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Abstract

Experiments in recent years have vividly demonstrated that gene expression can be highly stochastic. How protein
concentration fluctuations affect the growth rate of a population of cells is, however, a wide-open question. We present a
mathematical model that makes it possible to quantify the effect of protein concentration fluctuations on the growth rate
of a population of genetically identical cells. The model predicts that the population’s growth rate depends on how the
growth rate of a single cell varies with protein concentration, the variance of the protein concentration fluctuations, and the
correlation time of these fluctuations. The model also predicts that when the average concentration of a protein is close to
the value that maximizes the growth rate, fluctuations in its concentration always reduce the growth rate. However, when
the average protein concentration deviates sufficiently from the optimal level, fluctuations can enhance the growth rate of
the population, even when the growth rate of a cell depends linearly on the protein concentration. The model also shows
that the ensemble or population average of a quantity, such as the average protein expression level or its variance, is in
general not equal to its time average as obtained from tracing a single cell and its descendants. We apply our model to
perform a cost-benefit analysis of gene regulatory control. Our analysis predicts that the optimal expression level of a gene
regulatory protein is determined by the trade-off between the cost of synthesizing the regulatory protein and the benefit of
minimizing the fluctuations in the expression of its target gene. We discuss possible experiments that could test our
predictions.
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Introduction

Cells continually have to respond and adapt to a changing

environment. One important strategy to cope with a fluctuating

environment is to sense the changes in the environment and

respond appropriately, for example by switching phenotype or

behavior. Arguably the most studied and best characterized

example is the lac system, where the LacI repressor measures the

concentration of lactose and regulates the expression level of the

metabolic enzyme that is needed to consume lactose. In this

strategy of responsive switching, it is critical that cells can

accurately sense and respond to the changes in the environment

[1]. However, both the detection and the response are controlled

by biochemical networks, which can be highly stochastic [2–11].

One might expect that noise is detrimental, since it can drive cells

away from the optimal response curve—the optimal enzyme

concentration as a function of the lactose concentration [12]. On

the other hand, both reducing noise and creating a regulatory

network that allows cells to respond optimally can be energetically

costly [12], which would tend to reduce the fitness of the organism

[13]. In this paper, we present a model that makes it possible to

quantify the effects of biochemical noise on the growth rate of a

population of cells that respond via the mechanism of responsive

switching. We then use this model to perform a cost-benefit

analysis of gene regulatory control, using cost and benefit functions

that have been measured experimentally [12]. This analysis, which

complements recent work by Kalisky and coworkers [14], predicts

that gene regulatory proteins exhibit an optimum expression level,

which is determined by the trade-off between the cost of

synthesizing the regulatory protein and the benefit of reducing

the fluctuations in its target gene.

It has long been recognized that organisms in a clonal population

can exhibit a large variation of phenotypes. Within highly inbred

lines, for instance, phenotypic variation can still be detected [15].

More recently, experiments have vividly demonstrated that gene

expression in uni- and multicellular organisms fluctuates strongly

[2–11]. The fact that fluctuations are not selected out, suggests that

the optimal fitness requires a certain amount of biochemical noise.

However, how the growth rate of a population depends upon

biochemical noise is still poorly understood. In a constant

environment, stabilizing selection favors a genotype that leads to a

narrow phenotype distribution centered around the optimal

phenotype in that environment [13,16]. However, cells do not live

in a constant environment, but rather in one that fluctuates. While

one strategy to cope with environmental fluctuations is to detect and

respond to them (responsive switching), an alternative one is to

create diversity in the population. This can be achieved via the

mechanism of stochastic switching [17–20], whereby members of

the population randomly flip between different phenotypes due to

biochemical noise. This strategy is particularly efficient when the
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time scales of the environmental fluctuations are either very long,

such that the investments of constructing an energetically expensive

response machinery do not pay off [20], or very short, i.e. shorter

than the time it takes for the population to respond to them [18,19].

Many examples of this strategy exist in nature [21,22], and this

strategy has recently been studied in much theoretical detail [17–

20]. However, the dominant strategy for coping with changes in pH,

temperature, the food supply or the presence of various toxic

chemicals appears to be responsive switching. In this paper, we

present a generic model that makes it possible to quantify the effect

of biochemical noise on the growth rate of a clonal population of

cells that use this mechanism to respond quickly to changes in the

environment.

Our model integrates a description of how the internal

dynamics of the composition of a cell affects the growth rate of

that cell with a description of how the growth rates of the

individual cells collectively determine the growth rate of the

population. This allows us to address a number of fundamental

questions: (a) How does the growth rate of the population depend

upon the growth rate of a single cell as a function of its protein

expression levels? (b) How does the population’s growth rate

depend upon the variance and the correlation time of these

fluctuations? Our model predicts that an important parameter that

controls the effect of biochemical noise is the correlation time of

the fluctuations: only when the correlation time is long compared

to the cell cycle time, does biochemical noise affect the growth rate

of the population. Interestingly, recent experiments on E. coli [8]

and human cells [11] have revealed that the correlation times of

protein concentration fluctuations can be on the order of the cell

cycle time, or even longer. Our analysis thus predicts that

biochemical noise can significantly effect the growth rate of a

population of cells. Moreover, our model predicts that fluctuations

can both enhance and reduce the population’s growth rate. When

the average expression level of a protein is close to its optimum,

fluctuations in its concentration will reduce the population’s

growth rate. However, when it is sufficiently far from its optimal

level, fluctuations can actually enhance the growth rate of the

population. This effect arises at the population level and is a

consequence of the fact that cells that happen to growth faster due

to noise, become overrepresented in the population.

Our analysis highlights the difference between ensemble

averages and time averages [23]. The ensemble or population

average of a quantity such as protein noise is defined as the

average of that quantity over the cells in the population at a given

moment in time; when a large population exhibits stationary

growth, this average does not change with time. The time average

of a quantity is defined as the average of that quantity in a single

cell and its descendants over time. The time average is a property

of the intracellular biochemical network: its value only depends

upon the dynamics of the protein concentrations. In contrast, in

experiments often the ensemble average is measured [3–6]. Our

analysis elucidates that the ensemble average of a quantitylike the

average expression level depends not only upon the dynamical

properties of the network, but also on whether fluctuations of this

quantity are coupledto the growth rate; if this is the case, then the

ensemble average may differ significantly from the time average.

The model also allows us to perform a cost-benefit analysis of

regulatory control. Recently, Dekel and Alon performed a series of

experiments that strongly suggest that protein expression is the

result of a cost-benefit optimization problem [12]. They showed

that the expression level of the lac operon is determined by the

trade off between the cost of synthesizing the metabolic enzyme

LacZ and the benefit this enzyme confers in enabling the

consumption of the sugar lactose. In particular, they developed a

cost-benefit analysis that allowed them to successfully predict the

optimal average expression level of the operon as a function of the

lactose concentration. However, this analysis does not answer the

question how the growth rate depends upon the fluctuations in the

expression level of the metabolic enzyme, nor does it answer the

question what determines the optimal average expression level of

the gene regulatory protein that regulates the expression level of

the metabolic enzyme.

While the cost function of synthesizing a gene regulatory protein is

probably similar to that of producing a metabolic enzyme, their

benefit functions are fundamentally different. The benefit of

producing a metabolic enzyme is that it allows the uptake of the

sugar by the metabolic network. In contrast, the benefit of

synthesizing a regulatory protein is indirect and is derived from that

of the metabolic enzyme; synthesizing a regulatory protein can be

beneficial because it allows the cell to adjust the expression level of the

metabolic enzyme to its optimum in response to a changing sugar

concentration. However, a given optimal expression level of the

metabolic enzyme as a function of the sugar concentration, does not

uniquely determine the optimal expression level of the regulatory

protein. A given optimal response function of the enzyme expression

level as a function of the sugar concentration, can be obtained by

different combinations of parameters such as the binding affinity of

the inducer to the regulatory protein, the binding strength of the

regulatory protein to the DNA, the degree to which these molecules

bind cooperatively with each other, as well as the total concentration

of the regulatory protein. What determines the optimal combination

of these parameters that all can yield the same response curve of the

enzyme expression level as a function of sugar concentration?

We conjecture that the benefit function of the regulatory protein

is determined by the fluctuations in the expression level of its

target, the metabolic enzyme, although other factors such as the

response time could play a role as well. As we will show, when the

average expression level of the metabolic enzyme is close to its

optimum, fluctuations will tend to reduce the population’s growth

rate. Different gene regulatory networks can yield the same

Author Summary

Biochemical networks, consisting of biomolecules such as
proteins and DNA that chemically and physically interact
with one another, are the processing devices of life.
Metabolic networks allow living cells to process food,
while signal transduction pathways and gene regulatory
networks allow living cells to process information.
Experiments in recent years have demonstrated that these
networks are often very ‘‘noisy’’: the protein concentra-
tions often fluctuate strongly. However, how this ‘‘bio-
chemical noise’’ affects the growth rate or fitness of an
organism is poorly understood. We present here a
mathematical model that makes it possible to predict
quantitatively how protein concentration fluctuations
affect the growth rate of a cell population. The model
predicts that fluctuations reduce the growth rate when
evolution has tuned the average protein concentration to
the level that maximizes the growth rate; however, when
the average concentration deviates sufficiently from the
optimal one, fluctuations can actually enhance the growth
rate. Our analysis also predicts that the optimal design of a
regulatory network is determined by the trade-off
between the cost of synthesizing the proteins that
constitute the regulatory network and the benefit of
reducing the fluctuations in the network that it controls.
Our predictions can be tested in wild-type and synthetic
networks.

Costs and Benefits of Biochemical Noise
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average response function, but can have markedly different noise

properties. In particular, our analysis predicts that the inducer,

e.g., sugar, should bind the gene regulatory protein strongly in

order to reduce the fluctuations in the enzyme concentration.

Moreover, it predicts that higher expression levels of the

regulatory protein lower the noise in the expression level of the

metabolic enzyme. We therefore predict that the optimal

expression level of a regulatory protein is determined by the

interplay between the cost of making the regulatory protein and

the benefit of reducing the fluctuations in the target gene.

Recently, a similar idea has independently been proposed by

Kalisky, Dekel, and Alon [14]. Using as inputs the cost and benefit

functions as measured by Dekel and Alon [12], our model predicts

that the optimal expression level of the lac repressor should be on

the order of 10–50 copies, which is remarkably close to the level

found in vivo [24].

Results

Growth Rate
In order to describe the effects of biochemical noise on the

growth rate of a population of cells, we have to develop a model

that describes how (a) the internal dynamics of a cell affects the

growth rate of that cell and (b) how the latter affects the growth

rate of the population of cells. We now first discuss the latter.

The growth rates of single cells and the growth rate of the

population. In order to quantify the growth rate of a cell, we

have to define a parameter that monitors the progress along the

cell cycle. This parameter, Z, could be the amount of replicated

DNA, the length of the cell, or a combination of these parameters.

It has a value Z = Zi at the beginning of the cell cycle and a value

Z = Zf at the end of the cell cycle. The value of the ‘cell cycle

coordinate’ Z thus exhibits an oscillatory sawtooth pattern as a

function of time. Its role is analogous to that of a reaction

coordinate in chemical kinetics, which measures the progress of a

chemical reaction and serves to define the chemical rate constant.

In our case, Z serves to quantify the instantaneous growth rate, l,

of each cell in the population:

l~
dZ

dt
: ð1Þ

The growth rate l depends upon the composition of the cell.

This is determined by the expression level of ribosomal proteins,

which are needed to make new proteins, and the expression levels

of metabolic enzymes and other non-ribosomal proteins, which are

required to produce the building blocks for protein synthesis and

cell growth [25]. We denote the concentrations of these different

proteins by{X1,X2,…,Xn21,Xn};X. The growth rate l is thus a

function of X: l;l(X). Together with the cell cycle coordinate Z,

X specifies the state of each cell in the population.

To determine the growth rate of a population of cells, a key

quantity is the probability density P(Z,X,t) to find a cell with a

certain state Z, X, inside the population. The evolution of this

probability density can be expressed in operatorial form as

LP Z,X,tð Þ
Lt

~ {
L

LZ
l Xð Þz bHHX{g tð Þ

� �
P Z,X,tð Þ: ð2Þ

The first term on the right-hand side describes the evolution of

P(Z,X,t) due to the deterministic evolution of Z (see Equation 1); it

corresponds to a Fokker–Planck operator [26] in the limit of zero

noise. The operator ĤX is the Fokker-Planck operator encoding

the evolution of P(Z,X,t) resulting from the noisy dynamics of the

composition X. The last term describes the effect of cell division on

the probability density P(Z,X,t). Indeed, the cell division at Zf

amounts to a ‘‘dilution’’ of the probability of finding cells with

intermediate Z values. The steady-state probability distribution

function, Ps(Z,X,t), satisfies the equation

0~ {
L

LZ
l Xð ÞzĤHX{g

� �
Ps Z,X,tð Þ, ð3Þ

with the boundary condition

2Ps Zf ,X,tfð Þ~Ps Zi,X,tið Þ ð4Þ

This condition formalizes the observation that upon cell division

a cell at the end of the cell cycle gives birth to two newborns.

Importantly, g is the growth rate of the population of cells in steady

state. In this ‘‘stationary state,’’ the number of cells in the

population grows exponentially, but the fraction of cells P(Z,X)

with internal states Z, X has converged to a time-invariant

quantity. At each moment in time, there is a constant fraction of

cells ready to undergo cell division; the number of cells undergoing

cell division thus grows exponentially with time, but remains

proportional to the population size, with the proportionality factor

given by the growth rate g.

Protein concentration fluctuations. The above model is a

generic model of the cell cycle. To make further progress, we have

to specify the dynamics of X. The copy number of a protein will

increase as the cell grows, and will (on average) be divided in half

when the cell divides. The copy number will thus exhibit an

oscillatory temporal profile. The volume of the cell will show

similar oscillatory dynamics. These oscillations will tend to cancel

each other in their ratio, the concentration of the protein. We make

the simplifying assumption that the concentration of each species

fluctuates around a constant steady-state level during the cell cycle,

and that the amplitude of these fluctuations is small. It allows us to

linearize the interactions between the different species at steady

state, and to use the linear-noise approximation [27]; a

comparison with a description based on the chemical master

equation has shown that this approximation is surprisingly

accurate, even when the copy numbers are as low as ten

[28,29]. It yields the following set of chemical Langevin equations:

_xxi~{
Xn

j~0

fijxjzgi, Vi: ð5Þ

Here, xi = Xi2Xs,i is the deviation of the concentration Xi of

species i away from its steady-state value Xs,i, and fij corresponds to

the coupling between species i and j. The term ji describes the noise

in xi that arises from the stochastic character of the chemical

reactions. We model it as Gaussian white noise, with zero mean and

variance determined by the concentrations of the species at steady

state. In Equation 2, the relevant probability density now becomes

P(Z,x,t) and the operator that describes the evolution of P(Z,x,t) due

to the Langevin dynamics of x, becomes Ĥx (see Methods).

The growth rate of a single cell as a function of protein

concentration. If the composition of the cells would not

fluctuate in time, then the evolution of the cell cycle parameter

Z would be deterministic. The growth rate l(X) of each cell would

then be constant in time, l(X) = l0, and proportional to the growth

Costs and Benefits of Biochemical Noise
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rate of the population, l0,g. In the presence of biochemical noise,

the growth rate not only depends upon the average protein levels,

X, but also upon the fluctuations around the average, x, which

lead to variations in the growth rate. It is conceivable that the

growth machinery responds slowly to fluctuations in the

composition in the cell; the growth rate would then ‘‘average’’

over fluctuations in the composition over some characteristic time

scale t: l = l(Xs,x̄
t), where the bar with the superscript t indicates

that the fluctuations in x are averaged over a time t. However,

experiments have revealed that protein concentrations fluctuate

fairly slowly: for E. coli, the correlation time is on the order of

45 min, which is on the order of the cell cycle time [8]. We argue

that since the protein concentrations relax slowly, it is reasonable

to assume that the instantaneous growth rate depends upon the

instantaneous composition of the cell. We therefore conjecture

that the growth rate is given by l = l(Xs,x).

To obtain the growth rate l(Xs,x), we expand it around the

steady state Xs to second order in x

l Xs,xð Þ~l0 Xsð Þz
X

i

aixiz
X

ij

bijxixj : ð6Þ

The equation for the stead-state probability density Ps(Z,x,t),

Equation 3, can now be solved by making a multidimensional

Gaussian Ansatz for Ps(Z,x,t)

Ps Z,xð Þ*2
Z{Zi
Zi{Zf e

{1
2

P
ij

aij xi{x0
ið Þ xj{x0

jð Þ
: ð7Þ

From now on we shall rescale the time and the Z coordinate

such that Zf2Zi = log(2). In order to understand why such a

transformation is useful, it should be noted that in the absence of

protein concentration fluctuations, each cell in the population

needs a constant time between birth and division Tcycle = (Zf2Zi)/

l0. At the population level, Tcycle is also the time it takes for the

population to double in size, such that the growth rate of the

population is g = log(2)/Tcycle. Clearly, in the zero fluctuation limit,

the growth rate of the population of cells equals the growth rate of

each single in the population: g = l0. In the presence of protein

concentration fluctuations, however, the cell cycle times of the

individual cells will fluctuate, such that even a population of cells

that are initially perfectly synchronized will eventually converge

towards a steady-state distribution as given by Equation 7.

Time Averages Do Not Always Equal Ensemble Averages
Our model shows that the ‘‘time average’’ of a quantity such as

the average protein expression level or the noise in gene

expression, is, in general, not equal to its ‘‘ensemble average’’

[23]. The time average of a quantity X, X̄, is defined as the

temporal average of X along one ‘‘line of descent’’:

X~
1

T

ðT

0

X tð Þ: ð8Þ

Here, X(t) can be obtained by monitoring X as a function of time

in a given cell, whereby upon cell division one follows a randomly

chosen descendant. The integration time T should be much longer

than the correlation time of the fluctuations in X. To obtain better

statistics, one could average over different trajectories X(t) in a

population, but each such path has to have a different ancestor

(the first cell on the path). The ensemble average of the quantity X,

ÆXæ, is defined as the average of X across the population of cells:

SXT~
1

N tð Þ
XN tð Þ

a~0

Xa tð Þ, ð9Þ

where N(t) is the number of cells in the population at time t and

Xa(t) is the magnitude of X in cell a at time t; when the growing

population is in the stationary state and P(Z,X,t) is time invariant,

this ensemble average does not change with time. To illustrate the

difference between the two kinds of averages, let’s consider the

fluctuations in the composition X. To the extent that protein

concentration fluctuations are described by the chemical Langevin

equation (Equation 5), the distribution of the concentrations X as

obtained by following the time traces of Xi in a given cell and its

descendants, is given by a Gaussian that is centered at X̄ = Xs. In

contrast, the distribution of X over different cells in a population at

a given moment in time is also a Gaussian, but now the Gaussian is

centered at ÆXæ = Xs+x0, where x0 may deviate from zero.

Moreover, not only the mean, but also the variance of the two

distributions will, in general, differ, as we will show now.

Biochemical Noise Can Both Reduce and Enhance the
Population’s Growth Rate

In order to understand the non-trivial effects of biochemical

noise on the growth rate of a population of cells, it is instructive to

consider a simple example. Let’s consider a single metabolic

enzyme X, and assume that the temporal dynamics of its

concentration is given by

_xx~{cxzg, ð10Þ

where x is the deviation of the enzyme concentration X away from

its steady-state value, Xs, c21 is the response time, which is

typically on the order of the cell cycle time, and g is a Gaussian

white noise term, of zero mean and strength 2D. The time average

of the variance of the fluctuations in the concentration of X as

obtained from the time trace of X of a given cell and its

descendants, is X 2{XX 2~s2
X~D=c.

We assume that over the concentration range of interest, the

growth rate of a given cell as a function of the expression level of X

can be written as

l~l0 Xsð Þzaxzbx2, ð11Þ

where l0(Xs) is the growth rate of the cell when the enzyme

concentration equals Xs. The growth rate of the population of cells

is then given by (see Methods)

g~l0 Xsð Þz
a2D

c2{4bD
zbs2: ð12Þ

Here, s2 is the variance of the fluctuations in X within the

population of cells at a given time: s2 = ÆX2æ2ÆXæ2. This ensemble

or population average is given by

s2~
2D

cz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2{4bD

p : ð13Þ

The ensemble average s2 can be written in terms of the time

average of the variance s2
X : s2~

2s2
X

1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4bs2

X=c
p . Clearly, if the

growth rate is non-linear in X, i.e., if b?0, the ensemble average of

Costs and Benefits of Biochemical Noise
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the variance in X does not equal its time average. Importantly, the

time average of the protein noise, s2
X, is a characteristic of the

stochastic properties of the underlying biochemical network.

However, the protein noise is often measured as an ensemble or

population average [3–6]. Our results show that if one is interested

in the noise properties of the underlying network, one should

compute the protein noise by combining sequential noise traces of

cells through lines of descent [30] when the expression of the

fluorescent protein used to measure the noise affects the growth

rate significantly (such that b is much smaller than zero).

Let us now consider the scenario in which the average

expression level of the enzyme is such that the growth rate is

maximal: Xs = Xopt (see Figure 1). In this case, a is zero, and

b = h2l/hX2,0. The growth rate of the population is then

g = l0(Xs)+bs2. Since b is negative, g,l0. Hence, when the

composition is close to its optimum, biochemical noise always

tends to reduce the overall growth of the population.

If the average expression level Xs deviates significantly from the

optimal expression level Xopt, the situation is qualitatively different

(see Figure 1). Sufficiently far away from the optimum, the

curvature can be ignored (b = 0), and the growth rate is given by

g~l0za2D
�

c2~l0za2s2
X

�
c. In this regime noise always

increases the growth rate, irrespective of the sign of a, and even

though at the single cell level the growth rate l is linear in X. The

reason is that cells that happen to have a composition that is closer

to the optimum, will grow faster and therefore divide earlier;

moreover, the daughter cells will inherit the composition from

their mother, and will thus also grow faster than the steady-state

value, and so on. As a consequence, cells with a higher growth rate

become overrepresented in the population, which can be verified

by noting that the mean of x in the population of cells is now

shifted from zero to x0~Da
�

c2~as2
X

�
c. This mechanism,

whereby the cells that grow faster due to a fluctuation in their

protein composition generate more off-spring, increases the overall

growth rate of the population. The increase in the growth rate due

to noise, a2s2
X

�
c, depends upon how strongly the growth rate

changes with X, which is given by the slope a, and on the

magnitude of the concentration fluctuations in each cell, given by

s2
X. Importantly, it also depends upon the relaxation time of the

fluctuations, given by c21. If the response time is much faster than

the cell cycle time, then on the relevant time scale of the cell cycle,

the concentrations in all the cells will be the same and no benefit

from the noise can be gained. However, both in prokaryotic [8]

and eukaryotic cells [11], correlation times of protein concentra-

tion fluctuations have been measured to be on the order of the cell

cycle time or longer, meaning that they are potentially important.

Please also note that a non-zero x0 means that the time average of

X, which is given by X̄ = Xs, is not equal to the ensemble average of

X, which is given by ÆXæ = Xs+x0.

Lastly, we note here that it is conceivable that the curvature b of

the growth rate l is locally positive. In this case, the solution to

Equation 12 is only valid when c2.4bD. At the point where this

condition is no longer satisfied, an interesting bifurcation can arise

towards a state where the growth dynamics alone imposes a

bimodal distribution of protein concentrations: in the population,

cells with a high expression level then co-exist with cells with a low

expression level.

Fluctuating Environment
The analysis above describes how fluctuations in the compo-

sition can affect the growth rate of a population of cells in a

constant environment. We now briefly discuss how fluctuations in

the environment affect the population’s growth rate. As before, we

consider the scenario in which cells respond to changes in the

environment via the mechanism of responsive switching: they thus

sense the changes in the environment and respond appropriately.

If the environmental signals are described by the vector S, then

the time varying environment can, in general, be decomposed as:

S~SczSu: ð14Þ

Here, Sc denote the correlated fluctuations between the

different cells, while Su corresponds to the fluctuations in the

environmental signals that are uncorrelated from one cell to the

next within the population.

The uncorrelated fluctuations in the external signals can be

treated in the same spirit as the fluctuations in the internal signals.

Their dynamics could be added to that of x:

_ssu
i ~{mis

u
i zji, i~1 . . . m, ð15Þ

_xxi~{
Xn

j~0

fijxjz
Xm

j~0

gijs
u
j zgi, i~1 . . . n, ð16Þ

where su
i ~Su

i {Su
s,i, with Su

i the part of the fluctuations of the

external signal i that is uncorrelated between different cells, and gij

indicates how the internal dynamics of species i is coupled to the

fluctuations in the external signal j. Since the fluctuations in Su

couple to the fluctuations in the composition X, they could either

reduce or enhance the growth rate of the population, depending

on whether the composition X is close to its optimum or not,

respectively.

The effect of the correlated fluctuations in the external signals,

Sc, are much more difficult to treat analytically [18]. However, if

these fluctuations occur on a time scale that is much longer than

the time it takes for the internal dynamics x to relax towards a new

X (arbitrary units)
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Figure 1. A Sketch of the Instantaneous Growth Rate l of a
Single Cell as a Function of the Concentration X of Component
X. If the average expression level Xs is close to the optimal expression
level Xopt, biochemical noise will always decrease the growth rate. If,
however, the average expression level deviates sufficiently from the
optimal expression level (i.e. if ax.bx2 in Equation 11), then fluctuations
can enhance the growth rate of the population, even when the growth
rate l of a single cell is linear in X, i.e. if b = 0. The reason is that fast
growing cells dominate the population.
doi:10.1371/journal.pcbi.1000125.g001
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steady state after an environmental change, the overall growth rate

can be written as

g~

ð
dSc P Scð Þg Scð Þ: ð17Þ

This expression shows that the cells need to adapt to a given

distribution of external signals.

We can make an estimate for the time it takes for the population

to relax towards a new steady after a change in the environment

has occurred. If prior to an environmental change, the cell cycle

coordinate Z has reached steady state, meaning that P(Z) is

uniform across the population of cells, then P(Z) does not have to

relax towards a new steady state after the change in the

environment. The distribution in the composition, P(X), however,

does have to relax. If the relaxation time of the population is

dominated by the slow dynamics of a single protein X, the

relaxation rate is given by k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2{4bDð Þ

p
. This shows that in the

absence of fluctuations (D = 0) the relaxation rate is given by the

rate of protein decay, c, as one would expect. It also shows that

when the growth rate of a cell is a concave function of X (b,0),

fluctuations can actually enhance the relaxation rate; the reason is

that cells that are closer to the new optimum will grow faster. This

analysis shows that a conservative estimate for the validity of

Equation 17 is that the environmental fluctuations should occur on

time scales longer than the protein decay time c.

The Cost of Reducing Noise: Optimal Expression Levels of
Gene Regulatory Proteins

In order to understand the design criteria that determine the

magnitude of the fluctuations in the expression level of a given

protein for cells that respond via responsive switching, we do not

only have to understand how these fluctuations affect the growth

rate, as discussed above, but also the indirect energetic cost of

controlling these fluctuations. Both the magnitude of the

concentration fluctuations and the cost of controlling these

fluctuations are determined by the design of the network that

regulates the expression level of the protein of interest. We will

now show, using the lac system as an example, that the optimal

design of the regulatory network is determined by the interplay

between these two factors.

We use a simple model of the lac system in the absence of

glucose but in the presence of lactose. The inducer lactose (ligand

L) binds the lac repressor (transcription factor TF); upon binding,

the transcription factor dissociates from the operator and the

enzyme, LacZ in this case, is expressed. We assume that both the

binding of ligand to the transcription factor and the binding of the

latter to the operator are fast such that they can be integrated out.

The dynamics of the regulatory protein and the metabolic enzyme

is then specified as:

_xx~{cxzjX,

_ee~{cezfxzjE:
ð18Þ

Here, x denotes the deviation away from the total steady-state

TF concentration, denoted by Xs, e denotes the deviation away

from the steady-state concentration of the enzyme, Es, c is the

degradation rate of both proteins, and jX and jE model the

(Gaussian white) noise in their expression. The factor f is the

differential gain that describes the change in the protein

production rate (expression rate) kE(X) due to a change in the

concentration of the transcription factor: f = hkE(X)/hX. In this

expression we integrate the contributions of TF-ligand binding,

TF-operator binding, and the dynamics of mRNA. The

fluctuations in e have an intrinsic source, modeled by je, and an

extrinsic one that arises from the fluctuations in x. Since the

expression level of the enzyme is much higher than that of the

gene regulatory protein, the dominant source of noise in e is the

extrinsic one, arising from fluctuations in the TF concentration. In

what follows, we therefore ignore the intrinsic contribution jE.

To make further progress, we need to know how the growth rate

of each cell, l, depends upon the expression level of the enzyme

and that of the transcription factor. Recently, Dekel and Alon [12]

performed a series of experiments that allowed them to measure

both the cost and the benefit of producing the metabolic enzyme

LacZ. By using an artificial inducer, they varied the expression

level of LacZ in the absence of its substrate lactose, and measured

the effect on the growth rate. The inducer induces the production

of LacZ, but no benefit is gained, since the lactose is absent and

the inducer is not metabolized. This set of experiments thus

allowed them to determine the cost of synthesizing the LacZ

protein. In a separate set of experiments they measured how the

growth rate changes with the lactose concentration, when the

expression level is kept constant (due to a saturating amount of the

inducer). This set of experiments gave them an (indirect) estimate

of the benefit function. By assuming that the optimal expression

level is given by the level that maximizes the benefit minus the

cost, the measured cost and benefit functions could be used to

predict the optimal LacZ expression level as a function of lactose

concentration.

Following Dekel and Alon [12], we write the change in the

growth rate of a single cell, Dl = l2l0, due to the production of

the gene regulatory protein and the metabolic enzyme relative to

the growth rate in the absence of these proteins, l0, as:

Dl

l0
~d Eszeð Þ{g

EszezXszxð Þ
1{ EszezXszx

M

: ð19Þ

The first term on the right-hand side encodes the gain in the

growth rate due to the metabolic activity of the enzyme;

importantly, d;d(L) is a function of the lactose concentration L

(see Equation 26 below). The second term, with g being a

constant, quantifies the cost of producing the enzyme and the

regulatory protein; the factor M is the maximal capacity for

producing non-essential proteins [12]. Note that we assume that

the costs of producing one enzyme molecule and one gene

regulatory protein molecule are the same.

As discussed in the introduction, a given average optimal

expression curve of E as a function of sugar concentration, Eopt(L),

can be obtained by different expression levels of X. A mean-field

analysis, which ignores the effect of fluctuations in E and X, would

predict that the optimum expression level of X is close to zero,

since that minimizes the cost of producing the regulatory protein.

We therefore assume that the steady-state enzyme expression level,

Es, is given by that level E0
opt that maximizes Dl with respect to E

at X = 0. The steady-state enzyme expression level is thus given by

Es~E0
opt~M 1{

ffiffiffi
g

d

r� �
: ð20Þ

This expression is, in fact, the principal result of the cost-benefit

analysis of the optimal enzyme expression level of Dekel and Alon

[12]. The expression, with d being a function of the lactose
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concentration (see Equation 26 below), gives a remarkably good

prediction for the enzyme expression level as a function of the

lactose concentration [12]. The prediction is shown in Figure 3

(panel C). We now address the question what is the optimal

regulatory network—the optimal TF concentration Xs, the optimal

TF-L and TF-operator binding strengths—under the assumption

that the steady-state enzyme expression level as a function of

lactose concentration is fixed and given by Equation 20:

Es Lð Þ~E0
opt Lð Þ.

To obtain the growth rate at E = Es+e and X = Xs+x (with finite

Xs), we expand the growth rate around E0
opt and X = 0, which

yields the following expression for the relative growth rate (see

Methods):

g{l0

l0
~M

ffiffiffi
d
p

{
ffiffiffi
g
p� �2

{dXs{
d

2M

ffiffiffi
d

g

s
f 2

c2
s2

X: ð21Þ

On the left-hand side of the above equation, g is the growth rate

of the population of cells. The first two terms on the right-hand side

give the deterministic, mean-field prediction that ignores the effect

of fluctuations in x and e: in the absence of fluctuations, the growth

rate of the population of cells, g, equals the growth rate of each single

cell, lD, which is given by lD~l0zl0

ffiffiffi
d
p

{
ffiffiffi
g
p� �2

M{dXs

�� �
(see Methods). The last term of Equation 21 describes the effect of

fluctuations on the growth rate. The second term on the right

hand side shows that at the mean-field level, there is indeed a

pressure to minimize the production of the regulatory protein X;

this is associated with minimizing the cost of producing the

regulatory protein. The third term on the right hand side shows,

however, that there is also a pressure to minimize the fluctuations

in X, given by s2
X. Its origin is that fluctuations in the gene

regulatory protein X lead to fluctuations in E, and since the mean

expression level of E is assumed to be at its optimum, these

fluctuations tend to lower the growth rate. Importantly, the

magnitude of the fluctuations in X and hence E decreases as the

average expression level of X increases. Clearly, while the cost of

producing X tends to lower the optimal expression level of X, the

benefit of reducing the fluctuations in E tends to increase the

optimal expression level of X. The optimal expression level of X is

determined by the balance between these two opposing factors. A

similar conclusion was recently independently reached by Kalisky

et al. [14].

To demonstrate this explicitly, we will study in more detail the

last two terms in Equation 21, which describe the contribution of

the transcription factor to the growth rate:

{d
1

2M

ffiffiffi
d

g

s
f 2

c2
s2

XzXs

 !
: ð22Þ

In our model, the steady-state enzyme concentration is given by

Es = Eopt = kE(Xs,L)/c, which means that the gain is given by

f

c
~

LEs

LXs
^

Es

Xs
: ð23Þ

To make further progress, we have to assume a model for the

fluctuations in X. If we assume that these fluctuations are

Poissonian, then s2
X^NX

�
V2 [3], where V is the volume and

NX is the copy number of X. Recent results show that while the

fluctuations can be stronger than Poissonian due to, for example,

bursts in gene expression, the linear scaling of s2
X remains correct

for many proteins in prokaryotes [31]. Finally, if we assume that

Es/M, the expression in Equation 22 is proportional to

{
NE

NX
zNX

� �
: ð24Þ

This expression shows a maximum as a function of NX. The

position of this optimum—the copy number of X that maximizes

the growth rate—is related to the copy number of E by

NX!
ffiffiffiffiffiffiffi
NE

p
: ð25Þ

We therefore predict that the optimal TF copy number is linear

in the square root of the copy number of the enzyme it regulates.

This prediction could perhaps be tested by performing a statistical

analysis of the expression levels of transcription factors and the

expression levels of the target genes these transcription factors

regulate. Such a statistical analysis could be performed in the spirit

of that of [31], in which the authors studied the variation in the

expression levels of 43 Saccharomyces cerevisiae proteins, in cells

grown under 11 experimental conditions. Our analysis would

predict that if one would measure the expression levels of

transcription factors and their target genes in such an experiment,

the two would be correlated according to Equation 25.

Dekel and Alon [12] measured the quantities d and g used

above (Equation 19) for the lac system:

g~0:02E{1
WT, d~0:17E{1

WT

L

0:4mMzL
, ð26Þ

(where L is measured in mM units). Here EWT is the fully induced

wild-type concentration of the enzyme, and we use M = 1.8EWT.

As explained in the section Fluctuating Environment the growth rate

in a slowly fluctuating environment can be obtained as an average

over the different levels of the lactose in the environment. As we do

not know the wild type distribution of sugar the bacterium

experiences, we use either a uniform distribution over all possible

lactose levels in the interval 0–6 mM or a non-uniform bimodal

one that peaks at small and high lactose concentrations.

Figure 2 shows the optimal repressor expression level, for the

two different lactose distributions in the environment. It is seen

that the growth rate as a function of the copy number of the

regulatory protein exhibits a broad optimum at around 10–50

molecules. Interestingly, this is in the biological range [24]. Even

though our model of gene expression is rather simplified (we use,

e.g., a constant amplification factor f), it appears that the

prediction of our model is remarkably accurate. Interestingly,

Kalisky et al. arrived at a similar prediction, even though their

model differs in a number of ways from ours, as discussed in more

detail in the Discussion section [14].

Equation 21 shows that the effect of the noise in X, s2
X, on the

fluctuations in E, and hence on the growth rate, is determined not

only by the decay rate c, which controls the extent to which

fluctuations in X and E lead to significant differences between cells

in their composition on the time scale of the cell cycle, but also by

the gain f, which determines the extent to which the fluctuations in

X are amplified. As we will show now, the optimal TF-ligand

binding curve and TF-operator binding curve is determined by the

requirement that the gain f should be minimized as much as
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possible. Let’s imagine that the binding of the ligand L to the

repressor X is given by

Xfree~
XKD

KDzL
: ð27Þ

Here, X is the total TF concentration, Xfree is the concentration

of X that is not bound to the inducer, and KD is the dissociation

constant for ligand-TF binding. The unbound transcription factor

represses the expression of E via the repression function

R;R(Xfree(X,L)), given by

Eopt Lð Þ~ kE Xð Þ
c

~
R Xfree X ,Lð Þ½ �

c
: ð28Þ

We show these relations in Figure 3. It is important to note that

the repression function R(Xfree(X,L)) is not necessary a simple Hill

function; in the lac system this curve is known to be implemented

with a complicated cooperative interaction and binding to multiple

operator sites on DNA. Using Equation 23, LEs=LXs~
LEs

LL

LL

LXfree

LXfree

LXs
and Equation 27, we arrive at

f

c
~{

LEopt

LL

KDzLð Þ
X

: ð29Þ

To minimize the gain f, and hence the effect of noise in X on the

growth rate, KD should be as small as possible, which corresponds

to strong TF-L binding. Since the function Eopt(L) is assumed to be

fixed, strong TF-L binding also implies strong TF-operator

binding. Hence, as long as TF-ligand binding and TF-operator

binding can be integrated out, the best strategy would be strong

TF-L and TF-operator binding. This is illustrated in Figure 4,

which shows for the lac system the contour plot of the optimal

growth rate in the plane (X,KD). The conclusion that TF-L and

TF-operator binding should be strong is supported by the

experimental observation that the dissociation constant for the

binding of lac repressor to its primary operator site is in the nM

range, while the binding of the inducer allolactose to the repressor

is on the order of 0.1 mM [32].

Discussion

The response machinery allows a living cell to adjust its

composition to a changing environment. If the response

machinery is fast and operates well, then in each environment

the cell’s composition is optimized such that the growth rate is

maximized. Our analysis suggests that under these conditions,

there is an evolutionary pressure to minimize the fluctuations in

the composition. However, the response machinery cannot always

optimally adjust the cell’s composition. When there is a drastic

change in the environment, for instance, the cell probably has to

change its genotype so as to change its response machinery. Our

analysis suggests that along such an ‘‘evolutionary trajectory’’ from

a sub-optimal configuration of the response machinery to a new

optimal one, fluctuations in the composition could be beneficial,

because cells that happen to have a composition that is closer to

the new optimum will grow more rapidly and thereby increase the

overall growth rate of the population. Based on this observation we

predict that the periods of fast evolution (for example when a

population colonizes an entirely new environment) are correlated

with a positive influence of fluctuations and thus an increased

variability in the population. This idea is supported by the

observation that the regulatory networks that control the response

to environmental changes are in general noisier than the

conserved cell machinery [31,33].

It has been recognized before in a different context that

phenotypic variance can be detrimental under stabilizing selection

for the optimal genotype and advantageous far from this optimal

genotype [13,16]. Moreover, it has been suggested that phenotypic

variance could be maintained if there is an ‘‘engineering’’ cost of

minimizing fluctuations [13]. Our model, however, makes it

possible to make a quantitative prediction on the effect of protein

concentration fluctuations on the growth rate of a clonal

population of cells. In particular, the model predicts that the

effect of fluctuations in the concentration of a given protein X

depends upon the following quantities (see Equation 12): (a) the

Figure 2. Relative Change in the Growth Rate as a Function of the Average Repressor Concentration. The growth rate is averaged over
different lactose concentrations in the environment (see Equation 17), for two different lactose concentration distributions in the environment.
doi:10.1371/journal.pcbi.1000125.g002
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growth rate of a single cell as a function of the expression level,

l(X) [12]; (b) the strength of the fluctuations in X, s2
X; (c) the

correlation time of the fluctuations in X, given by c. All these

quantities can be measured experimentally, which would allow for

a quantitative test of our model. In this respect, it would be of

particular interest to investigate one of the key ingredients of our

model, which is how the growth rate of a single cell, l, depends on

the composition X. We have assumed that the growth rate

depends upon the instantaneous composition, but it is conceivable

that the growth rate responds to changes in the composition with a

time lag; alternatively, it could depend upon the composition as

averaged over some time scale t: l = l(X̄t).

Recently, Kalisky, Dekel and Alon [14] reported an analysis of

the optimal design of the gene regulatory network that controls the

expression of the lac operon, which complements ours. While we

assume that the correlated fluctuations in the environment are

slow, they also consider correlated fluctuations in the environment

that are relatively fast to the response time; on the other hand,

their analysis does not address the question of the optimal

dissociation constants for inducer-TF and TF-operator binding.

Our analyses also differ in the description of the extrinsic

contribution to the noise in the expression of the lac operon, and

in the estimate of the burst size of lac expression. More

importantly, Kalisky et al. used a simpler model to describe the

effect of biochemical noise on the growth rate of a population of

cells. Our model integrates a description of the effect of noise on

the growth rate of a single cell with a description of how the

growth rates of the single cells collectively determine the growth

rate of the population. In contrast, their model assumes that the

growth rate of the population is given by the average of the growth

rates of the individual cells. This approximation does not allow the

model of Kalisky et al. to predict that the noise can also enhance

the growth rate of the population. This is indeed an effect that

arises at the population level; it is a consequence of the fact that

cells that happen to grow faster will take over the population.

Moreover, our work illustrates the importance of the correlation

time of the protein concentration fluctuations. However, the

present work agrees with that of Kalisky, Dekel, and Alon [14] in

that we both find that the optimal concentration of a gene

regulatory protein is determined by the interplay between the cost

of synthesizing the regulatory protein and the benefit of reducing

the fluctuations in the expression of its target gene. Even

quantitatively, the predictions of our models for the optimal lac

repressor concentration are fairly similar, although the model

presented here would predict a slightly lower optimum concen-

tration and a slightly smaller change in growth rate for deviations

away from this optimum; this could be due to our conservative

estimate of the burst size.
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Figure 3. Different Regulatory Networks Can Yield the Same Optimal Enzyme Expression Level as a Function of Inducer
Concentration. This is illustrated for two regulatory networks of the lac system, which differ in the dissociation constants of lactose-repressor
binding and repressor-operator binding. Panels (A) and (B) show the response functions at two different stages of the lac regulatory network, while
panel (C) shows the resulting optimal enzyme expression level as a function of lactose concentration. (A) The fraction of repressor that is not bound
by lactose, Xfree/X, as a function of lactose concentration for two different lactose-repressor binding constants. (B) The corresponding response curves
of the enzyme expression level as a function of the fraction of free repressor. The total expression level of repressor is chosen to correspond to the
optimal growth rate (see Figure 2). (C) The resulting optimal enzyme expression level as a function of the lactose concentration, as predicted by
Equation 20 [12].
doi:10.1371/journal.pcbi.1000125.g003

Figure 4. The Optimal Design of the lac Regulatory Network Is
Determined by the lac Repressor Copy Number and the
Repressor–Lactose Binding Constant. Contour plot of the growth
rate as a function of the repressor copy number X and repressor-lactose
binding constant KD. The weighting of the lactose levels is nonuniform.
Lower binding constants allow for higher optimal growth rates at lower
optimal expression levels for the repressor.
doi:10.1371/journal.pcbi.1000125.g004
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Our model predicts that if the expression level of the gene

regulatory protein is varied by a factor 2 from its optimal value,

the change in the growth rate would be on the order of 1024. This

change is sufficient to provide a selection pressure that is large

enough in a typical bacterial population with an effective size

larger than 106 cells; indeed, as discussed in [34], relative growth

rate changes as low as 1026 are sufficient to balance the genetic

drift in such a population. A change in the growth rate of 1024 is

thus large enough to provide a selection mechanism in a typical

bacterial population for driving the transcription factor expression

level to within a factor 2 from the predicted optimal level.

Another fundamental question we can address with our model is

the relative efficiency, from the fluctuations point of view, of

different modes of regulation (see Methods). For example, the cost-

benefit function of Dekel and Alon implies that the cost grows with

a linear combination of the total enzyme and transcription factor

concentration, with positive coefficients [12]. As a consequence,

regulatory networks with anticorrelated fluctuations of the enzyme

and TF concentrations, which correspond to repressor based

regulatory networks, will provide an advantage over those with

correlated fluctuations, as for activator based regulatory networks.

This result is consistent with the observation that simple organisms

have more repressors than activators. Unlike alternative explana-

tions for this observation based on the requirement for genotypic

robustness with respect to mutational fluctuations [35,36], our

explanation does not require that the rate of environmental

fluctuations is comparable to the slow relevant mutation rates.

In this paper, we have focused on the expression of a single

protein. Yet, it is clear that the model presented in Growth rate

could be used to study more complicated networks as well. In these

networks, the propagation of noise [37–40] and hence the effect of

noise on the growth rate, can be intricate, especially when there

are (anti-) correlations between different sources of noise [28,41].

The model could also be used in conjunction with partial-

differential equation solvers to study non-linear networks, for

which biochemical noise is expected to become even more

important.

How could our predictions be tested experimentally? Ideally

one would like to perform an experiment in which the average

expression level of the metabolic enzyme is fixed, while the noise in

the expression level is varied. Several strategies could be

envisioned. First of all, one could vary the noise level by playing

with the transcription and translation efficiencies [3,38]. To make

more direct contact with the predictions presented here, however,

it would perhaps be more interesting to vary the expression level of

the regulatory protein, while simultaneously varying the TF-

operator binding strength such that the average expression level of

the metabolic enzyme remains constant. Alternatively, one could

vary the expression level of the regulatory protein, while

simultaneously changing the concentration of an artificial inducer

such that the enzyme concentration remains constant. For

example, it is possible to increase the binding affinity of the lac

repressor to the operator, and therefore the repression strength by

a factor as high as 10, by either mutating the repressor LacI [42]

or the operator sites [43]. Our analysis predicts that the growth

rate as a function of the expression level of the regulatory protein

exhibits a broad maximum as shown in Figure 2.

Methods

The Stationary Distribution Ps(Z,x)
In this section we derive the solution (Equation 7) for the

stationary probability distribution Ps(Z,x). The equation satisfied

by P(Z,x,t) for the case of linear Langevin dynamics is:

LP

Lt
~{

L lPð Þ
LZ

{g tð ÞP

z
X

i

X
j

Dij
L2P

LxiLxj

z
L fijxjP
	 


Lxi

 !" #
:

ð30Þ

The three terms on the right hand side of Equation 30 describe,

in order, the drift along the cell-cycle coordinate Z, the

normalization of P due to the continuous birth of new cells in

the population, and the Fokker-Plank operator describing the

internal dynamics of the composition of the individual cells

[26,44]. The noise strength Dij is given by Ægigjæ = 2Dij, where Ægigjæ
are the cross-correlations in the Gaussian white noise of Xi and Xj

[28]. The stationary solution satisfies the equation:

0~{
L lPsð Þ

LZ
{gPsz

X
i

X
j

Dij

L2Ps

LxiLxj

z
L fijxjPs

	 

Lxi

 !" #
,ð31Þ

with the boundary condition 2Ps(Zf,x) = Ps(Zi,x).

The instantaneous growth rate is given by:

l xð Þ~l0z
X

i

aixiz
X

ij

bijxixj : ð32Þ

For the stationary distribution we make the Ansatz

Ps Z,xð Þ*2
Z{Zi

Zi{Zf e
{1

2

P
ij

aij xi{x0
ið Þ xj{x0

jð Þ

*e
Z{Zið Þ log 2ð Þ

Zi{Zf e
{1

2

P
ij

aij xi{x0
ið Þ xj{x0

jð Þ
:

ð33Þ

Using the scaling Zi2Zf = log(2) we obtain

Ps Z,xð Þ*e{ Z{Zið Þe
{1

2

P
ij

aij xi{x0
ið Þ xj{x0

jð Þ
: ð34Þ

If we insert this Ansatz into Equation 31, we obtain

g~l0z
X

i

aixiz
X

ij

bijxixj{
X

ij

Dijaijz
X

i

fii

z
X
ijkl

Dijaik xk{x0
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{
X
ijk
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:

ð35Þ

For this multidimensional polynomial equation to be satisfied

for all the values of x, all the coefficients must be zero. Therefore

the growth rate is given by:

g~l0{
X

ij

Dijaijz
X

i

fiiz
X
ijkl

Dij aikx0
k

	 

ajlx

0
l

	 

, ð36Þ

where the constants a and x0 must satisfy the set of
n nz3ð Þ

2

equations:

0~ai{2
P
jkl

Djkajlx
0
l akiz

P
jk

fjiajkx0
k,Vi,

0~ bijzbji

	 

z2

P
kl

Dklakialj{
P
k

fkiakj{
P
k

fkjaki, Vi,j:
ð37Þ

Costs and Benefits of Biochemical Noise

PLoS Computational Biology | www.ploscompbiol.org 10 August 2008 | Volume 4 | Issue 8 | e1000125



We can read from the Equations 37 that negative curvatures of

the instantaneous advancement rate (bi,0) concentrate the

Gaussian stationary distribution Ps(Z,x) (induce larger a’s), while

non-zero values for ai displace the averages x0
i of the Gaussian

stationary distribution Ps(Z,x) such that aix
0
i w0.

Growth Rate Controlled by a Single Enzyme
We derive here Equation 12. As discussed in the text, we model

the dynamics of enzyme X via the linearized Langevin dynamics,

_xx~{cxzg, ð38Þ

while we assume that the growth rate of a single cell as a function

of the expression level of X can be written as

l~l0 Xsð Þzaxzbx2: ð39Þ

We must solve the equation

0~{
L lPsð Þ

LZ
{gPsz D

L2Ps

Lx2
z

L cxPsð Þ
Lx

 !" #
, ð40Þ

where we choose D such that the strength of the biochemical noise

g is 2D [44]. To obtain the stationary distribution, we make the

Ansatz

Ps Z,xð Þ*e{ Z{Zið Þe{ 1

2s2 x{x0ð Þ2 : ð41Þ

If we insert this into Equation 40, we find that we have to solve

the equations

g~l0{D
�

s2zczD x0

s2

� �2

,

0~a{2Dx0
�

s4zcx0
�

s2,

0~bzD
�

s4{c
�

s2,

ð42Þ

from which we obtain the solution

g~l0 Xsð Þz
a2D

c2{4bD
zbs2, ð43Þ

s2~
2D

cz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2{4bD

p : ð44Þ

Cost-Benefit Analysis of Gene Regulation
We now present the derivation and the approximations leading

to Equation 21. A mean-field analysis of the cost-benefit function

of Dekel and Alon [12], Equation 19, predicts that the maximum

growth rate occurs at E0
opt~M 1{

ffiffi
g
d

p	 

and X = 0. We are

interested in the growth rate of a cell in which the average enzyme

concentration is Es~E0
opt, while the average transcription factor

concentration, Xs, is finite. Since the average transcription factor

concentration, Xs, is nevertheless small, it is reasonable to assume

that the growth rate of a cell with E = Es+e and X = Xs+x can be

obtained by Taylor expanding the growth rate given by

Equation 19 around the deterministic prediction, E~Es~E0
opt,

X = 0. This yields

l~lDzl0 a1eza2xzb xzeð Þ2
h i

, ð45Þ

where

a1~0, a2~{d, b~{ d
M

ffiffi
d
g

q
: ð46Þ

Here, l0 is the growth rate of each single cell when the gene

regulatory protein and the enzyme are not expressed [45]. The

rate lD is the ‘‘deterministic’’ growth rate, thus the growth rate

when the regulatory protein and the enzyme are expressed, but

fluctuations are not taken into account. It is given by:

lD~l0zl0

ffiffiffi
d
p

{
ffiffiffi
g
p� �2

M{dXs{
d

M

ffiffiffi
d

g

s
X 2

s

" #
: ð47Þ

Remark that at zero Xs we have:

lD{l0

l0
~

ffiffiffi
d
p

{
ffiffiffi
g
p� �2

M: ð48Þ

Equations 36 and 37 can now be solved using Equations 45–47

to obtain the growth rate that takes into account the noise. This

leads to the following expression for the growth rate:

g{l0

l0
~M

ffiffiffi
d
p

{
ffiffiffi
g
p� �2

{dXs{
d

M

ffiffiffi
d

g

s
X 2

s

{
d

2M

ffiffiffi
d

g

s
f 2

c2
z

2f

c
z2

� �
s2

Xz
l0

c
d2s2

X:

ð49Þ

In deriving Equation 49 we also use the fact that the

transcription factor concentration is much smaller than the typical

enzyme concentration, yielding Xs

M
%1. We also use the inequalities

d,gv
1

M
[45] and the Poissonian nature of the noise in the

transcription factor: s2
X~ NX

V2 . Equation 49 can be further

simplified by keeping in our approximation only the terms of

order one or larger in the small ratio Xs

M
. Please note that in the

absence of fluctuations, the above equation reduces to g = lD: the

growth rate of the population of cells, g, then equals the growth

rate of each single cell, lD.

The last term in Equation 49 is positive, and, interestingly,

promotes fluctuations in X. It comes from the finite derivative at

X = 0, as explained in Biochemical noise can both reduce and enhance the

population’s growth rate. However,

s2
Xd2

v

s2
X

M2
~

s2
X

X 2
s

X 2
s

M2
^

1

NX

X 2
s

M2
: ð50Þ

Therefore, the last term in Equation 49 is negligible at our level

of approximation.
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We also have

d

M

ffiffiffi
d

g

s
X 2

s v

ffiffiffi
d

g

s
X 2

s

M2
^

X 2
s

M2
, ð51Þ

while

d

M

ffiffiffi
d

g

s
s2

Xv

X 2
s

M2

1

NX
: ð52Þ

We can therefore simplify Equation 49 to the form

g{l0

l0
~M

ffiffiffi
d
p

{
ffiffiffi
g
p� �2

{dXs{
d

2M

ffiffiffi
d

g

s
f 2

c2
z

2f

c

� �
s2

X: ð53Þ

Around the steady state f
c :

LE
LXs

, and we thus also have
f 2

c2 & f
c ^

M
Xs
&1, such that we can simplify Equation 53 further.

Nevertheless, it is important to remark that positive regulation

( f.0) increases the detrimental effect of fluctuations in the

concentration of the gene regulatory protein. Hence, at this level

the cost of biochemical noise is smaller for repressors than for

activators. Finally, Equation 21 of the main text is obtained by

neglecting the term f
c in Equation 53.

If the response times of the enzyme and the transcription factor

are not equal, the same analysis gives

g{l0

l0

~M
ffiffiffi
d
p

{
ffiffiffi
g
p� �2

{dXs

{
d

M 1z cX

cE

� � ffiffiffi
d

g

s
f 2

c2
E

z
2f

cE

� �
s2

X,

ð54Þ

where cX is the degradation rate, i.e., the response time, of the

transcription factor and cE is the degradation rate (response time)

of the enzyme. This shows that the effect of the fluctuations in the

transcription factor concentration, X, critically depends upon the

response times of X and E: only when X fluctuates more slowly

than the time scale on which E can respond to these fluctuations

(cX,cE), are the fluctuations in X propagated effectively to

fluctuations in E. In contrast, if the fluctuations in X are fast

compared to the response time of E (cX.cE), then the slow enzyme

dynamics will effectively integrate out the fluctuations in X; indeed,

the last term on the right hand side of the above equation is then

small.
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