often limited in their generality, e.g., only sequences with a

small number of binding sites are considered [12], or all sites are

assumed to have identical binding affinities [14]. See Table 1 for

a summary of the strengths and weaknesses of the models

discussed above.

We have not undertaken a rigorous comparison of our

approach versus the above-mentioned approaches, for three

reasons. First, none of the previous models have a publicly

available implementation that we could use in our setting. Bauer

& Bailey’s implementation [11] of the Reinitz model comes

closest, but cannot be applied to more than one CRM at a time.

Second, while Segal et al. [6] make their data set (and their

predictions for this set) available, their method uses a much larger

number of free parameters (the position weight matrices of the

TFs were estimated from data), precluding a fair comparison.

Third, and most importantly, our main goal in this study was to

search for mechanistic insights that are revealed by the data,

rather than engineering a model with the best possible fit to the

data. For the same reason, we have not attempted here to

position our work in comparison to machine learning-based

models of gene expression [35,36]. To facilitate future studies by

other researchers, we make the source code of our implemen-

tation freely available online.

Table 1. Thermodynamics-based models of gene expression and their properties.

Model
Enumeration
of states

Variable
site affinity

Cooperative
DNA-binding

Transcriptional
synergy

Short range
repression

Shea- Ackers [5] Y N Y Y N

Reinitz [34] N Y N Y Y

Papatsenko [14] Y N Y N Y

Segal [6] Y Y Y N N

This paper Y Y Y Y Y

‘Y’ = Yes, ‘N’ = No. ‘‘Variable site affinity’’ indicates whether the model implementation as described in the respective paper(s) allows the input sequence to have an
arbitrary number of binding sites with variable affinities.
doi:10.1371/journal.pcbi.1000935.t001

Regulatory Sequence Modeling
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Methods

The components of the thermodynamic system we consider are:

(a) the DNA segment forming the regulatory sequence (CRM), (b)

transcription factor (TF) molecules, and (c) the basal transcrip-

tional machinery (BTM). A TF molecule may bind the CRM at

any binding site (assumed of a fixed length), with site-specific

affinity. The BTM may bind at the core promoter of the gene, and

it initiates transcription when thus bound. We assume, following

Shea & Ackers [5], that the level of gene expression depends

primarily on the rate of transcription initiation.

Statistical thermodynamics of gene expression
We begin with an overview of the statistical thermodynamic

theory of gene expression, following Buchler et al. [7]. This theory

has two components, one dealing with the occupancy of TFs at

DNA sequences, and the other with the interactions of occupied

TFs with the BTM. We first describe the model of TF occupancy.

Consider a CRM with n binding sites (e.g., n = 2 in Figure 1A). A

molecular configuration, denoted by s, specifies which sites are bound

and which are free. Thus there are 2n possible configurations. The

statistical weight of configuration s, denoted by W(s), and which we

shall endeavor to compute, gives us the relative probability, P(s), of

the configuration when the system is in equilibrium. In other

words, we have P(s) = W(s)/Z, where Z is a normalization

constant, defined as gs W(s), and known as the partition function.

Calculation of P(s) would allow us to answer questions like: ‘‘What

is the relative probability of site S being in the bound state?’’ This

may be computed by summing P(s) over all s in which S is bound,

and is also called the fractional occupancy of the site S. The statistical

Figure 1. Statistical thermodynamic models of gene expression. (A) All possible molecular configurations of a CRM with two binding sites
(purple), that may or may not be bound by a transcription factor (green circle = activator, red circle = repressor). The statistical weight W of each
configuration is shown to its right. Each occupied site makes a contribution to W in a multiplicative fashion. (B) Cooperative DNA-binding is modeled
by introducing a multiplicative factor (v) to the statistical weight of a configuration. The same configuration is shown along with its statistical weight
W under a model with no cooperativity (top) and a model with self-cooperative DNA-binding (bottom). (C) Statistical weight contributions from TF-
DNA interactions (W) and from TF-BTM interactions (Q) for each configuration, in the Direct Interaction model (blue circle = BTM). Each bound
activator or repressor molecule contributes to the TF-BTM interaction term (Q) in a multiplicative fashion. The statistical weight also receives a
contribution from BTM binding at the promoter; this term is not shown here. (D) Same as (C), but for the short range repression model. A bound
repressor (red circle) does not have a direct interaction with the BTM. Also, there is one additional configuration allowed here, as compared to Direct
Interaction: one where repressor is bound and ‘‘effective’’ in shutting down its neighborhood for binding at activator sites (bottom). The statistical
weight (W) of this configuration is scaled by a factor of bR, reflecting the strength of the repressor to change the chromatin accessibility. (E) Two ways
to model the action of multiple bound activators: ‘‘additive effect’’ (top 2 configurations) and ‘‘multiplicative effect’’ (bottom). The total statistical
weight (W6Q) under each model is shown. In the former, only one bound activator may contact the BTM in any configuration, while the latter has no
such restriction and leads to transcriptional synergy.
doi:10.1371/journal.pcbi.1000935.g001
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weight W(s) depends on the number and affinities of the occupied

binding sites in the configuration s, and on interactions between

bound TF molecules. We will present details of W(s) when

discussing specific models below.

We next describe, at a high level, how the above molecular

configurations (s ) affect gene expression. We assume that the gene

expression level (on a scale of 0 to 1) is equal to the fractional

occupancy of the promoter by the BTM. Each of the configurations

s considered above (specifying bound or unbound TFs) may now

correspond to two states, depending on whether BTM is bound or

not. The statistical weight of these two states will be given by

W(s)Q(s) and W(s) respectively, where W(s) is the contribution

from TF–DNA interactions as explained above, and Q(s) is the

contribution from TF–BTM interactions, present only if the BTM is

bound. Q(s) depends on the bound TFs in the configuration s, and

may be construed as the transcriptional output from the configura-

tion. We now calculate the relative probability of bound BTM as

ZON =Ss W(s)Q(s), and that of unbound BTM as ZOFF =Ss
W(s), to obtain the gene expression level as follows (note that ‘‘ON’’

and ‘‘OFF’’ represent the state of BTM occupancy, which is

separate from the occupancy states of binding sites in the CRM

sequence, as indicated by s):

E~
ZON

ZONzZOFF

~

P
s

W (s)Q(s)P
s

W (s)Q(s)z
P
s

W (s)
ð1Þ

Direct Interaction (DirectInt) model
Here, we present details of how the W(s) and Q(s) terms are

specified by the first of our two models. Under this model, DNA-

bound transcription factors interact favorably (activators) or

unfavorably (repressors) with the BTM, thus affecting the

probability of the BTM being bound at the promoter. We call

this the Direct Interaction (‘‘DirectInt’’) model.

For a configuration s, the statistical weight W(s) has terms

reflecting binding of TFs to their binding sites, and those reflecting

interactions between TFs. Let q(S) denote the contribution of a

single occupied site S to W(s). This depends on the concentration

of the TF and the strength of the site, and is given by:

q(S)~K(Smax)n½TF �rel exp½LLR(S){LLR(Smax)� ð2Þ

where

N [TF]rel is the concentration of the TF relative to some value n,

N LLR(?) is the log likelihood ratio score of a site, computed based

on the known position weight matrix (PWM) of the TF and the

background nucleotide distribution [10],

N Smax is the strongest binding site of the TF and K(Smax) is its

association constant.

(See Text S1 for how Equation (2) is derived.) Note that two

unknown constants, one related to TF-DNA binding (K(Smax)), and

the other (n) a constant of proportionality for TF concentration,

appear together as a product, which can be treated as a single free

parameter to be estimated from data. The above equation makes

the implicit assumption that the binding energy of each position of

a site is additive. This assumption has been questioned in several

studies [37,38], but is necessary in our case because there is not

enough TF-DNA interaction data to construct accurate models

incorporating higher-order interactions. Furthermore, the addi-

tivity assumption seems to be a reasonably good approximation for

the TFs in the segmentation system [6,13]. The statistical weight of

a configuration s, in the absence of cooperative binding, is then

given by W sð Þ~P
i

q Sið Þsi , where si is an indicator variable

(values 0 or 1) for Si being occupied by its TF in the configuration

(Figure 1A) [7].

If two bound TFs interact (protein–protein interaction), they

make an additional contribution to the statistical weight of the

configuration. We denote this contribution by v(d), where d is the

distance between their binding sites (Figure 1B). The dependence

of this cooperativity term on the distance is discussed in Text S1.

The statistical weight of a configuration, accounting for cooper-

ative binding, is the product of contributions of all occupied sites

and all TF-TF interactions implied by that configuration [7]:

W (s)~P
i

q(Si)
si P

(i,j)Divj
vij(dij)

sisj ð3Þ

where vij(dij) denotes the statistical weight contribution due to

interaction between the TFs bound to sites Si and Sj, and dij is the

distance between these sites. We assume that cooperative binding

is possible only if the bound sites are adjacent in the configuration,

i.e., there is no other bound site in between. We also assume that it

is predetermined whether any given pair of transcription factors

exhibit cooperative binding or not. The model allows interactions

between adjacent binding sites that may be either homotypic (of

the same TF) or heterotypic (of different TFs).

Next, we describe how we model Q(s), the statistical weight

contribution from TF-BTM interactions. We assume that each TF

is either an activator or repressor. A bound activator A interacts

with the bound BTM with statistical weight aA.1, while a

repressor R interacts with weight aR,1 (Figure 1C). Q(s) is the

product of the a terms corresponding to each bound TF in the

configuration. This corresponds to the intuition that a bound

activator makes the configuration more energetically favorable

(thus, a greater weight) while a bound repressor makes it less

favorable. We also assume that each bound TF interacts

independently with the BTM, with energy contributions that

add up, which is reflected in the statistical weights being

multiplicative.

Computation of Equation (1) involves summation of an

exponential number of configurations. We developed an efficient

algorithm based on dynamic programming to carry out the

computation (see below and Text S1). We note that Gertz et al.

made the same model assumptions [12], but, unlike their method,

we provide a general and efficient implementation that is

applicable to arbitrary sequences. The DirectInt model presented

here largely follows Buchler et al. [7], with the treatment of

sequence-specific DNA binding (Equation 2) being borrowed from

Berg & von Hippel [9]. However, the approach of Buchler et al.

[7], designed for prokaryotic systems, assumed repressors to work

by competition with the polymerase, and does not extend to

distally located binding sites.

Short-range repression (SRR) model
In the DirectInt model above, repressor action is independent of

the location of binding sites for repressors or activators. However,

experimental work has shown that certain repressors act on

activators only if they are bound within a ‘‘short range’’, e.g., less

than 150 bp, of the activator binding site [17]. Such short range

repression, also called ‘‘quenching’’ [17], may work by repressors

inhibiting DNA-binding of activators [39], possibly by modifying

chromatin accessibility. We model this mechanism by assuming

that a bound repressor does not directly interact with the BTM,

Regulatory Sequence Modeling
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instead, it creates a new possible configuration, one where DNA in

its ‘‘neighborhood’’ (defined by a range parameter dR) is

inaccessible to binding by any other TF, for example by localized

chromatin modification (Figure 1D). A configuration where the

neighboring chromatin is inaccessible (Figure 1D, bottom)

competes with the configurations where the chromatin is accessible

to activators, thus effectively reducing the occupancy of activators.

We call this model the short-range repression, or SRR, model.

Note that there are more configurations under this model than

in the DirectInt model. In any configuration, an activator site may

exist in one of two states (bound or unbound) as in DirectInt. In

contrast, each repressor site may now exist in one of three states:

unbound, ‘‘bound-only’’, and ‘‘bound-effective’’ (the bound-only

state has the repressor bound but not interacting with either the

BTM or the neighboring DNA, while in the bound-effective state

the bound repressor makes the neighboring DNA inaccessible).

Not all possible configurations are allowed, however. We assume

that within a certain range of a bound-effective repressor, an

activator site is not allowed to be bound (thus implementing the

idea of short-range repression).

For a legitimate configuration s, W(s) in the SRR model is

given by Equation (3), multiplied by a repressor-specific constant

bR for each bound-effective site of the repressor R (Figure 1D,

bottom). The parameter bR may be interpreted as the equilibrium

constant of the reaction that changes the chromatin state from

accessible to inaccessible. The value of bR controls the strength of

the repressor. When it is close to 0, there is no repression effect;

when it approaches +‘, the repressor completely shuts down all

activator sites in the neighborhood. Thus, in this alternative to the

DirectInt model, repression is modeled by augmenting the

calculation of W(s), instead of direct interaction terms (aR) for

the repressor in Q(s). Q(s) is now a product of the direct

interaction terms (aA) for activators alone. We show that even with

this new model, it is possible to perform efficient computation of

Equation (1) using dynamic programming (see Text S1).

Modeling the action of multiple activators
We consider the following question: how are the effects of

multiple bound activators combined? In both models described

above (DirectInt, SRR), their individual statistical weights (aA)

were multiplied, in calculating the overall contribution of

activator-BTM interactions. This is the ‘‘multiplicative effect’’

model of combined action by multiple activators. It reflects a

scenario where the bound activators interact with different parts of

the BTM (or different steps of transcription initiation), and the

energy terms are added. Veitia [26] shows that this multiplicative

effect model results in ‘‘transcriptional synergy’’, where the

activating effect of two binding sites is greater than the sum of

their individual effects, even in the absence of cooperative DNA-

binding. We next consider an alternative scenario where in any

given configuration, at most one activator molecule may interact

with the BTM. This is plausible if for example the bound

activators must interact with the same subunit of the BTM. In this

case, the TF-BTM interaction term is written as Q(s) =Sai, where

the sum is over bound activators in the configuration. This is the

called the ‘‘additive effect’’ model (Figure 1E). In this case, there

will be no synergistic activation due to TF-BTM interaction,

though some level of synergy may still arise from cooperative

DNA-binding by activators. In Text S1, we compare the two

mechanisms that may lead to transcriptional synergy: multiplica-

tive effect model, and additive effect model in combination with

cooperative DNA binding. The basic insight is that synergistic

effect will disappear at high activator concentration under the

cooperative binding model (activator binding has already been

saturated under this condition, thus cooperative interactions will

not be further helpful), but not under the multiplicative model.

This difference in model behavior suggests that it is theoretically

possible to distinguish two models from the data. To investigate

the mechanism of synergistic activation, we implement both

‘‘multiplicative effect’’ and ‘‘additive effect’’ models as special cases

of a more general model for combined activator action: a user-

defined parameter NMA (positive integer) sets the limit on the

maximum number of bound activators that can simultaneously

interact with the BTM. We call this the ‘‘limited contact’’ model of

activator action (see Text S1 for details). The cases NMA = 1 and

NMA = ‘ correspond to the additive and multiplicative effect

models respectively. This general model can be combined with

cooperative binding of TF molecules, thus allowing us to study the

relative contribution of multiplicative activation and cooperative

binding.

Algorithms for computing expression of a sequence
As discussed earlier, the computation of Equation (1) involves

summation of an exponential number of configurations. In this

section, we describe an efficient algorithm for computing the

DirectInt model with multiplicative effect of activation. (The

algorithms for other models are based on similar dynamic

programming techniques and are presented in Text S1.) Let

ZOFF(i) denote the total statistical weight of all configurations of

sites up to the site i, with site i being occupied. We obtain the

following recurrence, by summing over the position of the

occupied site j nearest to site i:

ZOFF (i)~q(i)
X
j[W(i)

v(i,j)ZOFF (j)z1

" #
ð4Þ

where q(i) is the statistical weight of the site i, as defined in

Equation (2), v(i, j) is the interaction between the occupied sites i

and j, and W(i) is the set of sites to the left of i that do not overlap

with i. This recurrence equation is similar to that in [40,41]. The

constant term, +1, corresponds to the case where no site to the left

of i is occupied. Under this model, Q(s) is the product of the

transcriptional effects (a terms, as described before) of all occupied

TF molecules in the configuration s. Let f(i) be the factor bound at

the site i, and af(i) be the transcriptional effect of f(i), then we have

the following recurrence for ZON:

ZON (i)~q(i)af (i)

X
j[W(i)

v(i,j)ZON (j)z1

" #
ð5Þ

To calculate the values required for Equation (1), we simply take

the sum over all possible values of i: ZOFF~
P

i ZOFF (i) and

ZON~
P

i ZON (i). The time complexity of the algorithm is O(n2),

where n is the number of sites in the sequence. However, if

cooperative interaction between adjacent sites is not modeled, or

the interaction only occurs within a constant range, the time

complexity is linear in n.

Data
We started with the Drosophila segmentation data set from Segal

et al. [6]. This set includes 44 bona fide CRMs with their A/P

expression profiles, eight TFs (Bcd, Cad, TorRE, Hb, Gt, Kni, Kr, and

Tll) with their concentration profiles and PWM motifs. Each

expression profile (or concentration profile) consists of 100 real

numbers between 0 and 1 representing the relative expression level

of the CRM (or relative concentration of a TF) in positions along
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the A/P axis, divided into 100 bins from anterior to posterior. One

problem with this data set is that not all relevant TFs in the

terminal regions (e.g., Slp1) are included or known [42]. Also, the

TorRE (Torso Response Element) motif included in this data set is

assumed to correspond to a (yet unknown) TF that has activating

role in the terminal regions of the embryo. Recent evidence

suggests that on the contrary TorRE may correspond to the Capicua

transcription factor, which is a repressor expressed in the trunk

region of the embryo and post-transcriptionally degraded at the

termini in response to Torso signaling [43]. This casts doubts over

the inclusion of TorRE and in general the terminal regions of the

expression profiles as part of the data set, especially for evaluating

models that distinguish between activator and repressor mecha-

nisms. We thus limited the CRM expression profiles to their

portions lying between 20% and 80% egg length. The number of

CRMs came down to 37, after excluding those without patterned

expression in this spatial range. This final data set included six

motifs (Tll and TorRE were excluded), of which five (Cad, Gt, Hb,

Kr, Kni) were taken from Noyes et al. [44] and one (Bcd) was

obtained from FlyREG [45]. Binding sites were annotated as those

with log likelihood ratio (LLR) scores greater than 0.4 times the

LLR score of the optimal site [46]. This threshold is weak enough

to include a large number of putative sites for each TF, while

keeping the running time low.

Model training
Parameter training was performed using the Nelder-Mead

simplex method and the quasi-Newton method, and restarts were

used to deal with potential local optima. Optimization of the

correlation coefficient between predicted and known expression

values was alternated with optimization of the sum of squared

errors (See Text S1 for details). Note that model training is

performed separately for each model (DirectInt or SRR, with or

without cooperative interaction, etc.). Thus, even though two

models may share certain parameters, e.g., (K(Smax)n), their values

may be different under the two models after training. The running

time of the program scales linearly with the number of TFs, and

the total length of sequences (for all models except the ‘‘limited

contact model’’, see Text S1). In our dataset, with 6–8 TFs and

about 40 CRMs of average length 1450 bp, the parameter

training phase took about 3–4 hours of running time on a desktop

computer with 2.2GHz CPU and 2GB memory.

Results

Here we present ‘‘GEMSTAT’’ (Gene Expression Modeling

based on Statistical Thermodynamics), an efficient and publicly

available implementation of models for predicting expression from

sequences, given TF concentration profiles and TF binding motifs

(PWMs). GEMSTAT can be trained on any number of CRMs

with known expression profiles. It can be easily configured to use

one of many possible combinations of mechanistic features of a

rigorous thermodynamics-based model of promoter occupancy.

Details of the model are provided in Methods. Here, we begin with

a brief summary of the implemented features, and use GEMSTAT

to gain insights into mechanisms of transcriptional regulation in

the Drosophila segmentation network.

Models and evaluation
GEMSTAT offers the following choices between various model

features:

N Direct Interaction (‘‘DirectInt’’) model or Short Range

Repression (‘‘SRR’’) model. Both prescribe direct interactions

between bound activators and the BTM, and differ in how

repressor action is modeled. In the DirectInt model, bound

repressors have direct, destabilizing interactions with the

BTM, while in the SRR model they function by rendering

the neighboring chromatin inaccessible.

N Additive or multiplicative model of activator action. These

differ in how the effects of multiple bound activators are

combined. The multiplicative model allows any number of

activators to simultaneously interact with the BTM, leading to

synergistic activation of transcription (‘‘transcriptional syner-

gy’’ [8]), and the additive model allows only one such

interaction in any configuration. These two models are in fact

special cases of a more general framework, called the ‘‘limited

contact model’’, by which any desired limit may be imposed on

the number of simultaneous activator-BTM interactions, and

thus on the extent of transcriptional synergy among activator

sites.

N Cooperative DNA binding. If this option is chosen for a pair of

TFs, two molecules bound at ‘‘adjacent’’ sites (i.e., a pair of

sites with no other occupied site in between) are assumed to

interact favorably, thus exhibiting cooperative DNA binding.

We support both homotypic and heterotypic interactions

between TFs.

The above choices are accompanied by parameters that may be

set manually, and some of which may be left as free parameters to

be trained from the data. All model parameters are described in

Table S1. The program takes as input the sequence and expression

profiles of a set of CRMs, and the PWMs and concentration

profiles of a set of TFs. Expression profiles and concentration

profiles are specified as vectors of a fixed dimension, allowing it to

be easily used to model any regulatory system. (In our application,

vector components correspond to positions along the A/P axis of

the embryo, but in other applications these could be distinct

anatomical domains or temporal points.) The source code is

available at http://veda.cs.uiuc.edu/Seq2Expr/.

The data set consists of 37 experimentally characterized

CRMs driving patterned expression along the anterior-posterior

axis of the blastoderm stage Drosophila embryo (see Methods). We

used several different approaches to objectively evaluate a model

and compare models. Our first metric of model performance

is the correlation between the model predictions and the

observations. For each CRM, we calculated the Pearson

correlation coefficient (CC) between the predicted and the

observed expression profiles (over 60 bins), and computed the

average CC over all CRMs. We also recorded the number of

CRMs with CC.0.65. Additionally, we estimated for each

CRM the significance of improvement (in CC) due to one model

versus another, and combined these estimates into a p-value of

improvement over the entire data set, as described in Text S1.

We also calculated the average CC under 10-fold cross

validation (denoted by ‘‘CVCC’’), as a test of predictive ability,

and for fair performance comparison between models with

different numbers of parameters. For any given choice of model,

an identical model that uses randomly permuted PWMs was

evaluated as negative control. Any observation about model

comparison based on correlation coefficients was also confirmed

by visual inspection of the predicted expression patterns on all 37

CRMs. We note that there is no consensus yet on the most

reasonable way to evaluate predictions of expression models for

data sets such as that used here. We chose the correlation

coefficient because of its ability to capture the salient pattern

along the A/P axis, and we based all of our claims on this

measure to keep our analysis objective and unbiased.
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Cooperative DNA-binding by transcription factors
We began by exploring the effect of cooperative DNA-binding

by molecules of the same TF, i.e., homotypic interactions.

(Modeling heterotypic interactions would involve many more free

parameters and was not pursued in this study). Segal et al. [6] also

studied this effect, but since their model lacks mechanistic details

of activation, the effect of cooperative binding may not be

distinguishable from simultaneous interaction of TFs with the

BTM (the ‘‘multiplicative effect’’, also called ‘‘transcriptional

synergy’’ [8]). As a baseline, we evaluated the DirectInt model that

excludes any cooperative binding terms, but allows for transcrip-

tional synergy. The average correlation coefficient (CC) of this

model (of 13 free parameters) is 0.547, with accurate predicted

readout (CC.0.65) on 16 of the 37 CRMs (Table 2). In contrast,

25 independent negative controls yielded a mean average CC of

0.211 (standard deviation of this mean across the 25 trials was

0.075). The cross validation correlation coefficient (CVCC)

supports the high predictive ability of the model (average CVCC

of 0.4, compared to 0.0260.083 from negative controls). We then

included self-cooperativity of each TF separately (only one

additional parameter at a time), and computed the average CC

and CVCC as before. Each of the TFs showed an improved

CVCC over the baseline of no cooperativity across almost every

replicate of the cross validation exercise (Table 2, Table S2), while

Bcd and Kni showed the most pronounced effects of cooperativity

in terms of average CC. When both Bcd and Kni were included as

cooperative factors, the average CC improved further over the

model with each factor alone. The improvement in going from no

cooperativity (average CC = 0.547) to self-cooperativity for Bcd

and Kni (average CC = 0.587) was highly significant (p-value 1.3E-

6). Examination of the expression predictions on individual CRMs

identified 12 CRMs where the cooperativity model was better and

two where it was worse. (Two cases are shown in Figure 2 (A,B),

and the complete list is in Figure S2.) Our results are consistent

with Segal et al. [6], who found self-cooperativity to improve

prediction. Moreover, we find this to be the case even in the

presence of transcriptional synergy, which if not accounted for

could have confounded the effects of cooperative DNA-binding by

activators.

As a visual aid for interpreting the quantitative evaluations

reported above, we present in Figure 3 all of the expression

predictions from the above model (with Bcd and Kni self-

cooperativity), alongside their respective known expression

patterns. A detailed summary of the model’s performance is given

in Table 2, along with results from an appropriate negative

control. This model was also fit to the entire data set of Segal et al.

(44 CRMs, inclusive of terminal bins) and found to have slightly

(but not significantly) higher average CC than the published

predictions of the Segal model [6], although our model uses fewer

free parameters (see Figure S3 for details.)

Synergistic activation through simultaneous interaction
of multiple activators with BTM

GEMSTAT implements two alternative approaches to com-

bining the effects of multiple activator sites, using the parameter

NMA described in Table S1: the additive effect (NMA = 1) and the

multiplicative effect (NMA = ‘), as well as approaches that are in

between these two extremes. The ‘‘multiplicative effect’’ model

allows any number of activator molecules to simultaneously

interact with the BTM, which as discussed in Methods, leads to

transcriptional synergy, a source of synergistic activation that is

distinct from cooperative DNA-binding [8,26]. We used the two

extreme values of NMA to test whether this phenomenon leads to

improved agreement with the data, while keeping other aspects of

the model fixed (Table 3). The baseline model here was one with

NMA = 1 (no synergy) and with no self-cooperative DNA-binding.

The average CC from this model (0.516) improved significantly (to

0.547; p-value 3.7E-4) when we introduced synergy due to the

multiplicative effect of multiple activators (NMA = ‘). (This change

does not involve any additional free parameters.) This was further

confirmed by a greatly improved CVCC (0.295 to 0.40, see

Table 3 and Table S3), as well as by examination of predictions for

individual CRMs (Figure 2(C,D), and for the complete results see

Figure S4): the multiplicative effect model showed clear improve-

ments on 6 CRMs and was worse on 3 CRMs. These observations

suggest that simultaneous interaction of multiple activators with

the BTM is a plausible source of synergistic activation.

Cooperative binding was kept out of the model in the above test.

We next introduced cooperative binding (only for the two

activators) into the model, and examined the contribution of the

multiplicative effect. We found that the model with both sources of

synergistic activation shows better quality of fits compared to the

model with cooperative binding alone, in terms of average CC

(from 0.558 to 0.581, p-value 7.3E-11, see Table 3) as well as

CVCC (0.292 to 0.396). We also confirmed this improvement by

examination of individual CRMs: the model using multiplicative

effect along with cooperative binding led to better fits for 8 CRMs

compared to the model with cooperative binding alone (Figure S5)

and was worse in no case. This result suggests that synergistic

Table 2. Evaluation of the DirectInt model with various
cooperativity parameters.

Model # Pars Avg. CC #(CC.0.65)
CVCC
(STDEV)

No Coop 13 0.547 16 0.400 (0.02)

Neg Ctrl No Coop 13 0.21160.076 7.7661.6 0.0260.083

Bcd Coop 14 0.577 22 0.428 (0.01)

Cad Coop 14 0.553 21 0.428 (0.02)

Gt Coop 14 0.557 22 0.428 (0.03)

Hb Coop 14 0.552 20 0.328* (0.02)

Kni Coop 14 0.565 20 0.458 (0.02)

Kr Coop 14 0.550 16 0.441 (0.02)

All TF Coop 19 0.603 25 0.418 (0.03)

Bcd & Kni Coop 15 0.587 24 0.460 (0.02)

Neg Ctrl Bcd & Kni Coop 15 0.21460.08 8.0461.86 0.02760.077

The models examined include those without self-cooperative DNA binding (‘‘No
Coop’’), with cooperative binding by one of six different TFs (‘‘Bcd Coop’’, ‘‘Cad
Coop’’, etc.), with cooperative binding by all six TFs (‘‘All TF Coop’’), and with
cooperative binding by Bcd as well as Kni (‘‘Bcd&Kni Coop’’). For each model, the
number of free parameters used is shown (‘‘# Pars’’), along with average
correlation coefficient (‘‘Avg. CC’’) between model prediction and true readout
over all 37 CRMs in the data set, the number of CRMs where the average CC was
above 0.65 (‘‘#(CC.0.65)’’), and the average correlation coefficient under a 10-
fold cross-validation scheme (‘‘CVCC’’). Also shown are evaluation results for
negative controls (‘‘Neg Ctrl’’) corresponding to the ‘‘No Coop’’ model and the
‘‘Bcd&Kni Coop’’ model. A negative control involved re-training a model with
randomly permuted PWMs; shown are the average and standard deviation (of
each evaluation metric) over 25 independent replicates of such a control.
*Note that the CVCC values depend upon how the data set got partitioned in
the cross-validation exercise. The values in the last column are from one such
partition (same across all rows). The Hb Coop model shows lower CVCC than
the ‘‘No Coop’’ model in this partition. CVCC values from 6 additional partitions
are shown in Table S2, and the Hb Coop model performs better than the No
Coop model in five of those six cross-validation exercises.
doi:10.1371/journal.pcbi.1000935.t002
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activation due to multiplicative effect of activators may be over

and beyond that due to cooperative binding [26].

Short range repression as a mechanism of repressor
function

In all of the above tests, we had used a ‘‘Direct Interaction’’

model of repressor function, where a bound repressor is assumed

to interact directly with the BTM, destabilizing the configuration,

and thus curbing the roles of activator sites in the entire CRM.

GEMSTAT also allows us to deploy a more ‘‘localized’’ form of

repressor action, in the form of the short range repression (SRR)

model, where a bound repressor makes the neighboring chromatin

(within some range dR) inaccessible. Prior experimental work [20]

suggests that the four repressors in our data set – Kr, Hb, Kni, and

Gt – act over short distances (,100–150 bp [14]), and in two of

these cases (Kr and Kni) repression depends on the histone

deacetylase dCtBP, which suggests a possible mechanistic basis for

the short range action [20]. In our tests, we sought to examine if

the SRR model implemented in GEMSTAT is realistic enough to

capture the repressors’ contributions to expression patterns.

Starting with a baseline where every repressor was modeled by

‘‘Direct Interaction’’, we introduced the SRR model for one

repressor at a time (with dR = 250bp), and compared the resulting

model with the baseline. Although none of the four resulting

models (Kr-, Hb-, Kni-, Gt-SRR) showed clear improvement over

the baseline, we found strong evidence that for Kr and Hb, the

SRR model implemented by GEMSTAT was able to capture

the repressive effects of the factors almost to the same extent as

the Direct Interaction model, as described next. We first extended

our evaluation metric, the average CC, in the following way: we

considered the best K CRMs for a model (in terms of CC), and

plotted the average CC over these K CRMs, for all values of K (1

… 37). We found the Kr-SRR model to be highly similar (in terms

of average CC) to the baseline model throughout the range

(Figure 4A). Additionally, for each model and each value of K, we

plotted the average CC of the same model under a Kr ‘‘knock

down’’ condition, i.e., where the Kr concentration was set to 0

across the A/P axis. Such a ‘‘knock down’’ plot allows us to

visualize the contribution of a TF (Kr in this case) to the model. We

found Kr to contribute significantly to both models, although the

contribution to the SRR model was not as strong as to the

DirectInt model. This may reflect certain limitations of the SRR

implementation in GEMSTAT, but the results strongly suggest

that the short range nature of Kr action [20] is largely captured by

our model. We also examined the performance differences

between the models on individual CRMs. We found seven CRMs

where the SRR model was as effective as or better than the Direct

Interaction model in predicting readout, with a significant

contribution from Kr (Figure S7). In five other cases, the Direct

Interaction model yielded superior fits (plots not shown). Similar

evidence for the effectiveness of the Hb-SRR model is shown in

Figures 4B and Figure S8. However, the Gt-SRR model does not

seem to elicit significant contribution from Gt, even though this

repressor is found to be effective within the DirectInt model

(Figure S6A). A similar lack of evidence was encountered for the

Kni-SRR model (Figure S6B).

Figure 2. Effect of cooperative DNA-binding of TFs and the mode of transcriptional activation (multiplicative or not) on model
performance. (A,B) Predicted expression profiles of a DirectInt model with no cooperativity (‘‘no-coop’’, blue) and a model with self-cooperative
binding for Bcd and Kni (‘‘coop’’, green) are shown for each CRM, with reference to the CRM’s known readout (‘‘Obs.’’, red). The correlation coefficient
between a model’s prediction and the known readout is indicated in the top right corner of the panel. Each expression profile is on a scale of 0 to 1
(scaling does not affect correlation coefficient), and shown for bins 20 to 80 (i.e., 20% to 80% egg length) of the embryo. Shown are two CRMs for
which one model was deemed better than the other (CC$0.65, difference in CC$0.05). (C,D) Predicted expression profiles of a DirectInt model with
multiplicative activation (‘‘synergy’’, green) and one with additive activation (‘‘no-synergy’’, blue). Shown are two CRMs where the multiplicative
model is better than the additive model (CC$0.65, difference in CC$0.05). Self-cooperative DNA-binding was not used in this evaluation.
doi:10.1371/journal.pcbi.1000935.g002
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Thus, we find that for Kr and Hb, quenching of activator sites within

a distance is sufficient to capture the repressive effect of the TFs,

supporting the hypothesis that these two TFs act mainly as short-range

repressors, confirming what has been reported in earlier studies, which

admittedly relied on a small number of CRMs and synthetic

enhancers. On the other hand, we did not find strong evidence of

short-range repression for Gt and Kni, and even for Kr and Hb the SRR

model’s performance was only as good as and not better than the

DirectInt model. This is somewhat unexpected; it may be in part due

to limitations of our SRR model, but may also be hinting that these

TFs use long-range repression mechanisms as well (see Discussion).

Competitive binding is insufficient as a mechanistic
explanation of repressor action

Repression by competitive binding, as proposed in the literature

[7,29], involves the binding of repressors to sites overlapping

activator sites, thereby suppressing their occupancy by activators.

This mechanism may be thought of as a special case of the SRR

model in GEMSTAT, with the repression range parameter (dR) set

to ,10 bp. At such a small value of dR, a repressor can only make

its immediate neighborhood inaccessible, equivalent to inactiva-

tion of overlapping activator sites. Having observed above that the

Kr and Hb repressors are effectively modeled in the SRR mode, we

compared the Kr-SRR and Hb-SRR models at dR = 250 to their

respective versions at dR = 10. As shown in Figure 4 (C,D), in both

cases the competitive binding model (dR = 10) was significantly

worse than the SRR model, both in terms of average CC and in

terms of the repressor’s contribution.

Evidence for functional contribution of lineage-specific
sites

Finally, we sought to use the GEMSTAT program to probe an

important question regarding the function and evolution of

Figure 3. Model predictions. The predicted expression profile of the DirectInt model (with Bcd and Kni self-cooperativity) is shown (blue) in
comparison to the known readout (red), for all CRMs in the data set. Each expression profile is on a scale of 0 to 1 (y-axis), and shown for bins 20 (left)
to 80 (right) of the embryo. Labels in green indicate CRMs where the CC is greater than 0.65.
doi:10.1371/journal.pcbi.1000935.g003

Table 3. Effect of transcriptional synergy on model
performance.

Synergy Cooperativity Avg. CC CVCC (STDEV)

N N 0.516 0.295 (0.02)

Y N 0.547 0.400 (0.02)

N Y 0.558 0.292 (0.02)

Y Y 0.581 0.396 (0.03)

A DirectInt model with or without transcriptional synergy (‘‘Synergy = N(o)’’
versus ‘‘Synergy = Y(es)’’) was evaluated by the average correlation coefficient
(‘‘Avg. CC’’) on the 37 CRMs in the data set, as well as the average CC under 10-
fold cross validation (‘‘CVCC’’). ‘‘Synergy = No’’ is implemented by setting
NMA = 1 for the two activators (Bcd and Cad), while ‘‘Synergy = Yes’’ amounts to
setting NMA = ‘. The evaluation is done in the presence of Bcd and Cad self-
cooperative binding (‘‘Cooperativity = Y’’) as well as in the absence of any DNA-
binding cooperativity (‘‘Cooperativity = N’’).
doi:10.1371/journal.pcbi.1000935.t003

Regulatory Sequence Modeling

PLoS Computational Biology | www.ploscompbiol.org 10 September 2010 | Volume 6 | Issue 9 | e1000935



transcription factor binding sites. A number of recent studies have

reported the ‘‘turnover’’ (evolutionary gain and loss) of binding

sites, based on sequence comparison [30,31,47] or from ChIP-

based experiments [48]. However, it is possible that such lineage-

specific loss and gain are largely limited to non-functional sites, i.e.,

the false positive matches to PWMs, or sites that are bound by TFs

but do not regulate expression [33,49,50]. Here, we explored this

possibility by asking if sites that change in lineage-specific ways are

functional in contributing to the expression patterns. We note that

lineage-specific losses may in part be artifacts of alignment errors

(i.e., sites were completely conserved but not deemed so, due to

misalignment). However, in practice, the true gain/loss of sites

may be hard to distinguish from alignment errors, so we will call

both cases as lineage-specific changes here.

We predicted sites by demanding that any predicted site be

conserved (in the sense of being above threshold) in all species

analyzed, and examined how the quality of fit varies as this

evolutionary filter was made more stringent by including more

species. We found that more conservative evolutionary filters lead

to greatly reduced average CC (Figure 5, red). This shows that a

noticeable part of the CRMs’ functionality is carried by sites (in

D. melanogaster) that are not found to be conserved across all phyla.

Those sites could, broadly speaking (a) be deeply conserved in the

examined phylogeny, but with some lineage specific losses or (b)

have arisen specifically in D. melanogaster or a recent ancestor. Next,

we modified the evolutionary filter to demand deep (but not

necessarily complete) conservation across the phylogeny (see Text

S1) and found that above-mentioned loss in quality of fits

Figure 4. Evaluation of short range repression (SRR) model. (A,B) Two of the four repressors (Kr and Hb) are evaluated separately, by
comparing predictions from a model where one repressor is modeled through DirectInt (‘‘DI’’) to predictions from a model where that repressor acts
through SRR (‘‘Kr-SRR’’and ‘‘Hb-SRR’’, in panels A and B respectively). For each model, the average correlation coefficient (CC) of the K best predictions
(CRMs) of that model is shown, as a function of K. Also shown for each model is the average CC (over the same K CRMs) when the repressor is
‘‘knocked down’’ (e.g., ‘‘DI-Kr2’’, ‘‘Kr-SRR-Kr2’’ in panel A). (C,D) The SRR model for (C) Kr and (D) Hb (with range of repression dR = 250 bp) is compared
to the corresponding model at dR = 10 bp, where the repressor can only affect overlapping or adjacent sites. Semantics of the plots are as in (A–B).
doi:10.1371/journal.pcbi.1000935.g004

Figure 5. Effect of evolutionary filter on binding sites used in
model. The average CC over all 37 CRMs of the DirectInt model
(without cooperative DNA-binding) is shown. The x-axis indicates the
number of species in which conservation of a binding site was required
for it to be included in the model’s input. The red curve corresponds to
the case where the conservation filter does not allow turnover, i.e., the
sites used in the model must be fully conserved across all species
considered. The blue curve represents a conservation filter that allows
turnover, i.e., where a site may undergo lineage-specific changes. Thus
for ‘‘number of species’’ = 6, a site used in the model may be conserved
in six or fewer species, as long as the conservation is deemed significant
by the procedure described in Text S1.
doi:10.1371/journal.pcbi.1000935.g005
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disappears (Figure 5, blue, compare number of species = 2 vs. 6).

Since the new evolutionary filter discards sites of type (b)

mentioned above, we inferred that a noticeable part of the CRMs’

functionality is carried by sites that are largely conserved but also

undergo lineage-specific losses.

Discussion

One of the grand challenges in biology today is to understand

how the control of gene expression patterns is encoded in the

DNA. The common response to this challenge has been to identify

individual regulatory interactions (between transcription factors

and genes) that are necessary for the proper expression pattern,

and correlate or attribute such interactions to the presence of

binding sites near the gene. In order to determine if the knowledge

of regulatory interactions gathered in this way is accurate and

complete, we need a test of its predictive ability. In regulatory

systems such as those involved in metazoan development, where

regulatory output is a complex function of strong and weak

binding sites and varying levels of transcription factor presence,

such tests require a quantitative model that maps a regulatory

sequence to its expression readout, based on input information

about transcription factor levels in the cell. Failures of the model to

explain available data can guide us to missing pieces of the

regulatory system or potential flaws in our understanding of how

inputs relate to outputs. We have developed statistical thermody-

namics-based models of gene expression that can be valuable in

such an enquiry. We used these models to study a number of

mechanistic issues including the action of repressors, the combined

effect of multiple activators, and cooperative DNA-binding by

transcription factors, as well as the evolutionary dynamics of

binding sites. Our results provide novel insights as well as support

for existing hypotheses.

In contrast with earlier mechanistic enquiries [3,4,51–53],

which were based on experimental analysis of a small number of

genes or synthetic regulatory sequences, our analysis is based on a

large set of CRMs and expression patterns. In the future, this may

emerge as a new paradigm for mechanistic explorations of

transcriptional regulation (‘‘the regulatory code’’), especially with

the availability of higher resolution expression data. In addition to

finding evidence for specific mechanistic hypotheses, our approach

may be used to suggest specific experiments to test such

hypothesis. For example, once a CRM is found to have widely

different predictions under two alternative models, suitable

biochemical and/or genetic experiments may be designed to

demonstrate the underlying mechanism. Our model, being based

on general physicochemical principles and having flexible schemes

of modeling different aspects of transcription, has broad

applicability regardless of the specific regulatory system being

studied. For the same reason, if its application to a particular

system reveals disagreements with data, it can alert us to the

possibility of missing components or mechanisms. We make the

software used in training and testing our models freely available, in

the hope that this will facilitate its broader application to other

systems.

Findings and limitations
Three different mechanisms have been previously hypothesized

for repressor action: (i) competition with activators for access to

binding sites, (ii) direct interference with BTM recruitment and

assembly, and (iii) local interference (‘‘quenching’’) with the

function of nearby activator sites. The last hypothesis seems to

be most likely in the context of the regulatory system we analyze,

as suggested by the following observations: first, repressor and

activator sites are often found to be close to each other [19];

second, CRMs of the same gene often work independently, i.e., a

repressor site within one module does not stop the function of

another module for the same gene [54]; third, some repressors are

found to depend on a co-repressor, CtBP, a histone deacetylase

that presumably increases the association of nucleosomes to DNA,

making it less accessible [20]. However, direct evidence of this so-

called short-range repression (SRR) phenomenon is limited to a

few CRMs and synthetic enhancers [20]. We implemented models

that could investigate all three mechanisms with respect to their

agreement with data on a moderate number of CRMs. Note that

even though the short range mechanism has been implemented (in

other forms) previously [13,14], it has never been tested within a

framework that also implements alternative mechanisms. We

report the first direct data-based comparison between alternative

hypotheses regarding repression. Our results clearly exclude the

hypothesis of competitive binding being the main mechanism of

repression, and are consistent with the SRR hypothesis for two of

the four repressors studied (Kr and Hb). It is somewhat unexpected

that the SRR model does not explain the data as well as the

DirectInt model for Gt and Kni. We note that while Gt is believed

to be a short range repressor, Nibu et al. [20] leave open the

possibility of this protein having long range mechanisms of action

as well, in light of the fact that it does not require dCtBP to

mediate repression. Similarly, Kr has been found to have long

range mechanisms as well [21,55]. It is also likely that to some

extent the inability of the SRR model to match (for Gt and Kni) or

exceed (for Kr and Hb) the effectiveness of the DirectInt model

arises from shortcomings of our model and evaluation procedure.

Our model assumes that once a repressor molecule is bound, it will

make its entire neighborhood inaccessible, defined by a range

parameter. We would intuitively expect that the repression effect is

stronger for closer chromatin regions, and this is not modeled due

to our lack of understanding of the exact mechanism by which

repressors may change the chromatin structure. Similarly, we do

not know exactly how the effects of two repressor molecules are

combined in the regions that may be affected by both, and this

part is treated in a simplistic manner under our SRR model. The

dataset may also limit our ability to study detailed mechanisms: the

resolution of expression patterns is low and the dataset lacks

informative negative controls (all sequences are wild type CRMs).

Finally, our tests are likely to have been weakened by the fact that

models are compared on individual CRMs and not entire control

regions. It is generally assumed that the short range mode of

repressor action is necessary for the functional modularity of

CRMs. For example, Kr is a key input to the eve stripe 2 enhancer,

but it can adversely affect the expression readout of the adjacent

eve stripe 3 enhancer; this interference is avoided presumably

because of its short range of action [56,57]. Thus, the effect of

SRR is already manifested in the compactness of CRMs, and if it

were possible to compare SRR with the direct interaction model

on entire gene control regions, we would likely observe a clear

advantage to the former. Despite these limitations, the SRR model

along with a detailed activation model allows to ask questions that

cannot be addressed with simple non-mechanistic models of CRM

function.

Another important issue we explored is how multiple activator

sites contribute to expression. It is likely that this multiplicity is

important for the synergistic activation, where the total effect of

multiple sites is larger than the sum of their individual effects. That

such synergy is real and important has been shown through in vitro

experiments on the effect of the number of sites [51], as well as in

vivo experiments on the typically sharp boundaries of gap gene

expression domains [2]. Mechanistically, synergy may result either
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from cooperative DNA binding of multiple activator molecules or

from simultaneous interaction of multiple activators with the BTM

(Text S1) [26]. Our model implements both mechanisms, and is

thus able to examine the effect of each mechanism on readout,

both in the absence and in presence of the other mechanism. We

found that both mechanisms are involved in setting the precise

expression profile; the effect of transcriptional synergy is evident,

and complementary to that of cooperative binding. We have not

explored in this study some important details on how synergistic

interactions with BTM may occur, and these may worth further

investigation. For example, we did not make any distinction

between different activators. It is plausible that two different

activators may interact with BTM simultaneously, contacting

different subunits [52], while the two molecules of the same TF

may act in an additive fashion, contacting the same subunit. Other

possibilities remain to be explored with regard to cooperative

DNA-binding as well. One possibility stems from our assumption

that only two adjacent bound molecules may interact with each

other. Although this assumption has been commonly made in

other studies dealing with cooperativity [6], it is based partly on

computational considerations and partly on our lack of under-

standing of the mechanistic details of interactions among TF

molecules. On the topic of mechanistic limitations of our models,

we note also that in equating gene expression to the fractional

occupancy by the BTM, we are ignoring the internal dynamics of

transcription initiation and elongation [58–60].

We found that for a number of CRMs, the model (mis-)predicts

expression outside the CRM’s primary expression domain(s). For

instance, the CRM ‘‘kni_(-5)’’ drives anterior expression only, but

the model additionally predicts modest expression in the central and

posterior regions of the embryo (Figure 3). We noted that kni_(-5)

has many binding sites for Cad, which is an activator present in the

posterior half of the embryo. Presumably, the model fails to find

strong evidence of appropriate repressive influence, and predicts

kni_(-5) to drive expression in the posterior regions, mediated by the

putative Cad sites. A similar observation was made with respect to

the CRM ‘‘eve_stripe5’’, which drives expression in the posterior

half (in a stripe between bins 60 and 70, see Figure 3). This CRM

harbors several high quality putative sites for Bcd, which is an

anterior activator, and this is presumably the reason why the model

predicts modest anterior expression as well. That such incongruous

predicted expression is often seen under multiple models suggests

that the errors may not be due to the specifics of the model that we

have been varying. Rather, it is possible that we are missing some

additional repression mechanism, e.g., from chromatin modifica-

tions, from unknown repressor sites, or mischaracterization of

binding affinity. A relevant fact worth noting here is that there is

some ambiguity about the appropriate binding profile to use for the

important repressor Gt. In the current study, we used the profile

estimated from in vitro Bacterial-one-hybrid (B1H) experiments

[44], which happens to be quite different from the profile estimated

from verified Gt binding sites in DNA footprinting experiments

[45]. However, because relatively few sites were verified, the

footprinting-based Gt profile is too un-specific to be used for

prediction of new sites. We observed that the total number of Gt

sites in all CRMs is considerably smaller than most other factors.

This may have led to underestimation of the repressive influence of

Gt, and a consequent lack of repression (as per the model’s

predictions) in the region where Gt is expressed.

An important area of future improvements to our approach will

be the quality and amount of data. The spatial expression profiles

used here were obtained from manual parsing of stained (in situ

hybridization) images, and are essentially qualitative. This is one of

the reasons why our evaluations were based on correlation

between expression patterns rather than more absolute measures

of prediction accuracy. More accurate quantifications that are

under way [61] should lead to improved analysis. Our approach

assumes that the expression profiles of TFs and CRMs were

synchronized (from the same developmental time), although this is

not entirely true: the temporal resolution of the data set is not high

enough to ensure such synchronization, and this is another

direction where future, higher resolution data sets will be needed.

Moreover, since we do not have data characterizing the dynamic

state of chromatin (nucleosome distributions and their chemical

modifications), we did not explicitly model the changes of

chromatin structure that may be induced by TF association. With

more high-quality expression data and ideally more epigenetic

data as well, it should be possible to extend our models with

additional details and to incorporate theoretical models of

chromatin structure [62,63].

Broader applications
The models presented here are intended to be usable in a variety

of regulatory systems in different species. It is true however that a

regulatory system would need to be very well understood at a

qualitative level and characterized by quantitative measurements at

multiple levels, before we can apply such models. We would need

the following information to train the models: (1) the expression

readouts of a set of promoters or CRMs, (2) a reasonably complete

set of TFs involved in the regulatory network, (3) quantification of

their concentration profiles, and (4) their binding specificities. At this

time, such a data set is often not available, making it difficult to

evaluate the generalizability of the models.

A promising application of the proposed quantitative models lies

in the prediction and characterization of novel CRMs. Once a

sequence-expression model is trained, it may be applied genome-

wide to predict segments that have the potential to direct the

expression patterns of neighboring genes. The model may also be

used to predict the effect of individual transcription factor

perturbations, leading us to individual TF-CRM interactions.

This paradigm requires quantitative measurements of TF levels, a

requirement that may be mitigated to some extent by using

mRNA levels of TF genes, but ideally by direct protein level

measurements. Recent developments in proteomics and in high-

throughput assays of post-translational modifications offer great

hope in providing the necessary TF activity data [64].

The models offer new ways to approach the study of regulatory

sequence evolution. Transcription factor binding sites have been

reported to undergo frequent loss and gain, but it is not clear what

the functional consequences of these changes are. We saw an

example of how the functional context provided by the model may

be combined with cross-species sequence comparison to provide

new insights into binding site turnover. In general, sequence-

expression models allow us to predict the changes in expression

pattern that result from any evolutionary change at the sequence

level. This interpretative power may be harnessed to investigate

how regulatory sequences evolve under different schemes of

selection, and begin to answer questions such as ‘‘With gene

expression under purifying selection, how tolerant is a sequence to

the gain and loss of binding sites?’’ or ‘‘How feasible is it to evolve

a novel expression pattern using only simple nucleotide level

changes, i.e., substitutions, insertions and deletions?’’ [65].

Quantitative models have a natural relevance in the field of

synthetic biology. In order to design gene networks with a well-

defined input/output characterization, we need the ability to

engineer gene promoters or enhancers that direct specific

expression patterns (outputs) in response to the specific levels of

the regulators (inputs). This ability in turn requires a tool to predict
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the expression pattern corresponding to any given sequence.

Moreover, to search in a very large sequence space, an efficient

sequence-to-expression mapping will be crucial. This will be a

place where our dynamic programming-based algorithms make a

large difference.

In the long run, we expect quantitative models to be able to

consider for example the entire intergenic region next to a gene

(and not only individual CRMs) and predict the gene’s spatial-

temporal expression pattern. The GEMSTAT models are an

important preliminary step towards this grand goal.

Supporting Information

Figure S1 Comparison of two models of synergistic activation.

(A) Cooperative Binding model: cooperative interactions between

adjacent bound TF molecules, the transcriptional effects (interac-

tion with BTM) of multiple TF molecules are additive. (B)

Multiplicative Activation model: the transcriptional effects of

multiple TF molecules are multiplicative, no cooperative interac-

tions between adjacent bound TF molecules. The x-axis is the

weight of a single site, q (thus q = 1 corresponds to occupancy of a

single site 1/2), which is proportional to the concentration of the

transcriptional activator, A. Note the two models predict the same

expression for any given [A] at n = 1, but the relative level at larger

n is different under the two models.

Found at: doi:10.1371/journal.pcbi.1000935.s001 (0.09 MB PDF)

Figure S2 Predicted expression profiles of a DirectInt model

with no cooperativity (‘‘no-coop’’, blue) and a model with self-

cooperative binding for Bcd and Kni (‘‘coop’’, green) are shown

for each CRM, with reference to the CRM’s known readout

(‘‘Obs.’’, red). The correlation coefficient between a model’s

prediction and the known readout is indicated in the top right

corner of the panel. Each expression profile is on a scale of 0 to 1

(scaling does not affect correlation coefficient), and shown for bins

20 to 80 (i.e., 80% e.l. to 20% egg length) of the embryo. The

CRM’s name is color coded to indicate the better model (green for

‘‘coop’’, and blue for ‘‘no-coop’’), i.e., CC.0.65, difference in

CC.0.05. All 37 CRMs in the data set are shown here.

Found at: doi:10.1371/journal.pcbi.1000935.s002 (0.10 MB PDF)

Figure S3 Comparison with Segal et al [5]. The predictions of

the DirectInt-Coop model (with homotypic cooperative interac-

tions of Bcd and Kni), using CRMs, factor concentration profiles,

and motifs from Segal et al., are shown in blue, along with

observed expression patterns (red); as well as predicted expression

patterns from Segal et al. (green). The average CC over all 44

CRMs was 0.591 under the DirectInt-Coop model and 0.579

under the Segal model. However, this is not a rigorous comparison

of the two models, for multiple reasons: (1) the motifs used by both

models were obtained by Segal et al. so as to optimize the

performance of their model; we used those motifs without further

tuning, and (2) our optimization used average CC (the measure of

evaluation) as the objective function, while the Segal model was

optimized for sum of squared errors.

Found at: doi:10.1371/journal.pcbi.1000935.s003 (0.17 MB PDF)

Figure S4 Effect of transcriptional synergy (multiplicative effect

of multiple activator molecules) on model performance in the

absence of cooperative DNA binding of TFs. Semantics of

the plots are as in Figure 2, with the only difference being that

the models being compared here are one with transcriptional

synergy (‘‘synergy’’, green) and one without (‘‘nosynergy’’, blue).

Shown are all CRMs where the multiplicative model is better than

or worse than the additive model (CC.0.65, difference in

CC.0.05). As in Figure 2, CRM labels are color coded to

indicate the better model. Evaluations are for a DirectInt model in

the absence of self-cooperative DNA binding.

Found at: doi:10.1371/journal.pcbi.1000935.s004 (0.06 MB PDF)

Figure S5 Effect of transcriptional synergy (multiplicative effect

of multiple activators) on model performance in the presence of

cooperative DNA binding of TFs. This is similar to Figure S4,

except that evaluations are for a DirectInt model with Bcd and

Cad self-cooperative DNA-binding.

Found at: doi:10.1371/journal.pcbi.1000935.s005 (0.05 MB PDF)

Figure S6 Evaluation of short-range repression model. These

are the same results for Gt and Kni, as in Figure 4AB.

Found at: doi:10.1371/journal.pcbi.1000935.s006 (0.08 MB PDF)

Figure S7 Predicted expression profile of the Kr-SRR model

(green) is compared to that of the DirectInt model (DI, blue), with

reference to the known expression readout (red). Also shown is the

predicted profile of the Kr-SRR-Kr- model (green dashed line),

where Kr has been knocked down to reveal the contribution that

Kr-driven repression makes to the profile of the Kr-SRR model.

Shown are all of the CRMs where the Kr-SRR model had

CC.0.65, a CC improvement of more than 0.05 over the

corresponding ‘‘knock down’’ model (Kr-SRR-Kr-) and was either

better than or roughly as accurate (difference in CC,0.05) as the

DirectInt model.

Found at: doi:10.1371/journal.pcbi.1000935.s007 (0.05 MB PDF)

Figure S8 Predicted expression profile of the Hb-SRR model

(green) is compared to that of the DirectInt model (DI, blue), with

reference to the known expression readout (red). Also shown is the

predicted profile of the Hb-SRR-Hb- model (green dashed line),

where Hb has been knocked down to reveal the contribution that

Hb-driven repression makes to the profile of the Hb-SRR model.

Shown are all of the CRMs where the Hb-SRR model had

CC.0.65, a CC improvement of more than 0.05 over the

corresponding ‘‘knock down’’ model (Hb-SRR-Hb-) and was

either better than or roughly as accurate (difference in CC,0.05)

as the DirectInt model.

Found at: doi:10.1371/journal.pcbi.1000935.s008 (0.03 MB PDF)

Table S1 Model parameters.

Found at: doi:10.1371/journal.pcbi.1000935.s009 (0.03 MB

DOC)

Table S2 Comparison of models with or without cooperative

DNA binding by TFs.

Found at: doi:10.1371/journal.pcbi.1000935.s010 (0.04 MB

DOC)

Table S3 Comparison of models with or without synergistic

transcriptional activation.

Found at: doi:10.1371/journal.pcbi.1000935.s011 (0.03 MB

DOC)

Text S1 Additional results and details of the methods.

Found at: doi:10.1371/journal.pcbi.1000935.s012 (0.19 MB PDF)
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