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We construct a model to study tradeoffs associated with aging in the adaptive immune system, focusing on cumulative
effects of replacing naive cells with memory cells. Binding affinities are characterized by a stochastic shape space
model. System loss arising from an individual infection is associated with disease severity, as measured by the total
antigen population over the course of an infection. We monitor evolution of cell populations on the shape space over a
string of infections, and find that the distribution of losses becomes increasingly heavy-tailed with time. Initially this
lowers the average loss: the memory cell population becomes tuned to the history of past exposures, reducing the loss
of the system when subjected to a second, similar infection. This is accompanied by a corresponding increase in
vulnerability to novel infections, which ultimately causes the expected loss to increase due to overspecialization,
leading to increasing fragility with age (i.e., immunosenescence). In our model, immunosenescence is not the result of
a performance degradation of some specific lymphocyte, but rather a natural consequence of the built-in mechanisms
for system adaptation. This ‘‘robust, yet fragile’’ behavior is a key signature of Highly Optimized Tolerance.
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Introduction

The adaptive immune system [1] of vertebrates has evolved
in a manner that enables adaptation to the history of
infections over the lifetime of each individual organism. It
consists of a complex, heterogeneous collection of cells that is
derived from stem cells in the bone marrow and proliferates
in the lymph nodes. These cells are endowed with the
remarkable ability to discriminate between self and nonself
agents within the body and to remove the nonself elements
[2–4]. B and T cells are the white blood cells (i.e., lymphocytes)
that constitute the adaptive components of the immune
system. They derive their ability to discriminate self from
nonself with the binding specificity of their receptors: T cell
receptors for T cells, and membrane-bound antibody for B
cells. These receptors are assembled randomly from gene
segments, producing a population of naive cells, in which
each individual combination has a different binding specific-
ity. The random combinations of genes give the immune
system the ability to produce diverse cells capable of
responding to many pathogens. During an infection, the cells
whose receptors recognize the antigen proliferate and
differentiate into antigen-removing effector cells and long-
lived memory cells. The memory cells give rise to a more
rapid and efficient response to a secondary exposure to the
same antigen. However, due to homeostatic regulation of the
lymphocyte population, the growth of memory cells reduces
the naive cell population size. Over time, this has the effect of
increasing sensitivity to novel infections.

We introduce a model that captures this tradeoff between
resilience to repeated exposure and sensitivity to new
pathogens. The model consists of coupled differential
equations for immune-system cell populations, defined in
terms of their primary immunological function and their
binding characteristics. The relative population sizes evolve
in time, stimulated by episodic infections. Antigens are drawn
from a probability distribution of their characteristics, which
enables estimation of the binding affinity of lymphocytes. We
include a constraint on the total number of immune cells in
the system, and define an immunological loss function that
quantifies disease severity. The constraint on the number of

cells implies that memory, which is specific to infections the
system has seen, comes at a price for unseen infections [5].
Our model illustrates how the immune system initially
increases in effectiveness but eventually becomes overspe-
cialized with age.

Results

Characteristics of the distinct populations in our model are
summarized in Table 1. Note that in our simplified model, as
in Segel and Pereleson [4], lymphocytes (memory, naı̈ve, and
effector cells) are not specifically T or B cells, but a
generalization having properties common to both types. We
have also omitted helper T cells (that help to stimulate the
immune response), as well as the complex germinal center
reaction and somatic hypermutation (processes involving the
proliferation and development of lymphocytes), assuming
these features are not limiting factors in immunosenescence.
In our model, A, E, N, and M are all fields on a generalized

shape space, introduced by Oster and Perelson [6] to
represent the lock-and-key type specificity of antigen-
receptor binding. The dimensions of the generalized Eucli-
dean shape space correspond to quantities such as size,
charge distribution, and hydrophobicity. This differs from
other Hamming-type shape space models where each
dimension pertains to a particular amino acid in the
binding-region sequence [7]. The binding sites on the
antigens and receptor proteins are described by the position
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vectors in the shape space, x! and y!, respectively. The binding
of antigen to dendritic cells as described in Table 1, is not
shape space–dependent. All antigens in this model bind to
dendritic cells with the same affinity. Recent calculations
indicate that the shape space is best described with between
five and eight dimensions [7]. We use two dimensions here for
visualization. Using higher dimensions in the model changes
the distribution of affinities, but does not dramatically affect
the results of the paper. Extensions to higher dimensions, as
well as to the more complex interactions listed above, will be
considered in future work.

Vector values of the antigen x! and immune cells y! describe
complementary binding characteristics, so that the binding
affinity for A( x!) and a receptor at y!, given by c( x!,y!), is
maximal for x! ¼ y!. For x! 6¼ y!, the binding affinity is a
decaying function of the distance from x! to y! in the shape
space c ¼ c(jx! � y!j). Following Segel and Pereleson [4], we
take the affinity function to be a Gaussian:

cðx!; y!Þ ¼ cmaxe
�ðx! � y!Þ2=ð2b2Þ; ð1Þ

where cmax sets the overall scale for the strength of the

immune response, and b sets the mismatch tolerance between
antigens and receptors. Replacing c with different decaying
functions of distance (e.g., exponential) does not significantly
alter the results of this work.
Using the species listed in Table 1, we next define our

model of immune system response and adaptation. The
process can be broken down into three stages: (i) antigen
proliferation and immune response in an individual infec-
tion, (ii) recovery and stasis between infections, (iii) long-term
adaptation of lymphocyte populations over the lifetime of the
individual. We assume that rates of infection are small
enough that the immune system completely eliminates one
pathogen, and relaxes to the uninfected state long before the
next infection occurs. This allows us to introduce our model
in three stages, corresponding to the increasing time scales
(i)–(iii) above, beginning with an individual infection.
Periods of infection are associated with introduction of

antigen. Different diseases are associated with different shape
space coordinates x!, and have different rates of infection.
Upon infection, a pathogen proliferates at an exponential
rate so that the antigen population grows at a rate bA( x!)
(Equation 2) In our model, t ¼ 0 marks the time when the
pathogen is mixed into the lymph and begins to stimulate an
immune response. We assume a finite value of A( x!,0) at this
onset to account for the delay in the start of the immune
response. This represents how once a small amount of the
pathogen bypasses the physical barriers of the innate immune
system it will proliferate until it finds its way into the blood
and then lymph nodes, at which point the immune response
is triggered.
Next the unoccupied dendritic cells, F, begin to trap

antigen and become activated to F* at a rate qFA( x!)
(Equations 2 and 3). The activated dendritic cells F* now
present antigen to the naive and memory cells, stimulating
them to divide (Equations 3–5). Overall, the stimulation
occurs at a rate ac( x!,y!)F*(N þ M )( y!). Here the factor of
c( x!,y!) gives the highest-affinity lymphocytes the most rapid
stimulation. The daughters of the cellular division of either
N( y!) or M( y!), are E( y!) cells with fraction f, or M( y!) cells with
fraction (1� f ) (Equations 4–6). Several generations of
memory cells may therefore be produced through an immune
response. In stimulating naive and memory cells, F* reverts
back to F (Equation 3), keeping the total Fþ F*¼H constant.
This rate is the integral of the rate of N and M stimulation

Table 1. Immune System Model Ingredients

Species Symbol Primary Function

Antigen A( x! , t) Chemical that stimulates an immune response, which acts to remove it from the

body.

Effector E( y! , t) Short-lived cells that remove antigen from the body.

Naive N( y! , t) Short-lived detector cells generated in the bone marrow with randomly as-

sembled receptors. When stimulated, these divide into memory and effector cells.

Memory M( y! , t) Long-lived detector cells having exactly the same receptor as the parent. Like na-

ive cells, when stimulated these also divide into more memory and effector cells.

Dendritic F(t) and F*(t) Antigen-presenting cells that act as catalysts. F traps antigen, converting to F*. F*

facilitates the stimulation of naive and memory cells, which convert it back to F.

Population sizes are functions of time t, and evolve as defined below. Aside from the dendritic cells, all populations have binding characteristics represented as vectors in an abstract shape
space. Increasing proximity between an antigen and an effector corresponds to increasing efficacy of the immune response.
doi:10.1371/journal.pcbi.0020160.t001
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Synopsis

The immune system can be viewed as a complex system, which
adapts, over time, to reflect the history of infections experienced by
the organism. This paper describes a model that captures this
adaptation and corresponding robust, yet fragile behavior. To model
immunological processes that rely on binding specificity, research-
ers typically utilize abstract shape space models. These models
describe the binding characteristics of a receptor or antigen as
points in a high dimensional vector space. Stromberg and Carlson
have incorporated the concept of shape space into a dynamical
model of immune response. They use this model to examine the
development of the system over a series of infections and monitor
the severity of disease for each infection. The diseases are drawn at
random from a distribution having a few frequently reoccurring and
many rare. The system is observed to adapt over a series of
infections, becoming robust to the frequent diseases while
developing fragility to the rare diseases. This age-correlated
weakness arises from the underlying dynamics of system adaptation
rather than from an accumulation of defects. This robust, yet fragile
behavior is a signature of Highly Optimized Tolerance, a mechanism
for complexity based on robustness tradeoffs.
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over the entire shape space. Effector cells eliminate antigen
from the system with rate A( x!)c( x!,y!)E( y!). The total rate of
antigen removal is the integral of this rate over the shape
space of effector cells (Equation 2). Effector cells are short-
lived and die with rate dE( y!) (Equation 6).

These short time scale reactions are described by the
following system of equations (we drop the explicit t
dependence in all populations to simplify notation):

@Aðx!Þ
@t

¼ bAðx!Þ � Aðx!Þ
Z

cðx!; y!ÞEð y!Þd y! � qFAðx!Þ ð2Þ

@F�

@t
¼ qFAðx!Þ � a

Z
cðx!; y!ÞF�ðM þ NÞð y!Þd y! ð3Þ

@Nð y!Þ
@t

¼ �acðx!; y!ÞF�Nð y!Þ ð4Þ

@Mð y!Þ
@t

¼ ð2� 2f Þacðx!; y!ÞF�Nð y!Þ þ ð1� 2f Þacðx!; y!ÞF�Mð y!Þ

ð5Þ

@Eð y!Þ
@t

¼ 2f acðx!; y!ÞF�ðM þ NÞð y!Þ � dEð y!Þ ð6Þ

Here a is an affinity-independent factor that accounts for
the difference in c( x!,y!)-dependent rates of lymphocyte
stimulation and removal of antigen. Note that our model
does not include any spatial variables for position of antigen
and lymphocytes in the body, which corresponds to assuming
a well-mixed system. This system of equations exhibits many
features we expect from an immune system model, such as
rapid secondary response and affinity selection.

During the immune response, the naive and memory cells
are indistinguishable. In our model their difference becomes
apparent on intermediate time scales. Therefore, we consider
their combined effect using a single variable D( y!) ¼ N( y!) þ
M( y!). Figure 1 shows a typical response to a repeated
inoculation with antigen x!. Although other lymphocytes also
bind less effectively to the antigen, for illustrative purposes we
plot only populations E( y!) and D( y!) for x!¼ y!, as well as F* (for
which binding is independent of shape space characteristics).

Initially there are 15 memory cells with x! ¼ y!, D( y!,0) ¼
15d( x! � y!), F¼H, E¼ 0, and an antigen inoculation A( x!,0)¼
110. After the first immune response is complete, there is a
second identical inoculation at a later time. In each exposure,
the population size of the antigen increases, until a sufficient
number of effector cells are created from the memory and
naive cell populations to eliminate the infection. The total
number of lymphocytes N þ M þ E, increases during an
immune response, corresponding to swelling of the lymph
nodes. As the effectors die and the memory and naive cells
are no longer stimulated, the swelling subsides. Additionally,
this model predicts that symptoms associated with elevated E
levels peak just as the pathogen is cleared. The more rapid
secondary response is due to the elevated number of memory
cells. (The initial steep decline in the secondary response is
due to the trapping of antigen by the dendritic cells.) All
other model parameters remain the same from the first
exposure to the second. Between infections all short-lived
effector cells die, and the F* cells all revert to F.

To quantify the severity of an individual infection, we

define a loss function L( x!) as the integral of the antigen
population size with respect to time:

Lðx!Þ ¼
Z

Aðx!; tÞdt: ð7Þ

While physiologically, severity of disease depends on many
factors, we believe that this is a simple natural choice, as it is a
rough measure of the amount of the body’s resources a
pathogen may consume and the amount of toxin the
pathogen may secrete. This immunological loss function
serves as a tool for quantifying statistics of infection size, and
provides a meaningful target for sensitivity analysis. In the
context of this investigation and immunosenescence, it allows
us to quantify fitness and to monitor how it changes over the
development of the immune system. Additionally, loss can be
used to compare the effects of additional immune system
components and reactions in more detailed immune system
models, and to quantify the efficacy of drugs and therapies
based on their effect on loss.
We can obtain analytic estimates for loss as well as

memory-cell population growth as functions of pre-infection
memory and naive cell population sizes based on several
simplifying approximations to Equations 2–6. For qA� ac, F*

is approximately equal to the total number of dendritic cells
H, F* ’ H, and F ’ 0. Since A levels will be high when an
immune response is initiated, this approximation is reason-
able. Equations 2–6 with M and N replaced with D ¼M þ N,
and the approximation F* ’ H, reduce to:

@Aðx!Þ
@t

¼ bAðx!Þ � Aðx!Þ
Z

cðx!; y!ÞEð y!Þd y!; ð8Þ

@Eð y!Þ
@t

¼ 2f acðx!; y!ÞHDð y!Þ � dEð y!Þ; ð9Þ

Figure 1. Immune Responses to Two Sequential Inoculations by the

Same Antigen

Results are shown for maximum binding affinity pairs x! ¼ y!. The rapid
response to the secondary inoculation (represented by the smaller size of
the second peak) is due to the elevated number of memory cells. The
immunological loss, Equation 15, is defined to be the area under the
antigen population peak. For the primary and secondary peaks, the
values are 8,860 and 1,525, respectively. The model parameters used in
this and all simulations in this paper are as follows: a¼ 1.5, b¼ 0.083, f¼
0.38, d ¼ 0.01, q ¼ 1, u ¼ 10�4, H ¼ 10, cmax ¼ 0.005, b ¼ 2. These
parameter values give typical behavior for the model.
doi:10.1371/journal.pcbi.0020160.g001
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@Dð y!Þ
@t

¼ ð1� 2f Þacðx!; y!ÞHDð y!Þ: ð10Þ

These equations can be easily integrated, yielding solutions
that approximate the antigen population size during an
infection. The complete expression for A( x!, t) is tractable, but
cumbersome, and takes the form

Aðx!; tÞ ¼ Aðx!; 0Þebt�
R
d y! Sðx!; y!;tÞ: ð11Þ

A simple expansion of the function S( x!,y!, t) to second
order in t yields a Gaussian approximation for the A( x!, t)
peaks (e.g., in Figure 1):

Aðx!; tÞ ¼ Aðx!; 0Þebt�Bðx!Þt2 ð12Þ

where,

Bðx!Þ ¼ f aH
Z

d y!c2ð x!; y!ÞDð y!; 0Þ: ð13Þ

This approximation describes the A( x!, t) pulse as a function
of the initial value of D.

Using this approximate solution for A( x!, t), we estimate the
increase in memory cell–population values after the infection
is cleared. We take the value of M( y!, t) to be constant after
time te when A has been reduced to half its initial value, in the
tail of the pulse, and we round it to integer value.

Mð y!; teÞ ¼ Dð y!; 0Þeð1�2 f ÞacHte � Nð y!; 0Þe�caHte ð14Þ

This analytical result gives close agreement with memory
cell–growth levels given by our original model.

We estimate loss by integrating our analytical solution for
the antigen population peak from �‘ to ‘ (rather than
starting at t¼ 0) to obtain:

Lðx!Þ’Aðx!; 0Þ
ffiffiffiffiffiffiffiffiffiffiffi

p
Bðx!Þ

r
exp

b2

4Bðx!Þ

� �
: ð15Þ

Note that extending the range of integration to�‘ makes a
relatively small difference in the result and simplifies this
expression. Furthermore, it may in a certain sense be more
accurate, as it accounts for the proliferation of antigen before
the antigen enters the lymph nodes.

On intermediate time scales the system relaxes, homeo-
stasis adjusts naive cell number, and the naive cell population
is recycled. These processes are considered fast enough to
reach a steady state during the time between infections, but
not so fast as to be a factor during an immune response. In
the absence of antigen, the populations of effector and
activated dendritic cells (which are both responsible for
removing antigen from the body) relax back to zero (E ( y!)¼0,
F*¼0, and F¼H ), as illustrated in Figure 1. Though during an
immune response N and M cells play an identical role
(represented as D in Figure 1), during the homeostatic period
their differences become important. The memory cells are
long-lived, and in the absence of antigen their population is
static. Naive cells have a shorter lifetime than memory cells
and die by apoptosis. As the naive cells die, homeostatic
mechanisms stimulate the cells of the bone marrow to
randomly repopulate the system with new naive cells. The
repopulation is constrained by the total number of D cells, R:

R ¼
Z
½Mð y!Þ þ Nð y!Þ�d y! ¼ Mtot þ Ntot ð16Þ

This constraint is violated during an immune response as
the lymphocytes rapidly proliferate. Once the antigen is
cleared, the total relaxes back to R. Thus, as memory cell
populations rise, homeostasis effectively depletes the naive
cell population. The replacement of naive cell populations
with memory cells with increasing age is described by Linton
and Dorshkind [8].
Next, using Equations 14–16 and simulated naive cell

recycling, we study the long-term adaptation of lymphocyte
populations over the lifetime of the individual. Using these
approximations, our model reduces to a cellular automaton
describing the population changes of lymphocytes on the
shape space after each infection under our homeostatic
constraint, Equation 16. Initially the system is composed of R
naive cells. The naive cells randomly populate the shape space
with uniform probability. The system is then inoculated with
antigen at position x! with probability P( x!). The correspond-
ing loss is computed in Equation 15, as well as the change in
the memory cell population in Equation 14. The naive cells
are then redistributed with their number adjusted to satisfy
Equation 16. A subsequent inoculation of the same antigen
will make use of these memory cells for a more rapid
response, but an inoculation at another point in shape space
will have a reduced number of naive cells with which to
respond and the loss will be higher.
We monitor the evolution of loss on long-time scales by

considering a 70370 lattice with n¼36 possible infections, at
sites evenly distributed, indexed i, occurring with probability
pi. The infections are far enough apart that cross-reactivity is
not a factor. The distribution of infection probabilities is
taken to have a few chronic infections that are very likely to
recur, and many rare infections. The probabilities are given
by an exponential distribution:

pi ¼ fe�i=n; ð17Þ

where we set n ¼ 20/3, and f ¼
Pn

j¼1 e�j=n normalizes the
distribution over the discrete set of n infections. We choose a
distribution of this form to have a mix of frequent and rare
infections. We have used other distributions as well (e.g., a
power law distribution), and obtained similar results. Differ-
ent distributions alter the memory cell population–growth
rate, which affects the time scale for the onset of immuno-
senescence. Realistically, the distribution of diseases and their
respective infection probabilities is itself a dynamic coevolv-
ing system with new diseases constantly arising. In such a
dynamic disease distribution, when the naive cell population
is depleted there will be fragility similar to the observations
reported here. With the kind of static distribution we
consider here, in order for fragility to develop, the rare
diseases must have low enough probability that one of them is
likely to be experienced for the first time once the naive cell
population is depleted. Changing the numerical values of
parameters in the model will in general change the rate at
which the naive cell population is depleted. We ran the
simulation for 400 infections drawn at random from the
above distribution. Figure 2A (top) shows the loss L( x!) for
each event in a representative sequence.
Figure 2B (top) illustrates the corresponding lymphocyte

populations (D( y!)¼M( y!)þN( y!)) on the shape space at three
stages in the adaptive development: initial, after 250
infections, and after 400 infections. The corresponding loss
fields are illustrated below (these illustrate the loss that would
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be incurred for a subsequent infection as a function of the
antigen characteristics x!). In Figure 2B, top left, D is strictly
composed of naive cells. In Figure 2B, top middle, D includes
a mix of memory cells that form in the neighborhood of the
inoculations and the recycled naive cells. The rightmost
figure is almost entirely depleted of naive cells. The bottom
images show L( x!) for the naive state and after inoculations.
Figure 2B, bottom, illustrates what the loss would be, given
the D values in Figure 2B, top, for an inoculation at each
point on the lattice (though we only consider the 36 points to
be possible infections). Initially there are few vulnerabilities,
associated with potentially large losses (red), in the system.
Instead, the system is uniformly protected. However, after
250 infections, the system develops structure and has areas of
high potential loss around the rare antigens. The points

around the most common infections are well-protected after
250 infections, indicating low values of loss (dark blue) in
subsequent infections. However, because of the overall
constraint on the number of cells, many outlying areas are
left more vulnerable than they were initially.
Based on the probability distribution of infections, we

calculate the expected loss J at each stage of the system’s
adaptation. Here J corresponds to the average value of L( x!)
computed over the full spectrum of possible infections and
weighted according to the probability of each infection:

J ¼
Z

Pðx!ÞLðx!Þd x!: ð18Þ

The standard deviation r gives a measure of the corre-
sponding variation in the possible loss values:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Pðx!ÞLðx!Þ2d x! � J2

s
ð19Þ

The expected loss J (Figure 2A, middle) initially decreases
from the starting value, associated with the random pop-
ulation of shape space. As the system adapts, J takes its
minimum value at roughly 250 infections, which we refer to
as the ‘‘optimal’’ state. In later stages J begins to rise, due to
overspecialization. It is this increase that we associate with
immunosenescence. Throughout the simulation, adaptation
is accompanied by a steady increase in the variability r
(Figure 2A, bottom), associated with increasing breadth in the
distribution of losses as the system becomes increasingly
specialized. At the latest stages of the simulation the increase
in r sharpens, which is indicative of extreme vulnerability to
rare events.
Figure 3 illustrates the cumulative statistical distribution of

loss sizes obtained by combining data from 600 simulations of
the form illustrated in Figure 2. The initial state is
characterized by a narrow (note the logarithmic axes) and
flat distribution, which reflects the uniform coverage of shape
space by the random population of naive cells. The green
curve corresponds to the optimal state, where the expected
loss J takes its minimum value. Compared with the initial
state, here the distribution of losses is both broader and more
variable, indicative of adaptation that optimizes the inherent
tradeoff between reducing loss sizes for frequent events, at
the cost of larger losses for less frequent infections, which
arises because of the overall resource constraint (Equation
16). The red curve shows the result at the end of our
simulation, when the system has overspecialized, and exhibits
immunosenescence. In this case, the distribution of losses is
extremely heavy-tailed, corresponding to the increase in J.
Any distribution containing very rare events leads to heavy-
tailed loss statistics as the naive cell population becomes
depleted. This heavy-tailed distribution of loss shows immu-
nosenescence in the increased fragility of an aged immune
system to as yet unseen diseases.

Discussion

Our model is representative of the HOT mechanism [9,10],
in which robustness tradeoffs provide a mechanism for
complexity and power laws through either deliberate design
or biological evolution, both of which favor configurations
that minimize loss (Equation 18) subject to resource

Figure 2. One Realization of System Development for 400 Infections on a

70 3 70 Lattice

There are 36 possible infections evenly distributed throughout shape
space with R¼ 33,000. The distribution of probabilities for the infections
approximates an exponential, Equation 17.
(A) The top curve illustrates the actual losses based on the history of
infections. For most of the simulation, expected loss J, Equation 18, tends
to decrease, yet rare events are increasing in size resulting in increased
variance r, Equation 19. Eventually this results in catastrophic failure.
(B) Illustrates the shape space representation of populated receptor sites
in the immune system initially, after 250 infections, and after 400
infections (top), and the corresponding distributions of losses for
subsequent infections (bottom). The initial configuration (left) is
randomly populated by naive cells. After each infection there are
elevated populations of memory cells in the vicinities of the infection
site. The bottom figures illustrate how the immune system becomes
skewed in favor of rapid response to repeated exposures at the expense
of novel infections, by illustrating the immunological losses, Equation 15,
that would be incurred by inoculations at each lattice point before and
after building up memory-cell populations.
doi:10.1371/journal.pcbi.0020160.g002
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constraints (Equation 16). The simplest examples are referred
to as ‘‘Probability Loss Resource’’ (PLR) HOT models [11–13],
which incorporate physically motivated relationships be-
tween resource allocations and loss sizes of individual events
to define a constrained resource optimization problem
involving a set of events with prescribed probabilities. In
the cases that have been studied to date, resources have acted
as barriers to propagation of cascading events, such as
wildfires [14] or power outages [15]. In our case, the analogy
is more akin to a sprinkler system, populated by lymphocytes,
in the shape space of possible pathogens. Over time,
adaptation leads to specialized states, through replacement
of naive cells with memory cells, which are tuned to the
history of past exposures. This results in a system that is
increasingly robust to common disturbances, yet increasingly
fragile to rare events—a key signature of HOT. In our model,
this age-correlated effect is a result of overspecialization
rather than of an accumulation of defects. Other possible
factors, such as deterioration, may contribute to immunose-
nescence as well, though it has been experimentally observed
that some symptoms are due to system dynamics [16].

Consequences of overspecialization were studied previ-
ously in a HOT model of evolution, based on Darwinian
mechanisms [17,18], leading to extreme vulnerability, similar
to our observations here. In that case, offspring of lattice
organisms evolved through random mutation relative to their
parent lattice, and fitness was based on disturbances over the
lifetime of individual lattices. Competition resulted in
development of generalists and specialists. While specialists

flourished during common circumstances, they experienced
episodic extinction during rare events, which parallels the
extreme fragility in our model associated with immunose-
nescence. In that case, the mutation rate itself was subject to
mutation, and high mutation rates played an important role
in rapid diversification and evolution following an extinction
of the specialists. In the immune system, rapid mutation is
associated with somatic hypermutation, which gives the
daughter cells of lymphocyte stimulation a receptor that is
a mutation of the parent’s corresponding receptor. This gives
rise to higher affinity and more efficient responses [19], and
will be considered in future work.
While we have focused on immunosenescence, there are

numerous additional robustness tradeoffs associated with the
immune system. For example, the immune system has the
ability to attack and remove nonself elements from the body
with no prior knowledge of nonself features. Normally this is
done with little harm to the body itself. However, the immune
system can make mistakes in recognition, leading to auto-
immune disease, a fragility which would not be present if an
organism had no immune system to begin with. In addition,
on adaptive time scales, the ability to retain memory of past
exposures enables development of effective vaccines, and
reduces the severity of outbreaks of communicable diseases
within populations. However, in some instances vaccinations
may also lead to increased susceptibility to similar diseases
[19,20]. This ‘‘robust yet fragile’’ behavior is a key feature of
HOT, a statistical theory for complexity in designed, evolved,
or adaptive systems. The immune system can be viewed as a
complex system in which robustness tradeoffs play a central
role in evolution of the basic operating mechanisms as well as
adaptation of cell populations within an individual. We
emphasize the importance of tradeoffs associated with a
spectrum of possible events. Evolution and adaptation favor
increased robustness to common disturbances, but this is
inevitably paired with increased fragility, both to rare events
and to new opportunities for diseases and disturbances to
hijack the system, which would not be available were the
system not in place.

Materials and Methods

All computations and stochastic and numerical simulations were
done using MATLAB (The Mathworks, http://www.mathworks.com) on
a personal computer.
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