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Abstract

A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several
millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by
voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution.
Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm – for which psychophysical
studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar – and
moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of
neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity
of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-
temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving
squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion
patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a
considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer
cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus
representations in the early visual cortex.
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Introduction

Visual cortical activity does not exclusively mirror visual input

but rather reflects the contribution of additional recurrent

processes involving lateral and local feedback couplings. Under-

standing cortical processing requires a theoretical understanding of

the underlying activity dynamics, which can be attained by

modeling at various levels of abstraction. Naturally, the chosen

level should match the level at which neuronal recordings are

made [1]. The activity patterns observed using voltage-sensitive

dye (VSD) imaging reflect population activity at the mesoscopic

(intra-areal) level [2,3]. This suggests the application of mean-field

models in which large numbers of neurons are averaged.

Moreover, we are interested in the relation of neuronal dynamics

to the spatial dimensions of the cortical sheet (and more generally

to metric embeddings spanned by more abstract parameters, see

[4,5]). Neural field (NF) models [1,6–11], in which the efficacy of

synaptic coupling depends on the notion of distance between

neurons or ensembles of neurons, are therefore our preferred

choice. Here, we show that a minimalistic multiple-layer NF

models can simulate mean VSD data in space and time with high

accuracy. The model is an abstract functional description of VSD-

recorded dynamics. Thus, it is in the first place phenomenological.

However, its interpretation in biological terms allows to link its

structure and parameters to the neuronal functional architecture.

The imaging data that we model showed: i) Two stationary

stimuli (a square and an elongated bar) presented in rapid

succession produce a pattern that signals propagation of activity

across the bar’s retinotopic representation in early visual cortex. ii)

The obtained pattern was different from activity when the bar was

flashed alone, and did not match the simple superposition of

activities evoked by individually-presented square and bar stimuli.

iii) Rather, we observed propagation of a wave front of activity

that was also found when a square stimulus moved physically in

visual space [12].

Based on the VSD imaging data [12], we hypothesized that a

two-layer neural field [7–9] model can account for the findings i–

iii. If so, this would imply that the feedback from higher brain

areas is not a principal requirement to produce motion patterns

across primary visual cortex upon presentation of a square and a

bar flashed in rapid succession (as debated, e.g., in [12–17]).

Voltage sensitive dye imaging measures relative fluorescence

changes that are linearly correlated to changes in membrane

potentials [18,19]). This technique currently allows recording of

in vivo cortical activity at sub- as well as suprathreshold level with at

least 10 ms temporal resolution and a spatial resolution of 50 mm

across several millimeters of cortex. Hence, it is well suited to

capture the real-time dynamics of millions of neurons at once.

However, the signal does not distinguish between excitatory or

inhibitory contributions to the overall activity. Therefore, our
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model explicitly assumes that the VSD signal reflects a mixture of

activity from excitatory and inhibitory neuronal populations, and

thus contrasts with studies that interpret VSD data as mainly

reflecting excitatory activity (e.g., [20–22]). We expect to gain

insights about the relative contributions of excitatory and

inhibitory activities in the VSD signal, because the model allows

separate inspection of its inhibitory and excitatory layers.

In the following, we first describe the underlying data and its

preprocessing, our model structure, and our parameter identifica-

tion procedure. Then we present the results including the model fit

in comparison to further simplified models, the model prediction

regarding similar yet novel stimuli, and the results of a standard

linear stability analysis of the homogeneous solution of the model.

We then follow with a discussion of the findings in relation to

alternative modeling approaches, the physiological interpretation

of our model, and the role of excitation and inhibition in the

model. Finally, we consider our results in the context of hypotheses

concerning the cortical representation of motion and the origin of

the line-motion illusion.

Methods

Data
The data underlying this study were recorded by Jancke et al. at

the Department of Neurobiology at the Weizmann Institute of

Science in Israel using VSD imaging of cat visual cortex

[12,18,23]. Animals were initially anesthetized with a mixture of

ketamine (15 mg kg{1) and xylazine (1mg kg{1). After trache-

otomy, animals were respirated and anesthetized with 1.5%

halothane (0.8% during recordings) in a 1:1 mixture of O2 and

N2O. The animals were paralyzed with pancuronium bromide

(0.2 mg kg{1h{1, intravenously). Area 18 was stained for 2.5–3 h

with the voltage-sensitive dye RH-1691. Its molecules bind to the

external surface of excitable membranes and transform changes in

membrane potential into changes in fluorescence intensity, which

is correlated linearly with membrane potentials of layer 2 and 3

cortical neurons [19,24]. Using a high-speed camera, the VSD

signals were recorded with a temporal resolution of 9.6 ms. Stimuli

were presented binocularly. The projection of the area centralis to

the monitor screen was determined using a fundus camera. If

necessary, projection of the eyes was converged using a prism in

front of the eye that was ipsilateral to the recorded hemisphere. To

control for possible eye drift during the experiment, the position of

the area centralis and receptive field positions were measured

repeatedly. The stationary stimuli were a square of 1:50|1:50 and

a bar of 1:50|60. Both stimuli were aligned with their upper

edges. The line-motion (LM) stimulus consisted of a square briefly

presented before the bar. Additionally, squares were moved

vertically with 4, 8, 16, and 32 deg/s. Stimuli were placed at

4{5:50 eccentricity. In the LM setting the square was presented

for 50 ms followed by an inter-stimulus interval of 10 ms, after

which the bar was presented for 130 ms. In single presentations

the square and the bar were displayed with the same individual

timings as in the LM condition.

The imaged signals (DF=F ) reflect relative changes in

fluorescence compared to baseline: Imaging data were normalized

by its DC level during pre-stimulus period (200 ms) for each pixel;

heart-beat and respiration-related artifacts were removed by

dividing by the average of ‘‘blank’’ signals recorded in absence

of stimulation. For more details about the imaging methods we

refer to [12].

We restrict our analysis to the first 250 ms of the VSD

recordings during which propagation of activity was observed. The

VSD data are sequences of frames that image 3 mm|7 mm of

cortex. This area was discretized into 24|50 pixels (px). We

denote the fluorescence change represented by a pixel at position

(x, y) at time t by d(x, y, t). As the stimulus representations in this

study vary only along the posterior-anterior cortical axis we

reduced the dimensionality of the data by averaging d(x, y, t)
along the medial-lateral cortical axis (as done, e.g., in [25]),

see Figure 1. For each vertical position y and time step t, we

define d(y, t)~
1

xright{xleft

Xxright

x~xleft
d(x, y, t), where xleft~4 px

(0:51 mm) and xright~20 px (2:55 mm). To eliminate the low

signal-to-noise at the border of the representations, activity was

averaged across the central pixels 4–20. These values were defined

as mean + standard deviation of a Gaussian function fitted to the

distribution of activity values across x-axis in the flashed bar

condition (see Figure S1 in Text S1). However, the exact choice of

these positions did not affect the results. Given this dimension

reduction, the variable y is from hereon referred to as x for clarity.

Finally, the VSD data were additionally normalized using the

mean level of activity when no stimulus was presented as reference.

That is, for each stimulus condition the activity was averaged over

the first 20 ms and all x and the result was subtracted from the

data.

Model
We aimed for a model that quantitatively captures the spatio-

temporal cortical dynamics observed by VSD imaging in response

to the stimuli described above. The model should have as few

parameters as possible, and these parameters should allow for

functional interpretations (e.g., in terms of lateral interactions and

time constants). The model should be at the same level of

abstraction as the neuronal data. As our data reflect the dynamics

of neuronal populations and describe the spread of activity across

the cortical sheet, NF models are an appropriate choice

[1,4,5,21,26].

The model is one-dimensional as the dynamics of interest evolve

in one dimension along the (apparent) movement direction as

described above. Our two-layer NF is governed by the following

system of integro-differential equations:

Author Summary

Understanding the functioning of the primary visual cortex
requires characterization of the non-linear dynamics that
underlie visual perception and of how the cortical
architecture gives rise to these dynamics. Recent advances
in real-time voltage-sensitive dye (VSD) imaging permit
recording of cortical population activity with high spatial
and temporal resolution. This wealth of data can be related
to cortical function, dynamics, and architecture by
computational modeling. Here we used a mesoscopic
neural field model to describe brain dynamics at the
population level as measured by VSD imaging. Introduced
in 1972 by Wilson and Cowan, these models are derived
from statistical mechanics to analyze the collective
properties of large numbers of neurons. For simplicity,
the cortical planar tissue is assumed to contain only two
types of homogeneously distributed neurons (excitatory
and inhibitory) that interact via recurrent lateral connec-
tions. This study shows 1) how a concise neural field model
can simulate VSD data quantitatively in space and time by
identifying the underlying non-linear dynamics, 2) how
such a model can support hypotheses about visual
information processing, and 3) how the model can be
linked to the neuronal architecture.

A DNF Model of Mesoscopic Cortical Activity
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tu
Lu(x, t)

Lt
~{u(x, t)zhuz

ð
wuu(x{x’)fu½u(x’)�dx’

{guvfv½v(x, t)�z
ð

wus(x{x’)s(x’, t)dx’

ð1Þ

tv
Lv(x, t)

Lt
~{v(x, t)zhvz

ð
wvu(x{x’)fu½u(x’)�dx’, ð2Þ

where u(x, t) and v(x, t) denote the mean membrane potentials of

model neurons at cortical position x and time t in the excitatory

and inhibitory layer, respectively, and tu and tv are the

corresponding time constants. The resting potentials are deter-

mined by hu and hv. The transfer functions (or axonal response

functions) fu and fv are represented by sigmoidal functions of the

membrane potential, which relates depolarization to firing rate.

For instance, fu is given by

fu(u)~
1

1ze{bu(u{u0)
: ð3Þ

The parameter buw0 describes the slope of the response function

and u0[R its threshold value. The transfer function fv is

parameterized analogously. The efficacy of the synaptic connec-

tivity between two positions x and x’ is assumed to be translation

invariant and isotropic. It is given by gain factors guu, guv, gvu and

synaptic strength (weight) functions wuu and wvu of Gaussian

shape. For example, the coupling wvu from the excitatory to the

inhibitory layer is modeled by

wvu(x)~gvu
1

svu

ffiffiffiffiffiffi
2p
p exp {

x2

2s2
vu

� �
: ð4Þ

The parameter svu controls the width and gvu=svu controls the

strength of the interactions. Eccentricity in the imaged region of

area 18 (see legend Figure 1) is approximately linear along the

vertical meridian [27,28] mapping one degree of the visual field to

&1 mm of cortex. The external visual stimulus mapped

accordingly to cortical coordinates is denoted by s(x, t), and the

afferent input is computed by smoothing the stimulus by

convolution with a Gaussian function wus. The afferent input

couples only into the excitatory layer, and the inhibition is coupled

into the excitatory layer locally.

Figure 1. Deriving a space-time diagram of the VSD signals. The two-dimensional VSD image frames were averaged along the horizontal axis
(thin vertical lines highlight the spatial region considered for averaging) to reduce the data to one spatial dimension. The vertical axis of the camera
frame corresponds to the visual field azimuth representation in the cortex, where stimuli in the lower visual field are represented in anterior direction
[27]. The exact position of the optical chamber was guided by the layout of cat area 18 retinotopic map around the trepanation site (Horsley-Clarke
&A0–A10, &1–5 mm from midline) and verified through sampling of several receptive field locations prior to and partly during imaging sessions.
The fact that the bar representation is drawn-out towards anterior (see upper black arrows), starting from the square representation (frames 48–
58 ms) is interpreted as a motion signal. It also supports the correct settings as the square was presented at the upper end of the bar in visual field
coordinates. In this study, we used the space-time activity patterns for modeling, with the spatial dimension on the ordinate and time on the abscissa.
The colorbar indicates levels of activity (DF=F , see ‘‘Methods’’), A = anterior, M = medial.
doi:10.1371/journal.pcbi.1000919.g001

A DNF Model of Mesoscopic Cortical Activity
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There are several reasons for the local coupling from the

inhibitory to the excitatory layer. From a technical point of view,

we want our model to have as few parameters as possible.

Equations 1 and 2 can be viewed as the minimal extension of the

original Amari neural field model [9] to distinct dynamics for

excitatory and inhibitory neurons (see also Eqn 10), allowing for

different time constants and making it consistent with Dale’s law

(we added the response function fv such that all communication

between neurons can be interpreted as being encoded by mean

firing rates). The resulting model is similar to the dynamics

considered in [4], and it can be argued that the local coupling

resembles physiology because the majority of interneurons projects

locally [29].

The presented NF model is parameterized by 15 values.

However, because all model neurons communicate only through

the transfer function f (see Eqns 1 and 2), shifting of resting

potentials hu and hv can be compensated by changing the transfer

function thresholds u0 and v0 in Eqn 3 such that the dynamics are

not affected. Thus the parameters u0 and v0 are redundant.

The VSD data reflect the activity of both excitatory and

inhibitory populations of neurons. Accordingly, we define the

modeled VSD signal a(x, t) to be a combination of the field’s

excitatory and inhibitory activities. We assume an affine linear

mixture

a(x, t)~luu(x, t)zlvv(x, t)zc ð5Þ

with the non-negative coefficients lu and lv controlling how

strongly excitatory and inhibitory activity is reflected in the dye

signal, and c is some offset [30,31]. We do not explicitly consider

units of measurement to keep the notation uncluttered. Formally,

the dye signal a(x, t) is measured in change of fluorescence

intensity DF=F and the potentials in mV. Therefore, lu and lv

have units DF=(FmV) and c is measured in DF=F .

The time delay between the stimulus presentation and the

response onset in the VSD data is a sum of the time the neuronal

signal needs to travel from the retina to the primary visual cortex

and the time the neuronal populations in the primary visual cortex

need to build up a detectable activity. A fixed retino-cortical time

delay of two time frames (19.2 ms) was used in our model to align

the response onsets of the model and the VSD data.

In our numerical experiments, we iterated the dynamical

systems defined by Eqns 1 and 2 starting from the initial conditions

u(x, tinit)~hu and v(x, tinit)~hv for all x. Then we let the system

relax for some time period in the absence of afferent input. When

we present our results, the time t~0 is after this relaxation phase.

In our model, we had to discretize the spatial dimension. We

simulated 150 spatial positions. The center 50 positions were

mapped to the 50 pixels of the VSD image data. The other

positions were added to avoid boundary effects and are not shown

in the results.

Model parameters identification procedure
In order to explore the system parameter space we adopted a

grid search procedure on a reduced parameter set. The reduced

set contained 10 parameters tu, tv, su, sv, guu, guv, gvu, bu, bv and

h, where the excitatory and inhibitory resting potentials were

assumed to be equal (i.e., h~hu~hv). We defined a grid with

3 points (chosen by educated guess, see Table 1, third column) for

each parameter, which results in total to 310~59049 parameter

configurations. The remaining parameters u0, v0, gus and sus were

fixed to physiologically plausible values. The transfer function

thresholds u0 and v0 were both set to 240 mV (see discussion of

parameter redundancy in the previous section). The feed-forward

gain gus was set to 70 to yield maximal amplitude of the input

signal of about 60 mV. According to the literature, one retinal

position is represented in our region of interest by a population of

cortical neurons distributed around the mean position with a

standard deviation of approximately 0.6 mm [28]. The parameter

ssu, determining the feed-forward smoothing of the input (as

parameter of wus, see Eqns 1 and 4), was therefore fixed to 4 pixels

in the discretized model, which corresponds to a value of

0.51 mm.

After we have simulated our NF model with a given set of model

parameters and obtained the spatio-temporal patterns of the

excitatory and inhibitory layer in response to the stimuli used for

system identification, we can compute the values lu, lv, and c, see

Eqn 5, using the ordinary least-squares (OLS) method under the

constraints lu, lv§0. That is, we solve

min
lu,lv,c

X
t

X
x

luu(x, t)zlvv(x, t)zc{d(x, t)ð Þ2, ð6Þ

where (with a slight abuse of notation) u, v, and d refer to the

concatenated signals of all stimulus configurations considered in

the optimization procedure. This yields the optimal values for lu,

Table 1. Summary of the model parameters.

Parameter Description Grid points Value

tu time constant for
excitatory layer

9.6, 19.2, 28.8 ms 19.2 ms

tv time constant for
inhibitory layer

9.6, 19.2, 28.8 ms 28.8 ms

hu resting potential for
excitatory layer

2100, 280,
260 mV

260 mV

hv resting potential for
inhibitory layer

was set equal
to hu

260 mV

guu self-excitation gain 50, 125, 200 125

guv inhibition of
excitatory layer

50, 125, 200 50

gvu excitation of
inhibitory layer

50, 125, 200 125

suu width of excitatory-
excitatory kernel

0.64, 1.27,
1.91 mm

1.27 mm

svu width of excitatory-
inhibitory kernel

0.64, 1.27,
1.91 mm

1.27 mm

bu transfer function
steepness for
excitatory layer

0.05, 0.1, 0.15 0.15

bv transfer function
steepness for
inhibitory layer

0.05, 0.1, 0.15 0.1

u0 transfer function
threshold for
excitatory neurons

240 mV 240 mV

v0 transfer function
threshold for
inhibitory neurons

240 mV 240 mV

gus feed-forward gain 70 70

sus width of feed-forward
smoothing kernel

0.51 mm 0.51 mm

The second column gives the description of the parameters. Values used for the
grid search procedure are given in the third column. The selected parameter
values are shown in the last column.
doi:10.1371/journal.pcbi.1000919.t001

A DNF Model of Mesoscopic Cortical Activity
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lv, and c in terms of the mean squared error between aggregated

model signal a(x, t) and observed dye patterns d(x, t) for the

given spatio-temporal patterns of the excitatory u(x, t) and

inhibitory v(x, t) layer. From the solution, we get the aggregated

signal

a(x, t)~luu(x, t)zlvv(x, t)zc ð7Þ

and obtain the mixture coefficient

l~(1zlv=lu){1[½0, 1�, ð8Þ

of excitation and inhibition. The l coefficient indicates that the

simulated signal is comprised of l excitation and (1{l) inhibition

(under the assumption that the values of u and v vary in the same

interval). For optimization of the system, only four of the seven

available stimulus configurations were used, namely the flashed

square, the flashed bar, the LM stimulus, and a square moving at

32 deg/s. The other three stimulus conditions, squares moving at

different speeds, were used to test whether the model generalizes to

unseen, but related stimuli.

We selected parameter configurations from the sets produced by

the grid search procedure according to the following criteria: (1)

the system with given parameters is stable (see section ‘‘Analysis of

Stability’’); (2) after stimulus presentation, the simulated activity

eventually decays to zero; (3) the correlation coefficient between

the dye and the simulated data is larger than 0.8; (4) the rate of

activity change during the onset period (&20–70 ms for the

flashed square, LM and moving square stimuli; &80–130 ms for

the flashed bar stimulus) is similar in the modeled and measured

responses.

In order to show that the model fit can be considerably

improved by fine-tuning, we adjusted some model parameters

using a randomized direct optimization algorithm. We used the

selected parameter set from the grid search procedure (see Table 1)

as starting point. We defined an objective function that quantifies

the correlation coefficients between dye and simulated data as well

as inhibition/excitation ratio:

fobj~
X

over stimuli i
considered in
optimization

ri{c(l{ltarget)
2: ð9Þ

The correlation coefficients ri were computed between the dye

and the simulated data for each stimulus configuration considered

in the optimization and the trade-off parameter is set to c~8.

This objective function is non-convex and multi-modal (i.e.,

there are undesired local optima). Our method of choice for such

problems is the covariance matrix adaptation evolution strategy

(CMA-ES) [32,33]. The CMA-ES is an iterative, direct, stochastic

optimization method and one of the most efficient biologically

inspired search heuristics for real-valued optimization [34]. It has

been successfully used to adapt neural field models [35–37] and is

explained in detail in Text S1, section A.

Results

VSD imaging of cortical responses to the line-motion
paradigm

The imaged visual cortical area included the complete

retinotopic representation of the applied stimuli. Figure 1 shows

the observed evolution of activity in response to the LM paradigm

within single time frames as originally recorded (upper row). After

the square was presented (frame zero), activity emerged and

reached suprathreshold amplitudes around the thalamic input

location (see region colored yellow/red in frames 48–58 ms;

verified through spike recordings at various electrode positions

[12]). After 60 ms the bar was presented, giving rise to activity that

was gradually drawn-out (68–116 ms) along the retinotopic bar

representation in the anterior cortical direction (see upper arrows

and legend for more details). In contrast, the lower part of the

responses showed no propagation (see lower row of arrows). The

anteriorly propagating activity was interpreted as a motion signal

that correlates to the perceived illusory line-motion as found in

psychophysical studies [13]. Thus, instead of representing the bar

at once, activity propagated across the retinotopic map. As shown

in the original data, the same characteristics were obtained in

multiple other experiments [12]. Since this effect occurred along

the posterior-anterior cortical y-axis, we averaged each camera

frame along the x-axis (see Figure 1) to enable a one-dimensional

model approach (see 2nd row of Figure 1). Using these 1D frames,

we depict activity in space-time diagrams that allow inspection of

entire time courses (3rd row).

Aggregated activity dynamics of both excitatory and
inhibitory layers – emergence of propagating activity

The NF parameters found by grid search are summarized in

Table 1. Figure 2 shows both the data and the NF responses. Activity

in the model started with a delay of 19.2 ms (two time frames, see

section ‘‘Model parameters identification procedure’’), following low

amplitude activity (light blue-green colors) that spread rapidly across

several millimeters of cortex. With increasing amplitudes (yellow,

red), the speed of the spread gradually decreased.

For the flashed square (Figure 2B), activity spread symmetrically

around the stimulus input location. With either the flashed bar

(Figure 2C) or LM stimulus (Figure 2D), nearly identical responses

were found in the lower part (0–3 mm) of the space-time diagram,

as there were no differences in stimulus inputs in this direction. In

the upper part, however, as outlined by rectangles, there were

crucial differences between these conditions around the elongated

bar input location. In this region, we observed a gradual

propagation of high-amplitude activity – from the lower left to

the upper right for the LM stimulus but not for the single flashed

bar (Figure 2C, a more detailed analysis is provided in Figure S2 in

Text S1). Note that such propagation of high-amplitude activity

was also observed both in the VSD and modeled responses to a

moving square (Figure 2A). Thus, similarly to the LM stimulus,

real moving input gave rise to a propagating wave front of cortical

activity reporting physical motion across the retinotopic map (see

Figure S2 in Text S1). In the model the LM effect results from the

following mechanism: The activity in response to the flashed

square is sustained after the stimulus offset and serves as a starting

point for the response to the flashed bar. The bar-evoked

excitation then propagates from this region producing a gradual

spread of activity, drawn-out from the highest activity amplitudes.

Hence, the LM effect persists in the model as long as the inter-

stimulus interval is in the range of activity decay times after the

square stimulus presentation.

Figure 3 shows the evolution of activity at the center of the

cortex image (the model responses are given by dashed lines).

Although the response to the square stimulus was sustained longer

than the measured dye signal and the maximum amplitude was

not fully reached in the NF, the model in general captured the

time courses of the cortical responses to the different stimuli used.

Moreover, a small adjustment of the parameters removed these

discrepancies: Using evolutionary optimization (see ‘‘Methods’’

A DNF Model of Mesoscopic Cortical Activity
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and Text S1, section A) the duration of the model response to the

flashed square was greatly reduced (Figure 3, red lines), and the

correlation coefficient for this single configuration increased to

0.81. The evolutionary optimization changed the parameters to

hu~{60:8 mV, hv~{59:8 mV, guu~126:0, guv~51:6,

gvu~130:7, bu~0:16, bv~0:05 (see Text S1, Table S1).

Nonlinear space-time interactions
We next analyzed whether nonlinear interactions are required

to explain our findings to explain the space-time responses of the

LM condition. The superposition of the responses to the single

square and the bar alone differed from the response to their

combined presentation in the LM stimulus (Figure 4). Note that

the superposition also gave rise to propagation of activity as can be

seen by the temporal offsets between the time courses at different

locations (compare stippled red and green curves, Figure 4).

However, there were marked deviations from linearity. The VSD

LM response (Figure 4A) exhibited facilitation (around t~100 ms)

and suppressive effects (around t~150 ms) as compared to the

superposition of the single square and the bar alone. The

Figure 2. Visual inputs, modeled, and VSD responses. Visual stimuli mapped on cortical coordinates are shown in the first column: (A) moving
square, (B) flashed square, (C) flashed bar, and (D) LM stimulus (square followed by bar). Second column: neural field responses to the respective
stimuli for a mixing ratio l~0:54 (see text) and the model parameters given in Table 1. Third column: corresponding dye signals. Vertical axes depict
cortical coordinates, horizontal axes indicate time. Colors show response amplitudes as fractional changes in fluorescence. Rectangles in the space-
time plots emphasize the region of interest. Here, a gradual propagation of high-level activity – from the lower left to the upper right – can be
observed for both the model responses and the VSD data for real motion (A) and the LM condition (D) (see also Figure S2 in Text S1). The grid search
procedure revealed one parameter configuration that satisfied the selection criteria (see ‘‘Methods’’). The overall correlation coefficient between
simulated and measured data was 0.85. The individual correlation coefficients computed between the simulated and measured responses to
particular stimulus conditions were 0.83 for the square moving at 32 deg/s, 0.46 for the flashed square, 0.93 for the flashed bar and 0.93 for the LM
stimulus condition.
doi:10.1371/journal.pcbi.1000919.g002
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Figure 3. Time courses of aggregated activity of a single model neuron. Example traces were calculated around the input location of the
single square (spatial coordinate 3 mm, see Figure 2). Solid black lines represent VSD data, shaded curves depict standard error, N = 24 trials. Dashed
lines represent modeled activity with parameters produced by grid search, red lines represent optimized modeled responses. The optimized
parameter configuration can be found in Text S1, Table S1; see also Figures S3 and S4. Vertical lines indicate stimulus duration: square 20–70 ms, bar
80–210 ms.
doi:10.1371/journal.pcbi.1000919.g003

Figure 4. Comparison of the LM condition to the superposition of responses to the square and the bar alone. (A) VSD data, (B) Model.
First column: time courses of activity at two single pixels at the center of the image (green line), and in the direction of activity propagation (red line).
The superposition (dashed lines) differed from the corresponding response to the LM paradigm (solid lines) both for the recorded data and the model
(see second and third column for entire space-time diagrams). In particular, the superposition showed a stronger response to the bar (from t~150 ms,
31+4% (mean +s.d.; n = 4) in the VSD data, 34+14.7% (n = 800 pixels) in the model). Responses to the bar were also delayed in the superposition,
revealing a facilitatory effect in the beginning of the response (around t~100 ms, VSD data: 24+10% (n = 4), model: 5+3.7% (n = 16, statistics
computed with respect to the pixels that show this effect)). Note that the color code in this figure differs to the other figures as the superposition
reached higher values than the single conditions.
doi:10.1371/journal.pcbi.1000919.g004
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significance of these effects was tested as follows. We defined three

consecutive time intervals. The pre-stimulus interval, frames 1–4,

the ‘‘facilitatory’’ interval, frames 5–12, and the ‘‘suppressive’’

interval, frames 13–20. First, we found no significant difference

between all pixel values of the LM and the superposition in the

pre-stimulus interval (Mann-Whitney U = 19808, n1 = n2 = 200,

Pw0:5, two-tailed). Second, we showed that the difference

between the LM and the superposition is significant in the

‘‘facilitatory’’ interval (Mann-Whitney U = 64195, n1 = n2 = 400,

Pv0:001, two-tailed) as well as in the ‘‘suppressive’’ interval

(Mann-Whitney U = 64369, n1 = n2 = 400, Pv0:001, two-tailed).

These effects are emphasized by thin red lines showing the

difference of the LM response and the superposition (positive

values indicate facilitation, negative values suppression). The

model (Figure 4B) showed both of these effects, although the

facilitatory effect (blue ellipse) was considerably smaller than in the

measured data and was not observed at the center of the pattern

(green line). We conclude that non-linear dynamics are necessary

to explain the deviation from a simple superposition of the single

square and bar representations.

Comparison to reduced models
In order to verify that the different components of our model

are necessary to reproduce the VSD-recorded dynamics, we tested

several simplified models. We asked whether the spatio-temporal

patterns could be simulated by a simple feed-forward model

without lateral interactions, in which Gaussian smoothing of the

input stimulus and low pass filtering produce the spread of activity

(similar to the ‘‘G-waves’’ of Baloch and Grossberg [15]). It turned

out that switching off lateral couplings and optimizing the

parameters of the reduced model did not give satisfactory results.

Next, to investigate the role of inhibition and the necessity of

different time constants for inhibition and excitation, we

considered a single layer Amari-type NF [9],

tu
Lu(x, t)

Lt
~

{u(x, t)zhuz

ð
wuu(x{x’)fu½u(x’)�dx’z

ð
wus(x{x’)s(x’, t)dx’,

ð10Þ

where the kernel function wuu was either purely excitatory (Gaussian)

or had a Mexican-hat shape. The latter models excitation and

inhibition as the difference between two Gaussian kernels. Applying

the grid search procedure to the reduced Mexican-hat model

produced fairly good fits to the data with correlation values of up to

0.75 (compared to 0.85 for the full two-layer model), the individual

correlation coefficients computed between the simulated and

measured responses to particular stimulus conditions were: 0.55

for the square moving at 32 deg/s, 0.51 for the flashed square, 0.81

for the flashed bar, and 0.86 for the LM stimulus condition. The

amplitudes of activity in response to smaller sized stimuli (i.e., flashed

and moving squares) were too low. Testing this model on the moving

stimuli produced responses that were too weak and too prolonged.

The overall correlation coefficient between simulated and measured

data for the four conditions with moving squares was 0.70. The

individual correlation coefficients computed between the simulated

and measured responses to particular stimulus conditions were 0.78

for the square moving at 4 deg/s, 0.84 for 8 deg/s, 0.69 for 16 deg/s,

and 0.55 for 32 deg/s. As indicators for the goodness-of-fit, we

computed the AIC (Akaike information criterion [38]) for the two-

layer and the single layer NF. The AIC is given by

AIC~ln
RSS

n
z2k=n, where RSS denotes the residual sum of

squares, n~4:50:49~5000 the number of data points (4 stimulus

configurations, 50 spatial positions, and 25 time steps), and k the

number of parameters [38]. Note that the absolute values of the AIC

cannot be interpreted. Although the two-layer model has more

parameters, its AIC is smaller ({17:72 compared to {17:11)

indicating a better fit. These results were obtained using the Mexican-

hat kernel, the results for the simple Gaussian kernel were even worse.

In addition to the coarse grid search, we performed global

optimization of the Amari-type field model using the CMA-ES (see

Text S1, section A) without coming close to the fit quality of our

two-layer model. Clearly, the fact that the system identification

procedure did not find suitable parameters for a different model

class does not prove that no suitable parameters for these

alternative models exist (as such, non-existence proofs can be

regarded as a general challenge in computational neuroscience).

However, we regard the failure to fit the reduced models as a

strong indication that lateral ‘‘intracortical’’ interactions and

inhibition evolving with independent time constants are indeed

necessary for the best fit of our data.

Decomposing the model aggregated activity: Separate
inspection of layers reveals their high correlation

In Figure 5 the decomposed excitatory and inhibitory NF

responses showed the observed gradual spread in both components.

The parameter l, which reflects the mixing ratio of excitatory to

inhibitory signals, was optimal for a value of 0.54 as revealed by our

fitting procedure. This suggests that the aggregated signal was

caused to a large extent by inhibitory processes. If we used for this

parameter configuration either only u (or only v) in the regression

Eqn 6 (i.e., set l~1 or l~0, respectively), the quality of the fit

significantly declined compared to the use of both layers’ aggregated

activities u and v (verified by Wald-test [39,40]. This indicated

that elimination of the variable l had a significant impact on

the goodness-of-fit, pv0:001). We computed the residuals

RSSuv~ minlu ,lv,c

P
t,x luu(x, t)zlvv(x, t)zc{d(x, t)ð Þ2 and

RSSu~ minlu ,c

P
t,x luu(x, t)zc{d(x, t)ð Þ2, see section ‘‘Model

identification procedure’’. Let n~4:50:25~5000 be the number of

data points used for fitting the models (4 stimulus configurations,

50 spatial positions, and 25 time steps). We compared

n
RSSu{RSSuv

RSSuv

&1180 to the x2 distribution [39,40]. When

interpreting this result one has to keep in mind that the residuals

of our models are correlated because of the spatio-temporal

structure of the data and their variances are not homogeneous.

However, the choice of the mixing ratio l could vary over a

wide range without a considerable decrease in fit quality as

indicated by the high correlation coefficients for different mixing

ratios (see Figure 6). This result was on the one hand surprising as

we expected to reveal a critical value for this parameter.

Consequently, we cannot estimate directly the relative fraction

of excitatory and inhibitory signals in the VSD data. On the other

hand, our results strongly suggest that both inhibitory and

excitatory activity contribute significantly to the measured VSD

responses as demonstrated by our statistical goodness-of-fit

analysis. Moreover, our control experiments with simpler single

layer models (see ‘‘Comparison to reduced models’’) indicated that

balanced interactions of the strongly coupled excitatory and

inhibitory layer are required to produce the high correlation

between the model aggregated spatio-temporal patterns and the

VSD dynamics.

Generalization to moving squares with different speeds
We finally tested the derived model using different stimuli that

were similar to those used in the grid search procedure. Novel
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Figure 5. Decomposing NF activity into excitatory and inhibitory components. Columns from left to right: excitatory activity, inhibitory
activity, aggregated signal (see Eqn 5). Stimulus conditions, rows A–G, as denoted on the left. Left colorbar applies to excitatory and inhibitory layers
and indicates the modeled membrane potentials u and v, respectively. Right colorbar depicts response amplitudes as fractional changes in
fluorescence intensity. The excitatory and inhibitory activity patterns were highly similar with correlation coefficients 0.79 (A), 0.81 (B), 0.81 (C), 0.84
(D), 0.84 (E), 0.86 (F), and 0.87 (G).
doi:10.1371/journal.pcbi.1000919.g005
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square stimuli moving at different speeds (4, 8, 16 deg/sec; the 32

deg/s stimulus was used for optimization) were fed into the model.

The results, summarized in Figure 7, revealed that our model also

reproduced these new spatio-temporal patterns. The correlation

coefficient between simulated and measured data for the four

moving square conditions was on average 0.79.

Analysis of stability
For a better understanding of the dynamics of our model, we

performed a standard linear stability analysis in the absence of

afferent input (e.g., see [41]). We linearized the system governed

by Eqns 1 and 2 near its homogeneous solution, which is describ-

ed by Vx, t : u(x, t)~~uu0, v(x, t)~~vv0, _uu(x, t)~ _vv(x, t)~s(x, t)~0
with scalars ~uu0 and ~vv0.

The spatial dimension is considered in frequency space. The

analysis yields two constraints that have to be met for the

linearized system to be asymptotically stable:

f ’u(~uu0)ŵwuu(k)v
tu

tv

z1, ð11Þ

f ’u(~uu0)ŵwuu(k)vguvf ’v(~vv0)f ’u(~uu0)ŵwvu(k)z1 ð12Þ

for all spatial frequencies k§0, where ŵwuu(k) and ŵwvu(k) are the

spatial Fourier transforms of the weight functions wuu and wvu

(e.g., ŵwuu(k)~
guuffiffiffiffiffiffi

2p
p e

{s2
uu

k2

2 ) and f ’u and f ’v are the derivatives of

the transfer functions. Substituting the parameters listed in Table 1

into the Inequalities 11 and 12 reveals that the homogeneous

solution of our model is indeed asymptotically stable, which is a

minimal requirement (for detailed derivation of Inequalities 11

and 12 see Text S1, section B).

Discussion

This is the first time in vivo VSD patterns have been modeled

quantitatively in space and time on a mesoscopic population level.

Our proposed dynamical system is an abstract functional

description of in vivo recorded VSD dynamics that correlate with

changes in potentials across neuronal membranes and reflect the

mass activity of a large pool of neurons.

Despite its rather few degrees of freedom, the NF model

matches the VSD activity patterns evoked by briefly flashed visual

stimuli including the LM paradigm. Our statistical analysis

indicate that the two-layer structure of our model as well as the

assumption that both excitatory and inhibitory activity contribute

to the dye signal are necessary to obtain a fit with the highest

correlation to the VSD imaging data.

The question arises whether our model is realistic in the sense

that it could be implemented by the cortical network. We argue

that the relevant model parameters are indeed within physiolog-

ically plausible ranges (see ‘‘Physiological interpretation of the

model’’). In this context, we suggest a significant contribution of

inhibitory activity to the VSD dynamics.

Finally, the here presented modeling of V1 implies that

feedback from higher brain areas is not necessary to produce

activity patterns resembling the percept of illusory motion.

Relation to alternative large-scale model
First, we compare our model to other in silico simulations that

addressed the same experimental findings. Rangan et al. [20]

simulated the VSD data from Jancke et al. [12] using a large-scale

integrate-and-fire model, which consists of 106 neurons modeling

three types of channel conductances (NMDA, GABA, AMPA) and

two types of connections (isotropic short-range and orientation-

specific long-range connections) [42]. Importantly, both their

model and ours simulate the LM effect without additional

modeling of higher brain areas [20]. While our NF model was

specifically designed to capture the LM data, the large-scale

network developed by Rangan et al. [20] incorporated additional

aspects of cortical processing on a different level of abstraction, as

their large-scale model accounts for further experimental obser-

vations (for instance correlations between spontaneous activity and

stimulus orientation [42,43]) that cannot be addressed by our

model, which is only as complex as needed to match our data.

Therefore, it is not surprising that our model allowed a better fit

per se.

Comparing the simulations in Rangan et al. [20] with our study,

it becomes apparent that both approaches have a spatial and

temporal integration problem: activity in response to the square

stimulus is much less integrated over space and time than for the

longer bar stimulus. The large-scale model [20] therefore included

additional pre-processing in the lateral geniculate nucleus (LGN).

Using such an LGN model that implements normalization, as

proposed by several authors [25,30,44–47], may indeed help to

enhance our fits but was not explicitly tested here.

In the large-scale model, the response following the bar arises

about 20 ms earlier than the VSD-recorded responses. In contrast,

the response to the square stimulus was &20 ms delayed. Using

Figure 6. Different mixing ratios of excitatory and inhibitory activity. Aggregated model responses to the LM stimulus with (A) l~0:3, (B)
l~0:54, (C) l~0:7. The value of l could vary over a wide range without considerably impairing the fit, i.e. decreasing the correlation coefficient. All
mixing ratios of l in the interval [0.3, 0.7] resulted in correlation coefficients larger than 0.8. The maximum r~0:85 was obtained with l~0:54 (B).
doi:10.1371/journal.pcbi.1000919.g006
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the constant retino-cortical time delay in our model, the simulated

and measured signal onsets were aligned in all stimulus conditions.

Our model thus has the advantage of capturing the timing of VSD

signal onsets more accurately (see Figure 3).

Possible extensions of our NF model
The model responses to both the flashed bar and LM condition

fitted the observed VSD measurements. In contrast, for the single

flashed and the moving squares the model revealed a discrepancy

to the VSD data in the extent of lateral spread. One reason for this

effect is our simple Gaussian smoothing that we used as a model

for the retino-cortical processing. Increasing the kernel width ssu

resulted indeed in a wider activity spread, but the tested widths

were inappropriately large to match the common experimental

findings. As another straightforward solution, we increased the

widths of the coupling kernels wuu and wvu, however, the grid

search did not find models with an accurate fit for such wider

kernels.

For the flashed square, prolonged activity was observed

compared to the data. Importantly, tuning the gains guu, guv,

and gvu, the resting potentials hu and hv, and the steepness of the

transfer function bu and bv using evolutionary optimization

eliminated the discrepancy (see Figure 3).

Finally, the flashed and moving square stimuli evoked model

responses that were lower in amplitude than that measured. As

stated in ‘‘Relation to alternative large-scale model’’, using a

normalization method [25,30,44–47] in the retino-thalamic

processing step could be a suitable solution to adjust the

Figure 7. Model and VSD responses to moving squares with different speeds. Same conventions as in Figure 2. Stimulus speeds were: (A) 4,
(B) 8, (C) 16, and (D) 32 deg/s. At lower levels of activity the spread of activity was uniform across all conditions (greenish colors). In contrast, at high-
amplitudes (80% of maximal activation, red colors), the speed of propagation increased linearly with speeds: 0.004, 0.009, 0.02, 0.04 m/s. The
individual correlation coefficients computed between the simulated and measured responses were 0.83, 0.92, 0.82, 0.83 for the square moving at 4, 8,
16, and 32 deg/s, respectively.
doi:10.1371/journal.pcbi.1000919.g007
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amplitudes of the responses to the small- and large-sized stimuli.

As we aimed at capturing essential nonlinear activity dynamics

with the simplest form of our NF model, we also neglected further

specific mechanisms of cortical processing like short-term synaptic

plasticity and did not parameterize axonal propagation speed (see,

e.g., [22,31]). It should be noted that increasing the model

complexity by introducing more parameters would certainly

enhance the fit to the data. For instance, in a comparable version

of the model, to account for spiking population data [48], we

added a ‘‘shunting inhibition’’ term that allowed to produce a

rapid spread of activity ahead of a moving square without pushing

the model into the active mode [12]. However, the ability of the

present model with its minimal complexity to fit and generalize

suggests that the principles of two-layered architecture with lateral

connectivity are sufficient to account for VSD-recorded dynamics.

Physiological interpretation of the model
Our model is functional in the sense that it characterizes the

dynamics of the VSD signal. Still, the model must also be plausible

from a physiological point of view in the sense that it can be

implemented by the underlying brain structures. In the following,

we therefore discuss the ability of the cortical architecture to give

rise to the model dynamics.

The NF model is a graded response mean-field approximation.

As shown in the work of Eggert and van Hemmen [49], graded

response models are able to describe the evolution of a population

of spiking neurons in the case of slow dynamics. The VSD data

used in this study lack these very fast ms-dynamics due to the

frame duration and averaging and therefore, fulfills this require-

ment. The model accounts for the neuronal activity measured in

cortical layers 2/3 and ignores other cortical structures. Further-

more, as it matches averages over several trials and numerous cell

types with different connectivities and different neuronal response

profiles, the neglected details affect the obtained model parame-

ters. In this sense the model dynamics implicitly simulate all the

factors that influence VSD-recorded dynamics.

The parameters hu~{60 mV and hv~{60 mV in the model

can be associated with the mean resting membrane potentials of

excitatory and inhibitory neurons, respectively. The physiological

values reported in the literature span from {77 mV to {63 mV

with a standard deviation of about 10 mV [50–54] for excitatory

and inhibitory neurons in the cat primary visual cortex. Our

modeled membrane potentials are in this range. However, it

should be noted that since all model neurons communicate only

through the transfer function f (see Eqns 1 and 2), shifting of

resting potentials hu and hv can be compensated by simply

changing the transfer function thresholds u0, v0 such that the

system dynamics are not affected, see section ‘‘Model’’. In the

model, the mean membrane time constants tu~19:2 ms and

tv~28:8 ms are in agreement with experimental data [51,55].

The lateral connectivity is determined in the model by the

Gaussian interaction kernels wuu and wvu (see Eqn 4). As shown in

Table 1, the values suu~1:27 mm and svu~1:27 mm were used.

The absolute values of the axonal extension of excitatory cells

found in the cat primary visual cortex have been reported to reach

up to 3.5 mm [56] or even up to 6–8 mm [57]. However, if our

s-values are interpreted as measures of lateral extent of axonal-

dendritic connections, they can be compared with the results of a

recent quantitative study that measured and modeled the spatial

and orientation preference distribution of labeled axonal bouton

density of excitatory neurons in area 18 of the cat [58]. Modeling

of the spatial distribution by a single Gaussian function revealed a

s-value of 0.6 mm, which is smaller than in our NF. However,

their additional approach designed to differentiate between

oriented and non-oriented components suggested values up to

1.1 mm for the non-oriented component, which is close to our

results.

In contrast, inhibitory interneurons in the primary visual cortex

act mostly locally [59,60]. These interneurons are activated by

widely spreading lateral excitatory connections (see [61] and

[62,63] for results for macaque and cat, respectively). This has

been implemented in the NF by the local coupling of the inhibitory

term into the excitatory field equation (see Eqns 1 and 2). Thus,

although the coupling from the inhibitory to the excitatory layer is

only local in our model, inhibition can act over a wide range.

Excitation and inhibition in the VSD signal
We considered a mixing ratio of l~54%, which stresses that

the dye signal reflects both excitation and inhibition [30,31]. This

is in contrast to studies in which the signal is interpreted as caused

by excitation only, but also to studies that presume only 25%

inhibition [20]. The latter is based on the fact that about 25% of

the neurons in the cat primary visual cortex are inhibitory (GABA-

immunoreactive) [64]. We cannot exclude the possibility that the

dye binds more strongly to inhibitory neurons, the number of

active cells however, does in any case not necessarily reflect their

functional impact. The NF dynamics are the result of processing

across the closely coupled excitatory and inhibitory layers. We

showed that the resulting dynamics were only achievable if both

layers interact.

For example, as summarized in their review article, Ferster and

Miller [65] pointed to the discrepancy between the observed

contrast invariance of orientation tuning curves of simple cells and

the notion of only weak cortical inhibition. In fact, recent

intracellular in vivo recordings in cat have demonstrated strong

inhibitory input [54] that may counteract cortical excitatory inputs

in a push-pull manner [66].

Relation to hypotheses of cortical representation of
motion

Different amplitudes of the dye signal correspond to different

levels of the degree of depolarization across the observed neural

populations. Thus, with higher amplitudes, the probability rises

that the signal reflects supra-threshold activity [12,19]. Informa-

tion about the stimulus trajectory should essentially be encoded at

high amplitudes of activation, most likely as a propagating wave of

spiking activity [12,48]. In contrast, low amplitude activity may

reflect initial passive spread [18] without a close coupling to the

input speed of the stimulus. Therefore, we were particularly

interested in the relationship between the speed of lateral

propagation and the level of activity.

We found that the model did not reproduce cortical axonal

conduction speeds of &0:1{0:5 m/s [12,67,68]. Part of the

problem to measure speeds of lateral spread is due to the fact that

in vivo VSD imaging (as well as in vivo intracellular recordings) must

measure weak deviations from baseline levels to capture the

earliest input and are therefore confronted with low signal-to-

noise-ratios. These initially very low activity levels observed in the

VSD experiments (see [12] and also [68]) were indeed not high

enough in the data to significantly contribute to our simple grid-

based search algorithms if not explicitly parameterized. As we tried

to keep our model as simple as possible we therefore did not

further optimize these lowest activity levels. However, it is crucial

to note that the measured propagation speeds are of postsynaptic

origin. Thus, propagation of activity signals integrative properties

of the neurons and the surrounding network, rather than reporting

true axonal conduction speeds [25]. These network properties are

reflected in the continuously rising VSD signal which we indeed
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captured in our NF model. Hence, in the model the speed of the

initial low-amplitude activity spread (coded by the light blue color

in Figure 7) demonstrates initially emerging activity within the

network and shows only weak dependency on the stimulus speed

as observed experimentally [12].

In conclusion, the model captures the main signatures of the

spread of activity observed in the new data set including real

motion. This generalization to novel stimuli similar to those used

to determine the model parameters supports our choice of the

neural field model architecture.

It remains an open question as to which neuronal mechanisms

lead to the line-motion illusion. The dichoptic experiments of

Hikosaka et al. [13] demonstrated that the retina and the LGN

cannot be the processing stages where the LM effect arises.

Instead, Hikosaka et al. argued that attentional effects are

responsible for the line-motion sensation [13,14]. Another

proposal was that since area MT plays a major role in motion

integration in humans and monkeys, the LM effect should arise

along the dorsal pathway. For instance, Baloch and Grossberg

[15] discussed a number of processing steps in their model of the

V1–V2–MT–MST pathway that could give rise to the LM

illusion.

A recent human fMRI study by Larsen et al. [16] demonstrated

that MT+ activation in response to true motion was similar to

activation following the presentation of a corresponding illusory

moving stimulus. The three-stage theory proposed by these

authors suggests that in the first stage higher areas solve the

‘‘correspondence problem’’ (i.e., identify two images as two

successive views of the same object), while in the second stage

MT+ computes the motion trajectory between these two object

representations, and finally the computed trajectory is back-

projected to V1 and filled in by a sequence of visual

representations of the object [16]. Ahmed et al. [17] reported

such feedback activation in area 17/18 from area 19/21 in ferrets

using VSD imaging. The activation was motion-dependent and

locked to the offset of the first stimulus in their apparent-motion

paradigm. This feedback activated the path between subsequent

retinotopic stimulus representations in area 17/18 and was

interpreted as to play an important role in the computation of

continuous motion.

In contrast, our model does not explicitly account for an impact

of back projections from higher cortical areas. Nevertheless, these

back propagating waves are slower than the initial LM effect

characterized here by the immediate drawing-out of activity

representing rapid motion [17]. However, we cannot exclude that

particularly later parts of the VSD responses may involve feedback

from higher visual areas.

The study by Jancke et al. [12] suggested that bottom-up

processes are the main source of the initial line-motion activity.

Our model confirms that lateral interactions in primary visual

cortex are sufficient to generate responses to the illusory LM

stimulus that are nearly indistinguishable from the responses to

true motion.

Supporting Information

Text S1 A) Covariance matrix adaptation evolution strategy; B)

Linear stability analysis of the homogeneous solution.

Found at: doi:10.1371/journal.pcbi.1000919.s001 (0.97 MB PDF)
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