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Abstract

Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein
domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We
base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C
implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should
approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed
by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of
the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering
algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over
point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and
large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is
justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be
represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the
automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering
algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen
algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices
among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert
classifications. As a domain set, we have selected a consensus set of 2,890 domains decomposed very similarly in SCOP and
CATH. As an alignment algorithm, we used a global version of MAMMOTH developed in our group, which is both rapid and
accurate. As a similarity measure, we used the size-normalized contact overlap, and as a clustering algorithm, we used
average linkage. The resulting automatic classification at the cross-over point was more consistent than expert ones with
respect to the structure similarity measure, with 86% of the clusters corresponding to subsets of either SCOP or CATH
superfamilies and fewer than 5% containing domains in distinct folds according to both SCOP and CATH. Almost 15% of
SCOP superfamilies and 10% of CATH superfamilies were split, consistent with the notion of fold change in protein
evolution. These results were qualitatively robust for all choices that we tested, although we did not try to use alignment
algorithms developed by other groups. Folds defined in SCOP and CATH would be completely joined in the regime of large
transitivity violations where clustering is more arbitrary. Consistently, the agreement between SCOP and CATH at fold level
was lower than their agreement with the automatic classification obtained using as a clustering algorithm, respectively,
average linkage (for SCOP) or single linkage (for CATH). The networks representing significant evolutionary and structural
relationships between clusters beyond the cross-over point may allow us to perform evolutionary, structural, or functional
analyses beyond the limits of classification schemes. These networks and the underlying clusters are available at http://ub.
cbm.uam.es/research/ProtNet.php
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Introduction

Structural genomics projects [1] aim at an exhaustive

exploration of the space of protein structures realized in evolution

[2,3], speeding up considerably the rate at which new protein

structures are resolved. In this context, structural classification of

proteins [4–9] has become essential for uncovering remote

evolutionary relationship that can not be inferred from sequence

information alone, and it will have important consequences on our

understanding of protein evolution, the sequence to structure to

function relationships, the recognition of remote homologs and the

modelling of their structures.

This dramatic growth of the number of known protein

structures calls upon automatic classification methods that are
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objective and based only on structural information. The most used

structural classifications of proteins, such as SCOP [4] and CATH

[5], are manually curated, and therefore they are slow to update.

For instance, the last update of SCOP at the moment of writing

this paper took from october 2006 to november 2007 (13 months),

and the last update of CATH took from may 2006 to january 2007

(9 months). This makes automatic classifications with similar

quality to that of CATH and SCOP highly desirable.

However, this goal raises the question of whether, and up to

which point, the classification of protein structures is justified. This

question is addressed in this paper, where we ask whether an

automatic classification based on an objective similarity measure

can be uniquely defined.

Several authors studied the agreement between SCOP and

CATH classifications [10–13], concluding that an overall

agreement exists, but it is not satisfactory from a quantitative

point of view. This problem is partially due to the fact that SCOP

and CATH differ in the way in which they split the proteins into

domains [12], which are the units of protein classifications.

Nevertheless, they often classify differently even domains that are

defined in the same way. Sam and coworkers [13] found out that

more than 25% of the domain pairs classified in the same SCOP

fold are not significantly similar under two measures of structure

similarity.

The other side of the coin is that several structures classified in

different folds present a significant structural similarity due to the

presence of common substructures, a fact noted for instance by the

group of Orengo and later by other groups [14,15], which in

principle makes multiple classifications possible.

The first and most successful automatic classification of protein

domains is the database FSSP [8], which is based on the DALI

algorithm [9] and on its structure similarity measure. Though this

similarity measure is overall consistent with the CATH and SCOP

classifications important differences exist [11,12]. Other approach-

es aiming at the automatic classification of protein structures have

been recently proposed by Rogen and Fain [16], Sam et al. [17],

Zemla et al. [18] and by the group of Sippl [19]. However, the

FSSP database and its more recent followers do not address the

question to which extent structure classification is possible and

unique. This question is the subject of the present paper.

Is Protein Structure Space Discrete or Continuous?
Some of the above difficulties are related with the very essence

of protein classification schemes, which assume that it exists an

intrinsic level of structure similarity for defining equivalence classes

of protein structures. In SCOP, such an equivalence class is called

fold [20]. Two proteins are defined to belong to the same fold if

they share ‘‘the same major number and direction of secondary

structures with a same connectivity’’ [4]. In CATH, the

corresponding classification level is called topology, defined as

‘‘the overall shape and connectivity of secondary structures’’ [5].

These apparently clear definitions are in practice subject to

substantial arbitrariety, first because it is not always clear which

secondary structure elements belong to the structural core defining

the fold and which ones are regarded as optional ‘‘embellish-

ments’’, and second because one has to allow a certain extent of

structural divergence in the protein core.

The difficulties presented above have led several authors to

propose that the space of protein structures is continous

[13,21,22]. This view is supported by the studies that underline

the importance of substructures below the level of the globular

domain, such as the autonomously folding units of Tsai et al [23],

the loops of standard size (approximately 30 residues) of

Berezowski and Trifunov [24], or the recurrent fragments of

Tendulkar et al. [25] and Szustakowski et al. [26]. Expanding an

old idea by Ohno [27], Lupas et al. [28] proposed that the most

ancient folds have arisen through an evolutionary process

consisting in assembling polypeptide fragments together. These

and similar ideas have suggest that the basic unit of protein

classification should be substructures below the domain level,

defined by Shindyalov and Bourne [22] as ‘‘highly repetitive near-

contiguous pieces of polypeptide chain that occur frequently’’ in a

set of non-redundant protein structures. If protein domains can be

regarded as a combination of such substructures, the resulting

structure space should be seen as continuous rather than discrete.

A similar spirit is present in the approaches of Efimov [29] and

in particular Taylor, who proposed to enumerate in a kind of

periodic table all possible arrangements of secondary structure

elements compatible with simple stability rules [30], consistent

with the view that evolution of protein structures proceeds by

combining simpler modules, resulting in a continuous structure

space.

Homology and Structure Similarity Are Not Always
Consistent

Another basic assumption of CATH and SCOP is that

evolutionary relationships at the superfamily level imply structure

similarity at the fold level. Although this assumption is most of the

times correct, it was observed already in Ref. [31] that sequence

divergence beyond <40% identity sometimes implies large

structural variations. Grishin [32,33] has monitored several

examples in which proteins belonging to the same superfamily

diverged to the point where they do not share a common fold

under the loose definition given above. Interestingly, many of these

fold changes take place together with insertions or deletions of

Author Summary

Making order of the fast-growing information on proteins
is essential for gaining evolutionary and functional
knowledge. The most successful approaches to this task
are based on classifications of protein structures, such as
SCOP and CATH, which assume a discrete view of the
protein structure space as a collection of separated
equivalence classes (folds). However, several authors
proposed that protein domains should be regarded as
assemblies of polypeptide fragments, which implies that
the protein–structure space is continuous. Here, we assess
these views of domain space through the concept of
transitivity; i.e., we test whether structure similarity of A
with B and B with C implies that A and C are similar, as
required for consistent classification. We find that the
domain space is approximately transitive and discrete at
high similarity and continuous at low similarity, where
transitivity is severely violated. Comparing our classifica-
tion at the cross-over similarity with CATH and SCOP, we
find that they join proteins at low similarity where
classification is inconsistent. Part of this discrepancy is
due to structural divergence of homologous domains,
which are forced to be in a single cluster in CATH and
SCOP. Structural and evolutionary relationships between
consistent clusters are represented as a network in our
approach, going beyond current protein classification
schemes. We conjecture that our results are related to a
change of evolutionary regime, from uniparental divergent
evolution for highly related domains to assembly of large
fragments for which the classical tree representation is
unsuitable.

Can Protein Folds Be Objectively Classified?
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large polypeptide fragments, although an interesting example of

secondary structure switching has been reported between two

homologues regions of distant related proteins [34,35]. Viksna and

Gilbert [36] recently quantified these fold changes in protein

evolution, finding that some of them are relatively common. The

occurrence of fold change implies that the classification level based

on evolution, as the superfamily, and the classification based on

structure, as the fold, should not be necessarily consistent, as

already recognized by the group of Orengo [14].

Results

Objective Fold Definition and Transitive Property
Given the above, one can ask whether protein classifications

entirely based on a quantitative measure of structure similarity are

possible at all, and if so to which extent.

In formal terms, a protein fold is an equivalence class of protein

structures. Mathematically, an equivalence relationship must

possess the three property of symmetry, reflexivity and transitivity.

Whereas symmetry and reflexivity are automatically fulfilled by

any relationship based on a similarity measure, transitivity is not.

For transitivity to hold, every time that a is similar to b and b is

similar to c, then a must also be similar to c. In other words, you

can not make a big step from a to c by making an intermediate

small step through b. Note that transitivity is not the same as the

familiar triangular inequality, dacƒdabzdbc, which characterizes

similarity measures obtained from a properly defined distance.

Rather, transitivity is guaranteed by the much stronger property of

ultrametricity [37], dacƒmax dabzdbcð Þ, i.e., the distance trav-

elled in two steps can not be larger than the longer of the two steps.

An ultrametric set can be uniquely classified in the form of a tree.

Uniparental evolution satisfies transitivity. The impor-

tance of gene duplication for protein evolution [27] is a reason to

expect that protein structural similarity fulfils the transitive

property. The distance across the gene tree, i.e., the time spent

since the divergence of two genes, is ultrametric (the time spent

from the divergence of a and c can not be larger than the time

either from the divergence of a and b or from the divergence of b
and c), and therefore it is naturally endowed with the transitive

property. Therefore, a phylogenetic tree naturally induces a

hierarchical classification for every similarity threshold. If pairs of

proteins are related through gene duplication, and if their

structural dissimilarity correlates with the time of divergence, as

it happens for suitable sequence dissimilarities when evolution is

neutral, the transitivity property will approximately hold.

However, directed evolution where new conformations are

positively selected, for instance to fulfill a new function, may

violate the last hypothesis.

Fragment assembly violates transitivity. Gene duplica-

tion is not the only possible mechanism for the evolution of protein

domains. Complex proteins are formed from a combination of

individual domains with independent evolutionary history. For this

reason, the domain and not the complete protein is the basic unit

for protein classification. However, there is increasing evidence

that globular domains may be formed by combining fragments

below the domain level [23–26,28], and it has been observed

that many structurally unrelated proteins share common

substructures [14,26,29]. If two domains a and b are similar

because of a partial substructure A, while b and c are similar

because of a different partial substructure C, then a and c are not

similar and transitivity is violated. Several authors refer to this kind

of situation by saying that protein space is continuous, since one

can connect two different structures a and c with two small steps

passing through b.

Transitivity Violation and Automatic Stop of the
Clustering

If b is similar to both a and c but a and c are not similar, there is

no classification simultaneously compatible with all the pairwise

similarity relationships. Borrowing a term from statistical physics,

we can say that the classification problem is frustrated [38] when

transitivity is violated. We expect that, if this situation is common

for many triplets, there is an exponentially large number of

substantially different classifications that are almost optimal, in the

sense that they violate a small and similar number of pairwise

relationships. Conversely, if the transitive property approximately

holds, we expect that a well-defined unique globally optimal

classification exists, and all sub-optimal classifications are very

similar to it.

We expect that the validity of the transitive property strongly

depends on structure similarity. Domain pairs with high similarity

share most of their structure, and we expect that transitivity

approximately holds for them, so that at high similarity the

structure space is made of discrete clusters. However, less stringent

similarities may be due to partial substructures, and we expect that

the transitive property will be violated, and the clustering will

strongly depend on the algorithm used.

We propose here a measure to quantify the violation of the

transitive property at each step of a hierarchical clustering

algorithm. In this way, we aim at detecting the minimum

similarity at which transitivity still holds and clustering is justified.

At lower similarity, the space should be regarded as continuous,

and the significant similarities between clusters should be

represented as a network rather than a tree.

Let us consider three elements or clusters ABC, with the

convention that S A,Bð Þ§S B,Cð Þ§S A,Cð Þ. Violation of the

transitive property occurs if S B,Cð Þ is large while S A,Cð Þ is small,

so that B is an intermediate point between A and C. Therefore it is

natural to define the transitivity violation of the triangle ABC as

S B,Cð Þ{S A,Cð Þ. Such a quantity depends on the absolute

scale and the offset of the similarity measure, i.e., it is not

invariant if we multiply all similarities times a scale factor or

we add to them a constant. To remove this dependency, we divide

S B,Cð Þ{S A,Cð Þ times the difference between the largest and

smallest similarities, S A,Bð Þ{S A,Cð Þ, defining the transitivity

violation associated to the triangle ABC as

TV ABCð Þ~ S B,Cð Þ{S A,Cð Þ
S A,Bð Þ{S A,Cð Þ : ð1Þ

Notice that, by definition, Eq. (1) is comprised between zero and

one because S B,Cð ÞƒS A,Bð Þ The maximum violation TV~1
happens when S B,Cð Þ~S A,Bð Þ while S B,Cð ÞwS A,Cð Þ.

Another way to interpret this formula is the following. Because

of transitivity, only five clustering configurations of the elements A,

B and C are possible: all elements joined, all separated, two

joined and the third one separated. For a threshold S0, we say that

the link x,yð Þ is violated if either x and y are joined despite

S x,yð ÞvS0 (overunification) or x and y are separated despite

S x,yð ÞwS0 (oversplitting). For thresholds S0 such that

S0wS B,Cð Þ or S0vS A,Cð Þ there is one and only one

configuration that satisfies all links. However, if

S B,Cð ÞwS0wS A,Cð Þ, no one of the five possible configurations

satisfies all links, since either A and C are incorrectly joined, or B
and C are incorrectly separated. The volume in the space of the

threshold parameter S0 such that some links are violated quantifies

the violation of transitivity as S B,Cð Þ{S A,Cð Þ. On the other

Can Protein Folds Be Objectively Classified?
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hand, if S0wS A,Bð Þ all elements are separated, and if

S0vS A,Cð Þ all elements are joined, so that only values of S0

such that S A,Bð ÞwS0wS A,Cð Þ correspond to non-trivial clus-

tering. Therefore, Eq. (1) represents the ratio between the volume

of parameter space for which transitivity is violated and the

volume for which non-trivial clustering exist.

Yet a third way to look at the above equation is the following.

Most hierarchical clustering algorithms join at each step t the two

most similar clusters A and B and then recompute the similarity of

the new cluster AB with any other one C. For the average linkage

algorithm, we use the formula S AB,Cð Þ~wAS A,Cð Þz
wBS B,Cð Þ, where wA and wB are proportional to the number of

elements in sets A and B. The error made by substituting the

original similarities S A,Cð Þ and S B,Cð Þ with the combined one

is d~wA S AB,Cð Þ{S A,Cð Þj jzwB S AB,Cð Þ{S B,Cð Þj j~wAwB

S B,Cð Þ{S A,Cð Þð Þ, and it is proportional to Eq. (1).

Finally, S B,Cð Þ{S A,Cð Þ also quantifies the violation of

ultrametricity, since in an ultrametric set the two longest sides of

any triangle must be equal [37], which implies that

S B,Cð Þ~S A,Cð Þ. Eq. (1) is normalized in such a way that the

value 1 corresponds to the maximum possible violation of

ultrametricity, S B,Cð Þ~S A,Bð Þ.
Now let us consider the step t of the clustering algorithm in

which clusters A and B are joined. We define the transitivity

violation at this step as the weighted sum of the transitivity

violations for all triangles involving A and B:

TV AzB?ABð Þ~
X

C=A,B

wCTV ABCð Þ, ð2Þ

where wC is proportional to the number of elements in cluster C,

and for each triangle we label as B the element such that

S A,Bð Þ§S B,Cð Þ§S A,Cð Þ.

Cross-Over in Transitivity Violations
The main result obtained in this study is the existence of a cross-

over in the behavior of transitivity violations. This cross-over point

determines an intrinsic condition for stopping the hierarchical

clustering algorithm. We call the classification obtained at this

point ‘‘automatic classification’’.

The results that we present here are based on a set of 2890

domains that are decomposed very similarly in the SCOP and

CATH databases (see Methods), so that the domain decomposi-

tions are more likely to be accurate and differences between

CATH and SCOP on this set can not be attributed to their

different ways of decomposing proteins into domains. We compute

structure similarities using the Mammoth-mult algorithm [39],

which is one of the fastest algorithms for such a purpose and is

comparable in accuracy to other state of the art algorithms [40].

The similarity measure that we use is based on the contact overlap,

normalized in such a way as to eliminate the dependence on the

domain size for pairs of unrelated domains, and for clustering we

use the average linkage algorithm (see Methods). These choices

yielded the best results, as described below, and the results

presented will refer to them unless otherwise stated.

We plot in Figure 1 the transitivity violations as a function of the

step t of the clustering algorithm. For large t the clusters joined are

less similar and the transitivity violations increase. The plot can be

divided into two regimes: an initial part with slow increase of

transitivity violations at large similarity and a final part with faster

increase and small similarity. The cross-over between these two

regimes can be detected through a two-pieces fit (see Methods).

The normalized error of the fit, plotted in Figure 1 versus the trial

cross-over point, allows us to detect at its minimum the optimal

cross-over point, depicted as a vertical line. The classification

obtained at this cross-over point is called here ‘‘automatic

classification’’, since the threshold similarity at which the clustering

algorithm is stopped is automatically determined. We find

t0~2111, corresponding to joining two clusters with similarity

S0~6:78. At the stopping point, the automatic classification has

779 clusters.

Robustness of the Method
In order to test the robustness of our method, we repeated the

numerical experiments changing all the relevant choices: The

alignment algorithm, the similarity measure and its normalization,

the clustering algorithm and the set of domains. In all cases, we

observed a clear cross-over in the behavior of the transitivity

violations, and the cross-over point could be automatically located

through our algorithm. Moreover, the cross-over point did not

vary very much for different choices (see Table 1).

In order to choose the best options, we measured the transitivity

violations, the clustering coefficient, which is the network

analogous of the transitive property (see Methods), and the

agreement of the automatic classification with SCOP and CATH

as assessed through the weighted kappa measure, which is a

normalized measure of consistency between two classifications (see

Methods). These measures tend to be consistent, i.e., choices

yielding larger clustering coefficient tend to yield smaller

transitivity violations and larger weighted kappa as well. This

justifies the use of the weighted kappa to assess the method, despite

the problems that we will discuss in the following and that limit the

best possible agreement between the automatic classification and

SCOP or CATH. In particular, we considered the following

options:

1. As structure alignment method, we used either the

multiple [39] or the pairwise [41] version of the MAMMOTH

algorithm. As it has been recently assessed through an extensive

test [40], MAMMOTH multiple is of comparable accuracy to

other state of the art structure alignment tools and faster than most

of them, while its pairwise version is even faster, but at the expense

of accuracy. Moreover, the two algorithms are based on different

principles, since Mammoth pairwise optimizes the local superim-

positions of heptamers whereas Mammoth-mult optimizes the

global superimposition of the two structures. Nevertheless, we

Figure 1. Violations of transitivity, Eq. (2), as a function of the
step of the average linkage algorithm. We also plot the mean
quadratic error of the two-piece linear fit, whose minimum identifies
the cross-over point, plotted as a vertical line;
doi:10.1371/journal.pcbi.1000331.g001

Can Protein Folds Be Objectively Classified?

PLoS Computational Biology | www.ploscompbiol.org 4 March 2009 | Volume 5 | Issue 3 | e1000331



obtained very similar results with the two algorithms, which shows

that the whole methodology is not very sensitive to the accuracy of

the alignment. We used the more accurate MAMMOTH-mult

algorithm as the standard option.

2. We used several different measures of structure simi-
larity. First, we used measures that require optimal rigid-body

superimposition of the aligned residues. Such is the the percentage

of structure identity (PSI), which counts the percentage of aligned

residues that superimpose within a given threshold after optimal

rigid body superimposition. In order to examine the influence of

this threshold, we used the standard value 4Å as used in the

standard MAMMOTH score and the larger tolerance 6Å. We

normalized the PSI either through the length of the shorter

protein, Eq. (5), which does not penalize matches that are only

partial (we refer to it as the Partial PSI) or through the geometric

mean length, Eq. (6) (Total PSI). As an alternative to an arbitrary

tolerance parameter we tested the TM score [42], which uses a

length dependent threshold that makes this score almost

independent of the size of the aligned proteins. Second, we used

the contact overlap, Eq. (7), which does not depend neither on the

optimal rigid body superimposition nor on a tolerance parameter,

although it depends on the parameter used to define contacts, i.e.,

interatomic interactions in the native structure. Most of the results

presented here are obtained with the overlap as similarity score.

In order to remove the dependence on protein length for

unrelated proteins, we normalized the PSI and the overlap as in

Eq. (8). The parameters used in this expression were determined

by fitting mean and standard deviation of the similarity of

unrelated structures with respect to the length used to normalize

the PSI, using either Gaussian statistics Eq. (9), or extreme value

statistics, Eq. (10), as in the original Mammoth paper.

The best similarity score was selected based on the value of

transitivity violations and the clustering coefficient evaluated up to

the automatic cross-over point (see Methods). Using these criteria,

the best score was the contact overlap (see Figure S1).

The normalization with respect to domain size did not modify

the clustering coefficient considerably. However, measures that

omit the normalization yield much lower agreement with expert

classifications, and their cross-over points are rather distinct,

whereas all the normalized scores have almost the same cross-over

points. Therefore, normalized scores were used as the standard.

3. As clustering method, we considered average linkage

(AL), single linkage (SL) and complete linkage (CL). We also used

the neighbour joining algorithm (NJ), finding results very similar to

those with average linkage (data not shown). For this comparison,

we did not use the clustering coefficient, since it does not depend

on the clustering algorithm.

The plot of transitivity violations for the three algorithms is

shown as Figure S2, plot A. Not surprisingly, we found the best

results with the average linkage algorithm, which can be

interpreted as an algorithm trying to minimize the combination

of oversplitting and overunification transitivity violations. The

complete linkage only minimizes overunification errors, since it

separates all structures that are below the similarity threshold. Its

transitivity violations are only slightly larger than for the average

linkage, but its weighted kappa is much smaller. The single linkage

only minimizes oversplitting errors, since it joins all pairs above the

similarity threshold. Correspondingly, it generates larger clusters.

Its transitivity error is much larger than for complete and average

linkage.

Remarkably, single linkage clustering agrees much better than

average linkage with the CATH classification at topology (fold)

Table 1. Robustness of the automatic classification.

Set Ali Score Norm Cl. Al. N.Clu. Clus.co. T.V. WKSS WKSF WKCS WKCF

SCOP 2890 MM Cont. Gauss AL 779 0.90 0.072 0.54 0.69 0.58 0.32

SCOP 2890 MM TM No AL 740 0.87 0.101 0.59 0.60 0.55 0.22

SCOP 2890 MM PSI4-p EV AL 768 0.88 0.088 0.51 0.57 0.51 0.24

SCOP 2890 MM PSI6-p EV AL 855 0.87 0.113 0.54 0.58 0.52 0.27

SCOP 2890 MM PSI4-t EV AL 788 0.88 0.084 0.49 0.60 0.48 0.26

SCOP 2890 MM Cont. No AL 883 0.88 0.069 0.57 0.50 0.53 0.27

SCOP 2890 MP Cont. No AL 950 0.86 0.070 0.51 0.54 0.53 0.23

SCOP 2890 MP PSI4-p EV AL 797 0.77 0.089 0.47 0.44 0.49 0.19

SCOP 2890 MP PSI4-t EV AL 758 0.88 0.085 0.51 0.54 0.51 0.25

SCOP 2890 MM Cont. Gauss SL 876 0.90 0.167 0.24 0.48 0.54 0.69

SCOP 2890 MM Cont. Gauss CL 730 0.90 0.080 0.26 0.47 0.43 0.10

CATH 2890 MM Cont. Gauss AL 776 0.90 0.079 0.50 0.71 0.54 0.36

SCOP 5041 MM Cont. Gauss AL 1353 0.92 0.063 0.61 0.52 - -

CATH 7073 MM Cont. Gauss AL 2287 0.91 0.068 - - 0.51 0.14

The qualitative features of the classification at the cross-over point are robust with respect to different methodological choices. First column, set of domains at less than
40 percent sequence identity: either 2890 domains from SCOP, or the corresponding 2890 domains from CATH, or 5041 domains from SCOP, or 7073 domains from
CATH. The number of superfamilies and folds is, respectively: SCOP 2890: 779, 466; CATH 2890: 873, 473; SCOP 5041: 1094, 660; CATH 7073: 995, 1852. 2nd column,
alignment algorithm: either the multiple structure alignment algorithm MAMMOTH multiple (MM) or its pairwise version (MP), faster but much less accurate. 3rd
column, similarity measures: either Contact Overlap (Cont.) or TM score (TM) or percentage of structure identity (PSI). This can have a tolerance of either 4Å or 6Å , and it
can be normalized either with respect the length of the shortest domain, PSI partial (PSI-p), or with respect to the geometric average, PSI total (PSI-t). 4th column,
normalization with respect to length: either none, or Gaussian statistics (Gauss) or extreme value statistics (EV) 5th column, clustering algorithms: either average linkage
(AL), or single linkage (SL) or complete linkage (CL). The results presented are the following. Number of clusters at the cross-over point (6th column), clustering
coefficient averaged until the cross-over similarity (7th column), mean transitivity violations(8th column) and weighted kappa with respect to SCOP superfamilies (9th
column), SCOP folds (10th column), CATH superfamilies (11th column) and CATH topologies (12th column), The first line in bold face refers to the selected choices, used
in the presented results. In the following lines we evidence in bold face the variables that have changed with respect to the reference.
doi:10.1371/journal.pcbi.1000331.t001
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level. This is not surprising, since CATH uses single linkage

clustering, but it is an interesting observation, since it illustrate that

one basic difference between CATH and SCOP arises from their

reliance on different clustering procedures. However, superfamilies

agree much better with the average linkage classification for both

CATH and SCOP. More important, the transitivity violation is an

intrinsic criterion, not based on any reference classification, which

clearly favors the average linkage algorithm (see also the

Discussion).

4. As domain set, we used the consensus domains (2890

domains), the ASTRAL40 set of domains corresponding to SCOP

release 1.63 (5041 domains), and the set of non-redundant

domains at the 35 percent sequence identity threshold corre-

sponding to CATH release 3.1.1 (7073 domains).

The number of domains per fold as defined by SCOP (1.67,

2.05) and CATH (1.64, 2.30) increases with the size of the set, as

we would expect from the fact that the cluster size is power law

distributed, so that smaller samples are more likely to have smaller

averages. The same happens at the level of superfamily. In

contrast, the number of domains per cluster does not increase for

larger samples, being 3.71 and 3.73 for SCOP domains and 3.71

and 3.09 for CATH domains. This indicates that our method

tends to stop the clustering process relatively earlier for larger

samples. In fact, larger samples are more likely to contain proteins

that evidence transitivity violations. The plots of transitivity

violations are qualitatively very similar, and are represented in

Figure S2, plot B.

Length Differences
At each clustering step, we measure the difference between the

average domain length of the two joined clusters A and B,

Length difference~

P
a[A L að Þ

nA

{

P
b[B L bð Þ

nB

����
���� ð3Þ

One can see from Figure 2 that the length difference is

significantly larger after the cross-over point when transitivity

violations increase faster. This observation is consistent with the

intepretation that the regime of large transitivity violations takes

place when the joined clusters are more likely to share only partial

substructures. This behavior of the length difference is very robust

with respect to changes in the clustering algorithm, similarity

score, or set of domains.

Statistics of the Cluster Size
At the cross-over point, we find a broad distribution of the

number of domains per cluster, with power-law probability

density, p nð Þ&n{2:4+0:1. This result agrees with the distribution

of the number of proteins predicted to belong to specific folds in

various genomes, which follow power-laws [43] with exponents

between 2.5 and 4.0, approaching 2.5 for large genomes [44]. It

also agrees very well with the automatic clustering by Dokholyan

et al. [45], who found an exponent of 2.5 using as similarity

measure the Dali score [9], with single linkage clustering and

threshold derived from the statistical analysis of the domain

similarity network. We also measured the cluster size distribution

in the SCOP classification with 40 percent sequence similarity

threshold to reduce redundancy, finding p nð Þ&n{2:1+0:3 for folds

and p nð Þ&n{2:0+0:1 for superfamilies.

Therefore, the exponent of the distribution of the number of

domains per cluster agrees reasonably between the SCOP and the

automatic classification. Nevertheless, this agreement is not an

evidence of the consistency between classifications, since the same

size distribution can be found also for clusters obtained from

random networks with the same statistical properties [45].

Comparison of Automatic and Expert Classifications
Weighted kappa. We compared the automatic classification

with SCOP and CATH measuring their weighted kappa, which is

plotted in Figure 3 versus the step of the average linkage. At first

kappa increases steadily, since most joined domains belong to the

same superfamily or fold, then it reaches a plateau and it decreases

steeply when most of the joined domains belong to different folds

or superamilies. The maximum of kappa is reached earlier, i.e., at

larger number of clusters, for superfamilies than for folds, as

expected since there are more superfamilies than folds. The

maximum kappa for folds is larger than for superfamilies, which

seem at first sight surprising, since structural similarity is on the

average larger within a superfamily than within a fold. However,

kappa can be decomposed into the contributions of related and

unrelated pairs, with weights proportional to the number of related

and unrelated pairs, respectively, see Eq. (20). For folds, the ratio

of related to unrelated pairs, and consequently the weight of

related pairs, is larger than for superfamilies. Therefore, kappa will

be larger when all domains in the same fold are joined than when

all domains in the same superfamily are joined.

The cross over point is located before the maximum weighted

kappa for folds, indicating that many clustering steps that join

clusters containing domains in the same fold imply large

transitivity violations. This suggests that these fold relationships

are more compatible with a network than with a classification. The

difference between the automatic classification and the classifica-

tion at the step where the kappa for folds is maximum becomes

larger when more domains are added to the set, which makes it

more likely to find transitivity violations that prevents clusters from

being joined.

These results are robust with respect to the different choices

mentioned above. In the following, we analyze in more detail the

instances of disagreement between the automatic and the expert

classifications.

Splitting of SCOP and CATH superfamilies. At the cross-

over point, the great majority of the clusters only contain domains

Figure 2. Difference between the mean lengths of the two
joined clusters, Eq. (3), versus the average linkage step. The
cross-over of transitivity violations is depicted as a vertical line. One can
see that length differences are significantly larger after the cross-over.
To improve the representation, we performed running averages with
window size of 30 steps.
doi:10.1371/journal.pcbi.1000331.g002
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in the same SCOP or CATH superfamily. Their number is 632 for

CATH superfamilies, 664 for SCOP superfamilies, and 673 over

779 (more than 86 percent) for either SCOP or CATH

superfamilies (see Table 2).

Several superfamilies are splitted in various clusters of the

automatic classification. This is one of the most common

disagreement between the automatic and the expert classifications.

This is however not surprising, since it is well known that

evolutionarily related proteins may diverge structurally. The

number of splitted superfamilies is 115 over 779 (almost 15%)

for SCOP and 87 over 885 (less than 10%) for CATH, which splits

several superfamilies that are unique in SCOP.

To analyse these splittings, we measured the distribution of

structure similarity between each pair of domains in the same

SCOP superfamily, distinguishing split superfamilies from super-

families contained in just one cluster of the automatic classifica-

tion. The two distributions are shown in Figure 4A. Similarities in

split superfamilies show a bimodal distribution, with one peak at

low similarity corresponding to pairs of domains belonging to

different clusters and one peak at high similarity corresponding to

pairs in the same cluster. This indicates that the splitting is not an

artifact of the method, but it reflects a significant difference

between split and unsplit superfamilies.

For some cases, the difference between domains in the same

superfamily appears to be due to large insertions or deletions of

secondary structures, which may produce fold changes in protein

evolution [32,33,36]. In fact, we measured the difference in length

between proteins in the same superfamily, distinguishing split and

unsplit superfamilies. The median size difference is 41 residues for

splitted superfamilies, as compared with 22 residues for unsplitted

ones. One such example of split superfamilies is shown in

Table 2. Detailed comparison between automatic and expert
classifications.

Reference
classification Num. clust. Homogeneity

Joining
probability

SCOP SF 779 85.2 68.0

CATH SF 885 81.1 66.4

SCOP or CATH SF - 86.3 69.1

SCOP folds 466 92.0 44.5

CATH folds 473 91.4 10.7

SCOP or CATH folds - 95.4 45.0

First column: reference classification. Second column: Number of clusters in the
reference classification. Third column: Percentage of the 779 clusters in the
automatic classification that are pure with respect to the reference classification
(in case of CATH or SCOP, it is the fraction of clusters that are pure with respect
to either CATH or SCOP). Fourth column: Percentage of the pairs joined in the
reference classification that are joined in the automatic classification. In the case
of folds, only pairs in different superfamilies are counted.
doi:10.1371/journal.pcbi.1000331.t002

Figure 4. Distributions of intra-superfamily and intra-cluster similarity scores. (A) Distribution of the normalized total similarity score,
Eq. (6) and (8), for domain pairs in the same superfamily. The grey bars are obtained for superfamilies that are not split, whereas the white bars are
obtained for splitted superfamilies. One can see that splitted superfamilies present a bimodal distribution, with a peak with very small structure
similarity. (B) Distribution of the mean intracluster similarity in the automatic classification, Eq. (11). The white bars are obtained for domains in
clusters that contain only proteins of the same SCOP fold. The orange bars are obtained for minority domains in clusters containing domains that are
mostly of a different SCOP fold.
doi:10.1371/journal.pcbi.1000331.g004

Figure 3. Weighted kappa measuring the agreement the
average linkage classifications with step represented in the
horizontal axis and SCOP and CATH superfamilies and folds.
Notice that the cross-over point, depicted as a vertical line, lies between
the maximum agreement with superfamilies and the maximum
agreement with folds.
doi:10.1371/journal.pcbi.1000331.g003
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Figure 5A, showing domains 1c7ka_ and 1e1h.1, both from the

SCOP superfamily of metalloproteases (55486). The first domain

has 132 residues, and it is automatically classified in a cluster of 5

domains from the same superfamily with average length 163. The

second domain has 399 residues and it is not joined with any other

domain. Only three of the five beta strands in the main sheet of the

large domain superimpose with the corresponding strands in the

small domain. The large domain has several additional beta

strands and alpha helices. CATH also separates the two domains.

It includes the cluster containing 1c7ka_ in the superfamily

collagenase, and the domain that we separate in the superfamily

metalloproteases.

Another example is the superfamily lambda repressor-like

DNA-binding domains (47413). We separate this superfamily in

two clusters, one containing the domains with ASTRAL id.

1lmb3_ and 1r69__ and another one containing domain 1d1la_.

This is consistent with the CATH classification, which separates

them in two different topologies, and even two different secondary

structure classes (all alpha and alpha+beta). Domains 1lmb3_ and

1d1la_ constitute possibly a very interesting example of evolu-

tionary secondary structure switch between proteins that could be

demonstrated to be homologues [34,35]. Placing both structures in

the same fold puts in shadow this very interesting example of

divergent structure evolution.

A number of splittings is due to the limited ability of the

similarity score to assign significant similarity to short proteins In

fact, the average overlap or PSI of unrelated structures is larger for

short proteins, and therefore a larger overlap or PSI is required to

judge it as significant (see Eq. (8)). As a consequence, there is a bias

to split superfamilies with small domains: The mean length of

splitted superfamilies is 165 residues versus 180 residues for

superfamilies that are not splitted. We show one such example in

Figure 6, which represents three short domains of the homeodo-

main-like superfamily that would be joined at a similarity value

Figure 5. Examples of splitted SCOP superfamilies with large structural changes. Above: Two domains classified in SCOP in the
metalloproteases superfamily, but splitted in CATH. Their codes are 1c7ka_ (A) and 1e1h.1 (B), with lengths of 132 and 399 residues respectively. Most
of the secondary structure elements in the long protein are not matched in the short one. Below: Lambda repressor-like DNA-binding domains
1lmb3_ and 1r69__ (C) and 1d1la_ (D), which represent a well studied example of possible secondary structure switch in evolution.
doi:10.1371/journal.pcbi.1000331.g005
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slightly below the cross-over (at Z-score 6.1). A possible solution

would be to modify the score so that the similarity does not depend

on chain length neither for closely related nor for unrelated

proteins. We will study such a modification in following work.

Fold unification. The automatic classification disagrees with

CATH or SCOP when two domains in the same cluster belong to

different folds. This kind of disagreement is rather rare. Only 142

domains over 2890, i.e., less than 5 percent, are contained in

clusters where the majority of domains is from another SCOP fold,

and they are distributed in only 63 clusters, so that 92 percent of

the clusters contains only domains from the same fold. Similarly,

124 CATH domains over 2890 are minority domains, distributed

in 67 clusters. However, these do not coincide with the 62

homogeneous clusters according to SCOP. Only 36 clusters (less

than 5 percent) are not homogeneous according to both SCOP

and CATH, indicating a very high agreement in cluster

composition with the expert classifications (see Table 2).

For analyzing these disagreements, we computed the mean

similarity score of each domain with the other domains in the same

cluster, distinguishing domains in homogeneous clusters from

minority domains in clusters with a majority of domains of a

different fold. As one can see in Figure 4B, the two distributions

overlap quite considerably, but their median values are signif-

icantly different, which means that it may be possible to distinguish

some minority domains and ‘‘clean’’ some clusters from them.

This possible refinement of the clustering will be studied

elsewhere.

Some examples of fold unification are represented in Figure 7.

One such case involves SCOP folds Tim Beta/Alpha Barrel

(51350) and 7-stranded beta/alpha barrel (51988). They corre-

spond to two distinct CATH topologies with the same names as in

SCOP. However, the distribution of domains in the two folds is

not the same in SCOP and CATH. We split these two folds into

seven clusters. Four clusters are pure for both SCOP and CATH,

which agree in classifying them as TIM barrels, two clusters only

contain 7-stranded barrels according to SCOP but all domains but

one are classified as TIM barrels in CATH, and the last cluster

contains, together with 12 TIM barrel domains, one domain,

1m65a_ that is considered 7-stranded in SCOP and TIM barrel in

CATH. Visual inspection supports the 7-stranded classification, in

agreement with SCOP, but the structure similarity inside the

cluster is very high.

In another example, the automatic classification joins domains

from the SCOP folds Spectrin repeat-like (46965, corresponding

to CATH topology 12058) and STAT-like (47654, corresponding

to CATH topology 1201050) in three different clusters. However

CATH classifies domain 1lvfa_, which is STAT-like according to

SCOP, in the Spectrin repeat-like fold, while a paper of the SCOP

team reports that the SCOP release 1.53 changed the classification

of domain 1br0 from spectrin repeat to STAT-like, showing that

even experts can confound these two folds [46]. Visual inspection

shows that the domains that we unify are indeed very similar.

The third example corresponds to two domains from SCOP

folds PIN domain-like (PDB code 1o4wa_) and Adenine

Nucleotide alpha Hydrolase-like (PDB 1jmva_), which are

automatically classified in the same cluster. Besides a very high

structure similarity, these folds have an almost identical description

in the SCOP database (beta-sheet of 5 strands, order 32145).

Splitting of folds. Another possible disagreement happens

when superfamilies that are joined together in the same SCOP fold

or CATH topology are splitted in different clusters. This is very

frequent: 55.5 percent of the domain pairs in the same SCOP fold

but distinct superfamilies are separated. For CATH, this

percentage raises to 89.2%. This is not likely to be an artifact of

the automatic classification, since the automatic classification

agrees with SCOP or CATH at the fold level better than they

agree with each other, as discussed in next section. The transitivity

analysis suggests that this happens because SCOP and CATH join

superfamilies into folds at a similarity level for which transitivity

violations are rather large, so that clustering is not justified and

unique. At this similarity level different clustering algorithms yield

radically different classifications. In contrast, the pairs of domains

of the same superfamily that are separated in the automatic

classification is significantly smaller, 32% for SCOP and 34% for

CATH.

Analysis of Expert Classifications
Comparison between SCOP and CATH. The expert

classification schemes CATH and SCOP split proteins into

domains differently. Domains in the CATH classification are

typically smaller than those in the SCOP classification, with an

average of 155 residues compared to 179 residues for SCOP

domains (the standard deviations are 88 and 120 respectively).

Comparison with a set of expert curated domain decompositions

[47] shows that SCOP undercuts domains, whereas CATH

decompositions are usually in good agreement with experts [48].

We used here 2890 domains similarly defined in both SCOP and

CATH. For this consensus set, we measured the agreement

between the SCOP and the CATH classification through the

weighted kappa (see Methods). The values found are reported in

Table 3, where the automatic classification is also shown for

comparison.

There is rather good agreement, k~0:84, between CATH and

SCOP at superfamily level. The 779 SCOP superfamilies become

885 with CATH (almost 14 percent more), but CATH

superfamilies are larger, so that 26320 pairs of domains are in

the same CATH superfamily versus 22937 for SCOP, of which 90

percent (i.e., 20695) are common.

The agreement with the average linkage clustering is signifi-

cantly weaker. Around 68 percent and 66 percent of pairs in the

same SCOP and CATH superfamily are in the same automatic

cluster, since many superfamilies are split in the automatic

classification.

Figure 6. Three small domains of the Homeodomain-like
superfamily, with PDB codes 1bl0a1, 1bl0a2 and 1d5ya2 are
splitted in two clusters despite very high similarity. These
clusters would be joined with S~6:1, short after the cross-over. This is
an example of the limitation of the similarity measure in recognizing
significant similarity when dealing with small structures.
doi:10.1371/journal.pcbi.1000331.g006
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In contrast, the agreement between CATH and SCOP at fold

level is much poorer, with k~0:48. This suggests that the fold is

more subjectively defined than the superfamily. The disagreement

comes mainly from the fact that CATH joins many more pairs

than SCOP at fold level: there are 3.9 times as many pairs

classified as same fold and different superfamily by CATH than by

SCOP (137608 versus 35428). More than 94 percent of the

domain pairs defined by SCOP in the same fold are joined by

CATH, but these commonly joined pairs represent only one third

of the pairs in the same CATH topology.

Interestingly, at the fold level the similarity based clustering

agrees with the two manual classifications better than they agree

with each other, with maximum agreement k~0:79 and k~0:63
for SCOP and CATH, respectively. At the cross-over point, the

agreement between the automatic classification and SCOP is

k~0:69, much larger than with CATH k~0:32ð Þ.
If we perform the clustering using single linkage instead of

average linkage, the agreement between the automatic clustering

and CATH becomes much better (k~0:80 at the maximum and

k~0:74 at the stop point), whereas the agreement with SCOP

becomes much poorer. Indeed, CATH uses single linkage

clustering, i.e., a new domain is joined to the cluster containing

the most similar domain if similarity is above a threshold. This

explains why CATH joins more pairs of domains than SCOP at

the topology level.

If we compare the average linkage with the single linkage

clustering as a function of the clustering step, we find that the

single linkage joins many more pairs than the average linkage for

the same number of clusters, as expected from the fact that it does

not penalize the overunification. The weighted kappa between the

two algorithms decreases as the clustering proceeds, as shown in

Supporting Figure S3. The disagreement between the two

classifications is already important before the cross-over point.

These findings shed light on the comparison between CATH

and SCOP. Despite their good agreement at the level of

superfamily, CATH and SCOP use different criteria for clustering

Figure 7. Examples of fold unifications. (A) Domain 1o4wa_ from SCOP fold PIN domain-like and domain 1jmva_ from fold Adenine Nucleotide
alpha Hydrolase-like. They have a nearly identical description in the SCOP database in terms of secondary structure elements. (B) The 7-stranded
barrel with code 1m65a_ is unified to a cluster with 12 TIM barrel, one representative of which, with code 1j6oa_, is shown for comparison. (C)
Unification of two domains from the SCOP folds STAT-like (PDB 1lvfa) and spectrin repeat-like (PDB 2e2aa).
doi:10.1371/journal.pcbi.1000331.g007
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superfamilies. They would nevertheless agree better if the

clustering would be stopped at large similarity, where transitivity

is approximately fulfilled. Therefore, the discrepancy between

CATH and SCOP at fold level has two roots (besides the different

in domain decompositions): (1) They use different clustering

methods, a procedure effectively similar to average linkage for

SCOP and single linkage for CATH. which yields a much larger

number of pairs classified as the same fold, despite the number of

folds is practically the same. (2) They push the clustering up to a

low similarity level at which the two clustering methods diverge

considerably.

Classification criteria may vary with time. Another

possible source of subjectivity in the definition of the fold is the

amount of biological knowledge that the expert curators use. To

test the influence of this factor, we analyzed how SCOP folds and

superfamilies changed through time. We labelled the age of a

SCOP fold or superfamily through its SCOP index. Since the

SCOP index depends on the secondary structure class, we

normalized separately the index for different secondary structure

classes, so that a value of 1 means that the index lies within the first

10% of its class and so on. We measured the mean similarity score

for pairs of proteins in the same fold or superfamily. The

MAMMOTH similarity score of related domains depends on their

length. For superfamilies, we find that the average score depends

on the average length of the superfamily, L, as S&L0:586. Since

the folds and superfamilies with index in the 7th and 8th interval

are characterized by much longer domains (the average length is

270, compared with average lengths between 131 and 188 for all

other intervals), we normalized the MAMMOTH similarity score

dividing it by L0:586, where L is the average length in the cluster.

One can see from Figure 8 that folds classified since longer time

(smaller index) tend to be structurally more diverse. They also

contain more domains and more superfamilies (data not shown).

There are two possible interpretations of these findings. It is

possible that some folds are intrinsically more diverse, and that

they are more likely to be discovered and studied first, since they

contain a larger number of proteins. But it is also possible that the

greater biological knowledge available for older folds makes it

easier to classify domains in these folds even in the absence of a

large structure similarity.

To distinguish between these two interpretations, we measured

structure similarity within superfamilies, see Figure 8. Similar as

for folds, older superfamilies contain more domains than the more

recent ones (11.662.2 for the most ancient and 4.160.9 for the

most recent index interval), but they are not more structurally

diverse. This suggests that: (1) Ancient folds are structurally more

diverse because they join superfamilies that are more diverse

between each other but not within each other. Consistently,

ancient folds contain more superfamilies: 3.760.8 for folds with

the most ancient labels, less than 1.960.3 for SCOP labels above

the third interval; (2) When there is sequence information to guide

the classification, as in the case of superfamilies, the structural

diversity remains stable with time, and it does not depend on the

size of the superfamily, whereas it changes with time in the case of

folds, for which no sequence information is used. This may suggest

the existence of a bias to join new superfamilies to a fold known

since long time even if the structure similarity is small.

Summarizing, the structure similarity within SCOP superfam-

ilies remained stable through time, whereas the similarity of

superfamilies classified into the same fold tends to be lower for

ancient folds.

Beyond the Classification: Protein Similarity Network
The cross-over point of transitivity violations determines an

intrinsic threshold beyond which protein similarity is better

represented as a network rather than as a tree. Protein similarities

have been previously represented as a network by other authors.

Dokholyan et al. [45] generated the protein domain universe

graph using as similarity measure the Z score of the structure

alignment program Dali [9]. They found out that, for proper

thresholds, the network is scale-free, i.e., the number of links per

node is power-law distributed. Performing single linkage clustering

over this network, they obtained clusters whose size distribution is

also a power-law, reminiscent of the distribution of protein

domains per SCOP fold in a genome [43,44]. Krishnadev et al.

[49] performed a similar study for the similarity graph of protein

Table 3. Comparison of the agreement between different
classifications.

Superfam. Folds

SCOP vs. CATH 0.84 0.48

Automatic (AL) vs. SCOP 0.54 0.69

Automatic (AL) vs. CATH 0.58 0.32

AL (max) vs. SCOP 0.65 0.79

AL (max) vs. CATH 0.64 0.63

Automatic (SL) vs. SCOP 0.24 0.48

Automatic (SL) vs. CATH 0.28 0.70

SL (max) vs. SCOP 0.51 0.67

SL (max) vs. CATH 0.51 0.80

The agreement is evaluated through the weighted kappa parameter, Eq. (19).
The first line compares superfamilies and folds from SCOP and CATH. In the two
following lines, the automatic classification at the stop point obtained with
average linkage (AL) is compared with SCOP and CATH, respectively, at the
levels of superfamilies and folds. The two following lines compare the expert
classifications with the AL classification at the points where their weighted
kappa is maximum. The four last line are the same, but using as clustering
algorithm single linkage (SL), which gives a much stronger agreement with
CATH than with SCOP at the fold level, consistent with the fact that CATH uses
single linkage.
doi:10.1371/journal.pcbi.1000331.t003

Figure 8. Normalized structural similarity score of the program
MAMMOTH (A) and standard deviation of domain length (B)
versus the date of the oldest PDB file included in the SCOP
fold. Older folds appear to be significantly more structurally diverse, as
assessed both through the MAMMOTH score and their length
difference.
doi:10.1371/journal.pcbi.1000331.g008
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chains instead of protein domains. They also found scale-free

behavior at large enough similarity threshold. They used spectral

analysis of the adjacency matrix to partition the graph into

clusters.

In contrast to these previous approaches, the graph presented

here is not a preliminary step for clustering, but it represents the

significant similarity relationships for which clustering is not

justified. These relationships not only allow to recover relation-

ships present in expert classifications, such as splitted superfamilies

and folds, but also allow to treat on the same ground the cross-fold

relationships discussed by several authors, which go beyond expert

classifications.

We construct the similarity network by connecting the clusters

of the automatic classification that have significant structural

similarity. As the similarity threshold is decreased, more and more

clusters are connected. Pairs of clusters containing structures from

a superfamily splitted in the automatic classification get unified in

the network. We measured the probability that a pair of domains is

joined in the network as a function of the similarity threshold,

distinguishing pairs of domains from the same superfamily, from

the same fold, or from different folds. (see Figure 9). Only for

similarities as low as S0&2:5, more than 90% of the domains in

the same superfamily are joined. However, already for similarities

S0v3:5 the majority of the joined domains are from different

folds. A reasonable threshold for significant structure similarity,

mostly corresponding to pairs of different folds, seems to be S0

between 3 and 4. Results presented here are obtained using S0~4
as threshold for significant structure similarity.

A visual representation of such a network is shown in

Figure 10B. One can see that almost all of the structure space is

connected, but there is still some structure appearing. If we use a

higher similarity threshold but still below the cross-over, such as

S0~6, the resulting network contains several linear motifs clearly

expressing transitivity violations, with a connected to b, b to c, c to

d , and so on, but without direct connection between a and c or a
and d. For comparison, we also show in Figure 10A the network

constructed joining clusters at high similarity before the cross-over

point (S0&10) using as threshold the cross-over similarity,

S0~6:78. This network presents many regions with high density

of links, representing clusters that have still to be joined,

In the context of network analysis, the transitive property

studied in this paper is analogous to the clustering coefficient

(see Methods). Clustering coefficient equal one means that the

network is transitive, i.e., if a is connected with b and b is

connected with c, also a is connected with c. The high siilarity

network obtained before the cross-over point has a high

mean clustering coefficient equal to 0.69, which decreases to

0.36 for the network after the cross-over. In general, as one could

expect, the clustering coefficient increases with the similarity

threshold S0 (see Figure S1). However this increase is smooth, so

that we can not use the clustering coefficient to detect the cross-

over point.

Interestingly, the network allows not only to recover similarity

relationships at the superfamily and fold level that are below the

threshold for clustering, but it may also help to discover new

evolutionary or functional relationships that are not contained in

SCOP or CATH. For instance, in a recent paper Xie and Bourne

proposed a new method to detect remote evolutionary relation-

ships based on the structure similarity of the active site [50]. Using

this method, they confirm a previously proposed evolutionary

relationship between SCOP superamily Phosphoenolpyruvate

carboxykinase (PCK) and the P loop containing nucleotide

triphosphate hydrolase (NTH) superfamily. The PCK domain

1ayl_1 used as a seed by Xie and Bourne is joined in the automatic

classification with domains 1knxa2 and 1ko7a2, which are

classified in SCOP in the PCK superfamily but are classified in

CATH in the NTH superfamily. The automatic classification

supports the CATH classification. This cluster has a single

significant structural link, with average similarity S~5:0, with a

cluster containing only domains classified in the NTH superfamily

in both CATH and SCOP, and through this link another step

connects it to many other clusters in the NTH superfamily or in

the NTH fold. The relevant part of the network is represented in

Figure S4, from which it is clear that the structurally consistent

clusters joined in a network give a richer evolutionary information

than a unique fold.

Figure 9. For networks of clusters in the automatic classification joined with the similarity threshold represented in the horizontal
axis, we plot in (A) the fraction of links joining clusters that contain two proteins from the same SCOP superfamily (a), the same
SCOP fold (b), or different folds (c), respectively; in (B) we plot the probability that a link exists for a pair of clusters of type (a), (b),
and (c). In (A), we see that, for S0v3:5, the majority of links are from clusters unrelated in SCOP.
doi:10.1371/journal.pcbi.1000331.g009

Can Protein Folds Be Objectively Classified?

PLoS Computational Biology | www.ploscompbiol.org 12 March 2009 | Volume 5 | Issue 3 | e1000331



In order to complement structure information with sequence

information, we constructed the network connecting clusters that

have members belonging to the same superfamily. The networks

based on sequence and structure similarity can be accessed at the

url http://ub.cbm.uam.es/research/ProtNet.php

Transitivity violations and protein modularity. To

investigate protein modularity, we studied the triangles that

violate transitivity for a specific threshold S0, in the sense that

S a,bð ÞwS0, S b,cð ÞwS0, but S a,cð ÞvS0. For such triangles, we

tested whether the regions of the intermediate structure b having a

good match with structures a and c are the same or they are

different, by measuring the overlap between these two regions as

Qbca~
min endba,endbcð Þ{max iniba,inibcð Þ

min endba{iniba,endbc{inibcð Þ ð4Þ

where the initial and final residues of the matching regions are

denoted as iniba, endba, inibc and endbc, respectively. The value

Qbca~1 means that all three structures all share the same core

over which they are similar. In contrast, the value Qbca~0 means

that the intermediate structure b shares completely different

fragments with structures a and c. This is the most dangerous case

for clustering algorithms, which can run the risk to join two

structures that do not share any common region. One such

example, with ASTRAL codes d1mt5a_, d1bif_1 and d1b3qa1, is

shown in Figure 11.

The distribution of the fragment overlap Qbca is bimodal, with

peaks at Qbca~1 and Qbca~0 (see Figure 12). However, triangles

with Qbca~0 are very rare for large similarity S0~10, where they

may correspond to errors in domain decompositions, whereas they

become more frequent for similarities below the cross-over point.

Thus, beyond the cross-over point it is likely to find severe

violations of transitivity in which two significant matches ab and bc
fall in two completely different regions of protein b, consistent with

the idea that transitivity violations and the consequent continuity

of protein structure space stem from the modularity of proteins.

These significant and disjoint partial matches offer a way to

operatively define substructures below the domain level. A more

detailed study of substructures based on their recurrence will be

presented elsewhere.

Discussion

Transitivity Violations
As for all problems for which hierarchical clustering algorithms

are applied, for clustering protein structures it is of key importance

to determine up to which point the clustering is justified. We

propose to test the internal consistency of a clustering method

based on a similarity measure by testing the transitive property,

which requires that whenever a is similar to b and b is similar to c,

then a must be similar to c. Only if the transitive property holds a

hierarchical classification can be unambiguously built. If the

transitive property is violated for an extensive number of triangles,

hierarchical clustering is frustrated [38], and we expect that there

is a very large number of unrelated and almost optimal

classifications, in each of which a similar number of similarity

relationships are violated. We proposed here Eq. (1) to quantify the

violations of transitivity of a group of three elements, and Eq. (2) to

quantify the violation of transitivity when two clusters are joined.

Transitivity violations as defined here occur either when a pair

of domains is joined below the similarity threshold, or when a pair

is separated above the same threshold. Another definition,

common in the context of sequence comparisons, considers that

transitivity is violated only when pairs are separated above

threshold. This definition is motivated by the fact that significant

sequence similarity demonstrates almost certainly an evolutionary

relationship, whereas the lack of similarity does not exclude it.

With this definition, the single linkage algorithm does not produce

any transitivity violation, since it joins all pairs above threshold. In

fact, the term transitivity is often used as a synonymous of single

linkage clustering.

Nevertheless, several reasons make the definition of transitivity

adopted here more suitable in the context of structure classifica-

tion. The first reason also applies to sequence comparisons, and it

is based on protein modularity. If a domain b is made of two

fragments A and C, with A similar to domain a and C similar to

domain c, single linkage will infer a non existing relationship

between a and c. Indeed, for applying single linkage clustering to

the triangle abc, one has to check whether the fragment overlap

Qbca, Eq. (4), is also significant. Secondly, single linkage joins many

structures that are not significantly similar, producing clusters that

are not structurally consistent. These clusters may lack a common

core, as it is often found applying multiple structure alignment

algorithms to SCOP and even more CATH superfamilies. For the

goal of modelling, it may not be convenient to join structurally

dissimilar domains in the same fold, since this would increase the

likelihood of selecting wrong templates. The study of structure

evolution is made more difficult when structural variation is

hidden inside a very diverse cluster, whereas well defined

clusters connected by links expressing evolutionary relationships

may represent a better framework for the study of structure

divergence.

Figure 10. Networks of protein clusters similarities. (A) High similarity clusters (S~10) linked using as a threshold the cross-over similarity,
S0~6:78. (B) Cross-over clusters (S~6:78) linked below the high transitivity regime, up to S0~4.
doi:10.1371/journal.pcbi.1000331.g010
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Cross-Over from Discrete Sets to Continuous Space
We have observed that the transitivity violations grow while the

clustering algorithm joins protein domains into clusters. Interest-

ingly, in all instances that we studied we have found a cross-over

between two regimes of slow and fast increase of transitivity

violations.

1. At high similarity, transitivity violations grow slowly as the

clustering algorithm proceeds, and domain size does not vary

very much within a cluster. Clusters in this regime mostly

correspond to subsets of SCOP superfamilies. Therefore, most

domains in the same cluster are related through gene

duplication and subsequent divergence, which justifies to

classify related domains on a tree.

2. At low similarity, transitivity violations grow rapidly as the

clustering algorithm proceeds, and domains in the same cluster

differ substantially in size. Many pairs in the same cluster are

related through partial substructures.

We propose that the cross-over in transitivity violations is an

intrinsic point to stop the automatic classification. Lower similarity

relationships should be represented as a network rather than a

tree.

Influence of the Methodology
The method that we presented requires several arbitrary

choices. In order to test its robustness, and the influence of the

parameters, we have studied at least two alternatives for each of

these choices. Qualitatively similar results were obtained for

several similarity scores computed on two different alignments

obtained with a local and a global version of the MAMMOTH

algorithm. Both alignment algorithms were developed at our

group. We did not test whether alignments obtained with

algorithms developed by other groups, such as DALI, yield

different conclusions, as they might do.

In all cases that we tested, we have observed a cross-over in

transitivity violations, finding that most of the clusters at the cross-

over point correspond to subsets of SCOP or CATH superfam-

ilies. However, the exact location of the cross-over point and the

quality of the clustering, as assessed through the clustering

coefficient and through the mean value of the transitivity

violations, varies for different choices.

Although we do not aim at reproducing SCOP or CATH,

which we believe is impossible, we recognize that these expert

classifications have important merits. It is therefore noteworthy

that the highest clustering coefficients and lowest transitivity

violations tend to be associated with scores that are better

compatible with SCOP or CATH classifications.

The first important choice is the structure alignment algorithm.

Computationally, structure alignment is an NP-complete problem,

and even if it were exactly solved different algorithms would differ,

since they optimize different scores. We used two versions of the

algorithm MAMMOTH that are quite different, since one

optimizes local superimmposition of heptamers whereas the

second one, MAMMOTH-mult, otpimizes the global structure

superimposition, achieving alignments with better PSI and contact

overlap. Despite this important difference, the results obtained

with the two methods are rather similar.

The similarity measure used is probably the most relevant

choice, and we tried several of them. We obtained better results

with the contact overlap than with measures that score the optimal

spatial superimposition of the two structures, which are used in the

standard MAMMOTH score. We conjecture that the contact

overlap is a better measure than the PSI for clustering protein

structures because of three reasons: (1) It does not assume that

there is an optimal rigid body superimposition between the two

structures. In doing so, it implicitly allows for flexible superimpo-

sitions, which might be better suited for detecting evolutionary

relationships [51–54]. (2) It weights the residues in the core of the

protein more than loop residues, since the former have a larger

number of contacts. (3) The parameter it depends on, i.e., the

threshold at which two residues are considered in contact, has a

physical meaning in terms of interatomic interactions, and it is

therefore less arbitrary than the tolerance parameter of the PSI,

Figure 11. Example of three domains that violate transitivity
with Q~0. They are joined after the cross-over point in the network
built using similarity threshold S0~5. The ASTRAL codes are d1mt5a_
(a), d1bif_1 (b) and 1b3qa1 (c). The bigger domain d1mt5a_ (red) links
in the network the two smaller domains, which deviate considerably
from each other as they don’t share any significant part of structure
between them. It holds S a,bð Þ~5:75 (red and blue), S a,cð Þ~5:95 (red
and green) and S b,cð Þ~2:8 (blue and green), which violates transitivity.
doi:10.1371/journal.pcbi.1000331.g011

Figure 12. For networks defined through the condition
S a,bð ÞwS0, with S0~10 and S0~4, respectively, and for all
triangles that violate the transitive property, i.e., S a,bð ÞwS0,
S b,cð ÞwS0 and S a,cð ÞvS0, we measured the overlap Qabc

between the two relevant matches of the intermediate
structure b, Eq. (4). The peaks of the distribution at Q~0 and
Q~1 correspond to matches over completely different and exactly the
same region of protein b, respectively.
doi:10.1371/journal.pcbi.1000331.g012
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i.e., the threshold below which two residues are considered to be

superimposed.

Similarity scores based on structure superimposition typically

need a tolerance threshold to decide whether two residues

superimpose. We tested the TM score [42], which uses a length

dependent threshold that makes this score almost independent of

the size of the aligned proteins. The results obtained with this score

are very similar to those obtained with the contact overlap. In

contrast, the percentage of structure identity (PSI) adopts a fixed

tolerance threshold, usually chosen as 4Å . To study the effect of

this parameter, we repeated our numerical experiments with a

more tolerant threshold of 6Å . Not surprisingly, the more tolerant

similarity measure makes the space more continuous, decreasing

the clustering coefficient and increasing the transitivity violations.

Therefore, the cross-over from the discrete to the continuous

regime occurs at higher similarity, which means that protein

domains are splitted into a larger number of clusters. In this case as

well, the cross-over is clear and the clusters at the cross-over are

mainly subsets of superfamilies.

All measures, except the TM score, must be normalized in order

to make them independent of the length of the aligned proteins.

We implemented this through a length dependent Z score, as in

the original MAMMOTH score. The drawback of the Z score is

that not only it makes the similarity of unrelated proteins almost

independent of length, but at the same time it reduces the

similarity of related proteins with short length. In this way, the

similarity of related proteins depend on their length and not on

their evolutionary divergence, which makes the Z score an

unsuitable measure for evolutionary analysis. This drawback does

not occurr with the TM score, although this does not necessarily

imply that it is a suitable measure for evolutionary analysis.

Last, we have to decide which clustering algorithm we use. If we

adopt the definition of transitivity proposed in the present work,

the average linkage algorithm has to be preferred over both single

linkage and complete linkage. In fact, average linkage reduces the

combination of splitting and overunification errors, whereas single

linkage only eliminates splitting errors, since it joins all pairs above

the similarity threshold, and the complete linkage eliminates

overunification errors, since it separates all structures that are

below the similarity threshold. Interestingly, from our analysis it

turns out that the main difference between SCOP and CATH is

that the latter uses single linkage, while the former uses some

procedure effectively similar to average linkage.

As a last remark, we note that there is some analogy between

our method, which uses transitivity violations to detect the point at

which hierarchical clustering is not justified, and the bootstrap

method that scores the significance of each cluster in a tree.

Nevertheless, there are also important differences. Besides the fact

that bootstrap is computationally much more cumbersome than

our method, for obtaining a classification with the bootstrap

method we would have to fix a threshold bootstrap probability to

accept one cluster, whereas the cross-over that we obtain with our

method arises in a natural way without fixing an arbitrary

threshold.

Perspectives for the Automatic Classification of Proteins
The existence of two regimes of transitivity violations, and the

fact that the automatic classification at the cross-over point mostly

consists of sets of SCOP or CATH superfamilies are the main

results of this work. They are robust with respect to changes in the

clustering algorithm, the similarity measure, the set of protein

domains that we automatically classify, and the accuracy of the

alignment algorithm. These results suggest that it is possible to

automatically and objectively define an equivalence class for

protein domains up to the similarity corresponding to the cross-

over point.

Clusters in the automatic classification are structurally more

consistent than SCOP folds or CATH topologies, mainly because

of two reasons. (1) In the automatic classification, almost 15

percent of superfamilies are split into structurally divergent

clusters, indicating that there can be important structural changes

in protein evolution [32,33,36]. Interestingly, domains in split

superfamilies tend to have larger size difference between each

other, suggesting that insertions and deletions play an important

role for structural divergence, consistent with recent analysis

[55,56]. (2) Only 44 percent of the pairs of domains in different

SCOP superfamilies and the same SCOP fold are joined in the

automatic classification. This percentage becomes much smaller

for CATH (less than 11 percent), whereas 68 and 66 percent of the

pairs in the same SCOP or CATH superfamily are joined in the

automatic classification The similarity between most of the pairs

that are not joined is significant, but it is at the level where

transitivity violations are large and a network fits the data better

than a classification. Our analysis thus suggests that CATH and

SCOP classify proteins up to similarities that are below the cross-

over of transitivity violations. The same is possibly true for the

automatic FSSP classification as well, where proteins are classified

in the same fold if the Z score of their similarity is above 2. This is

the smallest threshold at which the structures compared are

significantly related. Here we also use a Z score, but we find that

the cross-over point is at Z0~6:78 implying that the transitive

property is severely violated at the similarity level Z~2.

An indication that the fold defined in expert classification may

not correspond to an intrinsic similarity level is that CATH and

SCOP neatly agree at the level of superfamily, as assessed through

the weighted kappa measure, but they disagree between each

other at the level of fold even more than they disagree with the

automatic classification, when the proper clustering algorithm is

used. Indeed, the main difference between SCOP and CATH at

fold level is that SCOP uses a procedure effectively similar to the

average linkage algorithm, whereas CATH uses the single linkage

algorithm, which does not penalize the joining of structurally

distinct domains, resulting in clusters that are structurally very

diverse.

Furthermore, we have shown that the structural diversity within

a SCOP fold is larger if the fold was defined since longer time,

suggesting that the criteria underlying the definition of fold may

change through time. Classifications are very useful, but the

present analysis supports the view that the low similarities at the

fold level are better represented as a network rather than as a tree.

Possible Improvements of the Automatic Classification
The comparison between the automatic and the expert

classifications also indicates that the automatic classification can

be improved along three lines.

First, in the present study we considered protein domains as

defined in the SCOP and CATH classifications. However,

proteins are split into domains in the two schemes in a rather

different way. In particular, some domains defined in the SCOP

classification appear by visual inspection to consist of more than

one domain. An incomplete domain partition can be an important

source of transitivity violations and consequent errors in an

automatic classification of protein structures. We are developing a

new automatic method for decomposing proteins into domains

based on their recurrence in a database of unrelated structures,

similar to the method proposed by Holm and Sanders [57]. The

domains obtained in this way will be subject to further
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decomposition based on their structure, to obtain a set of domains

to which we will apply our clustering procedure.

Secondly, our method tends to split superfamilies constituted of

short domains. Some of these splitting appear to be due to the

dependency of the similarity score on the protein length. The raw

similarity score, either PSI or contact overlap, is transformed into

a Z score in order to reduce as much as possible the dependency of

the score of unrelated structures on their size. Our results show

that the classification deteriorates if this normalization is not

properly performed. However, due to this normalization the

similarity score corresponding to identical structures decreases for

decreasing domain size, which makes it more difficult to cluster

together short proteins. In order to overcome this problem, it

would be very helpful to define a similarity score that is

independent of domain size both for unrelated and for closely

related structures. This will be presented in a forthcoming work.

Third, we found 63 over 779 clusters that contain protein

domains defined by SCOP curators as different folds (although 27

of these clusters are homogeneous in terms of CATH topologies).

The distribution of structure similarity suggests that several of the

foreign domains appearing in clusters that are mostly from another

fold are characterized by low mean similarity, and that it could be

possible to ‘‘clean’’ the clusters of the automatic classification.

Preliminary results indicates that this strategy is promising.

Protein Domain Networks
Significant sequence or structure similarity below the threshold

for clustering [14,15] constitutes a very valuable information for

evolutionary or functional studies. In the CASP and SCOP

database, these significant cross-fold similarities are not available.

We present this information in the form of two networks with

structure-based and sequence-based links between the clusters of

the automatic classification. In this way, we can recover not only

superfamily and fold relationships that are not present in the

automatic classification, but also new relationships that are not

reported in expert classifications.

Two Modes of Protein Evolution?
As a concluding remark, we note that the two regimes of

transitivity violations that we found can be related with two modes

of protein domain evolution. In the regime of large structure

similarity, transitivity violations are small, related domains are

similar in size, and 95 percent of them contain domains from a

single CATH or SCOP fold, whereas 86 percent contain

evolutionarily related domains from the same superfamily. These

results indicate that most of the domains with structure similarity

above the cross-over are evolutionarily related through gene

duplication and divergent evolution. Moreover, domains in

different superfamilies but same fold can not be excluded to be

evolutionarily related, and some careful studies have been able to

demonstrate this common origin also in the absence of a clear

signal from sequence similarity, as in the case of the study of TIM-

barrels conducted by Nagano et al. [58]. This view also agrees

with the results by Deeds et al. [59], who tested models of

convergent and divergent evolution using statistical properties of

protein structural clusters, finding that the data support divergent

evolution [60]. We summarize these findings saying that, for large

similarity, protein domain evolution is mostly uniparental.

On the other hand, similarities below the cross-over of

transitivity violations are often due to partial substructures, and

the typical size difference between related domains raises from 20

to 40 residues, indicating the occurrence of large insertions and

deletions when the related domains belong to the same

superfamily. These are clues of multi-parental evolution, proceed-

ing through the assembly of new polypeptide fragments. This

hypothetical mechanism has been proposed by Lupas et al. for the

evolution of early protein domains through assembly of small

peptide fragments [28]. Our findings suggest that it can also be

extended to more recent evolution, consistent with another recent

study [15]. In this regime the domain structure space should be

regarded as continuous, and significant structure similarity should

be described as a network rather than a tree.

These considerations parallel recent considerations about the

classification of organisms on the tree of life [61]. Speciation and

evolutionary divergence generate a tree of species, which can be

reconstructed by estimating the time of divergence from the

molecular sequences of their genes. In order to do this, one has to

use a proper sequence distance, approximately ultrametric, which

makes species classification possible on a rigorous basis. Never-

theless, this view of the tree of life has been recently challenged by

the discovery of the high rate of horizontal gene transfer in

genome evolution. Due to horizontal gene transfer, genome

evolution is multiparental, and genes that have been subject to

gene transfer can not be used to reconstruct the phylogenetic tree.

The extensive presence of horizontal gene transfer in evolution has

led Doolittle to propose that the evolutionary relationships

between organisms should be regarded as a net of life rather than

a tree [61]. The present work suggests that, in the context of

protein domain evolution, a tree scenario of uniparental divergent

evolution is suitable to represent high similarity relationships, but a

pluriparental network emerges for more remote relationships.

Methods

Datasets
We have used two non redundant sets of protein domains. The

first set was obtained from the ASTRAL 40 database, in which no

pair has sequence similarity larger than 40%. We used the SCOP

version 1.65 and selected only domains from the four main SCOP

classes, all a, all b, a=b and azb. The second set is the non

redundant set of domains from the CATH classification, with

sequence similarity smaller than 35%. Also in this case we

excluded domains outside the four main classes. The final number

of domains was 5041 for the SCOP set and 7073 for the CATH

set.

Consensus Set between CATH and SCOP
In order to select a set of domains consistently defined in SCOP

and CATH, we aligned with BLAST [62] the sequences of

domains in the non redundant ASTRAL40 database against

domains in the non redundant CATH database at 35% sequence

identity. We identified two domains to be equivalent if their

BLAST evalue was smaller than 1023, with sequence identity

larger than 75%, and their size differed by less than 10%. In this

way we have obtained a set of 2890 non redundant domains

classified in 779 SCOP superfamilies, 466 SCOP folds, 885

CATH superfamilies and 473 CATH topologies.

Similarity Scores
We performed pairwise structure alignments using either the

program MAMMOTH [41], which is the fastest program of

protein structure alignment that we know, or its multiple

alignment version MAMMOTHmult [39], which is a bit slower

but much more accurate.

The MAMMOTH similarity score is based on the number of

aligned residues that are closer than 4Å after optimal spatial

superimposition of structures a and b, Lmatched
ab . This is

transformed into a percentage of structure identity (PSI) dividing
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it by the length of the shortest structure,

PSI
partial
ab ~

Lmatched
ab

min La,Lbð Þ : ð5Þ

PSIpartial equals one if the two structures coincide over the

length of the shorter one. There is no penalization for addi-

tional residues in the longer structure, i.e., the score is sensitive

to good partial matches and we call it partial PSI. However, the

fact that the score does not penalize inserted regions may lead to

join domains with very large length difference. To tackle this

problem, we also defined the total similarity score, which penalizes

regions in the larger structure that are not matched by the short

one:

PSItotal
ab ~

Lmatched
abffiffiffiffiffiffiffiffiffiffiffi
LaLb

p ð6Þ

PSItotal
ij equals one only if the match completely covers the longer

protein.

Third, we adopted the contact overlap, which counts the

fraction of contacts in common between two aligned structures a

and b. Also this score is normalized in such a way to penalize

partial matches. We defined the contact matrix C
að Þ

ij of protein a

such that C
að Þ

ij equals one if two heavy atoms of residues i and j are

closer than 4.5Å and i{jj j§l, and zero otherwise. We considered

two cases, l~4 and l~6. In this last case, intrahelical contacts are

not considered. Denoting by A ið Þ the residue in structure b aligned

with residue i in structure a, the contact overlap can be written as

qab~

P
ij C

að Þ
ij C

bð Þ
A ið ÞA jð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij C
að Þ

ij

P
ij C

bð Þ
ij

q : ð7Þ

The main qualitative difference between the contact overlap

and the PSI is that in the contact overlap superimposed residues in

the core of the protein, which form many contacts, receive a larger

weight.

It is crucial for protein structure classification that the

distribution of the similarity score used is almost independent of

the length for comparisons of unrelated proteins. The MAM-

MOTH score takes care of this by normalizing the PSI in such a

way that the distribution of the normalized PSI is almost

independent of size for unrelated pairs:

Sab~
PSIab{AL{a

ab

BL
{b
ab

zC ð8Þ

where Lab~min La,Lbð Þ in the case of the partial PSI, and

Lab~
ffiffiffiffiffiffiffiffiffiffiffi
LaLb

p
in the case of the total PSI. In the case of the

overlap, we also used Lab~
ffiffiffiffiffiffiffiffiffiffiffi
LaLb

p
as a normalization. The

exponents a and b depend on the raw similarity score and on the

alignment algorithm used, and they were determined by fitting the

mean and standard deviation of the PSI of unrelated structures

having Lab in some given interval, using the best fit between a

Gaussian fit or an Extreme Value statistics fit (see Table 4).

Using Gaussian statistics, we fit

SPSIT&AL{a sPSI&BL{b, ð9Þ

and using Extreme Value statistics, we fit

SPSIT{
6|0:5772

p
sPSI&AL{a sPSI&

p

6
BL{b, ð10Þ

The domain similarity score of domain a in cluster A is defined

as the average pairwise similarity between domain a and all other

domains in the cluster,

S a,Að Þ~ 1

nA{1ð Þ
X

b[A,b=a

Sab ð11Þ

Clustering Algorithms
We programmed and tested three hierarchical clustering

algorithms: average linkage [63], single linkage and complete

linkage. Starting from each element being a separate cluster, at

each step t all algorithms join the two most similar clusters A and

B, and compute the similarity between the new combined cluster

and all other clusters in a way that depends on the clustering

algorithm.

With average linkage, the combined similarity is computed

as the average similarity with the two joined clusters,

Stz1 AB,Cð Þ~ nASt A,Cð ÞznBSt B,Cð Þ
nAznB

, ð12Þ

where t labels the step of the algorithm, A and B are the clusters

that are joined, nA and nB is the number of elements they contain,

AB denotes the new composite cluster, and C is any other cluster.

Note that this updating rule is equivalent to computing the new

similarity score as the average between the similarity between all

pairs of elements from the cluster C and the cluster AB.

With single linkage, the combined similarity is the largest

similarity in the set, so that two sets are joined if at least one pair of

elements is above threshold

Stz1 AB,Cð Þ~max S A,Cð Þ,S B,Cð Þð Þ ð13Þ

With complete linkage, the combined similarity is the

smallest similarity in the set, so that two sets are joined if all

pairs of elements are above threshold

Table 4. Size normalization of similarity scores.

Score Normalization Alignment A a B b

PSI partial EV Pair 5.97 0.720 0.920 0.634

PSI partial EV Mult 5.73 0.714 0.860 0.622

PSI total EV Pair 6.48 0.722 0.972 0.662

PSI total EV Mult 5.62 0.729 0.961 0.659

Overlap Gauss Pair 0.375 0.535 1.340 0.676

Overlap Gauss Mult 0.752 0.576 1.874 0.773

The reported parameters were used to normalize the raw scores according to
Eq. (8).
doi:10.1371/journal.pcbi.1000331.t004
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Stz1 AB,Cð Þ~min S A,Cð Þ,S B,Cð Þð Þ ð14Þ

Ultrametricity
An ultrametric set is a set X with an associated distance measure

d a,bð Þ§0 where every triplet of points a, b and c fulfils a property

stronger than the ordinary triangular inequality: each side of a

triangle is smaller than the larger between the other two sides, i.e.,

d a,cð Þƒmax d a,bð Þ,d b,cð Þð Þ. This implies that the two longer

sides must be equal. In particular, for an ultrametric set and for

every threshold cw0, it holds that if d a,bð Þƒc and d b,cð Þƒc,

then d a,cð Þƒc. Consider now the cluster containing all elements

within a distance c from element a, Cc að Þ~ b[X d a,bð Þƒcjf g. It is

easy to see that, for every pair of points a and b, either Cc að Þ and

Cc bð Þ coincide, or they do not share any point. Therefore,

d a,bð Þƒc is an equivalence relationship, since if c[Cc að Þ then it

must also be c[Cc bð Þ, and the set of points can be considered

discrete.

Clustering Coefficient
A concept related to transitivity in the context of networks is the

clustering coefficient, which can be computed through the formula

Clustering coefficient~
1

N

X
i

2
P

jvkAijAikAjk

ni ni{1ð Þ ð15Þ

where N is the number of nodes in the network, labelled as i, j and

k, Aij is the adjacency matrix (one if i and j are joined, zero

otherwise), ni~
P

j Aij is the number of neighbors of node i, and

the clustering coefficient of node i is the fraction of pairs of its

neighbors j and k that are neighbors between each other. If the

clustering coefficient is one for all nodes, connections on the

network define an equivalence relationship.

We have computed the clustering coefficient for the network

obtained by joining domains with similarity SijwS0, for various

values of S0. To compare different similarity measures, we have

plotted the clustering coefficient versus the number of clusters

obtained through single linkage clustering with the same threshold

S0.

Detecting the Cross-Over Point
For detecting the cross-over point of transitivity violations (TV),

we first measure TV at each step of the clustering algorithm using

Eq. (2). We then perform two-pieces exponential fits of TV versus

the step t, as TV&f t,t0ð Þ~h t0{tð Þexp a1tzb1ð Þzh t{t0ð Þ
exp a2tzb2ð Þ, where h xð Þ is zero for negative x and one otherwise.

Fits are performed for all possible cross-over points t0, and their

quadratic error is measured as

Error t0ð Þ~
P

t TV tð Þ{f t,t0ð Þð Þ2
P

t TV tð Þ{TV tð Þ
� �2

, ð16Þ

where TV tð Þ is the mean value of TV. To find the optimum

t0 in a robust way, we perform a cubic fit of the error func-

tion in an interval I centered around the step tmin yielding

the minimum error, and such that Error t0ð ÞƒError tminð Þz0:005
for all t0[I . The analytic minimum of this cubic fitting is

then selected as the best first estimate of the cross-over

point.

The last points in the TV tð Þ curve, where the transitivity

violations approach the maximum possible value, are very badly

fitted through the two-pieces fit. Therefore, we refined the

estimate of the cross-over point by removing the outliers of the

optimal fit, with the conditions that a point is removed if its

residual with respect to the optimal fit is more than three times

larger than the median, which is the condition used to define type-

1 outliers. We then apply the procedure described above to the

reduced set of points, and we determine the cross-over point at

which the clustering is stopped.

Weighted Kappa
We assessed the agreement of two classifications through the

weighted kappa measure [64], which uses as reference the

expected agreement for two independent classifications with the

same number of relationships. We define NA (NB) the number of

related pairs in classification A (B) of the same N objects, with

Ntot~N N{1ð Þ=2 pairs in total. If A and B are independent, the

number of pairs that are either related or unrelated in both A and

B is given by

Ne~
NANBz Np{NA

� �
Np{NB

� �
Ntot

ð17Þ

We compare this number to the observed number of pairs that

agree,

No~NABz Ntot{NA{NBzNABð Þ, ð18Þ

where NAB is the number of pairs that are related in both

classifications. .From this number, the weighted kappa is

computed as

k~
No{Ne

Ntot{Ne

: ð19Þ

A value of zero means that two classifications are as related as

independent classifications, one means that the two classifications

coincide. Using the weighted kappa, we have compared the

classification obtained at every step of the clustering algorithm

with the manual classifications of CATH and SCOP at the

superfamily and the fold level.

Notice that the weighted kappa can be decomposed into the

contributions of related and unrelated pairs as follows:

k~wrel
NAB{Nrel

e

NA{Nrel
e

zwunrel
Ntot{NA{NBzNABð Þ{Nunrel

e

Ntot{NA{Nunrel
e

: ð20Þ

where Nrel
e ~NANB=Ntot is the number of pairs related in both

classifications expected by random, Nunrel
e ~Ne{Nrel

e , and the

weights are wrel~ NA{Nrel
e

� ��
Ntot{Neð Þ and wunrel~

Ntot{NA{Nunrel
e

� ��
Ntot{Neð Þ for related and unrelated pairs,

respectively.

Network Analysis
For the sake of illustration, we have represented two domain

similarity networks obtained before and beyond the stopping point

of the automatic classification.

Two networks were constructed by considering each cluster as a

node, and connecting nodes with SwS0. In the first case, we used
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clusters obtained before the cross-over point of the average linkage

algorithm using a high similarity threshold S~10, and we

connected them if S0w6:78, which is the similarity at the cross-

over point. In the second case we used clusters generated at the

cross-over point and we connected them with S0~4. The

networks have been visualized using the Pajek software [65].

Other Methods
To visualize spatial superimpositions, we used the multiple

structure allignments program MAMMOTHmult [39] in combi-

nation with the Pymol software.

Supporting Information

Figure S1 Clustering coefficient for three different similarity

measures. The clustering coefficient is computed for networks in

which domains with similarity above S0 are connected, and it is

plotted as a function of the number of clusters obtained with single

linkage clustering of the same network.

Found at: doi:10.1371/journal.pcbi.1000331.s001 (0.02 MB PDF)

Figure S2 Transitivity violations versus the step of the clustering

algorithm for three different clustering algorithms. The smallest

violations are obtained with the average linkage algorithm.

Found at: doi:10.1371/journal.pcbi.1000331.s002 (0.19 MB PDF)

Figure S3 Agreement between the classifications obtained with

different clustering algorithms at the same step. The best

agreement is between single linkage and complete linkage.

Found at: doi:10.1371/journal.pcbi.1000331.s003 (0.05 MB PDF)

Figure S4 Network of protein clusters joining superfamilies

NTH and PCK. Xie and Bourne confirmed a previously proposed

evolutionary relationship between a member of SCOP superamily

Phosphoenolpyruvate carboxykinase (PCK), with code 1ayl_1, and

the P loop containing nucleotide triphosphate hydrolase (NTH)

superfamily. PCK domain 1ayl_1 is joined in the automatic

classification with domains 1knxa2 and 1ko7a2, which are

classified in SCOP in the PCK superfamily but are classified in

CATH in the NTH superfamily. The automatic classification

supports the CATH classification. This cluster has a single

significant structural link, with average similarity S = 5.0, with an

cluster containing only domains classified in the NTH superfamily

in both CATH and SCOP, and through this cluster another step

connects it to many other clusters in the NTH superfamily or in

the NTH fold. Here we represent the relevant part of the network.

The hybrid cluster containing domain 1ayl_1 is close to the upper

left corner. Links denote significant structure similarity between

clusters (S.4.0), and they are coloured red if the two joined

clusters contain domains in the same superfamily according to

both SCOP and CATH, green if they are in the same superfamily

only according to CATH, blue if they are in the same fold

according to either SCOP or CATH, and black if there is no pair

in the same fold. The figure supports the view that the structurally

consistent clusters joined in a network give a richer evolutionary

information than a unique and structrally diverse fold.

Found at: doi:10.1371/journal.pcbi.1000331.s004 (0.02 MB PDF)
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