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Abstract

Contemporary theory of spiking neuronal networks is based on the linear response of the integrate-and-fire neuron model
derived in the diffusion limit. We find that for non-zero synaptic weights, the response to transient inputs differs
qualitatively from this approximation. The response is instantaneous rather than exhibiting low-pass characteristics, non-
linearly dependent on the input amplitude, asymmetric for excitation and inhibition, and is promoted by a characteristic
level of synaptic background noise. We show that at threshold the probability density of the potential drops to zero within
the range of one synaptic weight and explain how this shapes the response. The novel mechanism is exhibited on the
network level and is a generic property of pulse-coupled networks of threshold units.
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Introduction

Understanding the dynamics of single neurons, recurrent

networks of neurons, and spike-timing dependent synaptic plasticity

requires the quantification of how a single neuron transfers synaptic

input into outgoing spiking activity. If the incoming activity has a

slowly varying or constant rate, the membrane potential distribution

of the neuron is quasi stationary and its steady state properties

characterize how the input is mapped to the output rate. For fast

transients in the input, time-dependent neural dynamics gains

importance. The integrate-and-fire neuron model [1] can efficiently

be simulated [2,3] and well approximates the properties of

mammalian neurons [4–6] and more detailed models [7]. It

captures the gross features of neural dynamics: The membrane

potential is driven by synaptic impulses, each of which causes a small

deflection that in the absence of further input relaxes back to a

resting level. If the potential reaches a threshold, the neuron emits

an action potential and the membrane potential is reset, mimicking

the after-hyperpolarization.

The analytical treatment of the threshold process is hampered

by the pulsed nature of the input. A frequently applied

approximation treats synaptic inputs in the diffusion limit, in

which postsynaptic potentials are vanishingly small while their rate

of arrival is high. In this limit, the summed input can be replaced

by a Gaussian white noise current, which enables the application

of Fokker-Planck theory [8,9]. For this approximation the

stationary membrane potential distribution and the firing rate

are known exactly [8,10,11]. The important effect of synaptic

filtering has been studied in this limit as well; modelling synaptic

currents as low-pass filtered Gaussian white noise with non-

vanishing temporal correlations [12–15]. Again, these results are

strictly valid only if the synaptic amplitudes tend to zero and their

rate of arrival goes to infinity. For finite incoming synaptic events

which are excitatory only, the steady state solution can still be

obtained analytically [16,17] and also the transient solution can

efficiently be obtained by numerical solution of a population

equation [18]. A different approach takes into account non-zero

synaptic amplitudes to first calculate the free membrane potential

distribution and then obtain the firing rate by solving the first

passage time problem numerically [19]. This approach may be

extendable to conductance based synapses [20]. Exact results for

the steady state have so far only been presented for the case of

exponentially distributed synaptic amplitudes [21].

The spike threshold renders the model an extremely non-linear

unit. However, if the synaptic input signal under consideration is

small compared to the total synaptic barrage, a linear approx-

imation captures the main characteristics of the evoked response.

In this scenario all remaining inputs to the neuron are treated as

background noise (see Figure 1A). Calculations of the linear

response kernel in the diffusion limit suggested that the integrate-

and-fire model acts as a low-pass filter [22]. Here spectrum and

amplitude of the synaptic background input are decisive for the

transient properties of the integrate-and-fire model: in contrast to

white noise, low-pass filtered synaptic noise leads to a fast response

in the conserved linear term [12]. Linear response theory predicts

an optimal level of noise that promotes the response [23]. In the

framework of spike-response models, an immediate response

depending on the temporal derivative of the postsynaptic potential
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has been demonstrated in the regime of low background noise

[24]. The maximization of the input-output correlation at a finite

amplitude of additional noise is called stochastic resonance and

has been found experimentally in mechanoreceptors of crayfish

[25], in the cercal sensory system of crickets [26], and in human

muscle spindles [27]. The relevance and diversity of stochastic

resonance in neurobiology was recently highlighted in a review

article [28].

Linear response theory enables the characterization of the

recurrent dynamics in random networks by a phase diagram

[22,29]. It also yields approximations for the transmission of

correlated activity by pairs of neurons in feed-forward networks

[30,31]. Furthermore, spike-timing dependent synaptic plasticity is

sensitive to correlations between the incoming synaptic spike train

and the firing of the neuron (see Figure 1), captured up to first

order by the linear response kernel [32–38]. For neuron models

with non-linear membrane potential dynamics, the linear response

properties [39,40] and the time-dependent dynamics can be

obtained numerically [41]. Afferent synchronized activity, as it

occurs e.g. in primary sensory cortex [42], easily drives a neuron

beyond the range of validity of the linear response. In order to

understand transmission of correlated activity, the response of a

neuron to fast transients with a multiple of a single synaptic

amplitude [43] hence needs to be quantified.

In simulations of neuron models with realistic amplitudes for the

postsynaptic potentials, we observed a systematic deviation of the

output spike rate and the membrane potential distribution from

the predictions by the Fokker-Planck theory modeling synaptic

currents by Gaussian white noise. We excluded any artifacts of the

numerics by employing a dedicated high accuracy integration

algorithm [44,45]. The novel theory developed here explains these

observations and lead us to the discovery of a new early

component in the response of the neuron model which linear

response theory fails to predict. In order to quantify our

observations, we extend the existing Fokker-Planck theory [46]

and hereby obtain the mean time at which the membrane

potential first reaches the threshold; the mean first-passage time.

The advantage of the Fokker-Planck approach over alternative

techniques has been demonstrated [47]. For non-Gaussian noise,

however, the treatment of appropriate boundary conditions for the

membrane potential distribution is of utmost importance [48]. In

the results section we develop the Fokker-Planck formalism to treat

an absorbing boundary (the spiking threshold) in the presence of

non-zero jumps (postsynaptic potentials). For the special case of

simulated systems propagated in time steps, an analog theory has

recently been published by the same authors [49], which allows to

assess artifacts introduced by time-discretization.

Our theory applied to the integrate-and-fire model with small

but finite synaptic amplitudes [1], introduced in section ‘‘The

leaky integrate-and-fire model’’, quantitatively explains the

deviations of the classical theory for Gaussian white noise input.

After reviewing the diffusion approximation of a general first order

stochastic differential equation we derive a novel boundary

condition in section ‘‘Diffusion with finite increments and

absorbing boundary’’. We then demonstrate in section ‘‘Applica-

tion to the leaky integrate-and-fire neuron’’ how the steady state

properties of the model are influenced: the density just below

threshold is increased and the firing rate is reduced, correcting the

preexisting mean first-passage time solution [10] for the case of

finite jumps. Turning to the dynamic properties, in section

‘‘Response to fast transients’’ we investigate the consequences for

transient responses of the firing rate to a synaptic impulse. We find

an instantaneous, non-linear response that is not captured by

linear perturbation theory in the diffusion limit and that displays

marked stochastic resonance. On the network level, we demon-

strate in section ‘‘Dominance of the non-linear component on the

network level’’ that the non-linear fast response becomes the most

important component in case of feed-forward inhibition. In the

discussion we consider the limitations of our approach, mention

possible extensions and speculate about implications for neural

processing and learning.

Model

The leaky integrate-and-fire model
Consider a leaky integrate-and-fire model [1] with membrane

time constant t and resistance R receiving excitatory and

Figure 1. Firing rate response n((t)) to a synaptic input. A The
neuron receives excitatory and inhibitory background events (gray
spikes) from many synapses. We focus on one such incoming synapse
that carries a synaptic impulse at t0 (black spike). B The firing rate of the
neuron triggered on this event shows a deflection (black solid curve)
from the base rate n0 . If the synaptic efficacy obeys a spike-timing
dependent learning rule, the synaptic weight changes by Ds according
to the relative timing of the presynaptic spike and the action potentials
emitted by the neuron (gray dotted curve indicates typical depen-
dence). The time-averaged change in synaptic weight depends on the
integrated pointwise product of both curves. Their relative position
depends on the axonal and dendritic delays involved (neglected for
simplicity in this schematic).
doi:10.1371/journal.pcbi.1000929.g001

Author Summary

Our work demonstrates a fast-firing response of nerve cells
that remained unconsidered in network analysis, because
it is inaccessible by the otherwise successful linear
response theory. For the sake of analytic tractability, this
theory assumes infinitesimally weak synaptic coupling.
However, realistic synaptic impulses cause a measurable
deflection of the membrane potential. Here we quantify
the effect of this pulse-coupling on the firing rate and the
membrane-potential distribution. We demonstrate how
the postsynaptic potentials give rise to a fast, non-linear
rate transient present for excitatory, but not for inhibitory,
inputs. It is particularly pronounced in the presence of a
characteristic level of synaptic background noise. We show
that feed-forward inhibition enhances the fast response on
the network level. This enables a mode of information
processing based on short-lived activity transients. More-
over, the non-linear neural response appears on a time
scale that critically interacts with spike-timing dependent
synaptic plasticity rules. Our results are derived for
biologically realistic synaptic amplitudes, but also extend
earlier work based on Gaussian white noise. The novel
theoretical framework is generically applicable to any
threshold unit governed by a stochastic differential
equation driven by finite jumps. Therefore, our results
are relevant for a wide range of biological, physical, and
technical systems.

Instantaneous Non-Linear Neural Processing
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inhibitory synaptic inputs, as they occur in balanced neural

networks [50]. We aim to obtain the mean firing rate n0 and the

steady state membrane potential distribution p(V ). The input

current I(t) is modeled by point events tk [ fincoming spikesg,
drawn from homogeneous Poisson processes with rates ne and

ni, respectively. The membrane potential is governed by the

differential equation t
dV

dt
(t)~{V (t)zRI(t). An excitatory spike

causes a jump of the membrane potential by Jk~w, an inhibitory

spike by Jk~{gw, so RI(t)~t
P

Jkd(t{tk)zRI0, where I0 is a

constant background current. Whenever V reaches the threshold

Vh, the neuron emits a spike and the membrane potential is reset

to Vr, where it remains clamped for the absolute refractory time

tr. The approach we take is to modify the existing Fokker-Planck

theory in order to capture the major effects of the finite jumps. To

this end, we derive a novel boundary condition at the firing

threshold for the steady state membrane potential distribution of

the neuron. We then solve the Fokker-Planck equation obtained

from the standard diffusion approximation [8,10,11,22,23] given

this new condition.

Results

Diffusion with finite increments and absorbing boundary
The membrane potential of the model neuron follows a first

order stochastic differential equation. Therefore, in this section we

consider a general first order stochastic differential equation driven

by point events. In order to distinguish the dimensionless

quantities in this section from their counterparts in the leaky

integrate-and-fire model, we denote the rates of the two incoming

Poisson processes by nz (excitation) and n{ (inhibition). Each

incoming event causes a finite jump Jk~Jzw0 (the excitatory

synaptic weight) for an increasing event and Jk~J{v0 (the

inhibitory synaptic weight) for a decreasing event. The stochastic

differential equation takes the form

_yy~f (y)z
X

k

Jkd(t{tk), ð1Þ

where f (y) captures the deterministic time evolution of the system

(with f (y)!{y for the leaky integrate-and-fire neuron). We

follow the notation in [46] and employ the Kramers-Moyal

expansion with the infinitesimal moments An(x, t)~ limh?0
1

h
S(y(tzh){y(t))nDy(t)~xT n [N. The first and second infinites-

imal moment evaluate to A1(x)~f (x)zm and A2~s2, where we

introduced the shorthand m ~
def

JznzzJ{n{ and s2 ~
def

J2
znzz

J2
{n{. The time evolution of the probability density p(x, t) is then

governed by the Kramers-Moyal expansion, which we truncate

after the second term to obtain the Fokker-Planck equation

L
Lt

p(x, t)~{
L
Lx

A1(x){
1

2

L
Lx

A2

� �
p(x, t)

~{
L
Lx

Sp(x, t),

ð2Þ

where S~f (x)zm{
s2

2

L
Lx

denotes the probability flux operator.

In the presence of an absorbing boundary at h, we need to

determine the resulting boundary condition for the stationary

solution of (2). Without loss of generality, we assume the absorbing

boundary at h to be the right end of the domain. A stationary

solution exists, if the probability flux exiting at the absorbing

boundary is reinserted into the system. For the example of an

integrate-and-fire neuron, reinsertion takes place due to resetting

the neuron to the same potential after each threshold crossing. This

implies a constant flux w through the system between the point of

insertion x0 and threshold h. Rescaling the density by this flux as

q(x)~w{1p(x) results in the stationary Focker-Planck equation,

which is a linear inhomogeneous differential equation of first order

Sq(x)~1x0ƒxƒh

f (x)zm{
s2

2

L
Lx

� �
q(x)~1x0ƒxƒh ,

ð3Þ

with 1C~f1 if C, 0 elseg.
First we consider the diffusion limit, in which the rate of

incoming events diverges, while the amplitude of jumps goes to

zero, such that mean m and fluctuations s remain constant. In this

limit, the Kramers-Moyal expansion truncated after the second

term becomes exact [51]. This route has been taken before by

several authors [8,22,23], here we review these results to

consistently present our extension of the theory. In the above

limit equation (3) needs to be solved with the boundary conditions

q({?)~0

q(h)~0:

Moreover, a finite probability flux demands the density to be a

continuous function, because of the derivative in the flux operator

S. In particular, the solution must be continuous at the point of

flux insertion x0 (however, the first derivative is non-continuous at

x0 due to the step function in the right hand side of (3)). Continuity

especially implies a vanishing density at threshold h. Once the

solution of (3) is found, the normalization condition 1~Ð h

{? p(x)dx determines the stationary flux w{1~
Ð h

{? q(x)dx.

Now we return to the problem of finite jumps. We proceed

along the same lines as in the diffusion limit, seeking the stationary

solution of the Fokker-Planck equation (2). We keep the boundary

conditions at {? and at x0 as well as the normalization condition

as before, but we need to find a new self-consistent condition at

threshold h, because the density does not necessarily have to

vanish if the rate of incoming jumps is finite. The main assumption

of our work is that the steady state solution satisfies the stationary

Fokker-Planck equation (3) based on the diffusion approximation

within the interval ½{?, h), but not necessarily at the absorbing

boundary h, where the solution might be non-continuous. To

obtain the boundary condition, we note that the flux over the

threshold has two contributions, the deterministic drift and the

positive stochastic jumps crossing the boundary

w~½f (h)�zp(h)znzPinst(Jz) ð4Þ

Pinst(s)~

ðh

h{s

p(x)dx, ð5Þ

with ½x�z~fx for xw0; 0 elseg. To evaluate the integral in (5),

for small Jz%h{SxT we expand q(x) into a Taylor series around

h. This is where our main assumption enters: we assume that the

stationary Fokker-Planck equation (3) for xvh is a sufficiently

accurate characterization of the jump diffusion process. We solve

this equation for q’(x)~{
2

A2

z
2A1(x)

A2

q(x) ~
def

c1zd1(x)q(x): It

Instantaneous Non-Linear Neural Processing
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is easy to see by induction, that the function and all its higher

derivatives q(n), n§0 can be written in the form q(n)(x)~cn(x)z
dn(x)q(x), whose coefficients for n§1 obey the recurrence relation

cnz1~c’nzc1dn dnz1~d ’nzd1dn, ð6Þ

with the additional values c0(h)~0 and d0(h)~1, as q(0)(x)~q(x)
denotes the function itself. Inserting the Taylor series into (5) and

performing the integration results in

Pinst(s)~w
X?
n~0

1

(nz1)!
(cnzdnq)Dh({s)nz1, ð7Þ

which is the probability mass moved across threshold by a

perturbation of size s and hence also quantifies the instantaneous

response of the system. After dividing (4) by w we solve for q(h) to

obtain the Dirichlet boundary condition

q(h)~

1znz

P?
n~0

1

(nz1)!
cn(h)({Jz)nz1

½f (h)�z{nz

P?
n~0

1

(nz1)!
dn(h)({Jz)nz1

: ð8Þ

If Jz is small compared to the length scale on which the probability

density function varies, the probability density near the threshold is

well approximated by a Taylor polynomial of low degree;

throughout this work, we truncate (7) and (12) at n~3. The

boundary condition (8) is consistent with q(h)~0 in the diffusion

limit, in which the rate of incoming jumps diverges, while their

amplitude goes to zero, such that the first (m) and second moment (s)

stay finite. This can be seen by scaling nz, n{!j, Jz, J{!1=
ffiffiffi
j
p

,

with j?? such that the mean m~nzJzzn{J{ is kept constant

[51]. Inserting this limit in (8), we find

lim
j??

q(h)~ lim
j??

1z
1

2
c1(h)nzJ2

z

½f (h)�zznzJz{nz

1

2
d1(h)J2

z

~0, ð9Þ

since c0~0, d0~1 and nzJn
z vanishes for nw2, nzJ2

z is bounded

and nzJz??.

The general solution of the stationary Fokker-Planck equation

(3) is a sum of a homogeneous solution qh that satisfies Sqh(x)~0
and a particular solution with Sqp(x)~1x0ƒxƒh. The homoge-

neous solution is qh(x)~ exp (
2

s2

ðx

0

f (u)zmdu), where we fixed

the integration constant by chosing qh(0)~1. The particular

solution can be obtained by variation of constants and we chose it

to vanish at the threshold h as qp(x)~
2

s2

ðh

x

qh(x{u)1x0ƒuƒh du.

The complete solution is a linear combination, where the prefactor

A~q(h)=qh(h) is determined by the boundary condition (8) in the

case of finite jumps, or by A~0 for Gaussian white noise

p(x)~w Aqh(x)zqp(x)
� �

with

w{1~

ðh

{?
Aqh(x)zqp(x)dx:

The normalization condition determines the as yet unknown

constant probability flux w through the system.

Application to the leaky integrate-and-fire neuron
We now apply the theory developed in the previous section to

the leaky integrate-and-fire neuron with finite postsynaptic

potentials. Due to synaptic impulses, the membrane potential

drifts towards m ~
def

tw(ne{gni) and fluctuates with the diffusion

constant s2 ~
def

tw2(nezg2ni). This suggests to choose the natural

units u~t=t for the time and y~(V{RI0{m)=s for the voltage

to obtain the simple expressions A1(y)~{y for the drift- and

A2~1 for the diffusion-term in the Fokker-Planck operator (2).

The probability flux operator (2) is then given as S~{y{
1

2

L
Ly

.

In the same units the stationary probability density scaled by the

flux reads q(y)~
s

tn0
p(V(y)) where tn0 is the flux w corresponding

to the firing rate in units of t. As q is already scaled by the flux,

application of the flux operator S yields unity between reset yr and

threshold yh and zero outside

Sq(y)~1yrƒyƒyh

{y{
1

2

L
Ly

� �
q(y)~1yrƒyƒyh

:
ð10Þ

The steady state solution of this stationary Fokker-Planck equation

q(y)~Aqh(y)zqp(y) ð11Þ

is a linear superposition of the homogeneous solution qh(y)~e{y2

and the particular solution qp(y)~2e{y2 Ð yh
max (yr ,y) eu2

du. The

latter is chosen to be continuous at yr and to vanish at yh. Using

the recurrence (6) for the coeffcients of the Taylor expansion of

the membrane potential density, we obtain fcn(y)g~f0, {2, 4y,

{8y2z8, . . .g and fdn(y)g~f1, {2y, 4y2{2, {8y3z12y,

. . .g, where n starts from 0. The first important result of this

section is the boundary value q(yh) of the density at the threshold

following from (8) as

q(yh)~

1ztne

P?
n~0

1

(nz1)!
cn(yh)({

w

s
)nz1

½{ Vh{RI0

s
�z{tne

P?
n~0

1

(nz1)!
dn(yh)({

w

s
)nz1

:

~
def

A(t,ne,ni,w,g,I0)e{yh

ð12Þ

The constant A in (11) follows from A~q(yh)=qh(yh). The second

result is the steady state firing rate n0 of the neuron. With n0tr

being the fraction of neurons which are currently refractory, we

obtain the rate from the normalization condition of the density

1~n0t
Ð yh
{? q(y)dyzn0tr as

1

n0
~t

ffiffiffi
p
p ðyh

yr

ey2
(erf(y)z1)dyz

A

2
(erf(yh)z1)

� �
ztr

with

yh,r~
Vh,r{RI0{m

s

A~A(t, ne, ni, w, �g, I0):

ð13Þ

The normalized steady state solution Figure 2A therefore has the

Instantaneous Non-Linear Neural Processing
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complete form

p(V )~
n0t

s
Ae{y2

z2e{y2
ðyh

max (yr ,y)

eu2
du

� �
: ð14Þ

Figure 2B,D shows the steady state solution near the threshold

obtained by direct simulation to agree much better with our

analytical approximation than with the theory for Gaussian white

noise input. Even for synaptic amplitudes (here w~0:1 mV) which

are considerably smaller than the noise fluctuations (here

s~5 mV), the effect is still well visible. The oscillatory deviations

with periodicity w close to reset Vr~0 observable in Figure 2A are

due to the higher occupation probability of voltages that are

integer multiples of a synaptic jump away from reset. The

modulation washes out due to coupling of adjacent voltages by the

deterministic drift as one moves away from reset. The oscillations

at lower frequencies apparent in Figure 2A are due to aliasing

caused by the finite bin width of the histogram (0:01 mV). The

synaptic weight is typically small compared to the length scale s on

which the probability density function varies. So the probability

density near the threshold is well approximated by a Taylor

polynomial of low degree; throughout this work, we truncate the

series in (12) at n~3. A comparison of this approximation to the

full solution is shown in Figure 2E. For small synaptic amplitudes

(w~0:1 mV shown), below threshold and outside the reset region

(Figure 2A,C) the approximation agrees with the simulation within

its fluctuation. At the threshold (Figure 2B,D) our analytical

solution assumes a finite value q(yh)w0 whereas the direct

simulation only drops to zero on a very short voltage scale on the

order of the synaptic amplitude. For larger synaptic weights

(w§0:2 mV, see Figure 2F), the density obtained from direct

simulation exhibits a modulation on the corresponding scale. The

reason is the rectifying nature of the absorbing boundary: A

positive fluctuation easily leads to a threshold crossing and

absorption of the state in contrast to negative fluctuations.

Effectively, this results in a net drift to lower voltages within the

width of the jump distribution caused by synaptic input, visible as

the depletion of density directly below the threshold and an

accumulation further away, as observed in Figure 2F. The second

term (proportional to A) appearing in (13) is a correction to the

well known firing rate equation of the integrate-and-fire model

driven by Gaussian white noise [10]. Figure 3 compares the firing

rate predicted by the new theory to direct simulation and to the

classical theory. The classical theory consistently overestimates the

firing rate, while our theory yields better accuracy. Our correction

resulting from the new boundary condition becomes visible at

moderate firing rates when the density slightly below threshold is

sufficiently high. At low mean firing rates, the truncation of the

Kramers-Moyal expansion employed in the Fokker-Planck

description may contribute comparably to the error. Our

approximation captures the dependence on the synaptic amplitude

correctly for synaptic amplitudes of up to wƒ0:2 mV (Figure 3B).

The insets in Figure 3C,D show the relative error of the firing rate

as a function of the noise amplitude. As expected, the error

increases with the ratio of the synaptic effect w compared to the

amplitude of the noise fluctuations s. For low noise s^2:5 mV,

our theory reduces the relative error by a factor of 2 compared to

the classical diffusion approximation.

Response to fast transients
We now proceed to obtain the response of the firing rate n to an

additional d-shaped input current
ts

R
d(t). Such a current can be

due to a single synaptic event or due to the synchronized arrival of

several synaptic pulses. In the latter case, the effective amplitude of

the summed inputs can easily exceed that of a single synapse. The

fast current transient
ts

R
d(t) causes a jump s of the membrane

potential at t~0 and (2) suggests to treat the incident as a time

dependent perturbation of the mean input m(t)~mzstd(t). First,

we are interested in the integral response Pr(s) ~
def Ð?

0
fs(t)dt of the

excess firing rate fs(t)~ns(t){n0. Since the perturbation has a flat

spectrum, up to linear order in s the spectrum of the excess rate is

f̂fs(z)~stH(z)zO(s2), where H(z) is the linear transfer function

with respect to perturbing m at Laplace frequency z. In particular,

Pr(s)~f̂fs(0). As H(0) is the DC susceptibility of the system, we

can express it up to linear order as H(0)~
Ln0

Lm
. Hence,

Pr(s)~

ð?
0

n(t){n0 dt~st
dn0

dm
zO(s2): ð15Þ

We also take into account the dependence of A on m to calculate

Figure 2. Finite synaptic potentials distort the stationary
membrane potential density p((V)). A Black thin curve: direct
s imulat ion. Par ameter s t~20 ms, Vh~15 mV, Vr~0, I0~0,
w~0:1 mV, g~4, tr~1 ms. Incoming spike rates ne~29800 Hz,
ni~5950 Hz (corresponding to m~12 mV and s~5 mV). Histogram
binned with DV~0:01 mV, entries connected by straight lines. Gray:
novel approximation p(V ) given by (14). B Magnification of A around
spike threshold, simulated data displayed as dots. Light gray: solution in
diffusion limit of [22]. C,D Density for supra-threshold current
RI0~20 mV and incoming rates ne~95050 Hz, ni~22262:5 Hz (corre-
sponding to m~12 mV and s~9:5 mV). Other parameters and gray
code as in A,B. E Approximation of the density by a cubic polynomial
near threshold. Solid light gray curve: analytical result p(V ) given by
(14), superimposed black thin curve: direct simulation. Dark gray solid
curve: cubic polynomial approximating the density around Vh using the
Taylor expansion (6). Parameters as in A. F Membrane potential
distribution near threshold for synaptic amplitudes w~0:05 mV (black),
w~0:1 mV (dark gray), w~0:2 mV (gray), w~0:5 mV (light gray).
Other parameters as in A.
doi:10.1371/journal.pcbi.1000929.g002
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dn0

dm
from (13) and obtain

dn0

dm
~{n2

0

t

s

ffiffiffi
p
p

ey2
r (1zerf(yr)){q(yh)

	

zerfc({yh)
q(yh){q(yh{

w

s
)

erf(yh){erf(yh{
w

s
)

0
B@

1
CA
1
CA :

ð16Þ

Figure 4D shows the integral response to be in good agreement

with the linear approximation. This expression is consistent with

the result in the diffusion limit w?0: Here the last term becomes

q(yh){q(yh{
w

s
)

erf(yh){erf(yh{
w

s
)
~

Lq

Ly
(yh)

2ffiffiffi
p
p e

{y2
h

~{
ffiffiffi
p
p

e
y2
h , where we used

Lq

Ly

(yh)~{2, following from (10) with q(yh)~0. This results in
dn0

dm
~n2

0

t

s

ffiffiffi
p
p

e
y2

h (1zerf(yh)){ey2
r (1zerf(yr))

	 

, which can

equivalently be obtained directly as the derivative of (13) with

respect to m setting A~0. Taking the limit w?0, however, does

not change significantly the integral response compared to the case

of finite synaptic amplitudes (Figure 4D, Figure 5A).

The instantaneous response of the firing rate to an impulse-like

perturbation can be quantified without further approximation.

The perturbation shifts the probability density by s so that neurons

with V [ ½Vh{s, Vh] immediately fire. This results in the finite

firing probability Pinst(s) of the single neuron within infinitesimal

time (5), which is zero for sv0. This instantaneous response has

several interesting properties: For small s it can be approximated

in terms of the value and the slope of the membrane potential

Figure 3. Correction of the firing rate. A Analytical firing rate
compared to simulation in dependence of the mean drive m. Black:
Analytical solution (13), light gray: firing rate in diffusion limit [10,29].
Inset shows relative error D~(ntheory{nsim)=nsim of theory compared to
direct simulation as percentage, black dots: error of analytical
expression (13), light gray dots: error of rate in diffusion limit.
Parameters t~20 ms, Vh~15:0 mV, Vr~0, w~0:25 mV, g~4,
tr~1 ms. ne (given on top abcissa) and ni chosen to realize the mean
input m as given by the bottom abscissa and fluctuations s~5 mV. B
Analytical firing rate compared to simulation depending on the size of
synaptic jumps w for fixed s~5 mV and m~½7, 9:5, 12, 14� mV (from
bottom to top). Light gray dashed line: firing rate in diffusion limit
[10,29], other gray code as in A. C Analytical firing rate compared to
simulation as a function of the fluctations s at fixed mean drive
m~12 mV. Same gray code and other parameters as in A. D Analytical
firing rate compared to simulation depending on the fluctation s at
fixed m~12 mV for smaller synaptic amplitude w~0:1 mV. Same gray
code and other parameters as in A.
doi:10.1371/journal.pcbi.1000929.g003

Figure 4. Firing rate response to a d-current perturbation. A

Black: response to an additionally injected current
st

R
d(t) causing a

voltage deflection of s~0:5 mV at t~0, gray: s~{0:5 mV. B

Magnification of A. Due to binning of the histogram with bin size

h~0:1 ms, the immediate response contributes to the time bin ({h, 0�
in the case of a positive perturbation only. Black crosses: analytical peak

responses
Pinst

h
(7) for positive and negative perturbations. C Medium

gray curve: instantaneous response Pinst (7) as a function of s for finite

weights w~0:1 mV. Black dots: direct simulation. Light gray curve:

diffusion limit of (7). Medium gray dots: direct simulation of diffusion

limit with temporal resolution 10{4 ms. D Gray curve: integral response

for finite weights (15). Black dots: direct simulation. Gray dots: direct

simulation for Gaussian white noise background input. Simulated data

averaged over 2:5:108 (s~0:1 mV) . . . 2:5:106 (s~1:0 mV) perturbation
events. Other parameters as in Figure 2A.
doi:10.1371/journal.pcbi.1000929.g004

Figure 5. Noise dependence of response to a d-current
perturbation. A Integrated response of the firing rate (15)of the
integrate-and-fire model as a function of synaptic background noise s.
The upper traces are the responses to a positive perturbation of
magnitude s~0:5 mV, the lower to a perturbation of s~{0:5 mV.
Black crosses: direct simulation with background noise of finite synaptic
weights w~0:1 mV. Black dots: direct simulation with Gaussian white
background noise. Mid gray thin solid curve: analytical result using (16).
Underlying thick light gray solid curve: analytical result for Gaussian
white noise. B Instantaneous response depending on synaptic
background noise s. The upper trace is the response to a positive
impulse of weight s~0:5 mV, the lower one to a negative of
s~{0:5 mV. Gray code as in A. Mid gray solid curve: analytical peak
response Pinst using (7) for noise of finite synaptic weights. Light gray
solid curve: analytical peak response Pinst for Gaussian white
background noise. Simulations averaged over N~1000 neurons for
T~100 s. Incoming spike rates ne, ni chosen to realize m~12 mV and s
on the abscissa for synaptic weights w~0:1 mV and g~4.
doi:10.1371/journal.pcbi.1000929.g005
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distribution below the threshold (using (7) for nƒ2), so it has a

linear and a quadratic contribution in s. Figure 4A shows a typical

response of the firing rate to a perturbation. The peak value for a

positive perturbation agrees well with the analytical approximation

(7) (Figure 4C). Even in the diffusion limit, replacing the

background input by Gaussian white noise, the instantaneous

response persists. Using the boundary condition q(yh)~0 our

theory is applicable to this case as well. Since the density just below

threshold is reduced, (5) yields a smaller instantaneous response

(Figure 4C, Figure 5B) which for positive s still exhibits a

quadratic, but no linear, dependence.

The increasing and convex dependence of the response

probability on the amplitude of the perturbation is a generic

feature of neurons with subthreshold mean input that also persists

in the case of finite synaptic rise time. In this regime, the

membrane potential distribution has a mono-modal shape

centered around the mean input, which is inherited from the

underlying superposition of a large number of small synaptic

impulses. The decay of the density towards the threshold is further

enhanced by the probability flux over the threshold: a positive

synaptic fluctuation easily leads to the emission of a spike and

therefore to the absorption of the state at the threshold, depleting

the density there. Consequently, the response probability Pinst(s)
of the neuron is increasing and convex as long as the peak

amplitude s of the postsynaptic potential is smaller than the

distance of the peak of the density to the threshold. It is increasing

and concave beyond this point. At present the integrate-and-fire

model is the simplest analytically tractable model with this feature.

The integral response (15) as well as the instantaneous response

(5) both exhibit stochastic resonance; an optimal level of synaptic

background noise s enhances the transient. Figure 5A shows this

noise level to be at about s~3 mV for the integral response. The

responses to positive and negative perturbations are symmetric

and the maximum is relatively broad. The instantaneous response

in Figure 5B displays a pronounced peak at a similar value of s.

This non-linear response only exists for positive perturbations; the

response is zero for negative ones. Though the amplitude is

reduced in the case of Gaussian white noise background, the

behavior is qualitatively the same as for noise with finite jumps.

Stochastic resonance has been reported for the linear response to

sinusoidal periodic stimulation [23]. Also for non-periodic signals

that are slow compared to the neuron’s dynamics an adiabatic

approximation reveals stochastic resonance [52]. In contrast to the

latter study, the rate transient observed in our work is the

instantaneous response to a fast (Dirac d) synaptic current.

Dominance of the non-linear component at the network
level

Due to the convex nature of the instantaneous response

(Figure 4C) its relative contribution to the integral response

increases with s. For realistic synaptic weights ƒ1 mV the

contribution reaches ^30 percent.

An example network in which the linear non-instantaneous

response cancels completely and the instantaneous response

becomes dominant is shown in Figure 6A. At t~0 two populations

of neurons simultaneously receive a perturbation of size s and {s

respectively. This activity may, for example, originate from a third

pool of synchronous excitatory and inhibitory neurons. It may thus

be interpreted as feed-forward inhibition. The linear contributions

to the pooled firing rate response of the former two populations

hence is zero. The instantaneous response, however, causes a very

brief overshoot at t~0 (Figure 6B). Figure 6C reveals that the

response returns to baseline within ^0:3 ms. Figure 6D shows

that the dependence of peak height Pnet(s)~
1

2
Pinst(s) on s still

exhibits the supra-linearity. The quite exact cancellation of the

response for tw0 originates from the symmetry of the response

functions for positive and negative perturbations in this interval

(shown in Figure 4A,B). The pooled firing rate of the network is

the sum of the full responses: the instantaneous response at t~0
does not share the symmetry and hence does not cancel. This

demonstrates that the result of linear perturbation theory is a good

approximation for tw0 and that the instantaneous response at the

single time point t~0 completes the characterization of the

neuronal response.

Discussion

In this work we investigate the effect of small, but non-zero

synaptic impulses on the steady state and response properties of the

integrate-and-fire neuron model. We obtain a more accurate

description of the firing rate and the membrane potential

distribution in the steady state than provided by the classical

approximation of Gaussian white noise input currents [10].

Technically this is achieved by a novel hybrid approach combining

a diffusive description of the membrane potential dynamics far

away from the spiking threshold with an explicit treatment of

threshold crossings by synaptic transients. This allows us to obtain a

boundary condition for the membrane potential density at

threshold that captures the observed elevation of density. Our

work demonstrates that in addition to synaptic filtering, the

granularity of the noise due to finite non-zero amplitudes does

affect the steady state and the transient response properties of the

neuron. Here, we study the effect of granularity using the example

of a simple neuron model with only one dynamic variable. The

quantitatively similar increase of the density close to threshold

observed if low-pass filtered Gaussian white noise is used as a model

for the synaptic current has a different origin. It is due to the

absence of a diffusion term in the dynamics of the membrane

potential [12,13,15]. The analytical treatment of finite synaptic

amplitudes further allows us to characterize the probability of spike

Figure 6. Dominance of non-linearity at the network level. A
Two identical populations of N~1000 neurons each, receive uncorre-
lated background input (light gray spikes). At t~0 the neurons
simultaneously receive an additional input of size s in the upper and {s
in the lower population (symbolized by black single spike). B Pooled
response of the populations normalized by the number of neurons.
Black cross: analytical instantaneous response Pnet(s). C Magnification of
B. D Pnet(s) (black dots: direct simulation, gray curve: analytical result) as
a function of s. Other parameters as in Figure 4A.
doi:10.1371/journal.pcbi.1000929.g006
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emission in response to synaptic inputs for neuron models with a

single dynamical variable and renewal. Alternatively, this response

can be obtained numerically from population descriptions [18,

39–41] or, for models with one or more dynamic variables and

gradually changing inputs, in the framework of the refractory

density approximation [15]. Here, we find that the response can be

decomposed into a fast, non-linear and a slow linear contribution,

as observed experimentally about a quarter of a century ago [53] in

motor neurons of cat cortex in the presence of background noise.

The existence of a fast contribution proportional to the temporal

change of the membrane potential was predicted theoretically [54].

In the framework of the refractory density approach [15], the

effective hazard function of an integrate-and-fire neuron also

exhibits contributions to spike emission due to two distinct causes:

the diffusive flow through the threshold and the movement of

density towards the threshold. The latter contribution is propor-

tional to the temporal change of the membrane potential and is

corresponding to the instantaneous response reported here, but for

the case of a gradually increasing membrane potential. Contem-

porary theory of recurrent networks so far has neglected the

transient non-linear component of the neural response, an

experimentally observed feature [53] that is generic to threshold

units in the presence of noise. The infinitely fast rise of the

postsynaptic potential in the integrate-and-fire model leads to the

immediate emission of a spike with finite probability. For excitatory

inputs, this probability depends supra-linearly on the amplitude of

the synaptic impulse and it is zero for inhibitory impulses. The

supra-linear increase for small positive impulse amplitudes relates

to the fact that the membrane potential density decreases towards

threshold: the probability to instantaneously emit a spike equals the

integral of the density shifted over the threshold. The detailed

shape of the density below threshold therefore determines the

response properties. For Gaussian white noise synaptic back-

ground, the model still displays an instantaneous response.

However, since in this case the density vanishes at threshold, the

response probability to lowest order grows quadratically in the

amplitude of a synaptic impulse. This is the reason why previous

work based on linear response theory did not report on the existence

of an instantaneous component when modulating the mean input

and on the contrary characterized the nerve cell as a low-pass in this

case [22,23]. Modulation of the noise amplitude, however, has been

shown to cause an instantaneous response in linear approximation

in the diffusion limit [23], confirmed experimentally in real neurons

[55]. While linear response theory has proven extremely useful to

understand recurrent neural networks [29], the categorization of the

integrate-and-fire neuron’s response kernel as a low-pass is

misleading, because it suggests the absence of an immediate

response. Furthermore we find that in addition to the nature of the

background noise, response properties also depend on its amplitude:

a certain level of noise optimally promotes the spiking response.

Hence noise facilitates the transmission of the input to the output of

the neuron. This is stochastic resonance in the general sense of the

term as recently suggested [28]. As noted in the introduction,

stochastic resonance of the linear response kernel has previously

been demonstrated for sinusoidal input currents and Gaussian white

background noise [23]. Furthermore, also slow aperiodic transients

are facilitated by stochastic resonance in the integrate-and-fire

neuron [52]. We extend the known results in two respects. Firstly,

we show that the linear response shows aperiodic stochastic

resonance also for fast transients. Secondly, we demonstrate that

the instantaneous non-linear response exhibits a qualitatively

similar, but even more pronounced dependence on noise intensity.

For realistically small synaptic amplitudes, the instantaneous non-

linear response is typically small compared to the linear contribu-

tion. However, this changes at the network level in the presence of

feed-forward inhibition: a synchronized pair of an excitatory and an

inhibitory pulse evokes spiking responses in two distinct neural

populations, whose linear contributions mutually cancel and only

the non-linear immediate contribution remains. Hence the

immediate response dominates even for small synaptic amplitudes.

The presented approximate analytical results are illustrated and

confirmed by direct simulation.

The instantaneous non-linear response is potentially a relevant

mechanism for processing of transient signals by neurons. In

auditory cortex, the irregular firing of neurons has been shown to be

driven by simultaneous coactivation of several of their synaptic

afferents [56]. The effective postsynaptic potential hence has the

amplitude of multiple single synapses, which easily drives the spiking

response into the supra-linear regime. The convex increase of firing

probability is of advantage to obtain output spikes closely locked to

the input. Furthermore, the non-linearity enables the neuron to

perform non-trivial computations on the inputs [57]. In particular

the memory capacity of networks in a categorization task can be

increased by non-linear elements [58]. The circuit presented in

section ‘‘Dominance of the non-linear component at the network

level’’ establishes a quadratic input-output relationship for fast

transient signals that may be useful for non-linear processing,

analogous to the non-linear f-I curve (spike frequency as a function

of input current) in the case of quasi-stationary rate-coded signals.

Our finding of an immediate non-linear response has an

implication on the intensely debated question how common input

affects the correlation of the spiking activity of pairs of neurons

[30,31,59]. The immediate response adds to the correlation at

zero time lag, because it increases the probability of both neurons

to simultaneously emit a spike. Due to the non-linearity of the

mechanism, the immediate firing probability easily becomes the

dominant contribution. Our theory yields a means to quantita-

tively assess this contribution to firing synchrony.

Synapses with spike timing dependent plasticity (STDP) [60] are

sensitive to the input-spike triggered firing rate of the neuron. The

fast response is relevant, because closely time-locked pre- and

postsynaptic activity most effectively changes the synaptic weight.

This is illustrated in Figure 1B. The direction of weight change

depends on whether the fast response falls on the potentiating or

the depotentiating part of the STDP curve, determined by the

difference between dendritic and axonal synaptic delay [33].

Assuming that the causal fast response strengthens the synapse

(Hebbian learning [61]), the supra-linearity combined with

multiplicative spike-timing-dependent learning rules may add

new fixed points for the synaptic weight and thus influence

pattern formation in recurrent networks [62]. Previous work

restricted the analysis of the interplay of neural dynamics and

synaptic plasticity in feed-forward [32–34] as well as in recurrent

networks [35–38] to the linear response of the neuron. Our

framework extends the scope of analytical investigations of

synaptic dynamics to the inherently non-linear response properties

of neurons. The pronounced stochastic resonance of the individual

neuron implies an optimal level of synaptic background noise that

supports cooperativity among afferent synapses and hence also the

sensitivity to correlations among them [34]. Measuring synaptic

plasticity in the presence of network activity might elucidate how

stochastic resonance influences cooperative synaptic learning.

Postsynaptic potentials exhibit a finite rise time, whereas the

membrane potential of the integrate-and-fire neuron model jumps

at each incoming synaptic event. Although this is a simplification,

the model reproduces experimental spike trains surprisingly well

[6]. For non-zero rise times, the instantaneous firing rate response

reported here is spread out in time over the rising flank of the
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postsynaptic potential and is proportional to the derivative of the

membrane potential [43,54]. The asymmetry for excitatory and

inhibitory synaptic events and the supralinear increase of the

response probability with excitatory postsynaptic amplitude,

however, are generic features that carry over to finite rise time if

the neuron operates in the fluctuation driven regime. Comparing

the non-linear and the linear response probability experimentally

can serve as an indicator to decide on the importance of each

contribution in real neurons. The integral linear response can be

obtained from similar arguments as in section ‘‘Response to fast

transients’’ as Pr(s)~
s

Rm

tLn0

LI
with the slope of the f-I curve

Ln0

LI
and the membrane resistance Rm.

Previous work has shown that the spike generation mechanism

influences the transient properties of neurons [63,64]. Specifically,

a soft threshold, as realized in the exponential integrate-and-fire

neuron model [63] is more realistic than the hard threshold of the

leaky integrate-and-fire model considered here. Future work needs

to investigate how this affects the fast response. We expect

qualitatively similar findings, because a positive synaptic impulse

shifts membrane potential density into the basin of attraction for

spike generation. This will then result in an increased spiking

density in a finite time window following the synaptic event.

The hybrid approach combining a diffusion approximation with

an explicit treatment of finite jumps near the boundary allowed us

to uncover hitherto unknown properties of the integrate-and-fire

model by analytical means. The diffusion approximation,

however, still limits our approach: for synaptic amplitudes

w§0:2 mV moments of order higher than two, which are

neglected by the Fokker-Planck equation, become relevant. A

combination of our boundary condition with an assessment of

higher moments [19,65] seems promising. Also, the oscillatory

modulations of the probability density on a scale w%s in the

regions below threshold and around the reset potential are outside

the scope of our theory. The response properties considered in this

work are entirely based on the assumption, that the dynamics has

reached the steady state prior to arrival of the perturbing input. A

valuable future extension of our work is to consider finite

amplitude synaptic background noise and additional sinusoidal

current injection. This would allow to quantify in a frequency

resolved manner how the transfer properties of the model are

influenced by finite-grained noise. Technically, the linear

perturbation theory for the diffusion limit [22] would have to be

combined with our boundary condition. Complications might

arise from the fact that the boundary condition is now time-

dependent if the mean drive reaches suprathreshold values in

certain epochs. Our treatment of stochastic differential equations

with finite jumps and absorbing boundaries is general, as long as

the jumps are sufficiently small. We expect it to be applicable to

other fluctuation driven dynamical systems in quantitative biology

and physics. Potential areas include the diffusion of particles in

domains with absorbing walls, chemical reactions with activation

thresholds, circuit theory and solid state physics.
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63. Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel (2003) How spike

generation mechanisms determine the neuronal response to fluctuating inputs.

J Neurosci 23: 11628–11640.

64. Naundorf B, Geisel T, Wolf F (2005) Action potential onset dynamics and the

response speed of neuronal populations. J Comput Neurosci 18: 297–309.

65. Kuhn A, Aertsen A, Rotter S (2003) Higher-order statistics of input ensembles

and the response of simple model neurons. Neural Comput 15: 67–101.

Instantaneous Non-Linear Neural Processing

PLoS Computational Biology | www.ploscompbiol.org 10 September 2010 | Volume 6 | Issue 9 | e1000929



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


