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Abstract

Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal’s position in 2-D space and
have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity
inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require
frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-
reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in
continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models
can generate regular triangular grid responses, based on inputs that encode only the rat’s velocity and heading direction.
We consider the role of the network boundary in the integration performance of the network and show that both periodic
and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds.
We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise
within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can
accurately integrate velocity inputs over a maximum of ,10–100 meters and ,1–10 minutes. These findings form a proof-
of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal
cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by
continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and
differentiate it from models in which single cells establish their responses independently of each other.
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Introduction

Since the discovery of grid cells in the dorsolateral band of the

medial entorhinal cortex (dMEC) [1], several ideas have been put

forth on how grid-cell activity might emerge [2–7]. The theoretical

ideas suggested so far fall into two categories. In continuous attractor

models (see [8–15] and [2,4,7] for the grid cell system), which are the

focus of this work, grid cell activity arises from the collective behavior

of a neural network. The network’s state is restricted to lie in a low-

dimensional continuous manifold of steady states, and its particular

location within this manifold is updated in response to the rat’s

velocity. In the second category of models [5,6,16,17], grid-cell

activity arises independently in single cells, as a result of interference

between a global periodic signal and a cell-specific oscillation, whose

frequency is modulated by the rat’s velocity.

These ideas differ radically from each other, but they share a

common assumption about the nature of the input feeding into

dMEC, namely, that the input conveys information primarily on

the rat’s velocity and heading. Within all these models, grid cell

activity must then arise from precise integration of the rat’s

velocity.

Grid cell firing exhibits remarkable accuracy: The periodic

spatial tuning pattern remains sharp and stable over trajectories

lasting 10’s of minutes, with an accumulated length on the order of

hundreds of meters [1]. Experiments performed in the dark show

that grid cell tuning remains relatively accurate over ,100 meters

and ,10 minutes even after a substantial reduction of external

sensory inputs. However, in these experiments olfactory and tactile

cues were not eliminated, and grid cell responses may have been

informed by positional information from such cues. Therefore, the

duration and length of paths over which coherent grid responses

are maintained without any external sensory cues is not known.

For position estimation on the behavioral level, we searched for

but found no clear quantitative records of the full range over

which rats are capable of accurate dead-reckoning. Behavioral

studies [18–21] document that rats can compute the straight path

home following random foraging trajectories that are 1–3 meters

in length, in the absence of external sensory cues.

How do theoretical models measure up, in estimating position

from input velocity cues? The theta-oscillation model of grid cells

[5,6,16,17], under idealized assumptions about internal connec-

tivity, velocity inputs, and neural dynamics, is not able to produce

accurate spatial grids over the known length- and time-scales of

behavioral dead-reckoning if the participating theta oscillations

deviate from pure sine waves. This is because the model is acutely

vulnerable to subtle changes in the phase of the underlying
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oscillations. In reality, theta oscillations are not temporally

coherent: cross-correlograms from in vitro intracellular recordings

[17,22,23] and in vivo extracellular recordings [24,25] show that

the phase of the theta oscillation in the entorhinal cortex typically

decoheres or slips by half a cycle in less than 10 cycles or about

1 second, which corresponds to a distance of only 1 meter for a

run velocity of 1 m/s. This means that the model grid cells will

entirely lose track of the correct phase for the present rat position

within that time.

For continuous attractor models, we previously showed [3] that

due to rotations and non-linear, anisotropic velocity responses, a

detailed model [2] integrates velocity poorly, and does not produce

a grid-cell firing pattern even with idealized connectivity and

deterministic dynamics. Another model [7] generates grid

responses in a small periodic network, but it includes no neural

nonlinearities or variability in neural responses, and depends on

real-time, continuous modulation of recurrent weights by the

velocity inputs to the network.

Conceptually, the existence of an integrating apparatus seems

pointless if it is completely dependent on nearly continuous

corrections coming from an external source that specifies absolute

position. Thus, it seems reasonable to require that theoretical

models of path integration in dMEC, if using faithful velocity

inputs, have the ability to reproduce stable grid cell patterns for

trajectories lasting a few minutes.

Our aim, therefore, is to establish whether it is possible for

model grid cells to accurately integrate velocity inputs. We restrict

our analysis specifically to continuous attractor networks. As will

become clear, the precision of velocity integration can strongly

depend on various factors including network topology, network

size, variability of neural firing, and variability in neural weights.

Here we focus on three of these factors: boundary conditions in the

wiring of the network (periodic vs. aperiodic), network size, and

stochasticity in neural activity

We quantify path integration accuracy in both periodic and

aperiodic recurrent network models of dMEC, and demonstrate

that within a biologically plausible range of parameters explored,

such networks have maximum attainable ranges of accurate path

integration of 1–10 minutes and 10–100 meters. Larger, less noisy

networks occupy the high end of the range, while smaller and

more stochastic networks occupy the low end. We end with

suggestions for experiments to quantify integration accuracy,

falsify the continuous attractor hypothesis, and determine whether

the grid cell response is a recurrent network phenomenon or

whether it emerges from computations occurring within single

cells.

Results

In our model, each neuron receives inhibitory input from a

surrounding ring of local neurons. The entire network receives

broad-field feedforward excitation (Methods). If the inhibitory

interactions are sufficiently strong, this type of connectivity

generically produces a population response consisting of a regular

pattern of discrete blobs of neural activity, arranged on the vertices

of a regular triangular lattice [3,4,26], Figure 1A. Ignoring

boundary effects for the moment, all possible phases (translations)

of the pattern are equivalent steady states of the pattern formation

process, and therefore form a continuous attractor manifold.

To reproduce the regular single-neuron (SN) lattice patterns

observed in experiment, the pattern formed in the neural

population must be coupled to the rat’s velocity. This coupling

is arranged in such a way (Figure 1B and Methods) that it drives

translations of the pattern within the neural sheet, in proportion to

the movements of the rat in real 2-d space, Figure 1C.

Briefly, velocity coupling involves distributing a set of direction

labels (h) to the neurons in any patch of the network (Figure 1B).

The direction label h signifies that (1) the neuron receives input

from a speed-modulated head-direction cell tuned to that

direction, and (2) the neuron’s outgoing center-surround connec-

tivity profile is centered not on itself, but is shifted by a few

neurons along a corresponding direction on the neural sheet. The

neuron tends, through its slightly asymmetric connectivity, to drive

network activity in the direction of the shift. However, another

neuron with the opposite direction preference will tend to drive a

flow in the opposite direction. If all neurons have equal inputs, the

opposing drives will balance each other, and the activity pattern

will remain static. If, however, the rat moves in a particular

direction in space, the corresponding model dMEC cells will

receive larger input than the others, due to their head-direction

inputs, and will succeed in driving a flow of the network pattern

along their preferred direction. This mechanism for input-driven

pattern flow is similar to that proposed in a model of the head-

direction system [14]. Figure 1C demonstrates how a flow of the

population pattern will drive activity at spatially periodic intervals

in single neurons.

To obtain spatially periodic responses in single neurons over

long, curved, variable-speed trajectories, additional conditions

must be met, as we discuss below. We present results from two

topologically distinct networks: one with aperiodic, and the other

with periodic, connectivity.

A Periodic Network Accurately Integrates Rat Velocity
We simulate dynamics in a network of neurons driven by

velocity inputs obtained from recordings of a rat’s trajectory (see

Methods). The network contains 1282 (,104) neurons arranged in a

square sheet. Neurons close to each edge of the sheet form

connections with neurons on the opposite edge, such that the

topology of the network is that of a torus. Figure 2A shows the

population activity in the network at one instant of the run.

A grid cell response, as reported in experimental papers, is

obtained by summing the firing activity of a single neuron over a

full trajectory. Unlike the population response, which is an

Author Summary

Even in the absence of external sensory cues, foraging
rodents maintain an estimate of their position, allowing
them to return home in a roughly straight line. This
computation is known as dead reckoning or path
integration. A discovery made three years ago in rats
focused attention on the dorsolateral medial entorhinal
cortex (dMEC) as a location in the rat’s brain where this
computation might be performed. In this area, so-called
grid cells fire whenever the rat is on any vertex of a
triangular grid that tiles the plane. Here we propose a
model that could generate grid-cell-like responses in a
neural network. The inputs to the model network convey
information about the rat’s velocity and heading, consis-
tent with known inputs projecting into the dMEC. The
network effectively integrates these inputs to produce a
response that depends on the rat’s absolute position. We
show that such a neural network can integrate position
accurately and can reproduce grid-cell-like responses
similar to those observed experimentally. We then suggest
a set of experiments that could help identify whether our
suggested mechanism is responsible for the emergence of
grid cells and for path integration in the rat’s brain.

Accurate Path Integration in the Grid-Cell System
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Figure 1. Network architecture and response. (A) Pattern formation in the neural population: Left, schematic depiction of the outgoing weights
of a neuron in the network. All neurons have the same connectivity pattern, and the width of the inhibitory surround is parameterized in our model
by b{1=2 (see Methods). Center, circularly symmetric center-surround connectivity, with sufficiently strong local inhibitory flanks, produces a regular
triangular lattice population pattern in the neural sheet through spontaneous destabilization of the uniform mode (Turing instability). Right, the
pattern period depends on the width of the inhibitory surround. (B) The velocity shift mechanism by which velocity inputs drive pattern flow: Each
neuron in the sheet is assigned a preferred angle (color coded), which means two things. First, the outgoing weight profile, instead of being centered
exactly on the originating neuron, is shifted by a small amount along the preferred angle in the neural sheet (left). Each patch in the neural sheet
contains neurons with all preferred angles. Second, the direction preference means that the neuron receives input from head direction cells tuned to
the corresponding angle (center and right). (C) Snapshots of the population activity, when the networks (periodic boundaries, above; aperiodic
boundaries, below) are driven by a constant velocity input in the rightward direction. In the periodic network, as the pattern flows, it wraps around
the opposite edge. In the aperiodic network, as the pattern flows, blobs move away from the left edge and new ones spontaneously form through
the same dynamics that govern pattern formation. (Boundaries are considered in more detail in the paper and in later figures.) The green lines
represent an electrode at a fixed location in the neural sheet, and the circle above them represents the activity state of the targeted neuron
(gray = inactive, yellow = active). Network parameters are as in Figure 2A–C and Figure 2D–F.
doi:10.1371/journal.pcbi.1000291.g001

Accurate Path Integration in the Grid-Cell System

PLoS Computational Biology | www.ploscompbiol.org 3 February 2009 | Volume 5 | Issue 2 | e1000291



instantaneous snapshot of full neural population, the single-neuron

response is an integrated measure over time of the activity one cell.

In the rest of this paper, SN response refers to the accumulated

response of single neurons over a trajectory.

In the periodic network, the SN response, accumulated over the

,20 minute trajectory, and plotted as a function of the true rat

position, shows coherent grid activity, Figure 2B. The network

accurately integrates input velocity, as can verified directly by

comparing the cumulative network pattern phase to the rat’s true

position, Figure 2C. The total error, accumulated over ,260 m

and 20 minutes, is ,15 cm, compared to a grid period of about

48 cm. This corresponds to an average integration error of less

than 0.1 cm per meter traveled and less than 0.01 cm per second

traveled. The range of rat speeds represented in the input

trajectory was 0–1 m/s, showing that this network is capable of

accurate path integration over this range of speeds.

A deterministic periodic network of only 402 (,103) neurons

also performs well enough to produce coherent SN grids over the

same trajectory, Figure S1.

Equivalent Conditions for Accurate Path Integration
The presence of a clear spatial grid in the SN response to

velocity inputs alone is a good indication of the accuracy of

integration. If the rat’s internal estimate of position were to drift by

half a grid period, the neuron would fire in the middle of two

existing vertices rather than on a vertex. As the rat traveled over its

trajectory, the neuron would fire at various ‘‘wrong’’ locations,

with the resulting SN response becoming progressively blurred

until no grid would be discernible. This would happen even if the

population pattern remained perfectly periodic throughout.

Therefore, the following properties are equivalent: (1) Coherent

grids in the SN responses, (2) Accurate path integration of the full

trajectory over which the SN responses are visualized, with errors

smaller than the grid period. An example of this equivalence is

given in Figure 2A and 2C, which show sharp SN patterning and a

very small integration error.

Next, because the population pattern phase accumulates errors

whenever the pattern slips relative to rat motion, another

equivalent condition for accurate path integration is (3) Linear

relationship between network flow velocity and input velocity over

the input velocity range, independent of direction.

These equivalent conditions for accurate integration apply to

both periodic and aperiodic network models of grid cells (discussed

next).

An Appropriately Configured Aperiodic Network Can
Accurately Integrate Rat Velocity

It is unclear whether a torus-like network topology, in which

neurons along opposite edges of the network are connected to

form periodic boundary conditions, exists in the rat’s brain. Even if

such connectivity exists, it may require, at an earlier stage of

development, an initially aperiodic network (see Discussion). Hence

it is interesting to consider whether a network with non-periodic

boundaries can produce grid-cell like SN activity. The difficulty

here is that as the population pattern flows in response to velocity

inputs, it must reform at the boundaries of the neural sheet. Newly

forming activity blobs must be created at accurate positions, and

the process must not interfere with the pattern’s flow.

A central result of the present work on aperiodic networks is that

such networks can, in fact, accurately integrate velocity inputs.

With an appropriate choice of architecture and inputs and with

deterministic dynamics, an aperiodic network can produce SN

responses that are as accurate as in the periodic case above. This is

illustrated in the example of Figure 2D–F. At the aperiodic

boundaries, the same dynamics that governed the initial pattern

formation process also cause the pattern to continually regenerate

as the pattern flows (Figure 1C, bottom). The phases or locations

Figure 2. Periodic and aperiodic networks are capable of accurate path integration. Simulation of network response, with velocity inputs
corresponding to a rat’s recorded trajectory in a 2 m circular enclosure [50]. The boundary conditions in the neural sheet are periodic in (A–C) and
aperiodic in (D–F). (A,D) Instantaneous activity within the neural sheet (color represents the firing rate: black corresponds to vanishing rate). The red
curve in (D) represents the fading profile of inputs to the network. (B,E) Grid cell response: average firing rate of a single neuron (located at the
electrode tip in (A,D)), as a function of the rat’s position within the enclosure. (C,F) Velocity integration in the network: Top: Actual distance of the rat
from a fixed reference point (black), compared to the network’s integrated position estimate, obtained by tracking the flow of the pattern in the
population response (blue). The reference point is at the left-bottom corner of the square in which the circular enclosure is inscribed. Middle:
Accumulated distance between the integrated position estimate and the actual position. Bottom: Orientation of the three main axes in the
population response during the trajectory. Note that there is no rotation in the periodic network, and little rotation in the aperiodic one.
doi:10.1371/journal.pcbi.1000291.g002
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of the renewing blobs at the boundary are consistent with the rest

of the network pattern, in part because their placement is

influenced by inhibition from the neighboring active neurons in

the network interior.

Accurate integration in aperiodic networks is not

generic. Despite the success of the model given above,

accurate path integration in aperiodic networks is not as generic

an outcome as it was in the periodic network. We describe next

how accurate path integration in aperiodic networks requires

attention to details and tuning.

To produce a coherent SN grid in aperiodic networks, as above,

it is not sufficient to simply leave unconnected the opposite edges

of the sheet that were connected together to produce a periodic

network: If the recurrent connections and external inputs

terminate abruptly at the network edge, the population activity

pattern there becomes severely distorted. Such distortions disrupt

the linearity of the network’s response to velocity inputs [3]. As a

result, population pattern distortions, even when confined to the

edges of the network, globally destroy the possibility of generating

grid-like SN responses for any neuron, including those in the

interior of the network where the pattern is locally undistorted. In

fact, even subtle distortions of the pattern near the edges cause

similar problems.

Modulation of recurrent weights vs. feedforward

inputs. To ameliorate the problem of edge distortions, we

considered two main types of modulation in the network

architecture. One of these, as in [2], was to smoothly modulate

the strength of weights to zero near the boundary. Generally

speaking, this method still leads to distorted patterning near the

edges. To see why, consider that if weights are sufficiently weak,

then pattern formation, which is driven by the recurrent

connectivity, does not occur at all. The uniform mode, in which

all neurons are equally active, becomes stable. Thus fading the

strength of recurrent connectivity to small values at the boundaries

results in distortions of the triangular lattice pattern, including the

formation of a band of uniformly and highly active neurons along

the edges ([2,3] and Figure S2). Other modulations of the weights

at the edges create other types of mismatch between the pattern at

the edges compared to the interior.

A second approach is to keep the strength of local recurrent

connectivity, which is responsible for pattern formation, constant

throughout the network and at the edges, while tapering the

strength of external feedforward inputs near the edges. The result

is that local patterning is robust, but at the same time, neurons in

boundary blobs are proportionally less active, with their activation

profiles fading smoothly to zero near the network edges. It is

straightforward to see, analytically, that if the network dynamics of

Eq. 1 has a particular spatially patterned solution s (designating

the population activity vector) for a given strength of input B, the

solution for the scaled input vector cB is the same spatial pattern,

scaled in amplitude to cs. Thus, if the weakening of external inputs

is sufficiently gradual (compared to the spacing between activity

blobs in the population pattern), activity must scale in proportion

to the external input, without a disruption in the periodicity of the

pattern. Because the activity of blobs at the network boundary is

far lower than in the interior, these boundary blobs have

correspondingly less influence on overall network dynamics during

flow, and have a less disruptive effect on the linearity of the

network response to velocity inputs.

Indeed, we found in our simulations that tapered input profiles

dramatically improve the linearity of response to velocity inputs,

compared to a modulation of the weights. Throughout the

manuscript, therefore, we have used a tapered input profile with

untapered weights. An example of faithful population patterning

with tapered input can be seen in Figure 2D, with the input profile

plotted above the population activity.

As we describe next, a population response that appears regular

near the edges is necessary, but not sufficient, for accurate

integration.

Independent effects of network size and input profile on

integration accuracy. The input envelope of Figure 3B is

somewhat sharper than in Figure 2, yet is still smooth enough to

produce a regular population pattern without irregularities, and

with boundary neurons that are only weakly active (Figure 3B).

However, this network fails to produce a periodic structure in the

SN response (Figure 3A). Recording the population activity at

different times reveals that the population pattern rotates

(Figure 3B and 3C). The velocity inputs, which are supposed to

drive only pure translation of the pattern, also induce rotation.

Another reason for the network’s poor performance is

demonstrated in Figure 3D2: The flow rate of the grid pattern is

not precisely proportional to the rat’s velocity. In particular, at rat

velocities below approximately 10 cm/s there is no flow at all, and

the pattern is ‘‘pinned’’.

The network’s ability to produce accurate path integration and

coherent SN grids is independently influenced by two factors, the

activity profile of neurons at the network boundary, and network

size. For a fixed network size, sharper input fading at the

boundaries leads to more pinning (Figure 3, D3 vs. D2 vs. D1).

Thus, a relatively subtle difference in how activity fades near the

network boundary is sufficient to cause a transition from accurate

path integration and coherent SN grids into poor tracking and the

complete absence of SN grids. At the same time, for a given

tapering of inputs at the boundary, increasing the size of the

network reduces pinning and improves the linearity of the network

velocity response (Figure 3, D4 vs. D2), suggesting that from the

point of view of integration performance, the larger the network

the better.

The same factors that reduce pinning (smoother input fading at

network boundaries and larger network size) also serve to stabilize

the orientation of the population pattern (data not shown),

suggesting that the undesirable coupling of velocity inputs to

rotation is also related to the existence of the boundaries.

A network with 1282 (,104) neurons (Figures 2D–F and

Figure 3D1,D4) can be large enough, with deterministic dynamics

and appropriately chosen boundaries, to perform accurate path

integration over 260 m and 20 minutes. Although we did not

strenuously attempt to optimize all parameters involved, within

our explorations we were unable to construct an aperiodic network

substantially smaller than 104 neurons which performs comparably

well. It appears, therefore, that network size strongly constrains the

accuracy of integration in aperiodic networks, to a greater extent

than in the periodic case.

The Attractor Manifold
For the two types of networks from the previous section, the

structure of the state-space is schematically illustrated in Figure 4.

The state-space illustration is instrumental in synthesizing the

findings of the preceding section – in particular: Why does the

pattern not rotate in the periodic network? Why is the pattern

pinned at low input velocities in the aperiodic network? Why does

network size matter more for aperiodic than for periodic networks?

We assume that the dynamics minimize an energy functional,

whose local minima correspond a set of fixed points (attractors)

(This assumption is precisely correct in the absence of a velocity-

driven shift mechanism, since the connectivity matrix is then

symmetric [27,28].)

Accurate Path Integration in the Grid-Cell System
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Consider first the periodic network. Starting from a steady state of

the dynamics, and rigidly translating the stable population pattern,

produces an equivalent steady state with exactly the same energy.

The set of all such states forms a continuous manifold of attractor

states, related to each other by continuous translation. This

manifold can be visualized as the trough of the energy surface,

Figure 4A. Rotating a steady state pattern, on the other hand,

produces states with higher energy. (Rotation can be visualized as

follows. Imagine first cutting open the toroidal periodic network

along the edges of the sheet that were originally glued together to

produce a periodic network. On the resulting sheet, rotate the

pattern, and rejoin the cut edges. This procedure will produce

discontinuities in the pattern along the rejoined edges.) Hence the

attractor manifold does not include continuous rotations.

Inputs that induce pattern translation will stably move the

network state along the trough, even if the inputs are small, and

the integrated value of the input will be reflected in the updated

network phase. On the other hand, inputs that attempt to induce

rotations will not produce lasting changes in network state,

because these states are unstable and will quickly (over a few

hundred milliseconds or less) decay as the pattern relaxes to its

preferred orientation. Similarly, distorting the pattern by stretch-

ing it, adding noise, or by removing blobs from the pattern will

generate an unstable state, which will rapidly decay to a steady

state within the attractor manifold.

In the aperiodic network, translations of a steady state pattern are

similar but not exactly equivalent, because the phase of the activity

pattern relative to the boundary affects the energy of the state.

Strictly speaking then, these states do not form a continuous

attractor manifold, Figure 4B. Instead, the manifold is slightly

rippled along the direction of translations. To drive translations,

velocity inputs must be large enough to overcome the ripple

barrier. This explains why below a critical velocity, the pattern is

pinned in our simulations. The ripple amplitude depends on how

much influence the boundary has on the network dynamics. If

activity fades to zero sufficiently smoothly near the boundary the

ripple can be small. Pattern translation then corresponds to motion

along a nearly flat direction on the manifold, pinning is confined to

Figure 4. The continuous attractor manifold. (A) Periodic network
manifold: Points within the trough represent stable states of the
network that will persist in the absence of perturbing inputs. If the
network is placed at a state outside the trough, it will rapidly decay to a
state within the trough. Points in the trough consist of continuous
translations of the population-level pattern. Rotations, stretches, or
other local or global deformations of the pattern lie outside the trough.
Rat velocity inputs drive transitions between points in the trough (red
arrow). (B) Aperiodic network manifold: all rotations of a stable
population pattern are energetically equivalent, and so form a
continuous attractor manifold. Translations are not equivalent (rippled
energy functional). Rat velocity inputs, when large enough to overcome
the ripple, drive translations of the population pattern; however, the flat
rotational mode means that the network can also rotate.
doi:10.1371/journal.pcbi.1000291.g004

Figure 3. Boundary conditions and network size strongly affect fidelity of network response. (A–C) Same simulation as in Figure 2D–F,
but with a sharper input profile (red curve above B). The SN pattern has no periodicity (A), the integration error is large (thick line in (C), upper plot;
note the different scale compared to Figure 2E, whose error is represented by the thin line), and the population response rotates frequently ((C),
lower plot). (D1–D3) Network velocity response as a function of different input profiles: Input profile decay is least abrupt in (D1), more abrupt in (D2),
and most abrupt in (D3) (Dr~64,32,16 for (D1), (D2), and (D3), respectively; network size is 128 neurons per side(R~64) for all). (D4) The input profile
at the boundaries is identical to D2 (Dr~32), but the network is larger (256 neurons per side or R~128). (D2) corresponds to the parameters in (A–C),
and (D1) corresponds to the parameters in Figure 2D–F.
doi:10.1371/journal.pcbi.1000291.g003

Accurate Path Integration in the Grid-Cell System
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a negligibly small range of velocities, and integration of inputs can

be accurate. A reduction of pinning can be achieved also by

increasing the network size, while keeping the boundary profile

fixed, because boundary effects scale as the ratio of network

periphery to network area.

A stable population pattern state can be rotated around the

center of a circular aperiodic neural sheet to obtain another stable

state that is identical in energy to the original one. Hence,

rotations correspond to a flat direction in the energy surface,

Figure 4B. Any input that couples even slightly with the rotational

mode can drive rotations in the network pattern. The velocity

inputs to the network, though configured to drive translational

pattern flow, can weakly drive rotations due to boundary effects

that couple the translational drive to rotational modes. In spiking

networks, discussed below, rotations can be driven also by noise.

In the network models described here, the structure of the

attractor manifold (e.g., Figure 4A or 4B) is completely determined

by the matrix of pairwise weights between neurons and the inputs

received by each neuron. Once the weights between all pairs of

neurons and the inputs to each neuron are specified, the matrix

does not change if the locations of the neurons on the cortical sheet

are shuffled, so long as the weights and inputs to each neuron are

held fixed (see Discussion). Thus, statements about the existence of a

manifold of stable network states and stable SN grid responses, and

the predictions that stem from them, do not depend on

topography, even when stated here for expositional simplicity in

terms of topographically arranged population-level patterns.

Spiking Networks and Noise
So far we have considered errors in integration that occur in the

absence of noise. Unlike in the noise-free case, neural noise can

induce the population pattern to flow or rotate even when velocity

inputs are absent. To assess how noise influences the precision of

the network’s response, we present results from spiking neural

networks with the same connectivity as in the rate based models.

Dynamics in these networks are noisy due to the stochasticity of

discrete spiking events.

For the same network parameters as in Figure 2, and assuming

that neural firing is an inhomogeneous Poisson process, we find

that the periodic network continues to perform well enough to

produce coherent SN responses over long trajectories (Figure 5A

and Figure S3). In the aperiodic network, performance with

Poisson spiking neurons is considerably worse than in the rate

based model, enough to destroy the grid-like SN response over a

,130 meter, 10-minute trajectory, in particular due to rotations

(Figure S3). Network performance improves, however, if spiking in

the network is more regular than implied by inhomogeneous

Poisson statistics. To quantify this effect, we performed simulations

with sub-Poisson statistics (see Methods). The variance of neural

firing is characterized, in our simulations, by the coefficient of

variation (CV) of the inter-spike interval. With a sufficiently low

CV, aperiodic network dynamics are precise enough to produce a

coherent SN response over a trajectory lasting 10 minutes and

,130 meters, Figure 5B and Figure S3.

Quantification of noise-driven translational drift.

Integration can be decomposed into two elements: a memory

that holds onto the state of the integrator, and a mechanism that

correctly increments the state of the integrator in response to

inputs. The linearity of the velocity response of the network,

described earlier for noise-free networks, may be viewed as an

assessment of the accuracy of the increment mechanism, while

the degree of drift in the network state in the absence of velocity

inputs and external corrective cues is a quantification of the

network’s ability to hold onto its current state. Therefore, a way

to assess the effect of noise on integration accuracy is to examine

the drift in the population state when external velocity inputs are

absent.

As shown in Figure 6, the states of both periodic and aperiodic

spiking networks drift significantly over measurable time-scales, in

the absence of any velocity input. As expected, the network state

remains in the attractor manifold: Neither network displays

stretching or other distortions (data not shown), but the aperiodic

network pattern drifts in phase and orientation, while the periodic

network pattern drifts in phase without rotation (Figure 6A and 6B).

Quantitatively, the drift in the phase of the population pattern

appears diffusive (Figure 6C, periodic network): in a time interval

Dt the square of the average drift due to noise can be written as

SDx2T~DtransDt:

The diffusion constant Dtrans decreases with network size and

increases with the CV of neural spiking (Figure 6D), scaling as

Dtrans!
CVð Þ2

N
:

This result can be used to obtain an estimate for the maximal

expected duration of accurate integration in the presence of noise

for networks of different sizes and CVs. Noise can be said to

‘‘decohere’’ or destroy the SN response when it drives the network

phase to drift by half the pattern period. By this measure, and with

the parameters used in Figure 2A–C, we plot in Figure 6E the

maximal duration of accurate integration, as a function of network

size, for two values of the CV (1 and 0.5). This duration is about

400 s in a periodic network with 104 neurons and CV = 1, roughly

in agreement with our observations from Figure 5 and Figure S3.

We recall that in both larger and smaller versions of the

deterministic periodic network, integration was highly accurate,

Figure 2A–C and Figure S1. The relatively weak dependence on

network size in the deterministic case gives way to a stronger

sensitivity on size in the presence of neural noise: the interval of

accurate integration, set by noise-driven drift, decreases linearly

with decreasing network size. Thus, neural noise sets limits on the

minimum size of the network needed to produce accurate

integration, even in the periodic network.

Figure 5. Single neuron (SN) responses from stochastic spiking
networks. (A) SN response in a stochastic spiking periodic network.
The parameters and input velocity trajectory are as in Figure 2A–C,
except that spiking is simulated explicitly and the spikes are generated
by an inhomogeneous Poisson process. (B) SN response in a stochastic
spiking aperiodic network. The parameters are as in Figure 2D–F, except
that spiking is simulated explicitly and the spikes are generated by a
point process with a CV of 1

� ffiffiffi
8
p

(see Methods). Each red dot represents
a spike.
doi:10.1371/journal.pcbi.1000291.g005
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Quantification of noise-driven rotational drift. In

aperiodic networks, rotational drift of the population pattern can

be measured by tracking the orientation of the pattern as a

function of time. We find that this drift too is diffusive:

SDh2T~DrotDt:

The diffusion constant can be measured in a similar fashion to the

measurement of Dtrans in Figure 6C. Roughly, Drot! CVð Þ2,

Figure 6F. We can use these measurements to obtain an estimate

for the maximal expected time until noise-driven rotations destroy

the single neuron pattern during path integration: Requiring that

the rotational drift remain smaller than p=12, we obtain an

Figure 6. Quantification of drift induced by neural stochasticity, in the absence of velocity inputs. Orange (blue) curves are the results of
simulations in (a)periodic networks. Successively darker shades (of orange or blue) represent simulations with successively higher neural variability
(CV~1

� ffiffiffi
8
p

, 1
� ffiffiffi

4
p

, 1
� ffiffiffi

2
p

, and 1, respectively). Identical colors across panels represent simulations with identical network parameters. Velocity inputs
are zero everywhere, and network size is N~1282 , except where stated otherwise. (A) Phase drift and (B) angular drift of the periodic (orange, CV = 1)
and aperiodic (blue, CV~1

� ffiffiffi
8
p

) networks. In (A), the drift in cm corresponds to a measured drift in neurons by assuming the same gain factor as in
the simulations with a trajectory, as in Figure 5. (C) The summed square 2-d drift in position estimation as a function of elapsed time, for two different
values of CV, in the absence of velocity inputs. The squared drift (small open circles) can be fit to straight lines (dashed) over 25 seconds (for longer
times the traces deviate from the linear fit due to the finite time of the simulation), indicating that the process is diffusive. The slope of the line yields
the diffusion constant Dtrans for phase (translational) drift of the population pattern, in units of neurons 2/s. The same fitting procedure applied to the
squared angular drift as a function of time yields the angular diffusion constant Drot . (D) Diffusion constants measured as in (C), for networks of
varying size and CV. The diffusion constant is approximately linear in CV2, and in the number of neurons N . To demonstrate the linearity in N , the
plots show D multiplied by N , upon which the data for N~322 and N~1282 approximately collapse onto a single curve. (E) An estimate of the time
over which a periodic spiking network (with the same parameters as the corresponding points in (C) and (D)) can maintain a coherent grid cell
response, plotted as a function of N, for two values of neural stochasticity. The estimate is based on taking the diffusion relationship
Dt~ Dx2

� ��
Dtrans , and solving for the time when the average displacement Dx is 10 pixels, about half the population period, and estimating the

diffusion constants from (D) to be ND.2500 neurons2/s. The coherence time scales like Dt!l2N
�

CV2 , where l is the period of the population
pattern. (F) Rotational diffusivity, Drot, in an aperiodic network of size 1286128 also increases linearly with CV2. The diffusion constant was measured
from simulations lasting 20 minutes.
doi:10.1371/journal.pcbi.1000291.g006
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estimate of about 85 s for a network with CV = 1, and about 680 s

for CV~1
� ffiffiffi

8
p

, in agreement with the time over which accurate

integration was observed in Figure 5 and in Figure S3.

Assuming that the translational drift in the aperiodic network is

similar to that measured in the periodic network we conclude that,

in the aperiodic network, rotations are the more severe source of

noise-driven decoherence of the SN response. This conclusion is in

agreement with the observation that the 1282 aperiodic network

required a smaller CV, compared to the periodic network (where

there are no rotations) to achieve a similar performance, even

though the two networks showed similar performance in the noise-

free case.

Variability in recorded grid cell responses. Motivated by

the result that sub-Poisson spiking statistics are important for

accurate integration in the grid-cell network, we analyzed spike

recordings from neurons in dMEC [1]. Under certain conditions,

cortical neurons are reported to be Poisson or even super-Poisson

in their firing statistics [29,30]. Interestingly, our analysis of the

dMEC data suggests that grid cell firing is significantly sub-Poisson

(Figure S4).

For various reasons, it is not possible to exactly compare the CV

used in our simulations and the CV of the recorded cells in dMEC.

For example, dMEC contains numerous cell types, each of which

may have different CVs. Also, the effects of individual neural

variability on integration performance are ameliorated by

averaging over the network population, but the size of the actual

dMEC network may not be the same as in our simulations, and

the actual network may contain correlations not included in our

model, so that even if we were able to pick the ‘‘correct’’ CV for

individual neurons, the net effect on integration performance may

be different in the model from that in dMEC. Finally, the CV is a

low-dimensional measure that does not fully characterize the

spiking statistics of a neuron: even if we could match the size of the

dMEC network and the CV of each neuron type, the statistics of

our model neurons could greatly differ from those in the rat.

Despite these caveats, our results suggest that a significant

blurring of the SN response is expected to occur on a time scale

ranging between a few minutes to a few tens of minutes, within a

reasonable range of estimates for the number of neurons in the

network and the variability of neural spiking.

Predictions of the Attractor Model
Armed with the proof-of-concept results that a continuous

attractor network model can integrate velocity inputs accurately

enough to produce SN grids, we next seek to explore testable

predictions of the continuous attractor hypothesis in the grid cell

system and contrast them with the properties of models in which

the grid responses emerge independently in each cell [5,6,16].

Unless explicitly specified, all proposed tests are intended for

conditions in which external, spatially informative cues have been

removed.

Stability of the attractor manifold. As described earlier,

the low-dimensional structure of the attractor means that only a

very small subset of possible states of the network, defined by strict

inter-relationships in neural activity (population patterns), are

stable, while other states quickly decay away. The quantity

conserved across pattern translations and therefore across the

attractor manifold is the phase relationship between cells, defined by

whether neurons are co-active or active at different phases. The

stability of the attractor manifold and the instability of states

outside it have a number of implications for experiment.

Stability of phase relationships in absence of

inputs. Due to the stability of the attractor manifold, phase

relationships in the periodic network should be stable over the

time-scale of days (because the pattern does not rotate), regardless

of inevitable drifts in the absolute phase of individual neurons.

Even in aperiodic networks, we expect phase relationships to

persist over 1–10 minutes, but possibly not longer due to the

possibility of rotations. Under similar conditions in models where

the grid is generated separately by individual neurons

(‘‘independent neuron models’’), like temporal interference

models [5,6], the phase relationships between cells should drift

or random walk over relatively short periods of time, on the same

time-scale as drifts in the absolute phase of single cells. This is

because in independent neuron models, the phase of the grid

response of each cell is determined individually, in part from the

phase of an intrinsic oscillator. Hence, unlike the continuous

attractor models, phases of different neurons are untethered to

each other through network interactions.

Stability against small perturbations of neural

subsets. Because the attractor dynamics are restoring, small

perturbations (small induced changes in the activity of neurons) of

state without a component along the attractor manifold should not

produce lasting changes in the states of these neurons or the

network. Network interactions should restore the state to the

original state that preceded the perturbation: thus, both the

absolute phases of cells and their phase relationships should be

unchanged by the perturbation. This statement also applies to

large perturbations, if they have no appreciable projection along

the attractor manifold (e.g., large random perturbations made

directly to different layer II/III grid cells with low velocity

sensitivity are examples of such large perturbations). By contrast,

following small or large perturbations to subsets of cells in

independent neuron models, the absolute activity states of those

cells, as well as their relative phase relationships with unperturbed

neurons should change, due to the absence of restoring network

interactions.

Coherent movement along the attractor manifold in

response to incoherent perturbations. Perturbations that

have a large component along the attractor manifold should drive

a coherent transition to the point on the attractor manifold that is

closest to the perturbed state. Because the new state will be on the

attractor manifold, phase relationships between neurons should be

unchanged. Head direction cells provide a means to induce such a

perturbation: Stimulating a subset of head direction cells should

drive a rigid (coherent) and lasting translation of the entire

population pattern, producing the same shift in phase in all cells,

regardless of whether or not they received direct head direction

input. By contrast, similar inputs provided only to subsets of cells

in independent neuron models should produce changes in phase

only in the stimulated cells.

Single neuron responses. The continuous attractor model

predicts that all cells in the network must have identical

orientations, and all phases must be equally represented in the

population [2]. Both these properties are consistent with

observations [1], but are difficult to explain in independent

neuron models, without invoking additional mechanisms that

effectively turn the system into a low-dimensional attractor.

Further, in the continuous attractor model, if any cell’s grid

response contains a reproducible irregularity of any kind (e.g., a

global skewing of the lattice, or a local defect, such as a local 5–7

pairing of neighbors instead of the usual 6), it follows that every cell

in the network must display the same irregularity, up to a global

shift in phase. Indeed, our preliminary analysis of data from [1]

supports this prediction, Figure S5.

Expansion or contraction of the SN grid in different

environments. In experiments where a familiar enclosure is

resized, the SN response is observed to rescale along the rescaled
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dimension of the enclosure, at least temporarily [31]. Further,

when the rat is placed in a novel environment, the SN grid

responses are observed to isotropically expand or contract [32].

These observations have sometimes been interpreted as evidence

against the continuous attractor models of grid cells.

To explain why these rescaling experiments are consistent with

a continuous attractor model of grid cells, it is important to stress

the difference between the population-level and the SN responses.

The attractor manifold consists of the steady states of the

population response, which consists of translations (and in

aperiodic networks, rotations) of a canonical pattern. Thus,

stretching and rotation of the population pattern are forbidden

(unstable) and cannot be invoked within the continuous attractor

models to explain the experimental observations.

The SN response, on the other hand, is not directly subject to

constraints imposed by the attractor manifold on the population

pattern, because it is a function of both the instantaneous

population pattern and the velocity response of the pattern in

time. If the pattern were to flow more slowly along one dimension

than the other, for equivalent rat speeds, the SN response would

be a stretched version of the regular underlying population grid,

with the stretched dimension corresponding to the slow flow

dimension. Hence, stretching of the SN response can be explained

in the continuous attractor model by an amplitude modulation of

head direction inputs tuned to the relevant head direction, without

inflicting such a deformation on the population pattern (Figure 7A

and 7B). If the population pattern were not constrained by the

low-dimensional attractor, SN stretching could instead be effected

by a stretching of the population pattern in the cortical sheet,

Figure 7B (rightmost column).

How can experiments distinguish between these two possibil-

ities? The continuous attractor model predicts that the phase

relationships between neurons must remain unchanged upon

stretching of the SN response (Figure 7A and 7B, middle column).

This prediction of the continuous attractor model will be explicitly

violated if stretching happens at the population level, Figure 7A

and 7B, rightmost column. Further, the continuous attractor

model predicts that the strength of velocity modulation in the head

direction inputs to dMEC and in the conjunctive heading- and

velocity-sensitive grid cells [33] should decrease along the grid’s

stretched dimension, which corresponds to the expanded enclo-

sure dimension, and the percentage decrease should correspond

exactly to the percentage stretching of grid responses.

In contrast, if the SN stretching is due to a similar stretching in

the population response, there should be little to no change in the

amplitude of velocity modulation of the cells. In summary, changes

in the phase relationships between cells, or no change in the

velocity modulation of the head direction inputs to dMEC, when

the SN responses have been stretched, would be evidence against

the attractor model.

Similarly, a rotation [1] (or an isotropic stretching [32]) of the

SN response, which happens when the cue-card is rotated (or

when the enclosure is novel), is predicted to be due to an isotropic

rotation (or scaling in the velocity-modulated amplitude) of the

head direction inputs to the network, while the network pattern is

predicted to remain unrotated (unstretched), Figure 7A and 7C.

The former part of the prediction, about the rotation of head

direction inputs to the grid cell network, is consistent with

separately observed responses in head direction cells to cue card

rotations [34,35].

Insufficiency of feedforward input and necessity of

recurrent processing for spatial periodicity. Lidocaine, or

another blocker of spiking activity, applied locally to dMEC

without affecting inputs to dMEC should abolish periodic spatial

responsiveness in the subthreshold activity of grid cells. This is

because all periodic patterning in the continuous attractor model

arises from recurrent interactions within dMEC. By contrast,

individual-neuron models, where the computation is performed

within each neuron, may continue to show spatially periodic

responses under such a manipulation.

Distinguishing between attractor models. Given that

both periodic and aperiodic continuous attractor network

models of dMEC are capable of accurate integration of rat

velocity inputs, how might it be possible to experimentally

distinguish between the two possibilities?

A periodic network shows no pinning, and rotations of the

population response are forbidden. Thus, phase relationships

between neurons should be absolutely stable over very long times

even in the absence of any sensory inputs. By contrast, aperiodic

networks should be pinned for sufficiently low velocity inputs, and

in the absence of external corrective cues, are expected to rotate

on slow timescales (minutes to 10’s of minutes). A population-wide

rotation will be manifest in altered phase relationships between

single neurons, or it could be probed by looking at differential

(relative) rotations in the orientation of quickly estimated SN grids

versus the head direction cell population.

Next, in an aperiodic network, neurons at the boundaries must

receive fading input, meaning that their maximal activity is

substantially lower than that of neurons in the bulk; thus, the

distribution of maximal rates across grid cells of the same type in

an aperiodic network should be wide. If the maximal firing rate of

every cell (of the same type) in the network is roughly the same, it

would be inconsistent with an aperiodic network. The converse

need not be true (i.e., a wide distribution of cells does not imply an

aperiodic network, or rule out a periodic network).

We emphasize that the boundaries of the neural population are

not related to physical boundaries in space. Hence the neurons at

the boundaries, discussed above, are not expected to bear a

relationship to the recently discovered cells in dMEC whose

receptive field encodes the rat’s proximity to boundaries in the

environment [36,37].

Finally, if defects exist in the single neuron response, they may

help distinguish between a periodic and an aperiodic network. By

defects, here we only mean those arising spontaneously from the

pattern formation process in a network whose connectivity is itself

defect-free. Defects arising from imperfections in the weights will

not flow in response to velocity inputs, and are therefore not

expected to produce a systematic defect in the SN response. In the

aperiodic case, any defect in the SN response must be eliminated if

the rat returns to the area where the defect was observed after first

moving in one direction until the defect has flowed off the

population pattern. Conversely, if the defect persists upon return

to the vicinity of the defect location even after long excursions, the

lattice has periodic boundaries. The Presence of a stable defect

which is present in all SN responses would incidentally be strong

evidence of a continuous attractor network.

The last two predictions can help to distinguish even a well-

tuned aperiodic network, which may show relatively little rotation

or pinning, from a periodic network.

Discussion

The three main contributions of this work are:

(1) A demonstration through modeling that under reasonable

conditions grid cells can be good velocity integrators, and

more specifically, that continuous attractor models are

capable of accurate path integration.

Accurate Path Integration in the Grid-Cell System
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(1) By ‘good’ integration, we mean that if the model network is

given accurate velocity inputs, it produces an accurate

estimate of rat position over comparable distance and time-

scales to those probed in behavioral assays. Within a plausible

range of estimates for network size and neural stochasticity,

higher accuracy was reached in larger and relatively noise-free

networks, sufficient to reproduce coherent grid cell patterns in

response to the full trajectories from [1], lasting 10–

20 minutes. Smaller networks with more stochastic dynamics

were capable of good integration over smaller paths, still

consistent with behavioral constraints.

(2) Furnishing good upper bounds on idiothetic path integration

accuracy within dMEC.

(2) A notable finding is that even noise-free, large networks

(periodic and aperiodic) have only finite integration accuracy,

and this level of accuracy is only a factor of 10–100 larger

than known behavioral abilities. We provide estimates of

integration accuracy in the presence of neural noise, which

are in the range of 1–10 minutes. Integration performance in

a fixed-size periodic network is not expected to vary greatly

with parameter tuning; aperiodic networks are more sensitive

to parameter tuning, and we have not optimized all

parameters. However, aperiodic networks are upper-bounded

in their performance by the corresponding periodic network.

Thus, we expect our estimates to serve as reasonable upper

bounds on integration accuracy in dMEC, within the

continuous-attractor picture.

(3) Providing predictions that can falsify the continuous attractor

hypothesis and help distinguish between the possibilities that

grid responses are generated through continuous attractor

networks or through independent cell computations.

Figure 7. Tests of the continuous attractor hypothesis. Green lines represent the same fixed electrode locations in the neural population,
across all plots. (A) Left: Single-neuron response. Right: Input head direction/velocity tuning curves, and an instantaneous snapshot of the underlying
population response, which together produced the SN response on the left. (B) The SN grid (left) expands along one direction when the amplitude of
the head direction/velocity inputs for that direction is lowered relative to other directions (right, first panel), while the population patterns remain
unchanged. Alternatively, the same SN expansion could have been produced by keeping the amplitude of the head direction/velocity inputs fixed, if
the population patterns were stretched (right, second panel). The latter scenario is inconsistent with the attractor hypothesis, because deformations
of the pattern are not part of the attractor manifold. In the former (continuous attractor) scenario, the phase relationships between neurons is
preserved despite the SN expansion; in the second, phase relationships must change. (C) The SN grid (left) rotates if the head direction/velocity inputs
to the network are rotated, while the population remains unchanged. The same rotation could have been produced by rotating the population
pattern, but keeping the head direction/velocity inputs intact. The latter possibility is inconsistent with the attractor hypothesis. Again, the former
(continuous attractor) scenario can be distinguished from the latter by whether phase relationships between neurons in the population are
preserved. (SN plots and the left column of population responses were produced from a simulation with network parameters as in Figure 2D–F, and
by appropriately scaling or rotating the velocity/head direction inputs. Right population plots are hypothetical.)
doi:10.1371/journal.pcbi.1000291.g007
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So far, the predictions of continuous attractor models are

consistent with the full corpus of grid cell data, and explanatory of

many results from experiment, suggesting, when combined with

conclusion (1), that continuous attractor dynamics are a viable,

relevant mechanism for grid cell activity and path integration.

Assumptions of the Model
Accurate behavioral dead reckoning is a cascaded result of

accurate velocity input (relative to the rat’s motion) and accurate

integration of that input. Our interest in this work was in assessing

how well continuous attractor models of dMEC can integrate their

inputs. Thus, we did not focus on potential inaccuracies (noise or

biases) in the velocity inputs themselves. Even if the network were

a perfect integrator, errors in the input would produce an incorrect

position estimate. Such errors are likely to play a role in reducing

the behavioral range over which rats display accurate dead-

reckoning.

A strength of attractor networks is that responses are self-

averaging over the full network: if the velocity inputs are unbiased

estimators of rat movements, but are noisy, or if the velocity inputs

to the network are not perfectly balanced in number for all

directions, the full network will average all its inputs, and the net

pattern flow will only reflect this average. For accurate position

estimation, however, it is important and therefore likely that inputs

to the network are well tuned.

Another factor that could degrade integration performance is

inhomogeneity or stochasticity in the recurrent network weights.

While stochasticity in neural activity causes the network state to

drift along the attractor manifold, variability in network

connectivity modifies the structure of the attractor manifold itself.

If recurrent connectivity deviates significantly from the translation-

invariant form needed to ensure that all translations of the pattern

are accessible without crossing over energy barriers, the activity

pattern can become pinned at particular phases [38], reducing the

fidelity of the network response to small velocity inputs.

Because knowledge about synaptic strengths in the brain is

exceedingly limited, it is unclear what level of variability should be

expected in dMEC weights, and whether this amount is sufficient

to cause significant pinning. A question for theory, not addressed

in this work, is to estimate the amount of variability in the network

weights that would be sufficient to reduce the accuracy of

integration below that observed in dead reckoning behavioral

experiments. For experiments, the difficult challenge is to obtain

an estimate of variability in dMEC connectivity.

Network Size
The network size estimate in our continuous attractor model

(103–104 neurons) may be viewed as a wasteful proposed use of

neurons, but it is broadly consistent with estimates for the total

number of neurons in the entorhinal cortex [39–41]. By contrast,

independent neuron models [5,6,17], which do not require

populations of neurons to produce grid cell responses, make far

more parsimonious use of neurons. In such models, a natural

question is to understand what function may be served by the large

number of neurons in dMEC.

Within dMEC, the breakdown of total neural allocation,

between neurons per grid network versus the number of different

grid networks, is unknown. dMEC might consist of a very large

number of very small networks with different grid periods, which is

optimal for representational capacity [42]. (For a fixed neuron

pool size, the addition of neurons per grid at the expense of the

total number of different grids causes a large capacity loss [42].)

But the dynamical considerations presented here suggest other-

wise, because accurate path integration in each grid requires many

neurons. In contradiction to optimal capacity considerations,

therefore, continuous attractor models predict a large membership

in each grid network, and correspondingly few different grids.

A fascinating question is whether the discrete islands of cells

observed in anatomical and imaging studies of cells in layer II of

the human and primate entorhinal cortex [41,43–46], as well as

indications in rodents for modular structure in dMEC [46,47]

correspond to separate attractor networks, in which case the

number of different grid periods can be directly inferred.

Periodic versus Aperiodic Networks
We have shown that both periodic and aperiodic networks can

perform accurate integration. Which topology is dMEC likely to

posses? The models and results of this work are largely agnostic on

this question. However, the aperiodic network requires fine-tuning

of its parameters to perform nearly as well as an untuned periodic

network. Even after fine-tuning, integration in the periodic

network tends to be better, because unlike in the aperiodic case,

the population pattern cannot rotate. Thus, from a functional

perspective, periodic boundaries are preferable over aperiodic

ones.

Other constraints on network topology may stem from the

developmental mechanism of the grid-cell network. Such devel-

opmental constraints could overrule potential functional prefer-

ences, in determining network topology.

Network Topography
If neural locations in the cortical sheet are scrambled, while

preserving the neural indices i and the pairwise weights Wij

between neurons, the grid-like patterning in the cortical sheet will

disappear, but there will be no change in the single neuron

triangular lattice response or in any other dynamical property of

the network. The underlying structure of the attractor manifold

(e.g., whether or not it is continuous) is a function of network

connectivity, but does not depend on the layout of neurons on the

cortical sheet. Thus, the lack of topography observed in

experiments, in which neighboring neurons have different phases,

is not a problem for the dynamics of continuous attractor models

of grid cell activity. Instead, the problem is one of learning: how

does a network wire up so that the intrinsic structure of the weight

matrix resembles center-surround connectivity, but the neurons

are themselves not arranged topographically in space?

The Problem of Learning
A topographic, aperiodic model network would have relatively

simple wiring rules (if we ignore the directional neural labels and

corresponding segregation of head-direction inputs and shifts in

the outgoing weights required for the velocity-coupling mecha-

nism): each neuron would simply have spatially restricted center-

surround interactions with its neighbors. This has prompted the

observation that such a topographic network could serve as a

starting point for the development of a network with a less

topographical layout and periodic boundaries [4]. For instance,

the proposal by [4] for wiring an atopographic and periodic

network is based on three assumptions: (1) that another area, the

‘teacher’, contains an initial aperiodic, topographic network with

population grid patterning and no velocity shift mechanism, (2)

that the network pattern, when subject to intrinsic or extrinsic

noise, tends to translate without rotation, (3) that the network

projects through spatially random connectivity to the naive

dMEC, and activity-dependent activity mechanisms within dMEC

cause neurons that are coactivated by the teacher network, to wire

together. However, results from the present work show that the
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fundamental features of aperiodic networks pose a problem for

such a scheme.

We showed that the population pattern in a deterministic

aperiodic network fully equipped with a translational velocity

shift mechanism and driven by purely translational velocity

inputs, tends to rotate within a few minutes. This is the short end

of the time-scales over which plasticity mechanisms for network

development would act. If the network is entirely driven by noise

and lacks a specific velocity shift mechanism (as in [4]), the

problem is far worse: undesirable rotations become as likely as

translations, and the pattern orientation can decohere in

seconds, invalidating assumption (2). Thus, the precursor

network pattern will not be able to entrain a periodic grid in

the target network.

The problem of pattern rotations over the time scale of learning

is pertinent for any effort to produce a periodic network from an

initially aperiodic one in the absence of anchoring sensory inputs

and a velocity coupling mechanism.

The Elusive Hypothesis
The concept of low-dimensional continuous attractors has

influenced our understanding of neural systems and produced

successful models of a number of neural integrators [8–

10,13,14,48,49]. Yet proof of continuous attractor dynamics (or

some discrete approximation to continuous attractor dynamics) in

the brain has remained elusive: experiments in supposed

continuous attractor systems have failed to unearth evidence to

conclusively validate or falsify the continuous attractor hypothesis.

The relative richness (e.g., size, dimensionality of the manifold) of

the grid cell response compared to other possible continuous

attractor systems may provide a more structured and unambig-

uous testing ground for predictions stemming from the continuous

attractor hypothesis. Testing of these predictions, many based on

cell-cell correlations, is feasible with existing experimental

technologies, and such tests may help to determine whether a

low-dimensional continuous attractor is central to the dynamics of

the grid cell system.

Methods

The dynamics of rate-based neurons is specified by:

t
dsi

dt
zsi~f

X
j

WijsjzBi

" #
ð1Þ

The neural transfer function f is a simple rectification

nonlinearity: f xð Þ~x for xw0, and is 0 otherwise. The synaptic

activation of neuron i is si; Wij is the synaptic weight from neuron

j to neuron i. The time-constant of neural response is t = 10 ms.

The time-step for numerical integration is dt = 0.5 ms.

We assume that neurons are arranged in a 2-d sheet. Neuron i is

located at xi. There are N~n|n neurons in the network, so x

ranges from (
{n

2
,
{n

2
) to (

n

2
,
n

2
). We use N~1282 in all figures

except where specifically indicated. Each neuron i also has a

preferred direction (W, N, S, E) designated by hi. Locally, each

262 block on the sheet contains one neuron of each preferred

direction, tiled uniformly.

The preferred directions are restricted to N,S,E,W for

convenience in modeling; in the rat, these preferences might span

the continuum 0,2p½ �. The preferred orientation of a neuron is

used to (1) determine the direction in which its outgoing weighs are

shifted, and (2) determine the rat velocity inputs it receives.

The recurrent weight matrix is

Wij~W0 xi{xj{lêehj

� �
ð2Þ

with

W0 xð Þ~a e{c xj j2{e{b xj j2 ð3Þ

The weight matrix has a center-surround shape, but is centered at

the shifted location x{lêehj
. Implicit in the form of the weight

matrix, where connectivity is a function of neural separation, is the

assumption that neurons are topographically arranged. This is not

a necessary requirement (see Discussion), but does greatly facilitate

visualization and presentation. In all simulations, we used a~1,

c~1:05|b, and b~3
�

l2
net where lnet~13 is approximately the

periodicity of the formed lattice in the neural sheet. With a~1, all

connectivity is inhibitory; thus, local surround inhibition alone is

sufficient to reproduce gird cell responses, but the network could

include excitatory interactions (aw1) without qualitatively affect-

ing the results.

The feedforward input to neuron i is

Bi~A xið Þ 1zaêehi
:vð Þ ð4Þ

where êehi
is the unit vector pointing along hi, and v is the velocity

vector of the rat, measured in m/s. If l~0 (Eq. 2) and a~0 (Eq.

4), the network generates a static triangular lattice pattern,

Figure 1A, with overall intensity modulated by the envelope

function A (e.g., Figures 2D, 3B, and 3D1–D4).

If l,a are non-zero, they allow rat velocity (v) to couple to the

network dynamics, and drive a flow of the formed pattern. The

magnitudes of both l and a multiplicatively determine how strongly

velocity inputs drive the pattern, and thus control the speed of the

flow of the pattern for a fixed rat speed. The triangular lattice pattern

is only stable for small values of the shift l in the outgoing weights, thus

we keep l fixed so that the outgoing weights are shifted 2 neurons.

With l fixed, a determines the gain of the velocity response of the

network. If a vj j%1, we can expect the velocity inputs to drive pattern

flow without destroying the stability of the formed lattice. In the plots

shown, a~0:10315. The grid spacing of the SN response is

ultimately determined by two factors: (i) The grid spacing of the

population response, which is set by the shape of the symmetric

weight matrix W0, and (ii) the gain of the network’s flow response to a

velocity input, which depends on l and a.

The envelope function A spatially modulates the strength of the

inputs to the neurons, and can scale neural activity without

disrupting the lattice pattern. This can be seen from Equation 1: if

the input B is uniform, then scaling B is equivalent to scaling s. It

is important to observe that the velocity inputs must also be

modulated by the envelope A, Eq. 4, to insure the same flow rate

in the faded regions as in the bulk. This is because the local flow

rate is given by the velocity-modulated component of the

feedforward input divided by the total feedforward input.

For the network with periodic boundary conditions, the

envelope function is 1 everywhere. For the aperiodic network,

A xð Þ~
1 xj jvR{Dr

exp {a0
xj j{RzDr

Dr

� �2
� �

R{Drƒ xj jƒR

8<
: ð5Þ

R is the diameter of the network and a0~4 (for example, see

Figure 2D and Figure 3B, D1–D4). In Figure 3 (D4), R = 128; in
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all other figures, R = 64. The parameter Dr determines the range

of radii over which input tapering occurs: The larger Dr, the more

gradual the tapering. In all the aperiodic simulations Dr~R,

except for Figure 3 (A–C and D2, D4), where Dr~32 and Figure 3

(D3), where Dr~16.

Spiking Simulations
To simulate a Poisson process (CV = 1, where CV is the ratio of

the inter-spike interval standard deviation with the mean), in each

time-step t,tzDt½ � neuron i spikes with probability given by

Pspk i; t,tzDtð Þ~f Wijsj tð ÞzBi tð Þ
� �

Dt (in our simulations, fi is

always much less than 1=Dt~200, ensuring that Pspk%1). The

synaptic activation si tð Þ is computed from neural spiking: it

increments by 1 at time t if neuron i spiked at t, and otherwise

decays according to

t
dsi

dt
~{si tð Þ ð6Þ

The process for generating spike trains with CV~1=
ffiffiffiffi
m
p

(for

integer-valued m) is similar to that for generating a Poisson train.

We first subdivide each interval into m sub-intervals of length

Dt=m each, and simulate on this finer time resolution a fast

Poisson spiking process with rate m � f Wijsj tð ÞzBi tð Þ
� �

. We then

decimate the fast Poisson process, retaining every m-th spike and

discarding all the other spikes. This procedure generates a spike

train with rate f Wijsj tð ÞzBi tð Þ
� �

and CV~1=
ffiffiffiffi
m
p

.

Initial Conditions
Aperiodic network: initially network activity is low; neurons

receive external input with v~0 in addition to a small independent

random drive, which leads to spontaneous pattern formation.

Periodic network: we initialize an aperiodic network with

otherwise identical parameters, and after pattern formation apply

periodic boundary conditions. The parameters for the aperiodic

network have to be chosen to be commensurate with the size of the

network to avoid excess strain and the formation of defects when

the boundaries are made periodic. We flow both the periodic and

aperiodic network states with unidirectional velocity inputs,

corresponding to a velocity of 0.8 m/s, in three different directions

(0,p=5,p=2{p=5) for 250 ms each to heal any strain and defects in

the formed pattern. After this healing period, we give as input to

the network either real rat velocity (data obtained by differenti-

ating recorded rat trajectories – published in [1] – then linearly

interpolating between the recording time-steps and the time-step

dt in our simulations), or a sequence of velocity steps (described

next).

Velocity Response Curves
The network is initialized to the exact same initial template state

at the beginning of each step (using a template pattern stored

following one run of the initialization process described above).

Each step consists of a constant velocity input, with one of four

directions (0, p=6, p=3, p=2). The velocity is incremented in steps

of 0.02 m/s. We use only the second half of the 5 s long steps to

compute the network’s velocity response.

Tracking Lattice Orientation and Flow
We track how far the pattern has flowed beyond a lattice period

and beyond the scale of the network by continuously recording the

velocity of the blob closest to the center, and integrating the

obtained velocity. We track the orientation of the lattice by

computing its Fourier transform and recording the angles of the

three blobs closest to the origin in Fourier space.

To assign units of centimeters to the accumulated network

pattern flow and compare it to rat position (Figure 2C, 2F, 3C,

Figure S1, and Figure S3), we must obtain the scale factor relating

the network pattern flow velocity to the velocity of the rat. The

scale is determined by optimizing the match between network flow

velocity and the derivative of the rat position throughout the

simulation. The offset is set so that the network drift at time t~0 is

zero.

Supporting Information

Figure S1 Path integration and generation of grid cells in a small

periodic network. Simulation of network response, with velocity

inputs corresponding to a rat’s recorded trajectory in a 2 m

circular enclosure [50]. The boundary conditions in the neural

sheet are periodic as in Figure 2A–C, but the network size is

smaller (402 network). (A) Instantaneous activity within the neural

sheet (color represents the firing rate: black corresponds to

vanishing rate). (B) Grid cell response: average firing rate of a

single neuron (located at the electrode tip in panel A), as a function

of the rat’s position within the enclosure. (C) Velocity integration

in the network. Top: Actual distance of the rat from a fixed

reference point (black), compared to the network’s integrated

position estimate, obtained by tracking the flow of the pattern in

the population response (blue). The reference point is at the left-

bottom corner of the square in which the circular enclosure is

inscribed. Bottom: Accumulated difference between the integrated

position estimate and the actual position.

Found at: doi:10.1371/journal.pcbi.1000291.s001 (0.73 MB EPS)

Figure S2 Population pattern in an aperiodic network with a

modulation of weights. The steady-state pattern in a network where

the strengths of the outgoing weights from each neuron are

modulated based on the neuron’s location in the sheet, according

to the envelope function of Equation 5. The external input is spatially

uniform. All parameters are identical to the simulation of Figure 2D,

except that the modulation envelope is applied to the weights instead

of to the inputs. The formed pattern is distorted at the edges, with

neurons along the edge tending to be uniformly active.

Found at: doi:10.1371/journal.pcbi.1000291.s002 (1.00 MB EPS)

Figure S3 Path integration in periodic and aperiodic stochastic

spiking networks. Simulation of network response, with velocity

inputs corresponding to a rat’s recorded trajectory in a 2 m

circular enclosure [50], in stochastic spiking networks. Results are

shown for a periodic network with CV = 1 (orange), and for

aperiodic networks, where successively darker shades of blue

represent simulations with successively higher neural CV (CV = 1/

!8, 1/!4, and 1, respectively). All other parameters are as in

Figure 5. Colors represent the same network parameters as in

Figure 6, which describes drift in the absence of velocity inputs. (A)

Accumulated difference between the integrated position estimate

and the rat’s actual position. (B) Orientation of the network

pattern as a function of time. (C) Responses of a single neuron over

a rat’s recorded trajectory, over 10 minutes. Each red dot

represents a spike. Color of bars represent the same simulation

parameters as in (A) and (B). Top-left, Aperiodic network with

CV = 1, Bottom-left, CV = 1/!4, Top-right, CV = 1/!8 (repro-

duced from Figure 5), Bottom right, aperiodic network with

CV = 1 (reproduced from Figure 5).

Found at: doi:10.1371/journal.pcbi.1000291.s003 (3.43 MB EPS)

Figure S4 Stochasticity of recorded dMEC neurons. (A)

Standard deviation (s) of the inter-spike interval (ISI) distribution
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plotted against the mean ISI, for various values of the mean ISI.

Data points from multiple simultaneously recorded cells (from a

single electrode) in dMEC [50] are pooled to produce this plot.

Black circles, method (1). Blue squares, method (2) (see below). The

red dashed line corresponds to statistics that would be obtained

from a homogeneous Poisson process at each mean ISI value. (B)

The coefficient of variation (CV =s(ISI)/m(ISI)) plotted as a

function of spiking frequency. The red dashed line corresponds to

the CV of a Poisson process. Estimation of CV in neural data. The

CV is a normalized measure of the variation in the inter-spike

intervals in a spike train firing at a constant rate. To estimate the

CV, we thus have to identify intervals of relatively constant firing

rate. This is made complicated by the fact that in the stimulus and

behavioral conditions prevailing during the recordings (the rat is

randomly running around the enclosure foraging for randomly

scattered food while landmarks move into or out of view), there are

no designated regions of stimulus or response constancy. We used

two methods to identify regions of constant mean firing rate: (1)

Identify blocks of low-velocity intervals where |v|,vcutoff = 8 cm/

s, which are of duration larger than Tv = 4 s. We found no blocks

where the integrated displacement was more than l/4 cm,

meaning that the intervals represented traverses of approximately

one blob diameter or less, with the typical distance being much

shorter. Thus, the rat is likely to be either on or off a blob for the

entire duration of a block, and should have a roughly constant

underlying firing rate. (2) Identify high-rate blocks where the rate

is higher than some upper cutoff threshold (to locate on-blob

episodes), with rISI(t).rhigh for each time in the block. Only those

high-rate blocks of duration longer than Tr were retained. rISI is

the instantaneous firing rate, computed as the reciprocal of the

inter-spike interval of adjacent spikes. rhigh = 10 Hz was chosen to

be large enough to exclude all intervals except those where the rat

is clearly on a blob for the recorded cell. In all the above, the

minimum interval duration Tr = 5 s was chosen to eliminate

random (non)spike events that momentarily change the rate

without reflecting an actual change in the underlying firing rate of

the cell, while capturing as many intervals as possible for ISI

analysis. In each of methods (1) or (2), we compute m(ISI) and

s(ISI) for each block as a single data-point. Next, we bin together

data points with the same rate (in bins of 1 Hz), pooling across all

cells (this is reasonable because each cell individually has very

similar statistics as the collection). The two methods (1) and (2) are

complementary in the sense that interval sampling is based in the

first case on rat velocity, and in the second case by rate-based on-

blob or off-blob considerations. Neither method guarantees that

the underlying firing rate within one interval is constant. However,

the two methods yield consistent results, and thus add a measure of

confidence to the analysis.

Found at: doi:10.1371/journal.pcbi.1000291.s004 (0.68 MB EPS)

Figure S5 Deviations from a perfect triangular lattice in existing

measurements. (A) Comparison of grid correlation functions from

three simultaneously recorded cells, adapted from [1]. The black

lines were passed between pairs of peaks in the correlation

function. Each pair consists of two opposing peaks, from the six

closest peaks to the origin. Measured angles between the lattice

vectors, shown in the plot and in the bar plot (B), show a consistent

bias from 60u in the three cells. We estimate the measurement

error at about 62u. The measured lengths of the black segments,

in arbitrary pixel units, are: 28.8, 27.2, 25.1 (I); 28.8, 27.5, 25.9

(II); 29.2, 28.7, 26.1 (III), with an estimated measurement error of

61. This example is limited by the low resolution images adapted

from [1] and is meant primarily as a demonstration of possible

deviations from a perfect triangular lattice, and how they can be

measured. We believe that the question of whether such deviations

occur consistently in cells sharing the same grid period calls for a

more systematic study.

Found at: doi:10.1371/journal.pcbi.1000291.s005 (0.59 MB EPS)

Acknowledgments

We are grateful to Mehran Kardar and Michael Cross for helpful

conversations.

Author Contributions

Analyzed the data: YB IRF. Wrote the paper: YB IRF. Developed the

model: YB IRF. Performed the simulations: YB IRF.

References

1. Hafting T, Fyhn M, Molden S, Moser MB, Moser E (2005) Microstructure of a

spatial map in the entorhinal cortex. Nature 436: 801–806.

2. Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat

medial entorhinal cortex. J Neurosci 26: 4266–4276.

3. Burak Y, Fiete I (2006) Do we understand the emergent dynamics of grid cell

activity? J Neurosci 26: 9352–9354.

4. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path

integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:

663–678.

5. Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid

cell firing. Hippocampus 17: 801–812.

6. Hasselmo ME, Giocomo LM, Zilli EA (2007) Grid cell firing may arise from

interference of theta frequency membrane potential oscillations in single

neurons. Hippocampus 17: 1252–1271.

7. Guanella A, Kiper D, Verschure P (2007) A model of grid cells based on a

twisted torus topology. Int J Neural Syst 17: 231–240.

8. Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL (1995) A model of the

neural basis of the rat’s sense of direction. Adv Neural Inf Process Syst 7:

173–180.

9. Seung HS (1996) How the brain keeps the eyes still. Proc Natl Acad Sci U S A

93: 13339–13344.

10. Zhang K (1996) Representation of spatial orientation by the intrinsic dynamics

of the head-direction cell ensemble: a theory. J Neurosci 16: 2112–2126.

11. Samsonovich A, McNaughton BL (1997) Path integration and cognitive

mapping in a continuous attractor neural network model. J Neurosci 17:

5900–5920.

12. Tsodyks M (1999) Attractor neural network models of spatial maps in

hippocampus. Hippocampus 9: 481–489.

13. Goodridge JP, Touretzky DS (2000) Modeling attractor deformation in the

rodent head-direction system. J Neurophysiol 83: 3402–3410.

14. Xie X, Hahnloser RHR, Seung HS (2002) Double-ring network model of the

head-direction system. Phys Rev E Stat Nonlin Soft Matter Phys 66: 041902.

15. Stringer SM, Rolls ET, Trappenberg TP (2004) Self-organising continuous

attractor networks with multiple activity packets, and the representation of

space. Neural Netw 17: 5–27.

16. O’Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place

cells: theoretical significance and relationship to entorhinal grid cells.

Hippocampus 15: 853–866.

17. Giocomo LM, Zilli EA, Fransen E, Hasselmo ME (2007) Temporal frequency of

subthreshold oscillations scales with entorhinal grid cell field spacing. Science

315: 1719–1722.

18. Mittelstaedt M, Mittelstaedt H (1980) Homing by path integration in a mammal.

Naturwissenschaften 67: 566–567.

19. Maaswinkel H, Jarrard LE, Whishaw IQ (1999) Hippocampectomized rats are

impaired in homing by path integration. Hippocampus 9: 553–561.

20. Sharp PE, Tinkelman A, Cho J (2001) Angular velocity and head direction

signals recorded from the dorsal tegmental nucleus of gudden in the rat:

implications for path integration in the head direction cell circuit. Behav

Neurosci 115: 571–588.

21. Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:

180–192.

22. Alonso A, Llinas RR (1989) Subthreshold Na+-dependent theta-like rhythmicity

in stellate cells of entorhinal cortex layer II. Nature 342: 175–177.

23. Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and

pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 70:

128–143.

Accurate Path Integration in the Grid-Cell System

PLoS Computational Biology | www.ploscompbiol.org 15 February 2009 | Volume 5 | Issue 2 | e1000291



24. Mitchell SJ, Ranck JBJ (1980) Generation of theta rhythm in medial entorhinal

cortex of freely moving rats. Brain Res 189: 49–66.

25. Alonso A, Garcia-Austt E (1987) Neuronal sources of theta rhythm in the

entorhinal cortex of the rat. ii. phase relations between unit discharges and theta

field potentials. Exp Brain Res 67: 502–509.

26. Murray JD (2003) Mathematical Biology. Berlin: Springer; Chapter 16.

27. Cohen M, Grossberg S (1983) Absolute stability of global pattern-formation and

parallel memory storage by competitive neural networks. IEEE Trans Syst Man

Cybern 13: 815–826.

28. Hopfield JJ (1984) Neurons with graded response have collective computational

properties like those of two-state neurons. Proc Natl Acad Sci USA 81:

3088–3092.

29. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is

inconsistent with temporal integration of random EPSPs. J Neurosci 13:

334–350.

30. Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical

organization. Curr Opin Neurobiol 4: 569–579.

31. Barry C, Hayman R, Burgess N, Jeffery KJ (2007) Experience-dependent

rescaling of entorhinal grids. Nat Neurosci 10: 682–684.

32. Fyhn M, Hafting T, Treves A, Moser MB, Moser EI (2007) Hippocampal

remapping and grid realignment in entorhinal cortex. Nature 446: 190–194.

33. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, et al. (2006)

Conjunctive representation of position, direction, and velocity in entorhinal

cortex. Science 312: 758–762.

34. Taube JS, Muller RU, Ranck JB Jr (1990) Head-direction cells recorded from

the postsubiculum in freely moving rats. I. Description and quantitative analysis.

J Neurosci 10: 420–435.

35. Taube JS (1995) Head direction cells recorded in the anterior thalamic nuclei of

freely moving rats. J Neurosci 15: 70–86.

36. Savelli D, Yoganarasimha D, Knierim J (2008) Influence of boundary removal

on the spatial representations of the medial entorhinal cortex. Hippocampus 18:

1270–1282.

37. Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation

of geometric borders in the entorhinal cortex. Science 322: 1865–1868.
38. Ernst UA, Pawelzik KR, Sahar-Pikielny C, Tsodyks MV (2001) Intracortical

origin of visual maps. Nat Neurosci 4: 431–436.

39. Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the
hippocampal network. Prog Brain Res 83: 1–11.

40. Mulders WH, West MJ, Slomianka L (1997) Neuron numbers in the
presubiculum, parasubiculum, and entorhinal area of the rat. J Comp Neurol

385: 83–94.

41. Augustinack JC, van der Kouwe AJW, Blackwell ML, Salat DH, Wiggins CJ, et
al. (2005) Detection of entorhinal layer II using 7 tesla magnetic resonance

imaging. Ann Neurol 57: 489–494.
42. Fiete IR, Burak Y, Brookings T (2008) What grid cells convey about rat location.

J Neurosci 28: 6856–6871.
43. Hevner RF, Wong-Riley MT (1992) Entorhinal cortex of the human, monkey,

and rat: metabolic map as revealed by cytochrome oxidase. J Comp Neurol 326:

451–469.
44. Goldenberg TM, Bakay RA, Ribak CE (1995) Electron microscopy of cell

islands in layer ii of the primate entorhinal cortex. J Comp Neurol 355: 51–66.
45. Solodkin A, Van Hoesen GW (1996) Entorhinal cortex modules of the human

brain. J Comp Neurol 365: 610–617.

46. Witter MP, Moser EI (2006) Spatial representation and the architecture of the
entorhinal cortex. Trends Neurosci 29: 671–678.

47. Dickson CT, Biella G, de Curtis M (2000) Evidence for spatial modules
mediated by temporal synchronization of carbachol-induced gamma rhythm in

medial entorhinal cortex. J Neurosci 20: 7846–7854.
48. Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye

position in a recurrent network of conductance-based model neurons. Neuron

26: 259–271.
49. Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET (2003) Self-organizing

continuous attractor networks and motor function. Neural Netw 16: 161–182.
50. Hafting T, Fyhn M, Molden S, Moser MB, Moser E. http://www.ntnu.no/

cbm/moser/gridcell (Published 2006; Accessed May 2008).

Accurate Path Integration in the Grid-Cell System

PLoS Computational Biology | www.ploscompbiol.org 16 February 2009 | Volume 5 | Issue 2 | e1000291


