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Abstract

One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform
its biological functions. We present a conceptual framework that explains how this requirement causes the probability that
a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically
formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from
homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured
mutational stability effects (DDG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling
program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to
predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive
influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow
the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing
mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also
makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving
the way for more accurate analyses of molecular evolution.
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Introduction

Knowledge of the impact of individual amino acid mutations on

a protein’s stability is valuable both for understanding the protein’s

natural evolution and for altering its properties for engineering

purposes. Experimentally measuring the effects of mutations on

protein stability is a laborious process, so a variety of methods have

been devised to predict these effects computationally. Most

existing methods rely on some type of physicochemical modeling

of the mutation in the context of the protein’s three-dimensional

structure, often augmented by information gleaned from statistical

analyses of protein sequences and structures. These types of

methods are moderately accurate at predicting the effects of

mutations on the stabilities of small soluble proteins [1–8]. There is

little or no published data evaluating their performance on the

larger and more complex proteins that are frequently of greatest

biological interest, although it might be expected to be worse given

the greater difficulty of modeling larger structures.

An alternative approach to predicting the effects of mutations

on protein stability utilizes the information contained in

alignments of evolutionarily related sequences. This approach,

which was originally introduced by Steipe and coworkers [9],

envisions an alignment of related sequences as representing a

random sample of all possible sequences that fold into a given

protein structure. Based on a loose analogy with statistical physics,

the frequency of a given residue in the sequence alignment is

assumed to be an exponential function of its contribution to the

protein’s stability (just as the Boltzmann factor in statistical physics

relates the probability of a microscopic state to the exponential of

its energy). This is often called the ‘‘consensus’’ approach, since it

always predicts that the most stabilizing mutation will be to the

most commonly occurring (consensus) residue. The consensus

approach has proven to be surprisingly successful, with a wide

range of studies supporting the basic notion that stabilizing

residues tend to appear more frequently in sequence alignments of

homologous proteins [10–17].

But although it is often effective, the consensus approach suffers

from an obvious conceptual flaw: alignments of natural proteins do

not represent random samples of all possible sequences encoding a

given structure, but instead are highly biased by evolutionary

relationships. A particular residue might occur frequently because

it has arisen repeatedly through independent amino acid

substitutions, or it might occur frequently simply because it

occurred in the common ancestor of many related sequences in the

alignment. The sequence evolution of even distantly related

protein homologs is non-ergodic (as evidenced by the fact that

sequence divergence continues to increase with elapsed evolution-

ary time), and so this problem will plague all natural sequence

alignments. Therefore, it would clearly be desirable to extract

information about protein stability from sequence alignments

using a method that accounts for evolutionary relationships.

In fact, there are already highly developed mathematical

descriptions of the divergence of evolving protein sequences.

The widely used likelihood-based methods for inferring protein
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phylogenies employ explicit models of amino acid substitution to

assess the likelihood of phylogenetic trees [18]. However, these

methods make no effort to determine how selection for protein

stability might manifest itself in the ultimate frequencies of amino

acids in an alignment of evolved sequences. Instead, in their

simplest form, these phylogenetic methods simply assume that

there is a universal ‘‘average’’ tendency for one particular amino

acid to be substituted with another (these ‘‘average’’ substitution

tendencies are typically given by PAM, BLOSUM, or JTT

matrices). More advanced phylogenetic methods sometimes allow

for different ‘‘average’’ substitution tendencies for different classes

of protein residues (such as surface versus core residues, or residues

involved in different types of secondary structures) [19–24]. Still

other methods use simulations or other structure-based methods to

derive site-specific substitution matrices for different positions in a

protein [25–28]. However, none of these methods relate the

substitution probabilities to the effects of mutations on experi-

mentally measurable properties such as protein stability, nor do

they provide a method for predicting the effects of the mutations

from the protein phylogenies.

Here we present an approach for using protein phylogenies to

infer the effects of amino acid mutations on protein stability. We

begin by describing a conceptual framework that quantitatively

links a mutation’s effect on protein stability to the probability that

it will be fixed by evolution. We then show how this framework

can be used to calculate the likelihood of specific phylogenetic

relationships given the stability effects of all possible amino acid

mutations to a protein. Our actual goal is to do the reverse, and

infer the stability effects given a known protein phylogeny. To

robustly accomplish this, we use Bayesian inference with

informative priors derived from an established physicochemical

modeling program. We compare the inferred stability effects to

published experimental values for several proteins, and show that

our method outperforms both the physicochemical modeling

program and the consensus approach. Finally, we use our method

to predict mutations that increase the temperature-stability of

influenza hemagglutinin, a complex multimeric membrane-bound

glycoprotein for which (to our knowledge) stabilizing mutations

have never previously been successfully predicted by any

approach. We introduce the predicted stabilizing mutations into

hemagglutinin, and experimentally demonstrate that several of

them increase the temperature-stability of the protein in the

context of live influenza virus. Overall, our work presents a unified

framework for incorporating protein stability into phylogenetic

analyses, as well as demonstrating a powerful new approach for

predicting stabilizing mutations.

Results

A framework relating the biophysical impact of amino
acid mutations to the frequency with which they are
fixed during neutral evolution

We begin by introducing a conceptual framework that relates

the probability that a specific amino acid mutation will be

selectively neutral (and so have an opportunity to spread by

genetic drift) to its effect on protein stability. Because this

conceptual framework forms the starting point for subsequent

mathematical inference, it is necessarily highly simplified. It is

based on several assumptions which, although motivated by

biophysical considerations, are subject to many exceptions. Below

we outline these assumptions, and mention some of the exceptions.

We hope the reader will become convinced that this conceptual

framework strikes a reasonable balance between being realistic and

mathematically tractable. The conceptual framework that we

describe has previously been successfully employed in simulations

[29,30], and later in theoretical treatments [31,32], of protein

evolution.

We assume that evolution selects only for a protein’s

biochemical function, and is indifferent to its precise stability

provided that the protein folds with sufficient stability to perform

its function. This assumption is imperfect, since some proteins are

natively unfolded [33], only kinetically stable [34], or specifically

selected for marginal stability in order to aid in regulation [35]. In

addition, mildly destabilized proteins might retain partial function

while being subject to weak negative selection. This assumption

nonetheless captures the overriding idea that most proteins have

evolved to fold to stable structures in order to perform biochemical

functions that are the actual dominant targets of natural selection.

With this assumption, proteins can be viewed as having to satisfy a

minimal stability threshold in order to avoid being culled by

natural selection (see Figure 1).

We further assume that all protein mutants that satisfy the

stability threshold are equally functional, while all mutants that fail

to satisfy the threshold are nonfunctional. This assumption has the

mathematically desirable property that it neatly divides all mutants

into one of two categories (sufficiently stable or nonfunctional). Of

course, we recognize that this assumption is not strictly true, since

one could fill many pages documenting mutations that are

deleterious despite preserving stability. For example, mutations

can specifically interfere with a protein’s function (such as altering

an enzyme’s activity)—but experiments have shown that such

mutations are rare compared to the much larger number that

affect stability [36–39]. Mutations can also be deleterious if they

increase a protein’s propensity to aggregate [40–43] or interfere

with its folding [44] or unfolding [16,45] kinetics—but quantifying

a mutation’s impact on stability provides a partial proxy for these

effects since aggregation propensity [40], folding rate [46–49], and

kinetic stability [16] are correlated with stability. Mutations can

also have other deleterious effects, such as altering mRNA stability

[50], codon usage [51], or the accuracy and efficiency of

translation [43,51,52]. We mention these myriad exceptions to

explicitly acknowledge their existence. Nonetheless, from here

Author Summary

Mutating a protein frequently causes a change in its
stability. As scientists, we often care about these changes
because we would like to engineer a protein’s stability or
understand how its stability is impacted by a naturally
occurring mutation. Evolution also cares about mutational
stability changes, because a basic evolutionary require-
ment is that proteins remain sufficiently stable to perform
their biological functions. Our work is based on the idea
that it should be possible to use the fact that evolution
selects for stability to infer from related proteins the effects
of specific mutations. We show that we can indeed use
protein evolutionary histories to computationally predict
previously measured mutational stability changes more
accurately than methods based on either of the two main
existing strategies. We then test whether we can predict
mutations that increase the stability of hemagglutinin, an
influenza protein whose rapid evolution is partly respon-
sible for the ability of this virus to cause yearly epidemics.
We experimentally create viruses carrying predicted
stabilizing mutations and find that several do in fact
improve the virus’s ability to grow at higher temperatures.
Our computational approach may therefore be of use in
understanding the evolution of this medically important
virus.

Phylogenetic Inference of Protein Stability
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forward we will use the concept of stability threshold selection to

develop a mathematical relationship between protein stability and

evolution.

Figure 1 illustrates the stability threshold view of evolution that

we have just described. In this figure, a protein’s stability is

quantified by its free energy of folding (its DGf ), and the effects of

mutations by the change they induce in the free energy of folding

(their DDG values) [53]. For proteins that do not fold reversibly,

some alternative experimental measure of stability (such as

resistance to thermal denaturation [54] or proteolysis [55]) is

clearly required, but the concept remains the same. The key

implication of Figure 1 is that the evolutionary impact of a

mutation can depend on the stability of the parent protein into

which it is introduced, with a moderately destabilizing mutation

being neutral in the context of a stable parent but lethal to a

marginally stable parent. That mutational tolerance is indeed

enhanced by extra stability in this fashion has been experimentally

verified for several proteins [56–58]. This idea provides a basis for

forsaking the traditional approach of using pre-specificied

‘‘average’’ amino acid substitution matrices, and instead adopting

the view that the frequency of a particular substitution tells us

something about its impact on protein stability. Much of the rest of

this paper deals with the mathematical mechanics of how to use

the substitution frequencies implied by a set of protein homologs to

infer the effects of individual mutations on stability.

Sequence evolution without any selection
To introduce the mathematical analysis, begin by considering

protein sequence evolution in the absence of any selection on

amino acid composition. Even in the absence of selection, some

amino acid substitutions are more likely than others due to the

structure of the genetic code and unequal frequencies of different

types of nucleotide mutations. In order to express the probabilities

of various types of mutations only in terms of amino acid identities,

assume that the distribution of codons encoding each amino acid is

always at equilibrium. For example, assume that all glycines at all

times have the same probability of being encoded by the GGG

codon. With this assumption, the current state of a residue can be

described by its amino acid identity rather than its codon identity

(see [59] for an evolutionary model that operates at the codon-

level). Given that a particular position is currently amino acid y, let

cxy denote the probability that a single nucleotide mutation to the

codon at this position changes the identity to amino acid x.

Nonsense mutations (to stop codons) are assumed to be

immediately eliminated by selection, and so leave the codon

unchanged. All other mutations are assumed to be neutral.

Therefore, all nonsense and synonymous mutations contribute to

cyy, and all nonsynonymous mutations contribute to cxy with

x=y. Denote the set of all 20620 = 400 values of cxy

as C~ cxy x,y[ A,C,D,E,F ,G,H,I ,K ,L,M,N,P,Q,R,S,T ,V ,fj
�

W ,Yg:g. Note that 1~
P
x

cxy, since each mutation either leads

to a new amino acid (x=y) or leaves the amino acid unchanged

(x~y).

Let A be the 20620 matrix with off-diagonal elements Axy~cxy

and diagonal elements Ayy~{
P

x=y

cxy. Let u be the rate at which

an individual codon experiences a nucleotide mutation, so that

each codon experiences an average of ut mutations after an

elapsed time of t. It is assumed that all codons in the protein

experience the same mutation rate u. As will be seen below, the full

model still allows variation in the rate at which substitutions

accumulate at different residues, but this variation is caused by

selection for stability rather than by differences in the underlying

rate of mutation. Without selection for stability, the probability

Figure 1. A stability threshold model of protein evolution. Proteins are assumed to be functional if and only if they are more stable than some
minimal threshold (in the figure, DGthreshold

f ~{5 kcal=mol, which is a typical value for natural proteins [53]; note that more stable proteins have
more negative DGf values). When a particular destabilizing mutation (DDG~3 kcal=mol) occurs, the evolutionary result will depend on the stability
of the proteins in the parent population. When the parent proteins are sufficiently stable (top panel), the mutant protein still satisfies the threshold,
and so the mutation has the opportunity to spread by neutral genetic drift. But when the parent proteins are not sufficiently stable (bottom panel),
the mutant protein fails to stably fold, and is eliminated by natural selection. Therefore, the probability that a mutation that induces a stability change
of DDG will have an opportunity to spread by neutral genetic drift is simply the probability that the parent protein has a stability
DGf vDGthreshold

f {DDG.
doi:10.1371/journal.pcbi.1000349.g001

Phylogenetic Inference of Protein Stability
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that a residue that is initially y will be x after an elapsed time of t is

given by the element Mxy tð Þ of the matrix M tð Þ~exp ut Að Þ [18].

After a sufficiently long period of time (t??), the probability to

find some specific amino acid x is the same across all positions of

the protein, and is given by element x of the right eigenvector of A
corresponding to the unique zero eigenvalue (the uniqueness of

this eigenvector is guaranteed by the Perron-Frobenius theorems,

since A plus the identity matrix will be an irreducible and acyclic

stochastic matrix). Of course, real proteins tend to prefer some

amino acids at certain positions, such as hydrophobic residues in

the core. The substitution model that has just been described fails

to account for these preferences. The next section explains how

this problem can be remedied by incorporating selection for

stability.

Substitution probabilities in the presence of selection for
stability

The situation described in the previous section changes

fundamentally in the presence of selection for protein stability,

since mutations will be eliminated if they destabilize a protein

beyond the threshold. Specifically, let DGf be the stability (free

energy of folding [53]) of the parent protein and let DGthreshold
f be

the minimal stability required by the threshold, so that the protein

has extra stability DGextra
f ~DGf {DGthreshold

f . Only those muta-

tions that leave DGextra
f ƒ0 have a chance to be fixed by evolution

(more negative DGf values indicate more stable proteins). Let s be

the sequence of a protein of the length L, and let DGextra
f sð Þ be the

extra stability of this protein. Mutating residue r of the protein

from its current identity y to some new amino acid x induces a

stability change of DDGr
xy sð Þ. Under the stability threshold model,

this mutation can become fixed if and only if

DGextra
f sð ÞzDDGr

xy sð Þƒ0.

This description, in which DDGr
xy sð Þ for mutating residue r is a

function of the parent sequence s as well as the residue identities

x and y, is completely general. However, it is not useful. The

reason for this lack of utility is that there are 20L different possible

protein sequences s, since each of the L positions in the protein

can take on any of the 20 amino acids. Since L for a typical

protein is several hundred residues, the number of different

DDGr
xy sð Þ values exceeds the number of atoms in the Universe.

This many values cannot reasonably be specified a priori or inferred

from available sequence data.

However, the situation can be made more tractable by assuming

that DDGr
xy sð Þ is independent of s, and so is equal to the same

value of DDGr
xy for all sequences. This assumption is equivalent to

saying that the DDG values for mutations to different residues are

independent and additive, which implies that the DDG value of a

mutation does not depend on the sequence background in which it

appears. This assumption is clearly not completely true, since

protein stability depends on cooperative interactions among many

residues. However, empirically it appears that the assumption of

independent and additive DDG values is nonetheless actually

rather good. For example, a number of biochemical studies have

indicated that the DDG values for a modest number of amino acid

mutations are frequently independent and additive [60–65]. Of

particular relevance is a study by Fersht and Serrano [65] of the

amino acid substitutions separating the homologous proteins

binase and barnase, which have 85% sequence identity. They

found that combinations of these substitutions had additive effects

on stability, indicating that the DDGr
xy values are very nearly

constant among the sequences that occurred during the evolu-

tionary divergence of these two proteins. This high degree of

independence and additivity of experimentally measured DDG
values may be due to the fact that pairwise amino-acid interaction

potentials can be accurately approximated by independent sites

[28,66]. Regardless of the underlying reasons, at least at modest

levels of sequence divergence, there is experimental evidence that

the approximation of constant DDGr
xy values is quite accurate.

Assuming that DDGr
xy is independent of the particular sequence

background greatly reduces the number of these values that need

to be determined. To count the number of unique DDGr
xy values,

note that any closed loop in the space of protein sequences yields

no net change in stability. That is, DDGr
xy~0 (since there is no

stability change when there is no mutation), DDGr
xyzDDGr

yx~0
(since mutating y to x and then back to y does not change the

sequence), and DDGr
xyzDDGr

zxzDDGr
yz~0 (since this combina-

tion of mutations leaves the sequence unchanged). Therefore, all

DDGr
xy values can be determined with reference to mutating an

arbitrarily chosen amino acid, which is here taken to be alanine

(A). There are 19L different DDGr
xA values, since each of the L

residues can be mutated to any of the 19 non-alanine amino acids.

The specification of all DDGr
xA values allows any DDGr

xy value to

be calculated as

DDGr
xy~DDGr

xA{DDGr
yA: ð1Þ

All DDG values are therefore uniquely determined by the set

G~ DDGr
xA

��1ƒrƒL, x[ C,D,E,F ,G,H,I ,K,L,M,N,P,Q,R,S,f
�

T ,V ,W ,Ygg of 19L DDG values. This paper will show that the

elements of G can be reasonably inferred using informative Bayesian

priors.

First, assume that G is known and consider the problem of using

this knowledge to determine whether selection will tolerate a

particular mutation to some specified protein sequence. Let

DGextra
f A � � �Að Þ be the extra stability of a sequence composed

entirely of the alanine reference amino acid. The extra stability of

any protein sequence s can be calculated from G and

DGextra
f A � � �Að Þ as

DGextra
f s,G,DGextra

f A � � �Að Þ
� �

~DGextra
f A � � �Að Þz

XL

r~1

DDGr
srA

,

ð2Þ

where sr is the amino acid at residue r of sequence s. Under the

stability threshold model, mutating residue r of the folded protein

with sequence s to x is acceptable to selection if and only if

DGextra
f s,G,DGextra

f A � � �Að Þ
� �

{DDGr
srAzDDGr

xAƒ0. It may be

possible to use this formulation to develop a mathematically

tractable description of protein evolution. However, the situation is

complicated by the fact that the acceptability of a mutation

depends on the protein sequence s. Therefore, describing protein

evolution using Equation 2 requires estimating the stability of each

sequence that occurs along the phylogenetic tree, and averaging

over all possible sequence paths. This paper circumvents this

difficult task by making the additional (mean-field) approximation

that the acceptability of a specific mutation depends on the

average distribution of DGextra
f , rather than on the exact stability of

the protein sequence in which the mutation occurs. In other

words, we take the probability that mutating residue r from y to x

is neutral to be equal to the probability that DGextra
f ƒDDGr

xy. This

mean-field approximation eliminates all coupling between substi-

tutions at different sites in the protein.

With this mean-field approximation, the issue becomes

determining the average distribution of stabilities in an evolving

population of proteins. This problem has been treated previously

Phylogenetic Inference of Protein Stability
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by simulations [29] and mathematically through matrix [31] and

diffusion [32] equation approaches. The average distribution of

stabilities turns out to depend on the degree of polymorphism in

the population, with highly polymorphic populations (those with

the product of the population size N and the per sequence per

generation mutation rate m much greater than one) evolving to

greater average stabilities than populations that are mostly

monomorphic (those with Nm%1) [31,67,68]. Here we will

consider only the case where the population is mostly monomor-

phic, so that all proteins tend to have converged to the same

stability before a new mutation occurs (as is the case for the

proteins shown in Figure 1). This choice is dictated by the fact that

we are unclear how to incorporate the secondary selection for

mutational robustness that occurs in highly polymorphic popula-

tions [31,67,68]. We acknowledge that some of the proteins that

we analyze later in this paper (particularly influenza hemagglu-

tinin) may actually evolve in populations that are highly

polymorphic, and suggest that a mathematical treatment recog-

nizing this fact is an area for future research. Given our choice to

consider only the case where the population is mostly monomor-

phic, we will adopt the mathematical formalism described in [31]

for the limit when Nm%1 (the more compact diffusion-equation

approach of Shakhnovich and coworkers [32] cannot be used

since it only applies when Nm&1). Following [31], we discretize

the continuous variable of extra protein stability DGextra
f into small

bins of width b, and assign a protein to bin i if it has extra stability

such that 1{ið ÞbƒDGextra
f v{ib, where i~1,2, . . . ,B. Here B is

some large integer giving an upper limit on the number of stability

bins (so that all proteins in the evolving population have

DGextra
f w{Bb). Note that all folded proteins fall into one of

these bins, since proteins with DGextra
f w0 fail to fold under the

stability threshold model. Reference [31] finds that the distribution

of average protein stabilities is well approximated by an

exponential (see the middle panels of Figure 2 of this reference,

or alternatively Figure 2A of [29]), such that the probability po ið Þ
that a protein in the evolving population has extra stability that

falls in bin i is

po ið Þ~ exp {aið ÞPB
j~1

exp {ajð Þ
ð3Þ

where aw0 is a constant describing the steepness of the

exponential. Figure 2 shows this distribution of protein stabilities

graphically. Note that this exact mathematical form for po ið Þ is not

proven in [31], but simply that all numerical solutions give

distributions for po ið Þ that resemble this form. Other mathematical

forms could be chosen for po ið Þ without altering the mathematical

analysis that follows, although they might affect the actual

numerical values that are ultimately inferred for the DDG values.

In particular, in highly polymorphic populations, the distribution

of stabilities is peaked at a value slightly below the stability

threshold (see right panels of Figure 2 of [31], Figure 2 of [32], or

Figure 2B of [29]) rather than being an exponential. However, any

distribution in which highly stable proteins are rare and marginally

stable proteins are common should lead to qualitatively similar

inferred DDG values, since the subsequent analysis only employs

the cumulative distribution function of po ið Þ in a rather coarse

manner. Given the definition of po ið Þ in Equation 3, the exact

numerical for a simply sets a scale for theDDG values (in conjunction

with the bin size b, it determines their units). As is described later in

this paper, in our actual computational implementation, we chose a

value for a that placed the magnitude of the inferred DDG values in

the same dynamic range as the informative priors.

Using the mean-field approximation for DGextra
f , the probability

that a mutation is neutral can now be computed from

po ið Þ and DDGr
xy. Stabilizing mutations are always neutral, while

destabilizing mutations are neutral with a probability equal to the

fraction of time they will not unfold a protein with extra stability

drawn from po ið Þ. Mathematically, the probability f r
xy that

mutating residue r from y to x is neutral is

f r
xy~

1, if DDGr
xyƒ0

PB
i~tDDGr

xy=br
po iz1ð Þ, if DDGr

xyw0,

8>><
>>: ð4Þ

where t � � � r is the nearest integer function. Figure 2 graphically

illustrates the probability that a mutation will be neutral given its

DDG value. Define Gr to be the matrix with off-diagonal elements

Gr
xy~f r

xycxy and diagonal elements Gr
yy~{

P
x=y

f r
xycxy. The

probability that a substitution changes position r of the protein

from its original identity of amino acid y to amino acid x after an

elapsed time t is therefore given by element Mr
xy tð Þ of the matrix

Mr tð Þ defined by

Figure 2. Stability distributions and fixation probabilities. The panel at left show the probability po that a protein in an evolving population
will have extra stability DGextra

f , as given by Equation 3. The panel at right shows the probability f that a mutation that causes a stability change of
DDG will be neutral, as given by Equation 4. The units for DGextra

f and DDG are arbitrary; for concreteness here we give them units of kcal/mol.
doi:10.1371/journal.pcbi.1000349.g002

Phylogenetic Inference of Protein Stability
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Mr tð Þ~exp utGrð Þ, ð5Þ

where u is the per codon mutation rate as defined above. The

previous section showed that in the absence of selection for

stability, the probability of finding some specific amino acid at a

position was equal for all positions in the limit of long time. With

selection for stability, this is no longer the case. Let the probability

pr
x of finding residue x at position r in the long-time limit be given

by element x of the vector pr. The vector pr represents the

stationary solution to Equation 5, and so is the probability vector

(entries sum to one) that satisfies the eigenvector equation

pr~ IzGrð Þpr ð6Þ

where I is the identity matrix. Given a value of Gr, the uniqueness

of pr is guaranteed by the Perron-Frobenius theorems, since IzGr

is a nonnegative and acyclic stochastic matrix. Since Gr depends

on the DDGr
xy values for the stability effects of mutations, the

probabilities of observing amino acids at specific positions in the

sequence depends on their stability contributions.

Bayesian framework for inferring DDG values from
sequence data

The previous section describes how the probabilities of specific

substitutions to an evolving protein are shaped by the set G of DDG
values. In practice, we simply have some set S of homologous

protein sequences. The inference problem is how to estimate G
from S. In so doing, we will also need to estimate C, u, and the

phylogenetic relationship among the sequences. The approach we

will take is to use Bayesian inference [18,69–71] to estimate G from

S. Sadly, the approach is not fully Bayesian, since computational

limitations require some important quantities to be estimated by

alternative means. Hopefully in the future, the computation can be

recast in fully Bayesian terms.

The inference problem begins with the set S of homologous

protein sequences. Here it is assumed that these proteins have

diverged from a common ancestor by point mutations (any

insertions/deletions are ignored), and that there is no recombina-

tion within the protein coding sequences. It is further assumed that

all of the homologous sequences can be aligned in a fashion that

puts their residues in a one-to-one correspondence. In mathemat-

ical terms, S~ sk
��1ƒkƒN

� �
consists of N homologous sequenc-

es of length L, with sk denoting the kth sequence. For each

sequence sk, we know the identity sk
r of the amino acid at position

r (where 1ƒrƒL). The set of amino acid identities for all N
proteins at a single site r is denoted by S rð Þ~ sk

r

��1ƒkƒN
� �

. The

evolutionary relationship among the sequences is given by some

phylogenetic tree T . Here T is taken to specify both the topology

and branch lengths of a rooted phylogenetic tree, as shown in

Figure 3.

Using the prescription of the previous section to calculate the

substitution probabilities, it is possible to calculate the likelihood

Pr S G,C,u,Tjð Þ of observing some set of sequences given the DDG
values. Here we briefly outline how this calculation would

proceed, closely paralleling the description by Felsenstein [18] of

the pruning-based likelihood calculation method he developed

[72,73]. Making the standard phylogenetic assumption that

evolution at each site is independent,

Pr S G,C,u,Tjð Þ~ P
L

r~1
Pr S rð Þ G,C,u,Tj
� �

: ð7Þ

Consider the computation for some specific site r. Figure 3

shows the phylogenetic tree T giving the evolutionary relationship

among N~5 sequences, and the sequence data S rð Þ for site r of

these sequences. Given this tree in Figure 3, the likelihood for site r

is computed by summing over the twenty possible amino acid

identities at each internal node,

Pr S rð Þ
���G,C,u,T

� �
~X

x

X
y

X
z

X
w

Pr A,C,D,E,F ,x,y,z,wjG,C,u,Tð Þ:
ð8Þ

Assuming the lineages are independent, the probabilities on the

right side of Equation 8 can be decomposed as a product,

Pr A,C,D,E,F ,x,y,z,wjG,C,u,Tð Þ

~pr
x|Mr

yx t6ð Þ|Mr
Ay t1ð Þ|Mr

Cy t2ð Þ

|Mr
zx t8ð Þ|Mr

Dz t3ð Þ|Mr
wz t7ð Þ|Mr

Ew t4ð Þ|Mr
Fw t5ð Þ, ð9Þ

where the Mr
xy tð Þ and pr

x values are calculated from G, C, and u

using Equations 5 and 6. Note that Equation 9 assumes that the

sequences have evolved for a sufficiently long period of time that

the probability of observing residue x at position r at the root of

the tree is the long-time limit pr
x. Using the pruning approach of

Felsenstein, Equations 8 and 9 can be combined to yield

Pr S rð Þ G,C,u,Tj
� �

~
X

x

pr
x

X
y

Mr
yx t6ð Þ|Mr

Ay t1ð Þ|Mr
Cy t2ð Þ

 !
|

X
z

Mr
zx t8ð Þ|Mr

Dz t3ð Þ|
X

w

Mr
wz t7ð Þ|Mr

Ew t4ð Þ|Mr
Fw t5ð Þ

" # !
:

ð10Þ

Figure 3. An example phylogenetic tree T . This tree shows the
sequence data S rð Þ for five sequences at a single site r. The amino acid
codes at the tips of the branches (A, C, D, E, and F ) show the residue
identities for the five sequences at this site. The variables at the internal
nodes (x, y, z, w) are the amino acid identities at the site for the ancestral
sequences, and must be inferred. The branch lengths (t1, t2, . . .) are
proportional to the time since the divergence of the sequences.
doi:10.1371/journal.pcbi.1000349.g003
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Equations 7 and 10 provide a method for computing

Pr SjG,C,u,Tð Þ. But goal of this analysis is to infer the DDG
values from the sequences, which is equivalent to computing

Pr G Sjð Þ. Using Bayes’ Theorem,

Pr G Sjð Þ~
X
C

X
u

X
T

Pr G,C,u,Tð ÞPr SjG,C,u,Tð ÞP
G Pr G,C,u,Tð ÞPr S G,C,u,Tjð Þ: ð11Þ

Solving this equation would yield a fully Bayesian inference of G
by summing over the unknown variables C, u, and T . In principle,

this equation could also be used to estimate another phylogenetic

variable (such as T ) by swapping this variable with G in the

equation.

However, in practice, the approach taken here will not be the

fully Bayesian estimate given by Equation 11. Instead, to reduce

the variable sampling space, other methods will be used to make

single-value estimates for each of C, u, and T , so that

Pr GjSð Þ~ Pr Gð ÞPr SjG,C,u,Tð ÞP
G Pr Gð ÞPr SjG,C,u,Tð Þ , ð12Þ

where C, u, and T have been assigned fixed values. Given a prior

Pr Gð Þ over the DDG values, the right-hand side of Equation 12

can be estimated numerically. One attractive aspect of this

approach is that there is a basis for specifying a meaningful prior

over G, since DDG values can be measured experimentally [53,74],

or more easily predicted with at least mild accuracy by one of the

available physicochemical modeling programs [1–8]. Equation 12

can in principle be solved by Markov chain Monte Carlo (MCMC)

methods [69–71] to yield a full estimate of the probability

distribution Pr GjSð Þ. But we are interested in obtaining estimates

for the individual DDG values contained in G, since it is these

values that have physical meaning. Therefore, we take the DDG

values of the maximum a posteriori value ĜG of G, defined as

ĜG~ argmax
G

Pr Gð ÞPr SjG,C,u,Tð Þ½ �: ð13Þ

In the next section, we describe the specific computational

approach we have used to solve Equation 13 to obtain the DDG
values from an alignment of homologous protein sequences.

Implementation of a computational approach for
inferring DDG values from sequence data

In this section, we describe the computer program we have

developed to infer DDG values from the sequences of protein

homologs by solving Equation 13. Solving this equation requires

specification of the phylogenetic tree T , the underlying amino acid

mutation probabilities C, the mutation rate u, and a prior

distribution Pr Gð Þ over the DDG values. Solving the equation

also requires a numerical method for maximizing the argument of

the argmaxG function. We implemented our strategy using the

Python programming language, and termed the resulting program

PIPS (Phylogenetic Inference of Protein Stability). This program

was used to analyze cold shock protein, ribonuclease HI,

thioredoxin, and H1 influenza hemagglutinin as described below.

The PIPS source code and the full raw data from the analyses in

this paper are available at http://openwetware.org/wiki/User:-

Jesse_Bloom.

We built the phylogenetic tree T from the set S of homologous

protein sequences using the PHYLIP package [75]. The protein

sequences of the homologs were aligned using ProbCons [76] (for

cold shock protein, ribonuclease HI, and thioredoxin) or

MUSCLE [77] (for influenza hemagglutinin). Phylogenetic trees

of these aligned protein sequences were then constructed using the

distance-based method of PHYLIP’s ‘‘neighbor’’ program. For

cold shock protein, ribonuclease HI, and thioredoxin, the trees

were built using the UPGMA method to create rooted trees that

conformed to the assumption of a molecular clock. For influenza

hemagglutinin, the variation in the date of isolation of the

sequences is substantial relative to their divergence, so the

neighbor-joining method (no molecular clock) was used to

construct a tree which was rooted to an outgroup sequence.

We calculated the underlying amino acid mutation probabilities

C under the assumption that each amino acid was equally likely to

be encoded by any of its codons. The probability cxy that a single

mutation changed amino acid y to x was the probability that a

random nucleotide mutation to one of the codons for y yielded a

codon for x, averaged over all of the codons for y. There is

evidence that the transition-to-transversion ratio for influenza

evolving in humans is somewhere in the range of five [78], so for

hemagglutinin we assumed that the nucleotide mutations were

made with this bias. We are aware of no clear evidence about the

transition-to-transversion ratio for cold shock protein, thioredoxin,

and ribonuclease HI, so for these proteins we assumed a ratio of

0.5, which is the expectation in the absence of any mutational bias

[79]. We recognize that more accurate amino acid mutation

probabilities are likely to be derived from a codon-based model

[59], and suggest that incorporating such a model is an area for

future work.

The mutation rate u represents the number of nucleotide

mutations to a codon that occur for each substitution that is fixed

along the branches of the phylogenetic tree (branch lengths are

measured in amino acid substitutions per site). Since our program

is not yet sufficiently advanced to co-estimate u from the sequence

data, we had no strong rationale for assigning a particular value to

u. We chose a value of u~5, which corresponds to 20% of

nucleotide mutations leading to a tolerated amino acid mutation.

While we cannot provide an independent justification for this

choice of u, the inferred DDG values were fairly insensitive to the

choice of u for values between 3 and 20.

One of the strengths of our approach is that it allows for the use

of informative priors Pr Gð Þ over the DDG values. These priors can

serve two purposes. One purpose is simply to prevent overfitting

by regularizing [80] the DDG values by biasing them towards a

central reasonable range. A second purpose is to actively

incorporate some of the substantial existing knowledge about

how protein structure and amino-acid character influence DDG
values. One piece of this knowledge is simply the general fact that

most mutations to proteins are destabilizing, and so have DDGw0.

It is also known that mutations that cause large changes in the

hydrophobicity of amino acids are often more destabilizing. At a

more detailed level, there are a number of physicochemical

modeling programs that attempt to make quantitative predictions

of DDG values from protein structural information [1–8]. We

tested phylogenetic inference with priors incorporating informa-

tion at all three of these levels, as shown in Figure 4. At the most

basic level, we used ‘‘regularizing priors’’ that simply biased all the

DDG values towards the generally observed range of mildly to

moderately destabilizing. A second set of ‘‘hydrophobic’’ priors

were based on the idea that mutations that cause large changes in

amino acid hydrophobicity will tend to be more destabilizing. For

these priors, the prior estimate for each DDG value was equal to

the absolute value of the difference in the hydrophobicities of the

wildtype and mutant amino acids, as given by the widely used

Phylogenetic Inference of Protein Stability
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Kyte-Doolittle hydrophobicity scale [81]. These hydrophobic

priors therefore predicted that mutations that caused large changes

in hydrophobicity would be highly destabilizing (DDG&0), while

those that led to small changes in hydrophobicity would have little

effect on stability (DDG&0). A third set of ‘‘informative priors’’

were designed to leverage the full available knowledge about the

effects of mutations on stability. This knowledge is most completely

encapsulated in various physicochemically-based prediction pro-

grams [1–8], which utilize a wide range of structural and

biophysical information to make quantitative DDG predictions

for individual mutations. We chose one of these programs,

CUPSAT [8], to predict DDGCUPSAT values for all single amino-

acid mutations from the protein crystal structures. We chose the

CUPSAT program because it has a publicly available webserver

(http://cupsat.tu-bs.de) and has reported benchmarks that equal

or exceed those of other prediction programs [8]. The prior

estimate for each mutation was then the DDGCUPSAT value

predicted by CUPSAT, after rescaling the predictions as described

below. For all three sets of priors, the prior Pr DDGr
xA

� �
for

mutating residue r from A to x was a beta distribution probability

density function peaked at the prior estimate for that mutation.

The beta distribution functions were defined so that the sum of the

alpha and beta parameters equaled three, and with the functions

going to zero at the upper and lower limits of the allowed range for

the DDG values. These prior functions are therefore broad, and

loosely bias the DDG values toward the prior estimates. Examples

of the priors are shown in Figure 4. The overall prior probability

for the set G of DDG values was defined to the be product of the

prior probabilities for the individual DDGr
xA values,

Pr Gð Þ~P
r,x

Pr DDGr
xA

� �
.

In order for the phylogenetic inference to work effectively, it is

necessary that the priors fall in the same numerical range over

which the likelihood function is responsive to changes in the DDG

values. The actual DDG values of the phylogenetic inference

approach have arbitrary units, so placing the priors in an

appropriate dynamic range simply requires that the relevant

parameters have compatible relative values. We set a DDG range

of g~20, so that for all DDG values, {gƒDDGƒg. The values of

the bin size b and the parameter a in Equation 3 are arbitrary, but

serve to set the scale for how DDG values affect the substitution

probabilities. We chose a value of b~1, and a value of a such that

po ið Þ falls to one percent of its previous value every g=2 bins (this is

a~{log 0:01ð Þ= g=2ð Þ). This scaling means that the substitution

probabilities as a function of the DDG values can cover a large

dynamic range of four orders of magnitude given the limits for the

DDG values set by g. It is then necessary to choose priors that fall

in the same dynamic range. For the regularizing priors, the prior

estimate had a value of five for all DDG values, which corresponds

to a moderately destabilizing mutation. For the hydrophobicity

priors, we did not rescale the values obtained by taking the

absolute value of the difference in Kyte-Doolittle hydrophobicities,

since these values already fall in a reasonable range of zero to nine.

For the informative priors, we rescaled the DDGCUPSAT values to

bring them into an appropriate range. Specifically, we rescaled

them so that the difference between the values at the 10th and

90th percentiles was g=2 and the mean DDGCUPSAT value was

g=4, and truncated outlier values so that

g=4{2g=5ƒDDGCUPSATƒg=4z2g=4.

Solving Equation 13 requires a numerical method for finding

the value ĜG of G that maximizes the a posteriori probability. The

DDG values for the different positions of the protein are

independent, so we maximized the 19 DDGr
xA values for each

position separately. For each residue r, we first set the DDGr
xA

values to random numbers drawn from a normal distribution with

a mean of zero and a standard deviation of g=2. For each DDGr
xA,

we then performed a line search to find the value that represented

the nearest local maximum in the a posteriori probability. We

repeated this procedure for the next DDGr
xA value, until we had

performed line searches for all 19 values. This constituted one

iteration of maximization of the DDGr
xA values; we continued

performing iterations until no further local adjustments in any of

the DDGr
xA values increased the a posteriori probability. This

maximization algorithm is stochastic, and we cannot guarantee

that it converges to the global maximum (or indeed converges at

all). However, in practice it always converged rapidly, and

repeating the procedure with different random starting values

led to highly similar DDGr
xA values at the completion of the

maximization. We considered this ample evidence that this rather

ad hoc algorithm was a sufficient method for solving the argmaxG
function of Equation 13. Implementing a more sophisticated

gradient-based maximization is an area for future research, and

may lead to improvements in computational speed. However, the

Figure 4. Prior distributions, Pr DDGð Þ, over the DDG values. The ‘‘regularizing priors’’ are peaked at the moderately destabilizing value of
DDG~5 to capture the general knowledge that most mutations are destabilizing. The ‘‘hydrophobic priors’’ capture the knowledge that mutations
that cause large changes in hydrophobicity are often more destabilizing. These priors are peaked at a value equal the the absolute value of the
difference in amino acid hydrophobicity (as defined by the widely used Kyte-Doolittle scale [81]). For example, the prior for a mutation from
hydrophobic valine (V) to similarly hydrophobic leucine (L) is peaked near zero, while that for mutation from valine to charged lysine (K) is peaked at a
much more destabilizing value. The ‘‘informative priors’’ are peaked at the DDG values predicted by the state-of-the-art physicochemically based
program CUPSAT [8], and so are designed to leverage extensive pre-existing knowledge about DDG values. All the priors are fairly loose to make the
DDG values responsive to their effect on the likelihood. The priors also help regularize [80] the DDG predictions by biasing them towards a
reasonable range.
doi:10.1371/journal.pcbi.1000349.g004
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PIPS program described above was sufficiently fast to be run on a

laptop computer to give the predictions described in the next few

sections.

Comparison of phylogenetically inferred DDG values
with existing experimentally measured values for small
soluble proteins

We first tested the phylogenetic inference approach on existing

experimentally measured DDG values. Most published DDG
values are for mutations to a few small soluble proteins. We

examined the ProTherm [82] database, and found that the

proteins with the most DDG values were bacteriophage T4

lysozyme, sperm whale myoglobin, Bacillus amyloliquefaciens bar-

nase, Bacillus subtilis cold shock protein, Escherichia coli ribonuclease

HI, and E. coli thioredoxin. We then searched for sequences with

least 50% identity to each of these six proteins in the UniRef100

database [83]. We found a substantial number of homologous

sequences for cold shock protein (763 sequences), ribonuclease HI

(239 sequences), and thioredoxin (213 sequences). We therefore

chose these three proteins as the subjects of our analysis. For each

protein, we extracted from the original references all available

experimentally measured DDG values for single amino acid

substitutions, to obtain a total of 76 DDG values for cold shock

protein [84–89], 31 DDG values for ribonuclease HI [90–96], and

32 DDG values for thioredoxin [14,16,97,98].

In order to provide points of comparison, we first examined the

ability of the physicochemical modeling program CUPSAT [8]

and the consensus approach to predict the experimentally

measured DDG values for these three proteins. We used the

CUPSAT webserver to predict DDG values from the protein

crystal structures (PDB codes 1CSP [99] for cold shock protein,

2RN2 [100] for ribonuclease HI, and 2H6X for thioredoxin). We

calculated the consensus approach predictions using the standard

Boltzmann form where DDG is the negative logarithm of the ratio

of the frequencies of the mutant and wildtype residues in the

alignment of homologous sequences (with a pseudocount of one

added to the count for each amino acid before calculating the

frequencies). We then used the PIPS program described in the

previous section to make DDG predictions by a phylogenetic

inference approach. PIPS predictions were made using each of the

three sets of priors (informative, regularizing, and hydrophobic)

described in the previous section.

Figures 5, 6, and 7 show the correlations between the predicted

and experimentally measured DDG values for each of the three

proteins. For each of the three proteins, all methods made

predictions that were correlated with the experimental DDG values

(with R2 values ranging from 0.25 to 0.60), although there was also

always substantial scatter in the correlation plots. In general, the

PIPS program appeared to perform slightly better with the

informative priors than with either the regularizing or hydropho-

bic priors. The PIPS program with the informative priors modestly

but consistently outperformed both CUPSAT and the consensus

approach (with the R2 values for the PIPS program exceeding

those for CUPSAT and the consensus approach by amounts

ranging from 20% to two-fold). Because these correlations are with

experimental data spanning a wide range of stabilizing and

destabilizing DDG values, it is difficult to discern whether PIPS is

also clearly better at identifying the most stabilizing mutations (the

metric that would be most relevant for engineering protein

stability), although it perfoms at least as well as consensus and

CUPSAT in this respect. In any case, we interpret the higher

overall correlations obtained with PIPS to indicate that for small

soluble proteins, the phylogenetic inference approach with

informative priors is more accurate than both a state-of-the-art

physicochemical modeling program and the consensus approach.

In the remainder of this work, all PIPS predictions are made with

the informative priors.

The phylogenetic inference approach determines 19L different

DDGr
xA values for each protein, where L is the length of the

protein. Because such a large number of parameters is being

inferred, it is interesting to examine how the performance of the

phylogenetic inference depends on the number of sequences used.

One way to do this is to make PIPS predictions using a random

subset of all of the available sequences, and then to correlate these

predictions with the experimentally measured DDG values, or with

the PIPS predictions made using all available sequences. We

performed such an analysis for all three proteins. Figure 8 shows

the results of this analysis. Not surprisingly, using larger numbers

of sequences improves the accuracy of the predictions, as

measured by the correlations with both the experimental DDG
values and those predicted by PIPS using all available sequences.

However, the correlations are still quite good when only a fraction

of the available sequences are used. These results indicate that

although it is obviously advantageous to use more sequences,

phylogenetic inference performs fairly well even if only 50 or 100

sequences are used. We suggest that both the informative and

regularizing [80] aspects of the Bayesian priors serve to prevent

overfitting and guarantee reasonable predictions even when the

number of sequences is small.

Test of phylogenetic inference approach’s ability to
identify known temperature-sensitive and revertant
mutations to influenza hemagglutinin

We next tested the phylogenetic inference approach on the

more difficult problem of identifying stabilizing mutations to

influenza hemagglutinin. Hemagglutinin is a 565-residue trimeric

membrane-bound glycoprotein that mediates the binding and

fusion of influenza virus with target cells, making it much larger

and more complex than most proteins that have been successfully

modeled using physicochemical approaches. Influenza has been

the subject of intensive sequencing efforts, and so a large number

of hemagglutinin sequences are available in the publicly accessible

Influenza Virus Resource [101] (http://www.ncbi.nlm.nih.gov/

genomes/FLU/FLU.html). However, these sequences contain

unusual patterns of phylogenetic relationship, due to the distinctive

selection pressures operating on influenza in humans [102] and

birds [103], as well as the fact that most sequencing has focused on

a few subtypes of special interest (such as avian H5N1 and human

H3N2 and H1N1 viruses). The complexity of the hemagglutinin

protein and the strong evolutionary relationships among the

available sequences are likely to make the prediction of stabilizing

mutations a challenging problem for any method.

As an test data set, we used a collection of previously described

mutants to the hemagglutinin of the A/WSN/33 (H1N1) influenza

virus. This set contains two temperature-sensitive virus mutants

that can replicate only at reduced temperatures (34uC but not

39.5uC) due to a failure of the hemagglutinin protein to be

transported to the cell membrane at elevated temperatures [104].

The hemagglutinin proteins of these temperature-sensitive viruses

also show an increased loss of hemagglutination activity at high

temperature, suggesting general defects in both folding and

stability [104]. Each of the two temperature-sensitive viruses is

defective due to a different single amino-acid mutation in

hemagglutinin [105]. These two temperature-sensitive mutations

constitute our set of ‘‘destabilizing’’ mutations. For one of the two

temperature-sensitive mutants (the one designated as ts-134 in

[104–106]), a collection of second-site revertant mutations in

hemagglutinin have been isolated by selecting for viruses that have
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regained the ability to grow at elevated temperatures [105,106].

These revertant mutations presumably enhance hemagglutinin’s

folding and/or stability. There are 16 different revertant

mutations, which constitute our set of ‘‘stabilizing’’ mutations.

We tested the ability of the CUPSAT program, the consensus

approach, and the PIPS program (using the informative priors) to

distinguish the temperature-sensitive and revertant mutations. The

CUPSAT predictions were made using the crystal structure of the

A/PR/8/34 (H1N1) hemagglutinin (PDB code 1RVZ [107]),

which is closely related to the A/WSN/33 (H1N1) hemagglutinin

(90% sequence identity over the 487-residue portion of the protein

present in the crystal structure). For sequence data, we used the

full-length hemagglutinin sequences (lab strains excluded) present

in the Influenza Virus Resource [101] at the time of our initial

analysis (September, 2007). We made no restriction on the host

species of the virus, since we assume that the basic requirements

for protein folding and stability should be similar in all hosts. We

restricted our analysis to those hemagglutinin subtypes with at least

close to 50% protein sequence identity to H1 hemagglutinins

(sequences from the H1, H2, H5, H6, H8, H9, H11, H12, H13,

and H16 subtypes) and excluded sequences from more distantly

related subtypes (H3, H4, H7, H10, H14, and H15). This yielded

1,911 unique hemagglutinin sequences, which were used to build

the phylogenetic tree shown in Figure 9.

Figure 9 shows the predicted stability effects of the temperature-

sensitive and revertant mutations from each of the three methods.

The CUPSAT program had no ability to distinguish the

temperature-sensitive and revertant mutations, since it predicted

Figure 5. Experimentally measured and predicted DDG values for the 68-residue cold shock protein. The plots at left show the
predictions made by the CUPSAT physicochemical modeling program, the consensus approach, and the PIPS phylogenetic inference program using
the informative, regularizing, and hydrophobicity priors. To the right is the phylogenetic tree of 763 sequences that was utilized by the PIPS program.
The R2 values are the squared Pearson correlation coefficients.
doi:10.1371/journal.pcbi.1000349.g005
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the stability effects of all of these mutations to be clustered together

near the center of the distribution of effects for all mutations. This

suggests that either hemagglutinin is too large or mobile for

effective physicochemical modeling, or that the CUPSAT

program is overfit on the set of small soluble proteins on which

it was parameterized (which includes cold shock protein,

ribonuclease HI, and thioredoxin). The consensus approach could

partially distinguish the temperature-sensitive and revertant

mutations, predicting most of the revertant mutations to be more

stabilizing than the temperature-sensitive mutations. However, the

PIPS program was clearly the most successful approach, cleanly

predicting that all of the revertant mutations should be more

stabilizing than both of the temperature-sensitive mutations. These

results support the findings of the previous section that the PIPS

program is more accurate than either the physicochemical

modeling program or the consensus approach, and suggest that

the extent of its superiority over physicochemical modeling is

greater for more complex proteins such as hemagglutinin.

Prediction and experimental verification of new
stabilizing mutations to influenza hemagglutinin

We next tested whether the phylogenetic inference approach

could predict entirely new stabilizing mutations to influenza

hemagglutinin. Our experimental strategy for performing this test

was to introduce stabilizing mutations predicted by PIPS into A/

WSN/33 (H1N1) hemagglutinin carrying a known temperature-

sensitive mutation (the single mutation responsible for the ts-134

phenotype [105]) and examine whether these predicted stabilizing

Figure 6. Experimentally measured and predicted DDG values for the 156-residue ribonuclease HI protein. The plots at left show the
predictions made by the CUPSAT physicochemical modeling program, the consensus approach, and the PIPS phylogenetic inference program using
the informative, regularizing, and hydrophobicity priors. To the right is the phylogenetic tree of 239 sequences that was utilized by the PIPS program.
The R2 values are the squared Pearson correlation coefficients.
doi:10.1371/journal.pcbi.1000349.g006
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mutations actually allowed the virus to grow at elevated

temperatures.

The PIPS analysis described in the previous section identified 23

different mutations to A/WSN/33 H1 hemagglutinin that were

predicted to be the most highly stabilizing (these are the mutations

with PIPS DDG values less than 25 that appear in the small left-

most bar of the histogram in Figure 9). Seven of these mutations

are to residues in the antigenic sites of H1 hemagglutinin (as

delineated in [108]), and so are likely subject to positive selection

for diversification. Since one of the basic assumptions of the

phylogenetic inference approach is that mutations are selected

only for their effects protein stability, we excluded these seven

mutations. Another mutation occurs in the N-terminal signal

sequence, and so was excluded since it is not present in the final

folded structure. Three of the mutations occured in the HA2

polypeptide; we excluded these three mutations since the

temperature-sensitive mutation is found in the HA1 polypeptide.

This left 12 predicted stabilizing mutations in the HA1

polypeptide. The locations of these predicted stabilizing mutations

in the three-dimensional structure are shown in Figure 10. None of

these mutations is among the known revertants [106] described in

the previous section.

We introduced these 12 predicted stabilizing mutations into the

hemagglutinin gene on the background of the temperature-

sensitive mutation using site-directed mutagenesis. We then

created the mutant viruses at 34.0uC using the influenza reverse

genetics system [109], as described in more detail in the Methods

section. The viruses were then plaqued on confluent Madin Darby

Figure 7. Experimentally measured and predicted DDG values for the 109-residue thioredoxin protein. The plots at left show the
predictions made by the CUPSAT physicochemical modeling program, the consensus approach, and the PIPS phylogenetic inference program using
the informative, regularizing, and hydrophobicity. To the right is the phylogenetic tree of 213 sequences that was utilized by the PIPS program. The
R2 values are the squared Pearson correlation coefficients.
doi:10.1371/journal.pcbi.1000349.g007
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canine kidney (MDCK) cells at 34.0uC, 35.5uC, 37.0uC, 38.5uC,

and (in most cases) 40.0uC.

Table 1 summarizes the results of these plaque assays. The

wildtype virus plaqued at all five temperatures, with some

reduction in plaque size and clarity at 40uC. The virus carrying

the temperature-sensitive mutation in hemagglutinin plaqued at

34.0uC and 35.5uC, formed smaller and more opaque plaques at

37.0uC, and formed no visible plaques at 38.5uC and 40.0uC. Of

the 12 mutant viruses, one failed to express in the reverse genetics

system. Three appeared to be slightly less stable than the

temperature-sensitive parent virus, plaquing only at 34.0uC and

35.5uC. Four had similar profiles to their parent virus, plaquing

well at 35.5uC but only weakly at 37.0uC. The other four mutant

viruses exhibited clearly enhanced thermotolerance, plaquing well

at 37.0uC and weakly at 38.5uC.

To confirm the increased temperature stability of viruses

carrying the four apparently stabilizing mutations, we re-grew

the viruses from the encoding plasmids and again plaqued them at

various temperatures that now included 38.0uC. The results of

these plaque assays are shown in Figure 11. All four mutants were

clearly more thermotolerant than their temperature-sensitive

parent, although still less so than the wildtype virus. To test

whether the stabilizing mutations had cumulative effects, we

constructed a double-mutant carrying two of the stabilizing

mutations, and a triple-mutant carrying three of the stabilizing

mutations. As can be seen in Figure 11, these multiple mutants

were more thermotolerant than the single mutants, as indicated by

better plaquing at 38.5uC.

Discussion

The most compelling evidence for the essential validity of the

phylogenetic inference approach presented here is also the source

of its greatest potential utility — the fact that it is able to predict

experimentally measured mutational effects on stability. We found

that it predicted known DDG values for single amino acid

mutations to small soluble proteins with an accuracy exceeding

that of either of two existing strategies, the consensus approach or

a state-of-the-art physicochemical modeling program. Phylogenet-

ic inference also was able to distinguish between known

temperature-sensitive and revertant mutations to influenza

hemagglutinin, a large multimeric protein that evolves under

distinctive selection pressures. The extent to which phylogenetic

inference outperformed the consensus approach and especially

physicochemical modeling was greater for hemagglutinin than for

the small soluble proteins, suggesting that it may be most useful on

precisely the more complex proteins that are often of greatest

interest in biology and biomolecular engineering.

Our most stringent test of the phylogenetic inference approach

was to use it to predict new mutations to hemagglutinin that

rescued the growth of a temperature-sensitive influenza virus. Of

the 12 predicted stabilizing mutations, four were indeed detectably

stabilizing, four had little effect, three were slightly destabilizing,

and one appeared to be lethal. How good (or bad) was this

performance? Because we did not experimentally test CUPSAT

and consensus predictions of stabilizing mutations to hemagglu-

tinin, we cannot directly compare these two methods to

phylogenetic inference in this respect. Comparison of the three

methods on the set of previously known stabilizing mutations to

hemagglutinin (Figure 9) strongly suggests that CUPSAT is unable

to reliably distinguish stabilizing and destabilizing mutations to

hemagglutinin, but only weakly suggests that phylogenetic

inference is superior to the consensus approach in this regard. It

therefore remains possible that the consensus approach would

have made equally successful predictions. Another benchmark of

the phylogenetic inference approach’s predictions would be a

comparison with a set of random single amino acid mutations to

hemagglutinin. But the extensive amount of work required to

generate and characterize such a panel of random mutants

dissuaded us from carrying out such an experiment. Others seem

to have been similarly dissuaded, since we are unaware of any

published analyses of the stability effects of truly random

Figure 8. Performance of the phylogenetic inference approach as a function of the number of sequences used. The PIPS predictions
using informative priors were run using subsets of all of the available protein sequences. The resulting DDG predictions were then correlated with the
experimental DDG values (top) or the PIPS DDG predictions obtained using all available sequences (bottom). The R2 values are the squared Pearson
correlation coefficients. For each number of sequences used, the PIPS predictions were made using 10 different random sequence subsets, and the
displayed R2 values are the average correlations over these 10 subsets. For cold shock protein, the subsets were made at intervals of 20 sequences,
while for ribonuclease HI and thioredoxin they were made at intervals of 10 sequences.
doi:10.1371/journal.pcbi.1000349.g008
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mutations even to more experimentally tractable proteins.

However, there have been coarse-grained analyses in the form

of protein engineering experiments that screen for random

mutations that enhance stability. Such experiments typically

isolate one detectably stabilizing mutation for every 300 to 1,000

screened (frequencies of 0.4% for an esterase [110], 0.1% for

subtilisin [111], 0.1% for a haloalkane dehalogenase [112], 0.2%

for a phytase [113], and 0.1% for a fructosyl-amino acid oxidase

[114], although methodologies vary widely). Assuming these

frequencies can be extrapolated to hemagglutinin, the phyloge-

netic inference approach’s success rate of four in 12 represents an

improvement of two to three orders of magnitude over the random

expectation — although of course two-thirds of the predicted

stabilizing mutations still failed to enhance the virus’s thermo-

tolerance. Given these results, as well as the improved but still

imperfect predictions of known DDG values, we can simulta-

neously ask both why the phylogenetic inference approach

performs so well and why it does not perform better.

The phylogenetic inference approach performs so well because

it ties protein stability to the underlying selection pressures, and so

can draw from the full evolutionary histories of homologous

proteins. Existing sequence-based strategies such as the consensus

approach only consider the final evolved sequences, and so may

miss some of the information contained in the substitution

probabilities implied by the protein phylogeny. Physicochemical

modeling utilizes knowledge about the biophysical forces that

determine a protein’s structure. But analyzing mutations with

physicochemical modeling is more difficult than simply scoring the

relative energies of different conformations of the same sequence,

since a mutation can induce a change in the unfolded state.

Computational descriptions of the unfolded state are still in their

infancy, so it may be a long time until physicochemical modeling

incorporates all of the subtleties needed to make fully accurate

predictions. However, the phylogenetic inference approach

leverages the incomplete but substantial knowledge already

encapsulated by physicochemical modeling to build informative

Figure 9. Predicted stability effects of known temperature-sensitive and revertant mutations to H1 hemagglutinin. In the plots at left,
bars indicate the distribution of predicted DDG values for all single mutations, while symbols show predicted values for the temperature-sensitive
and revertant mutations. At right is the phylogenetic tree utilized by the PIPS program. The tree labels give the hemagglutinin subtypes and
corresponding numbers of sequences. The PIPS predictions are made using the informative priors.
doi:10.1371/journal.pcbi.1000349.g009
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priors. These priors serve as reasonable initial guesses for the

mutational effects on stability, which are then improved based on

the substitution probabilities extracted from the protein phylog-

enies. Both the power of physicochemical modeling and the

number of available protein sequences are likely to continue to

increase, and as they do, the accuracy of the phylogenetic

inference approach should improve correspondingly.

Why does the phylogenetic inference approach not perform

better? The approach involves a number of mathematical and

conceptual approximations. We are inclined to believe that the

most limiting is the idea that all selection on amino acid

substitutions occurs along the single additive dimension of protein

stability. Clearly this assumption is inaccurate for the (probably

small [36–39]) fraction of residues specifically involved in protein

function. But it is also imperfect for the much larger fraction of

residues with no direct functional role. These residues are

constrained by selection on properties in addition to stability,

including folding efficiency [44], kinetic stability [16,45], and

resistance to aggregation [40–43]. Furthermore, even the

biologically relevant measure of stability is somewhat unclear.

The study of protein stability was pioneered [115] on small

proteins that fold reversibly in vitro, allowing for true thermody-

namic measurements of DGf and DDG values [53]. However,

many proteins do not fold reversibly [45,54,116], and even for

those that do, the measured stabilities can be sensitive to the

solvent conditions [89,117,118], which are usually quite different

from the in vivo cellular milieu [119]. The saving grace from these

complications is that different measures of protein stability

(thermodynamic, thermal, chemical, proteolytic, kinetic) are

substantially correlated with each other [16,55,61,120], and to a

Figure 10. Locations of the predicted and confirmed stabilizing mutations to H1 hemagglutinin. The full hemagglutinin trimer is shown
in green, with the HA1 chains in dark green and the HA2 chains in light green. The temperature-sensitive mutation (ts-134 [104–106]) is shown with
red spheres. The yellow spheres show the mutations that were predicted to be stabilizing by the PIPS program. The blue spheres show the four
predicted mutations that were experimentally confirmed to actually increase the temperature stability. The structure is PDB code 1RVZ [107].
doi:10.1371/journal.pcbi.1000349.g010

Table 1. Plaque growth of influenza A/WSN/33 (H1N1)
viruses carrying mutations in hemagglutinin.

Mutant 34.0uC 35.5uC 37.0uC 38.5uC 40.0uC

WT ++ ++ ++ ++ +

ts ++ ++ + 2 2

ts-D51K (D39K) + + 2 2 ND

ts-D51R (D39R) + + 2 2 ND

ts-A64K (A52K) ++ ++ +/2 2 ND

ts-Q67I (Q55I) ++ ++ ++ +/2 2

ts-D110E (D98E) ++ ++ ++ +/2 2

ts-L121F (L109F) + + +/2 2 2

ts-R274K (R262K) + + 2 2 ND

ts-R274Q (R262Q) 2 2 2 2 ND

ts-F276G (F264G) ++ ++ +/2 2 2

ts-T282Q (T270Q) ++ ++ + 2 2

ts-Q298K (Q286K) ++ ++ ++ +/2 2

ts-Q298R (Q286R) ++ ++ ++ +/2 2

Results are for wildtype (WT), temperature-sensitive (ts), and ts virus with
predicted stabilizing mutations. The plaques are scored as ++ for clear plaques,
+ for smaller or opaque plaques, +/2 for barely distinguishable plaques, 2 for
no plaques, and ND for not determined. The first mutation numbers are for
sequential numbering of the A/WSN/33 hemagglutinin sequence beginning
with zero at the N-terminal methionine, while the numbers in parentheses
correspond to those used in the crystal structure with PDB code 1RVZ.
doi:10.1371/journal.pcbi.1000349.t001
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lesser degree with folding efficiency [46–49] and resistance to

aggregation [40]. The phylogenetic inference approach works to

the extent that all of these properties can be grouped under the

generalized concept of protein stability, and fails to the extent that

mutations have distinct effects on each of them. So the inability of

some of the predicted stabilizing mutations to rescue influenza’s

thermotolerance simply means that they did not compensate the

original hemagglutinin defect (poor transport from the Golgi and

decreased resistance to thermal inactivation [104])—they may still

benefit related properties that were not compromised in this

particular virus. Ultimately, such issues can be addressed only by

relating the full spectrum of a mutation’s biophysical effects to its

tendency to be fixed by evolution, a type of analysis that should

also help resolve the hotly debated question of what selection

pressures account for observed patterns of protein evolution

[121,122].

Despite these issues, the approach presented here is a clear

conceptual improvement over the traditional concept of matrices

specifying fixed ‘‘average’’ amino acid substitution tendencies that

are unrelated to on any specific experimental measurement. Even

recent work [19–28] that uses sophisticated simulations or

structural analysis to derive site-specific substitution matrices

ultimately fails to connect the substitution tendencies along protein

phylogenies to any experimentally tangible properties of the

mutations. By making such a connection, our approach reverses

the usual tactic of maximum likelihood and Bayesian phylogenetic

tree reconstruction. In those methods, some amino acid substitu-

tion model is assumed, and then used to infer a phylogenetic tree.

Here we have assumed the phylogenetic tree, and then used it to

infer the effects of individual mutations on stability. Ultimately, it

would be most satisfactory to infer both the phylogenetic tree and

the stability effects directly from the protein sequences, perhaps

with the assistance of informative priors derived from physico-

chemical modeling. Performing such a dual inference would of

course raise daunting computational issues of adequately sampling

from the distributions of both possible tree topologies and

mutational effects. However, progress in such a direction could

ultimately lead to strategies for analyzing homologous sequences

that yield useful information about both evolutionary histories and

protein biophysics.

Methods

Cloning of plasmids
The eight bidirectional polymerase I/polymerase II influenza

reverse genetics plasmids [109] for the A/WSN/33 (H1N1) strain

(pHW181-PB2, pHW182-PB1, pHW183-PA, pHW184-HA,

pHW185-NP, pHW186-NA, pHW187-M, and pHW188-NS) as

well as the null cloning plasmid (pHW2000) were kind gifts from

Robert G. Webster at St. Jude Children’s Research Hospital. The

plasmid pHW184-HA-ts134 was constructed by introducing the

single mutation responsible for the ts-134 temperature-sensitive

phenotype [105] (Y173H in the numbering scheme where the N-

terminal methionine is zero) into hemagglutinin by strand overlap

extension PCR, and cloning the insert into the BsmBI restriction

sites of pHW2000. A similar procedure was then used to

individually construct the 12 predicted stabilizing mutations

shown in Table 1 on the background of this temperature-sensitive

mutation to yield the plasmids pHW184-ts134-D51K, pHW184-

ts134-D51R, etc. The accuracy of all plasmids was confirmed by

sequencing the hemagglutinin genes and immediate flanking

sequences.

Cells and media
The 293T human embryonic kidney cell line and the Madin-

Darby canine kidney (MDCK) cell line were initially purchased

from ATCC (CRL-11268 and CCL-34, respectively). The cells

were maintained in D10 media, consisting of Dulbeccos’s

Modification of Eagle’s Medium (DMEM, Cellgro 10-013-CV)

supplemented with 10% heat-inactivated fetal bovine serum (HI

FBS, Omega Scientific FB-01), 2 mM L-glutamine (Cellgro 25-

005-CI), and 100 U/ml penicillin and 100 mg/ml streptomcyin

(P/S, Bio-Whittaker 17-602E). Cells were passaged using 0.25%

trypsin/2.21 mM EDTA when they reached 90–100% conflu-

ence, and were restarted from frozen stocks stored in liquid

nitrogen roughly every month. All cells were maintained at 37uC
with 5% carbon dioxide, except when the temperature was

changed as indicated.

During influenza infections, cells were maintained in influenza

growth medium with trypsin (IGM+T), consisting of OptiMEM I

(Gibco 31985) supplemented with 0.01% HI FBS, 0.3% bovine

serum albumin (BSA, Invitrogen 15260-37), P/S, 100 mg/ml

calcium chloride, and 2 mg/ml of tosyl-phenylalanyl-chloro-

methyl-ketone (TPCK)-treated trypsin (Sigma Aldrich T-8802)

Figure 11. Plaque assays of wildtype, temperature-sensitive
(ts), and ts influenza with predicted stabilizing hemagglutinin
mutations. All four of the single mutations allow the virus to plaque at
higher temperatures than the ts parent. The multiple mutants plaque
more effectively at higher temperatures than the single mutants.
Mutations are named according to the numbering scheme described in
Table 1.
doi:10.1371/journal.pcbi.1000349.g011
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[123]. For plaque assays, 2X IGM+T was prepared from

OptiMEM I powder packets (Gibco 22600-050) with 2.4 g of

sodium bicarbonate per packet in addition to 2X concentrations of

the other components of IGM+T. The TPCK-trypsin was always

added fresh immediately before use.

Influenza reverse genetics
The influenza virus was reconstituted from the eight bidirec-

tional reverse genetics plasmids [109] by co-transfecting 250 ng of

each plasmid into a co-culture of MDCK and 293T cells in a 6-

well plate. The co-cultures were seeded the day before with 56105

293T and 36105 MDCK cells so that the plates were 50–80%

confluent at the time of transfection. All transfections were

performed using Mirus Transit293 transfection reagent. Post-

transfection, plates were maintained at 34 muC in order to allow

growth of temperature-sensitive viruses. At 12–18 hours post-

transfection, the media was changed to IGM+T (with two washes

with phosphate buffered saline, PBS). After 24 hours of growth in

IGM+T, 500 ml of the supernatant was passaged to fully confluent

MDCK cells in IGM+T to expand the virus. The supernatant

from the passage plate was collected after an additional 24–

48 hours of growth, at which point significant virus-induced cell

cytopathic effects were typically observed. The virus-containing

supernatant was passed through a 0.45 mm filter, aliquoted, and

stored at 280uC. All experiments involving influenza virus were

performed in accordance with Biosafety Level 2 containment

procedures.

Plaque assays
For viral plaque assays, 6-well plates were seeded with 3.56105

MDCK cells per well so that they reached full confluence in

48 hours. Frozen aliquots of virus were thawed and serial 10-fold

dilutions of virus were made in IGM+T. The confluent MDCK

cells were washed twice with PBS, and then inoculated with 700 ml

of the appropriate virus dilution. The 6-well plates were then

transferred to a tissue culture incubator set at the appropriate

temperature for 45 minutes, with occasional gentle tilting of the

plate to spread the inoculum. An overlay medium was prepared by

mixing equal volumes of 2X IGM+T and a 2.4% Avicel

microcrystalline cellulose (FMC Biopolymer RC-581) suspension

[124]. After the 45 minute incubation, 3 ml of overlay was added

to each well and the plates were grown at the appropriate

temperature undisturbed for 72 hours. The overlay was then

removed by aspiration and the residual Avicel was removed by

washing twice with PBS. The cell layer was stained by a 10–

20 minute incubation with 0.1% crystal violet in 20% ethanol.

The stain was removed with two additional PBS washes, and the

plaques were photographed using a gel imager to yield photos like

those shown in Figure 11.

Every effort was made to perform the plaque assays

consistently, but there was still moderate variation in plaque

size, number, and morphology when virus from the same stock

was independently plaqued on different days (possibly due to

slight variations in the conditions of MDCK cells). Because of

the large amount of labor involved, it was of course impossible

to perform all of the plaque assays on the same day. Figure 11

shows representative results, but some of the variation in plaque

size and morphology may still be due to day-to-day variation.

However, all mutants shown in Figure 11 were plaqued in

independent experiments on different days using different initial

viral stocks, and presence/absence of plaques at the different

temperatures was repeatable, despite the modest variations in

plaque morphology As can be seen in Figure 11, a crescent-

shaped patch sometimes appeared in the lower-left corner of the

MDCK monolayer. This patch occasionally appeared even in

the absence of virus, and is probably due to cell drying or death

rather than viral growth.
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