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Abstract

Gene expression data generated systematically in a given system over multiple time points provides a source of
perturbation that can be leveraged to infer causal relationships among genes explaining network changes. Previously, we
showed that food intake has a large impact on blood gene expression patterns and that these responses, either in terms of
gene expression level or gene-gene connectivity, are strongly associated with metabolic diseases. In this study, we explored
which genes drive the changes of gene expression patterns in response to time and food intake. We applied the Granger
causality test and the dynamic Bayesian network to gene expression data generated from blood samples collected at
multiple time points during the course of a day. The simulation result shows that combining many short time series
together is as powerful to infer Granger causality as using a single long time series. Using the Granger causality test, we
identified genes that were supported as the most likely causal candidates for the coordinated temporal changes in the
network. These results show that PER1 is a key regulator of the blood transcriptional network, in which multiple biological
processes are under circadian rhythm regulation. The fasted and fed dynamic Bayesian networks showed that over 72% of
dynamic connections are self links. Finally, we show that different processes such as inflammation and lipid metabolism,
which are disconnected in the static network, become dynamically linked in response to food intake, which would suggest
that increasing nutritional load leads to coordinate regulation of these biological processes. In conclusion, our results
suggest that food intake has a profound impact on the dynamic co-regulation of multiple biological processes, such as
metabolism, immune response, apoptosis and circadian rhythm. The results could have broader implications for the design
of studies of disease association and drug response in clinical trials.
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Introduction

Elucidating networks that define biological pathways underlying

complex biological processes is an important goal of systems

biology. Large-scale molecular profiling technologies have enabled

measurements of mRNA and protein expression on the scale of

whole genomes. As a result, understanding the relationships

between genes and clinical traits, and inferring gene networks that

better define biochemical pathways that drive biological processes,

has become a major challenge to understanding large-scale data

sets generated from these technologies. For the majority of

published gene expression profiling experiments, they are carried

out at a single pre-defined time point across all samples, where the

implicit assumption is that the steady state for the corresponding

biological system is well approximated at a single time point. The

steady state in this context represents a baseline state of the system

under study in which the system is least likely to change and has

the least amount of variability due to environment.

Because biological pathways and the complex behaviors they

induce are dynamic [1], transcriptional response, interactions

among proteins and other such processes, take time and ultimately

lead to time-dependent variations in mRNA, protein and

metabolite levels. These types of temporal variation over time

are difficult to study directly with measurements taken at only a

single time point. Recently, studies applying time series to

temporal gene expression data have been published, covering a

range of experiments focusing for instance on the SOS DNA

repair system in E.coli [2], the cell cycle in yeast [3], muscle

development in Drosophila [4] and cell cycle processes in human

cell lines [5–6].

Coexpression networks are based on pair-wise gene-gene

correlations of expression data, revealing functional modules in
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the network that elucidate pathways that drive core biological

processes [7–8] or pathways that underlie complex human disease

[9–10]. Coexpression networks provide global views of network

structures, but by themselves cannot yield causal relationship

between genes or between genes and clinical traits. Using a

Bayesian network approach to integrate genetic, expression, and

clinical data in segregating populations, we have previously

demonstrated that such causal relationships can be inferred

[11–14]. While these network approaches have proven useful in

elucidating complex traits emerging in complex systems at the

population level, they have however been based on data sampled

at a single time point.

A static Bayesian network (SBN) is a graphical model that

encodes a joint probability distribution p(X ) on a set of sto-

chastic variables X , which can be decomposed as p(X )~
P
i

p(X ijPa(X i)), where Pa(X i) represents the parent set of X i.

Similar to a static Bayesian network, a dynamic Bayesian Net-

work (DBN) is also a graphical model with a joint probability

distribution. The main difference between them is that DBN also

captures temporal relationships between variables Xt which is the

vector for variables X at the time point t. If there are T time

points, then the joint probability distribution p(X1, . . . ,XT ) can be

decomposed as p(X1, . . . ,XT )~ P
T

t~1
P
i

p(X i
t jPa(X i

t )), where

Pa(X i
t ) represents the parent set of X i

t . In general, Pa(X i
t ) can

include variables from the same time point t or the previous time

points (represented as Pa(X i
t )[

St

n~1

Xn). There are many ways to

simplify the complexity of the DBN model and data required to

train the model. First, we can assume first order Markov property

for transitional dependence, then the parent set can be simplified

as Pa(X i
t )[Xt{1|Xt which corresponds to a general two-slice

model (Figure 1A). The intra-slice links represent causal

relationships inferred at static states or causal relationships

happens in a shorter time than the sampling time between t{1
and t. We will refer to this model as DBN in our present study.

Second, we can further simplify the model and assume

Pa(Xt)[Xt{1 (the variables in current time t only depend on

the previous time point t{1), then the DBN corresponds to a

simplified two-slice model without intra-slice interactions

(Figure 1B). Third, if we assume that the variable i is self

regulated (X i
t{1[Pa(X i

t )), then the DBN can be represented as a

two-slice model in Figure 1C, which is equivalent to a Granger

causality test with a stationary Bivariate Auto-Regressive model

(BVAR). We will refer this model as the Granger causality test in

our result.

The DBN is a popular approach in computer sciences, such as

Kalman filter and Hidden Markov Model (HMM) in voice

recognition [15] or more recently in inferring transcriptional

regulatory networks from time series data [2] and protein

fragmentation process [16]. Another independent line of research

of inferring causal relationship from time series is ‘‘Granger

causality’’. The Granger causality concept was originally devel-

oped for economic time series data [17], but has since been

applied to time series data in many different domains. The

Granger causality networks under some assumptions are similar to

special cases of the DBN. For example, the model in Figure 1C is a

DBN and a Granger causality network with a stationary BVAR

model. However, while the Granger causality and the DBN have

recently been applied to elucidate temporal causality networks in a

number of experimental works, such as SOS DNA repair in E.coli

[2], cell cycle in yeast [3], muscle development in Drosophila [4],

Author Summary

Peripheral blood is the most readily accessible human
tissue for clinical studies and experimental research more
generally. Large-scale molecular profiling technologies
have enabled measurements of mRNA expression on the
scale of whole genomes. Understanding the relationships
between human blood gene expression profiles and
clinical traits is extremely useful for inferring causal factors
for human disease and for studying drug response.
Biological pathways and the complex behaviors they
induce are not static, but change dynamically in response
to external factors such as intake/uptake of nutrients and
administration of drugs. We employed a randomized, two-
arm cross-over design to assess the effects of fasting and
feeding on the dynamic changes of blood transcriptional
network. Our work has convincingly shown that feeding or
increasing nutritional load affects the human circadian
rhythm system which connects to other biological
processes including metabolic and immune responses.
We believe this is a first step towards a more comprehen-
sive population-based study that seeks to connect
changes in the blood transcriptome to drug response,
and to disease and biology more generally.

Figure 1. Dynamic Bayesian models under different assumptions. (A) a general two-slice model: a DBN under first-order Markov assumption;
(B) a simplified two-slice model assuming no intra-slice interactions; (C) a two-slice model assuming that every variable is under self regulation.
doi:10.1371/journal.pcbi.1000671.g001
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and cell cycle in human cell lines [5–6], no studies to our

knowledge have expanded on this concept of temporal causality to

gene expression time series data collected in vivo in humans.

One of challenges of applying the Granger causality test to

human samples is how to generate long time series data. We

overcome the problem by combining multiple short time series.

Our simulation results show that data combined from multiple

short time series is as informative as a long time series. One of

challenges of applying DBN to human samples is limited sample

size. We tackled this problem by reconstructing the intra-slice

structure from a large data set generated at static states, then

reconstructing the inter-slice structure from the time series data.

In the present study we have applied methods based on Granger

causality and DBN to a set of human blood gene expression

profiles generated at multiple time points during the course of a

day, shown in Figure 2. The blood gene expression data was

generated from 40 apparently healthy males participating in a

randomized, two-arm cross-over design study to assess the effects

of fasting and feeding on the blood transcriptional network [18]

(see Materials and Methods section for details). The fasted and fed

arms of the study provided the necessary data to characterize the

dynamic changes in gene expression and corresponding pathways

associated with fasting and feeding states in human blood samples

[18]. After removing individual scaling effects by referencing

individual’s time point 0, short time series were combined into

virtual long time series (shown in Figure 2). Using the Granger

causality test, we identified PER1 as the key regulator of the blood

gene expression pattern in which multiple biological processes

were under circadian rhythm regulation. Furthermore, the genes

under PER1 regulation in the fed network are enriched for obesity

causal genes. Finally, using the DBN, we show that over 72% of all

inter-slice links are self links and when the SBN and the DBN were

compared, we found that different processes such as inflammation

and lipid metabolism, which are disconnected during fasting, are

now dynamically linked together in response to food intake.

Results

Identifying causal regulators using Granger causality
The two-way or three-way ANOVA analysis defining time- and

state-dependent gene expression signatures provides meaningful

way to characterize expression changes on a global scale [18].

However, these methods on their own do not provide any

information on the causal regulators driving the time-dependent

gene expression behavior. To leverage the time series data more

maximally towards this end, we applied Granger causality test to

gene expression traits scored systematically in the fasted/fed

cohort blood samples at roughly 1 hour intervals during the course

of a day (Figure 2). A gene expression trait X i is said to be Granger

causal for gene expression trait X j if, at previous time points, X i
t{1

provides significantly more information on time-dependent

changes in X
j
t than the historical information X

j
t{1 provides on

itself. In our implementation of the Granger causality test, we test

this by fitting X j to an autoregressive model with respect to the

different time points, and then testing whether extending the

autoregressive model by including X i improves the fit (see

Materials and Methods for details). If there is a statistically

significant improvement testing the model fit (assessed by

comparing the models using the F test), then we declare that X i

is Granger causal for X j , or simply as X i?X j .

Traditionally, a long time series is required to apply Granger

causality test. However, it is hard to obtain a long time series of

Figure 2. Experimental design and data processing scheme. Forty healthy volunteers were recruited to participate in the study and
randomized to a treatment arm (either fasted or fed). To minimize individual scale differences, every participant’s gene expression profile after the
first time point was referenced (re-ratioed) to their corresponding expression profile at time point 0. The re-referenced gene expression values from
time point 1 to 6 in the figure represent the expression data used herein as virtual long time series.
doi:10.1371/journal.pcbi.1000671.g002
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human samples collected in vivo. We have previously shown that

over 80% of transcripts have significant inter-individual variances

[18], which is comparable to previously reported result [19]. Thus,

we can treat time series data from 40 patients as 40 independent

short time series. Assuming these 40 time series have similar

dynamic behavior, but with different starting points, we can

combine them together to generate a virtual long time series

(shown in Figure 2, and see Materials and Methods for details).

Our simulation results show that the virtual long time series are as

informative as long time series with similar data points (shown as

Supplementary Figures S1 and S2). We constructed causal

networks for the fasted and fed states by applying the Granger

causality test to all gene expression trait pairs generated in the

fasting/feeding cohort described in Figure 2. For gene expression

traits X scored in the fasting/feeding cohort, a link X i?X j was

inserted into the causal network if the p-value associated with the

Granger causality test was less than 0.01 after multiple testing

correction. The resulting fasted and fed networks were comprised

of 2010 and 967 causal links (listed in Supplementary Tables S1

and S2), respectively. The corresponding false discovery rates

(FDR) [20] for the causal links in the fasted and fed networks were

4:98|10{6 and 1:03|10{5, respectively. Bootstrapping test

results (see Materials and Methods for details) show that 80% and

90% of links in fast and fed networks have confident values above

0.5, respectively (shown in Supplementary Figure S3). Both

networks were observed to exhibit the scale-free property for

out-degree distributions (shown as Supplementary Figure S4).

From these data it was possible to identify all expression traits

supported as Granger causal for at least one other expression trait

in the network (referred to here as causal regulators), and then

rank order the causal regulators according to the number of genes

for which they were supported as causal, shown in Table 1.

There are more causal links inferred for fast time series than for

fed time series. The fasted network consists of many small

subnetworks and the fed network consists of mainly two

subnetworks (shown in Figures 3A and 3B). The top causal gene

in the fasted network is RNF144B, a putative ubiquitin-protein

ligase that plays a role in mediating p53-dependent apoptosis.

Genes under RNF144B regulation including PTEN are enriched

for the GO biological process of negative regulation of cellular

metabolic process (p-value = 0.008). The top causal gene in the fed

network is PER1, a transcription factor regulating the circadian

clock, cell growth and apoptosis. The genes under PER1

regulation are enriched for genes correlated to plasma concentra-

tion of triglyceride (p-value = 0.00045) in the Icelandic Family

Blood (IFB) cohort [10]. PER1’s downstream genes are involved in

diverse biological processes including CREB5, in circadian rhythm,

PTEN and P53INP2 in apoptosis, IL1R1, IL1RAP and TLR2 all

involved in inflammation response, FASN and ACSL1 in fatty acid

metabolism and MVK in cholesterol biosynthesis. These results

suggest that food intake interacts with circadian rhythm and the

circadian rhythm has impacts on many biological processes as has

been previously shown in mouse studies [21–22]. Further, previous

research has demonstrated circadian gene (PER1, PER2, PER3

etc.) mRNA expression rhythm in human peripheral blood cells

and linked that to individual’s circadian phenotype [23–24]. Our

blood causal network where PER1 is a top causal gene illustrates a

potential mechanism of how the CNS control and environmental

influences (e.g. external sunlight) can affect circadian rhythm gene

expression which in turn regulating a host of other biological

functions. More specifically, circadian rhythm genes (PER1 in

particular) play important roles in cell cycle regulation and cancer

processes [25–26]. These reports support our observations in the

fed network that several genes under PER1 control are involved in

apoptosis and cell cycle regulation (e.g., PTEN and P53INP2).

380 human genes are cataloged as obesity causal genes in the

human obesity map [27]. In recent years, many large genome-

wide association studies (GWAS) have convincingly identified a

number of genes causing human obesity. 34 genes including FTO

were replicated in many populations [28–31] Taking consider-

ation of these two sources, there are 409 obesity causal genes, and

246 of them were expressed in our blood data set. When the

obesity causal genes were overlapped with the fasted and fed

networks, 7 genes (ADA, BBS5, CBL, CCND3, FASN, FTO and

SCARB1) overlapped with PER1’s downstream genes in the fed

network (Fisher’s Exact Test p-value = 0.037) (shown in Figure 3C).

It has been shown that circadian rhythm links to metabolic

processes in mouse [32–33]. For instance, mutations in mouse

genes involving circadian rhythm regulation, such as Clock, can

lead to obesity [34]. Our results provide evidence that human

obesity causal genes are under circadian rhythm control in a

peripheral tissue like blood.

Connecting different biological processes using dynamic
Bayesian networks (DBN)

Constructing DBN using the model described in Figure 1A,

requires a large amount of data and computational resources.

However, when the intra-slice structure (the SBN) is known, then

there is a dramatically reduced demand for large amounts of both

Table 1. Top causal regulators in the fast and fed Granger causality networks.

Fasting Fed

Accession gene out-degree Accession gene out-degree

AJ420555 RNF144B 53 NM_002616 PER1 211

AK057742 C10orf46 41 RSE_00000601195 SLC22A23 68

AF038535 SYT7 31 NM_003869 CES2 17

NM_006868 RAB31 31 NM_001657 AREG 16

NM_052868 IGSF8 27 NM_007246 KLHL2 8

NM_002483 CEACAM6 21 Contig53615_RC Contig53615_RC 8

NM_024075 TSEN34 21 NM_001875 CPS1 8

NM_004090 DUSP3 20 NM_024321 RBM42 8

NM_021943 ZFAND3 20 NM_000967 RPL3 8

doi:10.1371/journal.pcbi.1000671.t001
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data and computational resources. A large dataset of profiled

peripheral blood samples (IFB) is already described and available

[10]. The fasting feeding study group and the IFB cohort are

derived from the same population both in terms of geological

location and genetic background, therefore the static networks

based on these two studies are assumed to be similar. The IFB data

set consists of both gene expression measured in the fasting state

and genotype data. Previously, we demonstrated that Bayesian

networks constructed by integrating gene expression data and

genotype data were of high quality [12–13,35]. To match for

gender, data from 455 males in the IFB cohort was used to

construct a static Bayesian network which consisted of 7310 nodes

(genes) and 11047 links (see Method Section for details). The static

Bayesian network was fixed as the intra-slice network in the DBN

model shown in Figure 1A, and then the time series data (fast or

fed) were used to construct inter-slice connections.

The fasted and fed DBNs consisted of 1125 and 1290 inter-slice

links (listed in Supplementary Tables S3 and S4), respectively.

Among them, 846 (75%) and 936 (73%) were self links. 404 self

links are common between the fasted and fed DBNs. The genes

under self control (with self links in DBNs) are enriched for cis

expression quantitative traits (cis eQTLs) in blood (enrichment p-

values = 2:02|10{140 and 2:13|10{85 for the fasted and fed

DBNs, respectively).

One important goal for utilizing time series data is to study the

dynamic changes in molecular networks. Under static condition,

many biological processes may be disconnected or loosely

connected, whereas under a perturbation, these processes will

change coordinately. 409 obesity causal genes mentioned above

were collected from two resources, namely the human obesity map

[27] and recent GWAS data [28–29,36]. 138 out of the 409 genes

are included in the DBNs. These 138 genes were used as seeds to

construct obesity related sub-networks for fast and fed DBN and

the SBN as previously described [13]. The fasted and fed

subnetworks were compared with the subnetworks constructed

from the SBN. The largest change was from the fed subnetwork,

where three segmented subnetworks in the SBN were connected in

the fed DBN by two inter-slice links (shown as red in Figure 4).

CDCA7, a transcription regulator for the cell cycle, is found in the

center of the connected subnetworks. It connects genes involved in

lipid metabolism such as NPC1, FABP5 and APOE to the large

subnetwork on the left which consists of inflammatory response

genes such as STAT3, STAT5, GPR109A, TNF, NTSR1, ORM1

and IL1RN. This suggests that the expression of genes involved

in either inflammatory response or lipid metabolism change

coordinately in response to food intake. It is also worth noting that

the circadian rhythm regulator PER1 is in the subnetwork on the

left, which consists of many genes involved in inflammatory

response pathways. As well, in the fed DBN, both cell cycle

regulation and lipid metabolism processes are linked to the

circadian rhythm.

Discussion

Designing experiments to generate large-scale molecular

phenotyping data and to enable inferring causal relationships

among genes and between genes and clinical endpoints is now a

feasible task. Genetic variants (e.g. nonsynonimous, nonsense,

eSNPs etc), genetically modified animals (e.g., knockouts, trans-

genics, RNAi knockdown), and chemical perturbations have all

been used successfully to establish a causal relationship between

genes and phenotypes in mammalian systems. Here we have

detailed the use of time series data in a human population to

predict causal regulators using a Granger causality test and a

DBN. Our Granger causality networks showed that multiple

biological processes such as apoptosis, inflammation response and

lipid metabolism are under circadian rhythm regulation and

obesity causal genes are under circadian rhythm regulator PER1 in

the fed networks. For the DBN, we showed that over 73% of inter-

slice links are self links. When the SBN and the DBN were

compared, we find that different processes such as inflammation

and lipid metabolism are linked together during the dynamic

changes in responding to food intake.

The time series data provided a path to go beyond the

characterization of interesting patterns of expression and network

differences associated with complex states (like fasting and feed

status), by allowing for the identification of putative causal

regulators driving these differences. While extensive experimental

validation will be required to assess the full utility of the approach

detailed in the present study, we believe these methods and the

characterizations of time and state dependent changes in gene

expression and network topology, will motivate a need to integrate

Figure 3. Fasted and fed Granger causality networks. (A) the global view of the fast network; (B) the global view of the fed network; (C) the
zoom-in view of the subnetwork around PER1 (black box) in (B). There are more links in the fast networks. The fast network consists of many small
subnetworks and the fed network consists of two large subnetworks and a few small ones. Nodes in red are obesity causal genes.
doi:10.1371/journal.pcbi.1000671.g003
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a time domain into gene expression experiments that aim to

elucidate complex system behavior.

Our data consist of many short time series from multiple

individuals instead of a single long time series. Our approach for

combining multiple short time series was based on the assumption

that individual response slopes are similar. First, the population

under study is relatively homogeneous, i.e. only males, similar age,

same population, same ethnicity and each individual consumed

the meal of same size and composition. Second, we reduced the

individual specific variance by normalizing each individual data

according to its own expression data at the first time point. This

essentially reduces the number of parameters to fit in the model, at

the cost of reducing the number of time points available to feed

into the model. In contrast, if the population under study was

genetically heterogeneous, we would treat the response slope

differently for different individuals and would employ the mixed-

effects model as suggested by Berhane and Thomas [37] for

combining time series. In that case, we wouldn’t need to normalize

data for each individual, and as a result there would be an increase

in the number of parameters to fit as well as an increase in the

available data points. We note in passing, that the Icelandic

population is relatively homogenous as regards genetic makeup

and environmental parameters.

Our implementation of the Granger causality test is a special

form of DBN where there is no causal structure within a single

time slice. There are also many variations of the Granger causality

test including stationary or non-stationary, dynamic or time-

invariant Granger causality tests. Our simple implementation of

Granger causality test identified the transcription factor PER1 as

the main causal regulator in the fed time series.

The intra-slice network (SBN) was reconstructed from an

independent data set and is fixed in our current model of DBN.

Even though the SBN was reconstructed using about 455 samples,

there are still many uncertainties about the network structure and

edge directions. Further researches on using the SBN as flexible

priors for intra-slice structure rather than fixed one are warranted.

Several simulation studies have been carried out to estimate the

number of samples that are required to build SBNs or DBNs. Zhu

et al. [12] showed that these numbers are related to the interaction

strength between nodes. For instance, with networks consisting

mainly of interactions at intermediate strength, over 80% of

interactions in SBN can be recovered at 90% precision with 1000

samples. Similarly, Yu et al. [38] showed that over 85% of links in

DBNs can be recovered with 2000 samples. In addition, Yu et al.

showed that the sampling interval is also an important parameter.

When the sampling interval is small, the difference between data at

consecutive time points will be small. In other words, the

independent information added is small. Our time series

simulation result (Supplementary Figure 2) and the results of Yu

et al., both show that network reconstruction accuracies drop when

Figure 4. Changes in the obesity causal genes subnetworks between the fed DBN and the SBN. Nodes in red represent obesity causal
genes. Edges in black are links in the SBN and Edge in red are inter-slice links in the fed DBN. Three subnetworks in the BN are connected in the fed
DBN. The circadian rhythm regulator PER1 is also in the subnetwork.
doi:10.1371/journal.pcbi.1000671.g004
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sampling intervals are large. In both our and Yu et al.’s time series

simulations, all interactions have the same time lag. In reality, the

time lags are different for different transcriptional regulations [39].

Zou and Conzen [3] showed that a better reconstruction accuracy

of DBN could be achieved when considering time lag differences.

The general DBN model shown in Figure 1a can represent mixed

time lags with intra-slice interactions for zero or short time lags

and inter-slice interactions for large time lags. Based on the

complications discussed above, at least 1000 data points are

needed to reconstruct an adequate DBN. Sachs et al. [40] sugg-

ests that even over 23,000 data points are not sufficient for

reconstructing an accurate DBN. Obviously, additional priors can

improve reconstruction accuracies with the same amount of data

[3,12]. To accurately estimate the amount of data required to

reconstruct DBNs under different interaction strengths using

different mixtures of time lags and different priors, a systematic

data simulation is warranted.

The causal networks derived from either the Granger causality

test or the Dynamic Bayesian network, both showed that the

networks under the fasting state were fragmented (loosely

connected) while the networks in the feeding state are more

highly interconnected. It is well established, that the circadian

rhythm interacts with metabolic [32] and immune response

processes in rodents [41]. For instance TNF-alpha, which

regulates immune cells and induces apoptotic cell death, is also

shown to regulate key genes in the circadian rhythm, including

Dbp and Per1-3 [41]. It is possible that increasing nutritional load

directly affects the circadian rhythm system, possibly through

ghrelin [42]. Our results in humans are consistent with the rodent

data, showing that feeding is directly linked to the circadian

rhythm system. Furthermore, our results suggest that the

interconnections between different biological processes such as

metabolic and immune responses and activated cell death are

weak in the fasted state, while feeding dramatically enhances the

interconnections between these different biological processes.

Further experimental work is warranted to verify whether these

changes still hold in the general population.

Human peripheral blood is the most readily accessible human

tissue for clinical studies. Our work on peripheral blood has

demonstrated that feeding or increasing nutritional load affects the

human circadian rhythm system, which becomes highly connected

to other biological processes including metabolic and immune

responses. And these effects can be observed in peripheral blood.

We believe the results of the present work have broader

implications for studies of drug response and for genetic and

experimental studies on blood chemistry and vascular related

clinical traits. Our results suggest that how blood networks respond

to feeding is an important variable that may bring us closer to

dissecting the underlying causes of obesity and associated

disorders. Our results also provide a guideline on how much data

are required for inferring causal relationship in human blood for

future experiments.

Materials and Methods

Time series data
40 healthy participants from an Icelandic company were

recruited to participate in a randomized, two-arm, cross-over

study to examine the effects of fasting and feeding on human blood

gene expression [18], shown in Figure 2. For the first period of the

study the 40 participants were randomized to two treatment

groups, with 20 individuals making up each group. All participants

began fasting at 9pm the night before the first period of the study.

The first treatment group comprised the fasted arm of the study

for the first period, where participants continued to fast through

the day for the duration of the study (participants were only

allowed to drink water during this time). The second treatment

group comprised the fed arm of the study for the first period,

where participants were fed a standard meal in the morning and

then fasted through the rest of the day for the duration of the

study. The second period of the study was carried out one week

later from the start of the first period. The protocol for the second

period of the study was identical to the first period, except those in

the fasted arm for the first period were switched to the fed arm,

and those in the fed arm for the first period were switched to the

fasted arm. Figure 2 shows the schematic for the experimental

design.

A total of 560 peripheral blood samples were collected from the

40 participants at 7 time points for each period of the study.

Significant inter-individual variation has been noted in human

blood gene expression profiles [43]. Previous analyses carried out

on this data set detailed the inter-individual variation and overall

expression differences between the fasted and fed conditions [18].

In the present study we focus mainly on using temporal

information to infer causal relationship by applying a Granger

causality test and a dynamic Bayesian network so that possible

causal drivers of dynamic changes can be identified from the

causal networks. To correct for the individual differences in gene

expression we referenced each individual expression profile to the

corresponding individual profile at time point 0. This reduced the

effective number of time points to 6 for this study.

Constructing causal networks using Granger’s causality
test

The time series based causality test was proposed by Wiener

[44] as the notion that, if the prediction of one time series could be

improved by incorporating the knowledge if a second one, then

the second series has a causal influence on the first. Granger was

the first to formalize the idea in the context of linear regression

model [17], so that time series based causality test is generally

referred as Granger causality test. There is a variety of models for

testing Granger causality, such as multivariate autoregressive

model (MVAR) and bivariate autoregressive model (BVAR). If

coefficients in the regression model do not change depending on

time, the model is referred as a stationary model. Otherwise it is

referred a non-stationary model. The simplest model is stationary

bivector autoregressive model. Even though comparing to MVAR,

BVAR tends to infer many indirected links, the causal directions of

these inferred links follow causal information flows [45]. To

remove potential in-direct links, for each gene, we only keep one

causal link pointing to it, which has the most significant p-value in

the BVAR model.

Traditionally, Granger causality test is applied to long time

series. However, it is hard to collect long time course data from

human samples. Our data consists of many short time series from

multiple individuals. There are several theoretical studies related

to combining multiple time series in a general regression frame

work, including for instance that of Berhane & Thomas [37] and

Guerrero & Pena [46]. Berhane & Thomas [37] proposed to use a

mixed-effects model to combine time series from different

locations, while Guerrero & Pena [46] outlined a weighted least

squares approach. In both approaches, some constraints were

applied after a number of assumptions were made.

Our approach is a simplified version of the Berhane & Thomas

approach [37]. Instead of using community-specific slopes, we

assumed response slopes for individuals are similar. Further, in

order to reduce individual specific variation which could affect

the response slope, an individual’s gene expression data were
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normalized according to its own expression data at the first time

point. Our simulation study shows that causal relationship can be

accurately inferred by combining these short time series.

Simulation of short time series
Under first order stationary BVAR model, a set of data was

simulated for causal relationship X?Y as following:

xn,t~cnxn,t{1zen,t

yn,t~anyn,t{1zbnxn,t{1zmn,t:
ð1Þ

There are N independent time series of length T , n~1, � � � ,N,

t~1, � � � ,T . All coefficients and noises follow normal distributions

as

c*N(0:5,0:1), e*N(0,0:2)

a*N(0:5,0:1), b*N(0:5,0:1), m*N(0,0:2):
ð2Þ

The initial conditions are draw from an uniform distribution with

mean 0. 1000 independent time series were simulated, and each

series consists of 240 time point (shown as Supplementary

Figure 1).

The test of Granger causality X?Y under BVAR model can be

carried out by comparing the full model

yn,t~anyn,t{1zbnxn,t{1zmn,t ð3Þ

with the autoregressive model

yn,t~anyn,t{1zdn,t: ð4Þ

The significance of the Granger causality test X?Y (full model

explains more variance than the autoregressive model) is then

measured by F-test statistics

Sn~
(RSS0n{RSS1n)

RSS1n=(T{3)
*F1,T{3 ð5Þ

where RSS1n~
PT

t~2

m2
n,t and RSS0n~

PT

t~2

d2
n,t are sum of squared

residuals of full model and autoregressive model, respectively; and

T is the length of the time series.

For the 1000 time series simulated above, the p-values of

Granger causality X?Y are estimated as Eq. 5. If only partial

time points are used, then the power to detect Granger causality

decreases (shown in Supplementary Figure 2). It is worth to note

when the same number of time points are used, it is more likely to

inferred correct causality if the interval between time points is

shorter.

If only 6 time points are used, no Granger causality test is

significant if considering the time series independently. If assuming

an and bn are similar, then these short series can be combined

together to infer Granger causality, and the Eq. 3 can be modified

as

S~
(RSS0{RSS1)

RSS1=(N � (T{1){2)
*F1,N�(T{1){2, ð6Þ

where RSS1~
PN

n~1

PT

t~2

m2
n,t and RSS0~

PN

n~1

PT

t~2

d2
n,t are sum of

squared residuals of full model and autoregression model,

respectively. For example, a virtual time series by combining the

first 6 time points of randomly selected 40 time series is as

informative as a long time series with the same time points.

To estimate the false positive rate, we permuted the assignment

of 1000 time series generated above (for example Xi was assigned

as Xj where i=j) so that the autoregressive assumption was valid.

For each permutated data set, we followed the same procedure

mentioned above to calculate p-values for the Granger causality

test. At different p-value cutoffs, we calculated the recall (positive

rate) and the false positive rate (shown in the Supplementary

Figure 2).

It is of note that choosing the optimal time lag length in the

autoregressive (AR) model normally requires comparing model

residuals and statistics at different p-value thresholds. However,

because of the small sample size (40) and limited number of time

points (6), we restricted our analyses here using AR models with

only first order time dependency, similar to what has been done in

previous studies [5–6]. Similarly, we assumed the Granger causal

relations were stationary from time point 1 to 6. That is, we were

mainly interested in the mean a and b values in Eq.(1), which

represent the averaged Granger causality between genes from time

point 1 to 6.

Bootstrapping test
A bootstrapping procedure of re-sampling individuals with

replacement, was used. At each time, one subject (along the

associated data at 6 time points) was sampled from a pool of 40

individuals. A bootstrapped data set consisted of 40 sampled

individuals (4066 data points). The same Granger causality test

outlined above was applied to the re-sampled data. The

bootstrapping procedure was performed 100 times. The link

confident value is the percentage of a link’s p-values above a

multiple testing corrected threshold in the results of the 100

bootstrapping tests.

Reconstructing the static Bayesian network
455 male samples in IFB cohort [10] was used in reconstruction

of the static Bayesian network. A set of informative genes were

identified as follows: (1) a gene expressed in the blood (with mean

log intensity .21.5), (2) the variation of the mean log ratio was

larger than 1.23. Of the 23720 genes represented on the

microarray, 7310 were selected for inclusion in the network

reconstruction process as previously described [12,35]. One

thousand Bayesian networks were reconstructed using different

random seeds to start the reconstruction process. From the

resulting set of 1000 networks generated by this process, edges that

appeared in greater than 30% of the networks were used to define

a consensus network.

Reconstructing dynamic Bayesian networks
For a two-slice dynamic Bayesian network represented in Figure

1A, it can be decomposed as p(X1, . . . ,XT )~ P
T

t~1
P
i

p(X i
t jPa(X i

t )),

where Pa(X i
t )[Xt{1|Xt is the parent set of X i

t . The static Bayesian

network reconstructed above was used as the intra-slice network. The

intra-slice network is fixed and is not refined in the process of

reconstructing dynamic Bayesian networks. Thus, only inter-slice links

(Pa’(X i
t )[Xt{1) are added or removed during the reconstruction

process. Similar to the static Bayesian network reconstruction process,

1000 networks were reconstructed using different seeds and the

Bayesian information criterion (BIC) score [47] was used for the

optimization. Edges appeared in 30% of the 1000 structures are

included in the final network.
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Supporting Information

Figure S1 A Montage display of independently simulated time

series for XRY based on Equation 1. Each time series consists of

240 time points (only the first 50 points are shown here). Blue lines

are for X, and red lines are for Y.

Found at: doi:10.1371/journal.pcbi.1000671.s001 (0.06 MB EPS)

Figure S2 Prediction accuracies of Granger causality XRY

using the simulated time series shown in Figure S1. Each full series

consists of 240 time points and each short series consists of 6 time

points.

Found at: doi:10.1371/journal.pcbi.1000671.s002 (0.03 MB TIF)

Figure S3 The distributions of bootstrapping confident values of

links inferred in both fast and fed Granger causality networks. (A)

80% links in the fast network have confident values above 0.5 (B)

90% of links in the fed network have confident values above 0.5.

Found at: doi:10.1371/journal.pcbi.1000671.s003 (0.12 MB TIF)

Figure S4 The out-degree distributions of both fasted and fed

Granger causality networks exhibit scale-free properties. (A) The

out-degree distribution for the fasted network; (B) the out-degree

distribution for the fed network.

Found at: doi:10.1371/journal.pcbi.1000671.s004 (0.03 MB PDF)

Table S1 Inferred causal links in the fast blood Granger causal

network.

Found at: doi:10.1371/journal.pcbi.1000671.s005 (0.03 MB

TXT)

Table S2 Inferred causal links in the fed blood Granger causal

network.

Found at: doi:10.1371/journal.pcbi.1000671.s006 (0.01 MB

TXT)

Table S3 Inferred inter-slice causal links in the fast blood

Dynamic Bayesian network.

Found at: doi:10.1371/journal.pcbi.1000671.s007 (0.02 MB

TXT)

Table S4 Inferred inter-slice causal links in the fed blood

Dynamic Bayesian network.

Found at: doi:10.1371/journal.pcbi.1000671.s008 (0.02 MB

TXT)
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