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Interactions between genes and proteins are crucial for efficient processing of internal or external signals, but this
connectivity also amplifies stochastic fluctuations by propagating noise between components. Linear (unbranched)
cascades were shown to exhibit an interplay between the sensitivity to changes in input signals and the ability to
buffer noise. We searched for biological circuits that can maintain signaling sensitivity while minimizing noise
propagation, focusing on cases where the noise is characterized by rapid fluctuations. Negative feedback can buffer
this type of noise, but this buffering comes at the expense of an even greater reduction in signaling sensitivity. By
systematically analyzing three-component circuits, we identify positive feedback as a central motif allowing for the
buffering of propagated noise while maintaining sensitivity to long-term changes in input signals. We show
analytically that noise reduction in the presence of positive feedback results from improved averaging of rapid
fluctuations over time, and discuss in detail a particular implementation in the control of nutrient homeostasis in yeast.
As the design of biological networks optimizes for multiple constraints, positive feedback can be used to improve
sensitivity without a compromise in the ability to buffer propagated noise.
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Introduction

Cells sense and process information using biochemical
networks of interacting genes and proteins. Typically, a signal
is sensed at a specific point of the network (input) and is
propagated to modulate the activity or abundance of other
network components (output). Reliable information process-
ing requires high sensitivity to changes in the input signal but
low sensitivity to random fluctuations in the transmitted
signal. Since the detection of signal is inherently stochastic
[1], and the microenvirnment of the cell is also fluctuating
randomly, understanding the principles of noise propagation
in biochemical and genetic networks is of interest [2–5].

Linear (unbranched) cascades present the simplest instance
of biochemical networks. Recent studies have shown that such
cascades display an interplay between sensitivity to changes
in input signal and the ability to buffer stochastic fluctuations
[6–9]. Indeed, an increase in the sensitivity toward input
signals results also in elevated sensitivity to noise in the input.
A key question is whether network connectivity, e.g., the
presence of positive or negative feedbacks, can modulate this
interplay, reducing propagated noise while maintaining high
sensitivity. Previous studies argued that negative feedbacks
can buffer noise relative to linear cascades [10–12]. These
studies, however, did not consider the associated changes in
signaling sensitivity.

In general, the fine line that separates ‘‘noise’’ from
‘‘signal’’ is established functionally. Nevertheless, in many
systems such as the sensing of temperature, nutrient levels,
ligand concentration, etc., the signal is interpreted as a long-
term change in the input, whereas noise is characterized by

rapid stochastic fluctuations. In this study, we focus on this
particular class of systems.
We explore for gene circuits that can buffer propagated

noise while maintaining signaling sensitivity. We consider a
large set of networks that are differentially designed but are
equally sensitive to long-term changes in the input, and
compare their ability to buffer propagated noise. Systematic
analysis of all three-gene circuits revealed that negative
feedback amplifies propagated noise. In contrast, positive
feedback appears to be a necessary element for buffering
such noise. Analytical analysis demonstrated that positive
feedback contributes to noise buffering by slowing down the
dynamics, thus providing a longer averaging time. A detailed
analysis of a recurrent network design, found in systems
controlling nutrient homeostasis, suggests that it functions as
a noise-reduction device based on the principles identified in
our analysis.
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Results

Negative Feedback Amplifies Propagated Noise When
Sensitivity Is Controlled for

To begin analyzing the effect of network architecture on
the interplay between sensitivity and noise buffering, we
considered a two-component cascade with a negative feed-
back loop. This cascade is composed of an input node, n0,
which activates an output node, n1. The output node feeds
back to repress its own expression (Figure 1A). Formally, this
system is described by

dn1
dt
¼ b1

nh00
1þ nh00

1

1þ nh11
� n1

s1
; ð1Þ

where b1 denotes the maximal rate of n1 production, s�11
denotes the rate of n1 degradation, and h0, h1 are Hill
coefficients. Note that n0 and n1 are normalized by their
respective dissociation constants from the gene promoter.

We consider an input signal n0(t) ¼ hn0i þ r0(t) which
fluctuates around some mean level hn0i. The fluctuating
component r0(t) has a zero mean and some autocorrelation
time s0. Figure 1B depicts the temporal fluctuations of n1 for a
system with a strong negative feedback (Hill coefficient h1 ¼
4). The analogous dynamics for a system that lacks such
feedback (h1 ¼ 0) is also shown. Consistent with previous
studies [10–12], output noise is lower in the presence of
negative feedback. Nevertheless, negative feedback also
significantly lowers the sensitivity of the system to a two-fold
change in the level of the mean input (Figure 1C).
To rigorously quantify the interplay between the sensitivity

of the input–output relation and the buffering of propagated
noise, we define two measures for the sensitivity and noise-
amplification of the system. The steady-state sensitivity is
captured by the susceptibility, s, [3,13,14] (also termed gain [9])
defined as the relative change in output following a change in
the input:

s ¼ hn0ihn1i
dhn1i
dhn0i

¼ dlnhn1i
dlnhn0i

; ð2Þ

with all quantities measured at steady state. The measure for
noise amplification �g is defined as the ratio between the
output and input noise:

�g ¼ g1

g0
¼ stdðn1Þ=hn1i

stdðn0Þ=hn0i
ð3Þ

As before, all quantities are measured at steady state. Both s
and �g depend on the different parameters of the system,
including the Hill coefficients and mean input levels.
Figure 1D depicts the noise amplification versus suscept-

ibility for different levels of mean input. The case of no
feedback (h1 ¼ 0) is compared to that of increasing feedback
cooperativity (h1¼ 1 and 2). Again, a clear interplay between
susceptibility and noise buffering is observed, with systems
that are more sensitive to changes in the input level being
also more vulnerable to noise. Notably, this interplay seems to
be more severe in the presence of negative feedback. Thus,

Figure 1. Comparison of a System with Negative Feedback and without Negative Feedback

(A) A system with negative feedback (pink) and without negative feedback (blue) were compared in terms of (B) the output noise in response to
fluctuations in the input (green), and (C) the deterministic response of the two systems to a 2-fold change in the input.
(D) Noise amplification versus susceptibility for negative feedback with different Hill coefficients. The color-code is the level of saturation of the input
promoter. Sensitivity was calculated by solving the steady-state equations after a 1% change in the input levels, and noise amplification was the result
of stochastic simulations (Methods).
doi:10.1371/journal.pcbi.0040008.g001
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Author Summary

Biological circuits need to be sensitive to changes in environmental
signals but at the same time buffer rapid fluctuations (noise) that
might be imposed on this input. In this paper, we analyze the
interplay between sensitivity to signals and the ability to buffer noise.
Previous studies reported that negative feedback attenuates noise.
We show, however, that this ability comes at the expense of an even
more dramatic reduction in sensitivity. In fact, when comparing
systems of the same sensitivity, a system with negative feedback is
more amenable to noise than a system without such feedback. We
searched for small biological circuits that can buffer noise while
maintaining high sensitivity, and found that positive feedback
exhibits this property. This ability of positive feedback to buffer
noise reflects its slowed-down dynamics. We discuss general
requirements for the function of positive feedback as a noise-
filtering device and describe a particular implementation that
appears to function in yeast nutrient homeostasis. Our study
emphasizes the need to consider multiple constraints when
analyzing the design logic of biological networks.
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for a given level of susceptibility, propagated noise is
amplified to a greater extent in the presence of a negative
feedback. This result is consistent with the theoretical
arguments for a two-node model [3]: with negligible intrinsic
noise, and when controlling for sensitivity, negative feedback
enhances, rather then represses, propagated noise.

Formulation of a Systematic Screen of All Three-Nodes
Networks

Our analysis implies that negative feedback cannot be used
to buffer against rapidly varying propagated noise in systems
which require a sensitive response to long-term changes in
their input. To identify network architectures that can buffer
noise while maintaining sensitivity, we characterized system-
atically the relation between susceptibility and noise-buffer-
ing of all three-node circuits (Figure 2A). A three-node circuit
is composed of an input node (n0), an output node (n2), and
an intermediate node (n1), connected via activating or
repressing interactions (arrows). We allowed for all incoming
or outgoing arrows, with the exception of the input n0 which
could affect both n1 and n2 (outgoing arrows), but was not
subject to feedback regulation (no incoming arrows). Each

arrow was assigned a positive sign (activation) or a negative
sign (repression), thus leading to a total of 324 networks (Text
S1, Section IV). To ensure controlled comparison between
networks, we assume that degradation is not regulated and
that all proteins degrade at the same rate (e.g., by dilution).
Each specific circuit supports a range of dynamic behav-

iors, depending on the precise value of the interaction
parameters. Following the formalism presented by Paulsson
[3,13], we used the Fluctuation Dissipation Theorem (FDT
[15]) to derive an analytical formula for susceptibility and
noise-amplification (Methods). Briefly, the system of equa-
tions that describe the dynamics of the three-node network
was

dni
dt
¼ Jþi ðn0; n1; n2Þ �

ni
si

i ¼ 1; 2: ð4Þ

The degradation terms were assumed to be first-order, and
we considered si¼ 1 to maintain a mathematically controlled
comparison. This system of equations was linearized around
the steady state. The linearization process excludes from the
analysis possible noise-filtering mechanisms that show very
sharp functions such as AND or OR gates [16] as well as

Figure 2. Screen for Networks with High Susceptibility and Low Noise Amplification

(A) Each network with an input node 0, an output node 2, and an intermediate node 1 was assigned random sets of interaction elasticities. The
susceptibility and noise amplification were calculated from each elasticity set. Results are shown for (B) linear cascade (1,000 points), (C) two-node
negative feedback (1,000 points), (D) coherent FFL (1,000 points), (E) incoherent FFL (1,000 points), and (F) two-node positive feedback (230 points with
a stable steady state).
(G) All networks were sorted into groups according to the fraction of parameter sets that exhibited stability (gray line). Within each group, the networks
were sorted according to the fraction of low noise and high susceptibility parameter sets (relative to a linear cascade) out of the stable sets (blue line).
As the number of positive feedback loops increases, stability is decreased.
doi:10.1371/journal.pcbi.0040008.g002
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oscillations or transitions between multiple steady states
(such as the study on positive feedback loops and noise in
[17]). Note also that the steady state n0 ¼ n1 ¼ n2 ¼ 0 is not
formally part of our analysis, because it renders the relative
fluctuation g infinite.

Following linearization, the combined effect of all inter-
action parameters (i.e., Hill coefficients and saturation levels)
is captured by the elasticity [3,13]:

Hij ¼
@lnJ�i
@lnnj

� @lnJ
þ
i

@lnnj
; ð5Þ

where Jþi is the rate of generating ni (e.g., via transcription)
and J�i ¼ ni=si is its degradation rate. With these definitions,
the susceptibility of the output was (Text S1, Section I)

s2 ¼
H10H21 �H11H20

H11H22 �H12H21

����
����: ð6Þ

The absolute value facilitates a comparison between systems
that increase or decrease their output when the input goes
up.

Noise amplification was found by solving the matrix
equation [3,13]

Mgþ gMT þ D ¼ 0; ð7Þ

where the matrix g is composed of the normalized noise
terms, the matrix M is related to the elasticities and time
scales si, and the matrix D contains a single term correspond-
ing to noise input from n0. In the construction of D, we
assume that the sole noise source is fluctuations in n0, and
that these fluctuations die out exponentially with a time scale
s0¼ 1 (autocorrelation time of one unit). The exact terms of
Equation 7 are defined in Section II of Text S1 and in [3,13].

A particular choice of elasticity values for all arrows of the
network defines a single point in the s� �g plane, and the
general interplay between sensitivity and noise buffering was
derived by considering a large number of different elasticity
values (Figure 2A, Methods).

Positive Feedback Is an Essential Component When
Buffering Noise without a Reduction in Sensitivity

As expected, noise amplification in linear (unbranched)
cascades is precisely proportional to the susceptibility (Figure
2B). This case of no feedback provides the reference for
comparison for other network architectures. Consistent with
the analysis above, in the case of a negative feedback, all the
points appear above the reference line (Figure 2C) implying an
increase in noise for a given level of susceptibility. Noise
amplification at constant susceptibilities is observed also for
the coherent (Figure 2D) and incoherent (Figure 2E) feed-
forward loops (FFLs) [16,18], probably reflecting the addition
of nonsynchronous noise components mediated through the
intermediate node. In contrast, for positive feedback the
points in the s� �g plot appear below the reference line (Figure
2F). Thus, for a given level of sensitivity, positive feedback
buffers propagated noise.

To further characterize the properties of all three-node
circuits, we calculated for each network the fraction of
parameter sets that produce a stable steady state (Text S1,
Section III), following the paradigm of [19]. We then
calculated the fraction of stable parameter sets (Methods,
Section IV of Text S1) that display high susceptibility and low

noise (Figure 2G). Notably, networks that were stable
throughout the entire parameter range provided poor noise
buffering for a given susceptibility. None of these circuits
contained positive feedback loops. In sharp contrast, the
circuits that enhanced noise buffering were amenable to
instability and were all composed of positive feedback loops.
Taken together, among the networks tested, positive feedback
appears to be required for buffering propagated noise while
maintaining sensitivity.

Positive Feedback Buffers Noise by Increasing Time
Averaging
To better understand the reason underlying the ability of

positive feedback to buffer propagated noise for a given
susceptibility, we used the analytical description of a two-
component system with an input n0 and an output n1, as was
derived by Paulsson in [3,13] using the FDT approach [15]. In
this framework (and while neglecting intrinsic noise), noise
amplification was shown to be given by [3,13]:

�g2 ¼ s2
s0

s0 þ s1=H11
; ð8Þ

where s¼�H10/H11 denotes the susceptibility; s0, s1 denote the
degradation time scales of n0 and n1, respectively; and H10,H11

are the elasticities (as defined in Equation 5 above). In the
absence of feedback, H11¼1. Negative feedback of n1 on itself
impliesH11 . 1, whereas positive feedback implies 0 , H11 , 1
(if H11 falls below zero, instability arises). As was shown by
Paulsson [3], negative feedback impairs noise buffering at a
given susceptibility by effectively accelerating the dynamics
and reducing averaging of fluctuations over time. Similarly,
positive feedback enhances noise buffering for constant
susceptibility by slowing down the dynamics and allowing
for better time-averaging of fluctuating components.
Notably, Equation 8 suggests that positive feedback is not

the only way to reduce H11 [3,13]. Moving beyond the first-
order degradation assumed in our study, H11 can also be
decreased if the degradation is independent of n1
(@lnJ�1 =@lnn1 ’ 0 in Equation 5). This, in fact, is likely to be
the case for nondividing microorganisms. Hence, time
averaging would also be improved if the degradation is close
to zero-order and the synthesis is not influenced by n1.

A Noise-Buffering Circuit in the Control of Nutrient
Homeostasis
While positive feedback appears to be important for

buffering propagated noise (when sensitivity is controlled
for), such a mechanism needs to comply with several
requirements. First, the feedback loop itself should produce
low internal noise because intrinsic noise is not buffered.
Second, the effective elasticity H11 (Equation 8) should be of
intermediate magnitude: when it is too high (H11 ! 1) the
effect of the positive feedback is negligible, but when it is too
low (H11! 0) the system is on the verge of instability, and the
steady state will no longer resist small fluctuations. Finally, to
avoid decrease in susceptibility due to saturation effects, H11

must be maintained constant over a large range of param-
eters.
A class of mechanisms that complies with the above

requirements is based on a combination of positive and
negative feedbacks. Fast-acting negative feedback functions
to ensure stability, while positive feedback provides the
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required noise buffering. A specific example for such a
network is involved in nitrogen homeostasis in yeast [20–22]
(Figure 3A). Here, a transcription factor (Gat1p), which is
activated by nuclear Gln3p, feeds back to enhance its own
transcription, and in addition induces a transcriptional
repressor (DAL80) that competes with Gat1p for the same
DNA binding sites. This competition effectively weakens the
positive feedback and ensures stability. Denoting the input
signal to the system by n0, the output Gat1p by n1 and the
repressor Dal80p by n2, the system can be modeled by the
following two differential equations:

dn1
dt
¼ b1n0

n1=K11

1þ n1=K11 þ n2=K12
þ l� a1n1; ð9Þ

dn2
dt
¼ b2

n1=K21

1þ n1=K21 þ ðn2=K22Þ2
� a2n2: ð10Þ

Here ai and bi denote the degradation and transcription
rate constants, respectively, and l is a low rate of basal
transcription required to prevent the shutdown of the system,
n1¼ n2¼ 0. We will neglect this factor in subsequent analysis.
The Kij coefficients in the protein production terms are
dissociation constants, with n2/Ki2 describing the competitive
inhibition of Dal80p. The Hill coefficient of n2 binding to its
own promoter is 2 because Dal80p binds as a dimer [21,22].
The Hill coefficient of n2 binding to the n1 promoter is set to
1 to enhance noise buffering and susceptibility (although a
value of 2 would still increase noise averaging).

For the system described by Equations 9 and 10 to operate
as a sensitive noise buffer, it must work in a regime where all
interactions are unsaturated. Hence, all the binding constants
of the repressor, Ki2, must be small, and all binding constants
of the activator, Ki1, must be large. In this regime, Equations 9
and 10 reduce to

dn1
dt
¼ b1n0

n1=K11

n2=K12
� a1n1; ð11Þ

and

dn2
dt
¼ b2

n1=K21

ðn2=K22Þ2
� a2n2: ð12Þ

Finally, if n2 responds more rapidly than n1 and n0 (H22a2 �
H11a1, 1/s0), then it can be assumed to be at quasi-steady state,
and Equations 11 and 12 are combined to

dn1
dt
¼ b1n0

K12

K11

b2

a2

K2
22

K21

� ��1=3
n2=31 � a1n1: ð13Þ

The power law dependence of the transcription rate on n1
results in an almost-constant elasticity H effective

11 ¼ 1/3
(@lnJþ1 =@lnn1 ¼ 2

3 in Equation 5). Hence, this network can
buffer noise and maintain susceptibility for a large range of
concentrations at which it remains unsaturated. A more
rigorous analysis of the system is presented in Section VI of
Text S1.
Detailed simulations confirm that this system can indeed

buffer propagated noise, as compared to a loop-free system
with the same levels of susceptibility (Figure 3B and 3C).
Furthermore, the noise buffering capacity and the suscept-
ibility of this system are maintained over a large range of
input levels (Text S1, Section VI).

Discussion

The ability to distinguish input signals from stochastic
fluctuations is crucial for reliable information processing.
Yet, being processed by the same computation device, signal
and noise are inherently coupled. It thus comes as no surprise
that increasing the ability to buffer propagated noise comes
typically at the expense of reducing the sensitivity toward the
input signal. We study this interplay in the context of a
special class of systems where the signal is retained for long
time periods, whereas the noise fluctuates rapidly. Such
systems are ubiquitous in the adjustment of cells to aspects of
their extracellular environment.

Figure 3. A Mechanism To Robustly Amplify a Signal and Average Noise

(A) In the yeast nitrogen catabolite repression system, the transcription factor Gat1p is activated in response to Gln3p. It can then activate its own
transcription, as well as DAL80, which binds to the same sequences as Gat1p and represses transcription.
(B) The mean output (Gat1p) levels and its (C) noise content are shown for different input (nuclear Gln3p) levels. Simulation results are shown for the
nitrogen system (pink line) and for a system with no feedback but with similar sensitivity (dashed blue line). The input noise level is g0 ¼ 1, and its
autocorrelation time is s0¼2 units. The other time constants are s1¼ s2¼10 units. Dal80p binds its own promoter with a Hill coefficient of 2, whereas all
other Hill coefficients equal 1.
doi:10.1371/journal.pcbi.0040008.g003
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Previous studies reported that negative feedback buffers
gene expression noise [10–12]. Nonetheless, when considering
propagated noise that originates upstream of the feedback
loop, this noise filtering merely reflects the reduction in the
ability of the system to respond to changes in its input.
Moreover, when parameters are chosen to preserve system
sensitivity, negative feedback in fact amplifies, rather than
reduces, propagated noise. By the same token, positive
feedback, which appears to both increase the sensitivity of
the system to changes in its input and to amplify intrinsic
noise, reduces propagated noise when susceptibility (steady-
state sensitivity) is controlled for.

Analytical analysis [3,13] revealed that noise propagation
depends on two factors: the sensitivity to changes in input
(susceptibility) on the one hand, and the averaging time [3,13]
on the other hand. In the absence of feedback, this averaging
time depends only on degradation rate. However, both
negative and positive feedbacks impact this averaging time:
negative feedback accelerates the dynamics [23] and con-
sequently it reduces time averaging and does not buffer
against noise. In contrast, positive feedback delays the
kinetics leading to attenuation of propagated noise. If we
view the feedback modules as low-pass frequency filters
[12,24,25] and define a critical frequency [25] above which
fluctuations are eliminated, then negative feedback increases
this critical frequency, allowing more propagated noise to
pass, whereas positive feedback decreases this frequency, thus
reducing the amount of noise.

Whereas our study illustrates the effect of positive feed-
backs, additional mechanisms could be used for reducing
propagated noise by similarly increasing the averaging time.
Such mechanisms include long linear cascades; cascades with
an intermediate component that has a relatively large half-
life [3,26]; or scenarios where both synthesis and degradation
are essentially zero-order (from the definition of H11 in
Equation 5). Finally, we note that systems that exhibit time
delays together with bistability were not included in our
screen but could also attenuate noise [17].

Positive feedbacks did not emerge as a recurrent network
motif in several of the transcriptional networks analyzed [19].
One possibility is that designing the proper feedback that will
maintain stability while providing noise buffering is evolutio-
narily difficult for the small size networks considered in these
studies [19], due to the requirement it imposes on the extent
of nonlinearities (Hill-coefficients) of the interactions. A
simple realization of this concept, however, can easily be
implemented by somewhat larger networks, as exemplified by
the coupled positive–negative feedback we described. This
and similar implementations function over a broad range of
parameters and do not require strict tuning. Further analysis

will be required to assess the abundance of this positive
feedback–based noise-reduction scheme in different bio-
logical systems.

Methods

Simulations. All simulations were based on the Gibson-Bruck [27]
modification of Gillespie [28] algorithm. Input noise was imple-
mented via transcription from a low copy mRNA with a short half
life. No other mRNAs were explicitly considered. Simulation
parameters are detailed in Section VII of Text S1. Simulations were
carried out using Dizzy [29].

Parameter screen. The interaction parameters of each arrow in
each network are captured by the interaction elasticities Hij. The
susceptibility (Equation 2) for each network is calculated from the
elasticities using Equation 6 (for a general derivation of the
susceptibility, see Text S1, Section I). The noise amplification is
connected to the elasticities through the solution of Equation 7.
Definitions for the terms in Equation 7 appear in Section II of Text
S1. Equation 7 was solved symbolically for all three node networks
using Maple (MapleSoft, Waterloo Maple). Solutions for specific
network architectures are shown in Table S1.

The values for the elasticities were randomly assigned to each
network. To control for similar distribution of positive and negative
interactions, we defined the synthesis elasticity Sij by Hii¼ 1� Sii and
Hij ¼�Sij. When i enhances the synthesis of j, then Sij . 0, and vice
versa. Positive feedback of i on itself implies Sii . 0 and vice-versa.
The synthesis elasticity values were sampled from a uniform
distribution between zero and four and assigned to the arrows in
each network. Different sampling ranges did not have a significant
effect on the conclusions (Text S1, Section IV). We sampled 20,000
random sets of parameters for each circuit. The time constants were
held fixed at a value of one, but different values did not change the
results (Text S1, Section IV).

Analysis of stability. Stability criteria were established via the sign
of the eigenvalues of the interaction matrix (Text S1, Section III).

Supporting Information

Table S1. Properties of Several Networks

Found at doi:10.1371/journal.pcbi.0040008.st001 (54 KB DOC).

Text S1. Mathematical and Numerical Details

Found at doi:10.1371/journal.pcbi.0040008.sd001 (280 KB PDF).
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