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Complex regulatory networks control the transcription state of a genome. These transcriptional regulatory networks
(TRNs) have been mathematically described using a Boolean formalism, in which the state of a gene is represented as
either transcribed or not transcribed in response to regulatory signals. The Boolean formalism results in a series of
regulatory rules for the individual genes of a TRN that in turn can be used to link environmental cues to the
transcription state of a genome, thereby forming a complete transcriptional regulatory system (TRS). Herein, we
develop a formalism that represents such a set of regulatory rules in a matrix form. Matrix formalism allows for the
systemic characterization of the properties of a TRS and facilitates the computation of the transcriptional state of the
genome under any given set of environmental conditions. Additionally, it provides a means to incorporate mechanistic
detail of a TRS as it becomes available. In this study, the regulatory network matrix, R, for a prototypic TRS is
characterized and the fundamental subspaces of this matrix are described. We illustrate how the matrix representation
of a TRS coupled with its environment (R*) allows for a sampling of all possible expression states of a given network,
and furthermore, how the fundamental subspaces of the matrix provide a way to study key TRS features and may
assist in experimental design.
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Introduction

With the delineation of multiple genome sequences, there
is an increased interest in understanding how the genes
within a given genome are regulated through complex
transcriptional regulatory networks (TRNs). Consequently,
there is an effort under way to reconstruct the TRNs of model
organisms [1]. Because the number of regulated genes and
associated regulatory proteins is quite large and their
interconnectivity is extensive, there is a significant need for
a structured framework to integrate regulatory rules and
interrogate TRN functions in a systematic fashion. Such a
framework should generate hypotheses for experimental
investigation to further characterize a given regulatory
program.

Several approaches have been used to characterize features
of TRNs, including Bayesian networks [2], Boolean networks
[3–6], and stochastic equations [7] (see [8] for a review of
many such methods). While most of these methods have been
applied to relatively small systems due to a lack of relevant
data, there are notable exceptions (for examples, see [9–12]).
Two of these are briefly described. First, a reconstruction of
the regulatory network that controls sea urchin development
has been formulated, and the temporal profile of 40 genes
involved in the embryogenesis of the sea urchin characterized
[12]. Second, an integrated analysis of metabolic and
regulatory networks in Escherichia coli was performed [9]
through dual perturbation experiments [13]. This systematic
approach to reconstructing and interrogating the integrated
network of E. coli led to the novel characterization of multiple
regulatory rules and an expansion of a genome-scale TRN,
based on a model-driven analysis of multiple high-through-
put datasets.

Although the components and component interactions of

large-scale TRNs have been reconstructed, the properties of
the functional states of these networks have not yet been
extensively investigated. Consequently, there is a need for a
structured, self-contained representation of TRNs that can
be quantitatively interrogated. This paper presents a novel
approach for describing a complete transcriptional regu-
latory system (TRS), including inputs and outputs to the set
of internal reactions defined by the TRN, in a functional
matrix form (called a regulatory network matrix, or R) that
connects environmental cues to transcriptional responses. It
can be used to compute the expression (i.e., functional)
state of the TRS that it represents. To illustrate this
approach, the regulatory network matrix for the lac operon
TRS in E. coli is characterized and the fundamental
subspaces of the matrix are described. Furthermore, this
matrix representation of transcriptional regulation is used
to efficiently sample all possible expression states of a
prototypic TRS.

Editor: Reka Albert, Pennsylvania State University, United States of America

Received April 3, 2006; Accepted June 26, 2006; Published August 11, 2006

DOI: 10.1371/journal.pcbi.0020101

Copyright: � 2006 Gianchandani et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abbreviations: cAMP, cyclic AMP; TRN, transcriptional regulatory network; TRS,
transcriptional regulatory system

* To whom correspondence should be addressed. E-mail: papin@virginia.edu

[ These authors contributed equally to this work.

¤ Current address: Institute for Systems Biology, Seattle, Washington, United States
of America

PLoS Computational Biology | www.ploscompbiol.org August 2006 | Volume 2 | Issue 8 | e1010001



Materials and Methods

Conceptual Framework
The process of converting a network map to a functional

description of the network is depicted in Figure 1. Networks
comprise components and interactions between them, often
graphically displayed as maps that illustrate the relationships
between the input state of a network and its corresponding
output state. Maps can be represented mathematically as
incidence matrices [14]. If the underlying chemical reactions
of the network can be delineated, the network can be
described with a stoichiometric matrix, S, that captures the
reaction stoichiometries [15]. Once the network boundaries
are defined, inputs and outputs are delineated and a system is
defined. Matrix analysis methods can then be used to
generate functional descriptions of network properties and
states [16]. (For background about the generation of a
stoichiometric reconstruction as well as the associated
analysis techniques as previously reported and applied to
metabolic and signaling networks, see also Protocol S1.) In
the following sections, we describe how regulatory interac-
tions can be represented in a similar fashion to S using a
regulatory network matrix, R, to describe a TRS.

The Formation of R and the System It Represents
The R matrix describes the connections between environ-

mental cues and transcriptional responses. This relationship
is illustrated in Figure 2. Figure 2A shows the typical
depiction of a TRS as a biological system comprising a
collection of inputs, internal reactions that form the TRN,
and outputs. In general, the inputs are environmental cues,
including the presence and absence of extracellular metab-
olites, reaction fluxes, and specific conditions such as certain
pH values. The internal reactions, often not known in
chemical detail, are represented by regulatory rules that
describe the activation or inhibition of gene transcription in
response to environmental cues. The outputs are the
synthesized protein products that result through a combina-
tion of the signaling inputs acting upon the regulatory rules

as well as consequent transcription and translation. A
representative pair of regulatory rules is presented in Figure
2B and 2C. In Figure 2B, the expression of Gene 1 depends on
the presence of both Metabolite A and Metabolite B. The
presence of both metabolites is required for the transcription
of the associated gene. In the example provided in Figure 2C,
the transcription of Gene 2 depends on the presence of either
Metabolite C or Metabolite D. Accordingly, the presence of
either metabolite can lead to the transcription of the
corresponding gene.
These relationships can be represented in a matrix of

regulatory rules (Rrules), which is a subset of the complete R
matrix (discussed below). In Figure 2D, the regulatory rules
associated with Gene 1 and Gene 2 are represented as three
columns (or regulatory reactions) of the matrix. The four
metabolites are indicated as separate rows. The metabolite-
reaction relationships are represented in a quasi-stoichio-
metric formalism. Here, quasi-stoichiometric indicates that each
column of the matrix accounts for the relationship between
regulators and the genes that they control without necessitat-
ing mass balance. Conceptually, the regulators are ‘‘con-
sumed’’ and the gene products are produced. Importantly,
this formalism can account for mass-balanced relationships
in TRSs [17]. For example, the transcription of Gene 1
depends on both Metabolite A and Metabolite B. Consequently,
we define the inputs to the Gene 1 reaction (Metabolite A and
Metabolite B) as�1, and the output from the reaction (Protein
1) as þ1.

Aþ B! Protein 1 ð1Þ

For the expression of Gene 2, either Metabolite C or Metabolite D
can function to activate transcription. Consequently, there
are two independent columns to represent the regulatory
rule associated with the activation of Gene 2.

C! Protein 2 ð2Þ

D! Protein 2 ð3Þ

This matrix can be used to represent a TRN (Figure 3). In
Figure 3A, the regulatory network matrix consisting of
regulatory rules from Figure 2 (Rrules) is indicated.
To convert the TRN into a TRS, the matrix of regulatory

rules is expanded to include: 1) the converse of the regulatory
rules, and 2) exchange reactions that balance the production
of proteins. The resulting system, with inputs, outputs, and
internal reactions, is represented by the complete regulatory
network matrix called R. The process of forming a TRS from
the TRN requires more explicit description, as we have to
account for the ‘‘absence’’ of network components and their
‘‘exchange’’ with the environment.
1) The converse of the regulatory rules (i.e., the regulatory

reactions that lead to the inhibition of gene transcription in
our sample system) is necessary to reflect the lack of protein
production for a given set of environmental cues (Figure 3A).
Many regulatory rules are inhibitory, such that the expression
of a protein depends on the absence of a given metabolite or
protein product. Additional rows for the absence of
metabolites and protein products as well as columns
representing the converse of the regulatory rules are
included. Again, these relationships are represented in
quasi-stoichiometric formalism. For example, the converse
of the regulatory rule for Gene 1 implies that the transcription
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Synopsis

Complex regulatory networks control the transcription state of a
genome that defines the components of a biochemical network.
These transcriptional regulatory networks have been mathematically
described. The purpose of many such mathematical models is to
allow for the prediction of gene expression under a variety of
environmental conditions. However, to date, quantitative models
have been limited in scope due to a paucity of relevant data, and
models of larger networks have been limited in their quantitative
predictive power. Herein, Gianchandani and colleagues present a
formalism that represents regulatory rules in a matrix form which
attempts to address these issues. This matrix formalism allows for
the systemic characterization of the properties of a transcriptional
regulatory system and facilitates the computation of the transcrip-
tional state of the corresponding genome under any given set of
environmental conditions. Additionally, it provides a means to
incorporate mechanistic detail of a transcriptional regulatory system
as it becomes available. The authors illustrate how this matrix
representation allows for a sampling of all possible expression states
of a given network and provides a way to study key features. They
also present how it may assist in experimental design to interrogate
genome-scale cellular networks.
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of Gene 1 is inhibited if either Metabolite A or Metabolite B is
absent. Consequently, there are two independent columns
(Gene 1aINACTIVE and Gene 1bINACTIVE) to represent the
reactions for the regulatory rule associated with the
inhibition of Gene 1.

AABSENCE ! Protein 1ABSENCE ð4Þ

BABSENCE ! Protein 1ABSENCE ð5Þ

Similarly, the inverse of the regulatory rule for Gene 2 implies
that the transcription of Gene 2 is inhibited if Metabolite C and
Metabolite D are both absent. Consequently, we define the
inputs to the Gene 2INACTIVE reaction (absence of Metabolite C
and absence of Metabolite D) as �1, and the output of the
reaction (absence of Protein 1) as þ1.

CABSENCE þ DABSENCE ! Protein 2ABSENCE ð6Þ

2) Further, the quasi-stoichiometric formalism needs to be
supplemented by exchange reactions that balance the produc-
tion of proteins (Figure 3A). These exchange reactions
describe the role of the proteins as outputs of the TRS. Once
they are produced, the proteins can exit the TRS and perform
their associated cellular tasks. Therefore, columns represent-
ing the exchange of proteins are incorporated. These
columns have an entry of �1 in the corresponding row to
indicate that the protein leaves the TRS (i.e., it is ‘‘depleted’’
from the TRS).
The TRS will respond to environmental signals, whose state

(i.e., presence or absence) needs to be specified. In Figure 3B,
the R matrix is further combined with the environment

Figure 1. Toward a Functional Description of a Biological System

The general process of connecting a network map to a functional description of the network is depicted. A network is comprised of components and
the interactions between them, and it is often graphically displayed as a map. This map is in turn represented mathematically as an incidence matrix
that captures the stoichiometry of the underlying chemical transformations of the network. Subsequently, the boundaries of the network and its inputs
and outputs are delineated, yielding a complete system. Finally, matrix analysis techniques are used (e.g., extreme pathway analysis) to generate
functional descriptions of system properties (e.g., system states).
DOI: 10.1371/journal.pcbi.0020101.g001
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matrix (E), which characterizes the environment against
which a set of regulatory rules is to be evaluated, yielding
R*. The columns of the E matrix denote the availability of
metabolites and protein products. For the sample environ-
ment shown, the presence of Metabolite A is indicated by aþ1
in the row ‘‘APRESENCE’’ and the column ‘‘AAVAIL,’’ whereas the
absence of Metabolite B is indicated by a þ1 in the row
‘‘BABSENCE’’ and the column ‘‘BAVAIL,’’ and similarly for
Metabolite C and Metabolite D. Initially, for any environment,
the proteins that are part of the TRS are assumed to be
absent, and the values of these columns are subsequently
updated as R is analyzed in silico. Just as the continuous

production of proteins (the outputs from the TRS) is
balanced by exchange reactions, the columns representing a
particular set of environmental cues serve to balance the set
of environmental cues. Thus, these exchange reactions
describe the role of the environmental cues as inputs to the
TRS. Once they enter the TRS, they can participate in the
regulatory reactions and initiate gene transcription. Since the
compounds in Rmust be balanced with the environment in E,
the resultant matrix R* is used to calculate expression (i.e.,
functional) states of a TRS. In a similar fashion, the analysis of
the functional states of stoichiometric networks through S
needs the definition of exchange reactions and their
associated connections with a particular environment [18].

Analysis of Functional States of a TRS
Many methods for analyzing genome-scale stoichiometric

matrices have been developed and used to gain biological
insight [16,19–24]. One such approach is called extreme
pathway analysis [25]. Extreme pathway analysis has pre-
viously been applied to metabolic and signaling networks to
determine the set of systemically independent pathways
through a network [26–28]. Briefly, the extreme pathways
are a minimal and unique set of generating vectors that
define the edges of the convex solution space that contains all
valid steady-state flux distributions in a network. Any possible
solution or flux distribution can be described as a non-
negative linear combination of these extreme pathways. In
effect, the extreme pathways span a convex space that
circumscribes all potential functional states (i.e., phenotypes)
of a network.
Analogously, for a TRS, extreme pathway analysis yields a

set of generating vectors that encompasses all possible
expression states of the network. Consequently, extreme
pathway analysis represents an in silico technique for
evaluating global characteristics of gene expression. The
extreme pathways are a set of systemically independent,
convex basis vectors. As such, they represent the extreme
states of the TRS; any possible expression state of a TRS is a
non-negative combination of these basis vectors. Following
the formalism previously developed [25], the internal
regulatory reactions, or relationships, can only have non-
negative weights, while the environmental reactions, or
relationships, may have values of �1 or þ1 to represent the
absence or presence of a given component, respectively. As
described below, the pervasiveness of signal inputs, percent-
age of environments in which a given gene is expressed,
numbers of genes expressed together, and correlated gene
sets represent the type of data that can be readily generated
for a TRS by analyzing R* in different environments using
this approach.

The Four Fundamental Subspaces of R*
The four fundamental subspaces, namely the null space,

left null space, row space, and column space, describe key
properties of a matrix, and consequently the system that it
represents. For a stoichiometric matrix that represents a
biological network, these fundamental subspaces represent
key system properties [18]. Singular value decomposition
(SVD) is used to decompose a matrix into three matrices,
often referred to as U, R, and V [29], that delineate the four
fundamental subspaces (see [29] and [18]).

Figure 2. The Formation of the TRN Matrix

(A) Depicts the TRS as a biological system consisting of inputs, internal
reactions, and outputs. The inputs are environmental cues, including the
presence and absence of metabolites, reaction fluxes, and specific
conditions. The internal reactions are the regulatory rules that describe
the activation or inhibition of gene transcription. The output is the
transcription state, which is a collection of the protein products that
result through a combination of the environmental cues acting upon the
regulatory rules.
(B) Depicts a situation where the presence of both of two metabolites is
required for the expression of Gene 1.
(C) Depicts a situation where the presence of either of two metabolites
leads to the expression of Gene 2.
(D) The associated regulatory network matrix (Rrules) represents each of
these two regulatory rules of the sample TRN in quasi-stoichoimetric
formalism. Gene 1 requires the presence of Metabolite A and Metabolite B,
and the output of the reaction is the associated protein. Gene 2 requires
either Metabolite C or Metabolite D, and the product is the associated
protein. The rule associated with the activation of Gene 2 can be satisfied
with two independent conditions. Thus, there are two columns
corresponding to the activation of Gene 2.
DOI: 10.1371/journal.pcbi.0020101.g002
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Each of these four fundamental subspaces contains
particular information about the original matrix. A vector e
that satisfies the equation (R*)�e ¼ 0 lies in the null space.
Every such vector, therefore, can be multiplied into all rows
of R* (i.e., each metabolite, transcription factor, and protein
product of the TRS) and yield zero. For this result to be the
case, the relationship between each metabolite, transcription
factor, and protein product of the corresponding TRS must
be conserved within the TRS as represented in the vector e.
Consequently, each vector e that is part of the null space
represents a balance for a given network component (row of

the matrix) between the internal regulatory network (or TRN)
and the environment. Therefore, a given vector e is the
collection of active/inactive genes (columns of the matrix)
that balance the TRN with the environmental cues (see [27]
for further description of similar pathways, as seen in the
JAK-STAT signaling pathway of the human B cell). Thus,
these pathways represent link-neutral states of the TRS; each
internal component (row) has an input reaction and an
output reaction. The null space of R* captures all possible
balanced expression (i.e., functional) states of the TRS that it
represents.

Figure 3. The Matrix as a Representation of a TRS

(A) Depicts the TRN matrix shown in Figure 1 (Rrules). This matrix is expanded to yield the matrix R, which describes the complete TRS. The R matrix
includes the converse of the regulatory rules, i.e., the regulatory reactions that lead to the inhibition of gene transcription (rows and columns shaded in
pink). For example, the inhibition of Gene 1 requires either Metabolite A or Metabolite B to be absent. The R matrix also includes exchange reactions that
balance the production of proteins and enforce the fact that the protein products are outputs of the TRN (columns shaded in green), thus representing
a TRS.
(B) The TRS R matrix is combined with the environment matrix (E), which consists of a set of columns that represent a particular environment of
signaling stimuli (columns shaded in green), to yield the matrix R*. The presence or absence of a given signaling stimulus is denoted by a 1 or a 0 in the
corresponding row in E. Initially, all the proteins are absent, and the availabilities of these are updated as the matrix is analyzed. Ultimately, these
columns in E indicate the activation or inhibition of gene transcription for the environment.
DOI: 10.1371/journal.pcbi.0020101.g003
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For the equation (R*)T�u¼0, the set of vectors u that satisfy
the equation lie in the left null space, where (R*)T is the
transpose of R*. The multiplication of each row of (R*)T (or
conversely each column of R*) by a given vector u yields zero.
Consequently, each vector u represents an invariant pool of
network components (rows of R*) across all component
interactions (columns of R*). Therefore, the left null space of
R* contains pools or aggregates of network components that
are invariant across all the regulatory rules of the TRS. Thus,
these pools represent node-neutral states of the TRS; each
internal reaction or relationship (column) has an input node
and an output node. For example, in detailed reconstruc-
tions, these pools represented by u may be groups of open
reading frames that are coordinately regulated and can be
classified as regulated units, or regulons.

The columns of R* (that are vectors in the column space of
R*) contain information regarding the similarity or differ-
ence between how genes (and the corresponding protein
products) are regulated. For example, a small angle between a
pair of columns (i.e., the corresponding vectors) in R*
indicates that the regulatory rules of the two corresponding
genes are very similar and affect the state of the TRS in a
similar fashion. Conversely, a large angle between a pair of
columns in R* indicates that the genes are regulated by very
different sets of rules. Note that, for any given gene, multiple
columns may be required to capture different parts of a
complex Boolean regulatory rule.

The rows of R* (that are vectors in the row space of R*)
contain information about the overall similarity of network
component participation in the generation of expression
states. For example, for the rows corresponding to environ-
mental cues, the row vectors describe the influence that these
environmental cues have in generating an expression state. A
small angle between a pair of these rows in R* indicates that
the corresponding environmental cues have very similar
effects on the expression state of the network. Conversely, a
large angle between a pair of these rows in R* indicates that
the corresponding environmental cues have very different
effects on the expression state of the network. Although not
investigated in the present study, the further exploration of
this concept may yield important insight into how a TRS
moves from one functional state to another.

These properties contained within the fundamental sub-
spaces of R* can translate to experimental design. For
example, in selecting a set of environmental conditions to
probe the functions of a given TRS, the set of inputs which
generate very different effects on the expression state of the
TRS would provide the most information in a given experi-
ment. These fundamental properties of R* are described
below in more detail in the context of the lac operon in E. coli,
as well as in the context of the TRS for a prototypic system
that emulates key features of prokaryotic TRSs.

Results

The matrix formalism for representing TRSs was evaluated
using a small-scale reconstruction of the TRN of the lac
operon in E. coli. Furthermore, a larger prototypic TRN was
constructed to reflect the types of transcriptional regulatory
mechanisms observed in a previous reconstruction of the
genome-scale E. coli TRN [9]. Ultimately, the ability of the

framework to incorporate mechanistic detail as it becomes
available on the genome scale is illustrated.

An Example System: The Regulatory System of the lac
Operon in E. coli
In an effort to explore this modeling framework and to

assess potential challenges, the TRN that dictates the
expression of the lac operon in E. coli was modeled (Figure
4). For the purpose of this investigation, the system is defined
to include the lac operon (lacZYA) and the proteins that each
operon gene encodes; the inhibitor of the operon (lacI); an
activator of the operon (Crp); and the intracellular inducer
molecule allolactose, which inhibits the LacI inhibitor thus
activating lacZYA transcription (Figure 4A).
Having defined the system and Boolean rules that specify

the regulatory logic of this TRN (Figure 4B), the TRS can be
formulated and the associated R matrix constructed (Figure
4C). As previously described, each row in R describes a TRS
component (i.e., gene, metabolite, transcription factor, or
protein product), and each column specifies a regulatory
event (i.e., reaction). For the purposes of this analysis, each
gene/operon is depicted within the matrix twice: lacI and
lacI*, as well as lacZYA and lacZYA*. The former entity
represents the open form, whereas the latter, asterisk-marked
entity, represents the actively transcribed form of the gene.
This level of detail is not required in formulating R as the
actively transcribed form of the gene is only a transient entity
between transcription and translation. However, as such
mechanistic detail about open reading frames and other
network relationships becomes available for actual TRSs, the
formalism presented herein can readily incorporate it.
Null space vectors e that satisfy (R*)�e ¼ 0 and left null

space vectors u that satisfy (R*)T�u ¼ 0 were then calculated
for the defined lac TRS. All possible network expression states
are defined by the two vectors that span the null space (Figure
4D). (It is important to note that, in calculating these
expression states, it was assumed that Crp is a part of the
TRS and always present whereas allolactose is a part of the
TRS but variable by environment. This assumption was made
to avoid accounting for the specific regulation of Crp
production in order to maintain the relative simplicity of
this example. In other words, only two possible environments
were evaluated, one in which allolactose is present and
another in which it is absent.) These vectors are the extreme
pathways of the TRS. For reaction names prefaced with a ‘‘v,’’
a 1 indicates that the reaction is active, and a 0 indicates that
it is inactive. In the remaining reactions that specify flow
across the system boundary, a 1 indicates flow out of the
system (for example, a protein is produced), a �1 indicates
flow into the system, and a 0 indicates that the associated
component is neither produced nor consumed. Note that
these entries denote an active connection, and series of
connections lead to a causal path. The first vector represents
the LacI-mediated inhibition of the lac operon. The second
vector defines the inhibition of LacI by allolactose, thus
allowing for Crp-activated expression of lacZYA. These two
vectors thus represent the two expression states of the lac
operon system, and they are further depicted graphically in
Figure 4F.
Analysis of the left null space identified two intra-network

pools in the defined lac TRS, and these are represented by two
convex vectors that represent the extreme states of the TRS,

PLoS Computational Biology | www.ploscompbiol.org August 2006 | Volume 2 | Issue 8 | e1010006

Matrix Formalism for Regulatory Systems



calculated by determining the extreme pathways of the
transpose of R* (Figure 4E). In the vectors specified for u, a
1 represents that the system component denoted by the
column header in the pool is present, and a 0 indicates that
the system component is absent from the pool. The pool
depicted by the first vector specifies the lacI gene pool, as the
open (lacI) and actively transcribed (lacI*) forms of the gene
together represent a conserved quantity within the system.
Likewise, the second vector describes the conserved lac
operon pool by specifying the lacZYA–lacZYA* conserved

quantity. Again, these conserved quantities are the extreme
states of the TRS. For the lac operon system, these two pools
are relatively straightforward; lacZYA will be either open or
actively transcribed. Thus, the corresponding pool represents
this invariant grouping. For larger systems, these pools may
be groups of open and/or actively transcribed sets of genes.
Such invariant groupings may correspond to complex
regulated transcriptional units, or regulons, across a genome.
Pools of open reading frames are not the only type of

conserved quantities that could emerge from R*. For

Figure 4. The TRS for the lac Operon in E. coli

(A) The system is defined to include the lac operon genes (lacZ, lacY, lacA), the inhibitor gene lacI, the activator Crp, and the inducer allolactose (Allo).
(B) Summarizes the Boolean rules that capture the regulatory logic of the system.
(C) The R matrix is shown, with each row corresponding to system components and each column specifying regulatory reactions in a quasi-
stoichiometric formalism. Accordingly, a ‘‘�1’’ represents a consumed component, whereas a ‘‘þ1’’ represents a produced component.
(D and E) Depict the null space and left null space, respectively.
(F) The two extreme pathways from the null space in (D) are presented. Pathway 1 illustrates the conditions for the activation of the lac operon (i.e.,
inhibition of LacI by allolactose, thus allowing for Crp-activated expression of lacZYA), whereas pathway 2 illustrates the conditions for the LacI-
mediated inhibition of the lac operon.
DOI: 10.1371/journal.pcbi.0020101.g004
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example, one could explicitly model the activation of a
transcription factor by a small molecule or metabolite (i.e.,
cyclic AMP [cAMP] activation of Crp). In this case, one would
expect to detect a free transcription factor/metabolite/
metabolite-bound transcription factor pool within the system
(i.e., following from the previously mentioned example, a Crp/
cAMP/Crp–cAMP pool would be identified). This pool would
emerge because the collective presence of Crp, cAMP, and
Crp-cAMP would be constant. Similarly, complex groupings
of metabolites and transcription factors may emerge from
genome-scale TRS analysis.

Prototypic TRS
The use of the proposed formalism for analyzing the

classical lac operon is illuminating. The next question that
arises involves evaluating how amenable this approach is to
large-scale TRNs. Thus a larger prototypic TRN was assembled
and evaluated (see Protocol S2 for more details) that accounts
for typical features of the E. coli TRN [9]. The prototypic TRN

studied below is illustrated in Figure 5A. The Boolean
expressions that describe the regulatory rules for gene
transcription in this prototypic network appear in Figure
5B. The prototypic TRN used in this study was composed of
regulatory rules associated with the expression of 25 genes.
These rules were typical of Boolean rules in the E. coli
reconstruction published previously [9]. The given regulatory
rule must be satisfied in its entirety for the corresponding
gene to be expressed; otherwise, the gene is not expressed.
A TRS was formulated for the prototypic TRN. The set of

rules for the prototypic TRS accounted for the presence or
absence of six compounds (a through f) and five protein
products that acted as transcription factors for other genes
(Prot 1, Prot 6, Prot 8, Prot 11, and Prot 14). Several comparative
network characteristics of the E. coli and prototypic TRSs are
provided in Figure 5C.
Possible functional states of the prototypic TRS. The

evaluation of all possible environments (all possible combi-
nations of inputs) facilitated the identification and analysis of

Figure 5. A Prototypic TRN

(A) A prototypic TRN consisting of 25 genes, six extracellular metabolites, and five transcription factors, is shown. This prototype was constructed on the
basis of the general characteristics of the E. coli TRN.
(B) The Boolean regulatory rules that correspond to the transcription of the 25 genes within the prototypic TRN are listed.
(C) Relevant characteristics of the prototypic TRS, including comparisons to the TRS of E. coli, are presented. This prototypic TRS gives rise to 64 [¼ 26,
where there are six inputs] possible environments, and these may be evaluated using the 64 different matrices that are generated by combining the
TRS R matrix with each of the 64 different environment matrices (E).
DOI: 10.1371/journal.pcbi.0020101.g005
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the properties of the prototypic TRS depicted in Figure 5.
The prototypic TRS was sufficiently small to generate and
evaluate all possible environments; however, for actual TRSs,
sampling procedures may be required to generate similar
characterizations. For example, Monte Carlo sampling of

biochemical network function has previously generated novel
results for the properties and kinetic constraints in actual
metabolic networks [21,30–32].
For the prototypic TRS in Figure 5 with six signaling

inputs, there are 64 (¼26) possible environments (each input

Figure 6. Analysis of the Prototypic TRS across All 64 [¼ 26, Where There Are Six Inputs] Possible Environments

(A) The plot indicates the percentage of all the environments (x-axis) in which the corresponding numbers of genes are expressed (y-axis). For example,
13 genes are expressed in about 31% of the environments (as indicated by the arrow). The inset shows the cumulative distribution of the percentage of
all the environments in which the corresponding number of genes are expressed. Note that, for all possible environments, there are at least 11 genes
and at most 18 genes expressed, and in no environments are there either 15 or 16 genes expressed.
(B) The percent of environments in which the indicated gene is expressed is shown. For example, Gene 9 is expressed in about 94% of all the possible
environments (as indicated by the solid arrow). This representation of gene expression data provides insights into genes that are particularly essential or
inessential for fundamental biological processes. Gene 9, for instance, is likely essential to cell survival and/or growth. By contrast, Gene 17, which is
expressed in about 6% of all the possible environments (as indicated by the striped arrow), is much less essential (or its inactivation is essential) to cell
survival and/or growth. These data can be used to further experimentally interrogate the system.
DOI: 10.1371/journal.pcbi.0020101.g006
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can either be present or absent). Thus, 64 functional, i.e.,
expression, states, were computed, one for each of the 64
possible environments. (A total of 64 matrices (R*) were
generated by iteratively combining R with each of the 64
possible environment matrices (E), as described previously
and illustrated in Figure 3B.) Figure 6A shows the percentage
of these 64 environments in which particular genes are
coexpressed. Most frequent is the coexpression of 13 genes,
which occurs in about 31% of the environments (indicated by
the arrow). By contrast, there are no environments in which
fewer than 11 or more than 18 genes are expressed together.
This feature indicates that the minimal set of inputs (or
absence of inputs) that correspond to the expression of any
genes results in the expression of 11 genes. Furthermore, for
all possible inputs, no more than 18 of the 25 genes can be
expressed, indicating exclusivity of certain input combina-
tions. The inset in Figure 6A further emphasizes this point by
depicting the cumulative distribution of the gene expression
levels in the environments; there are zero genes that are
expressed in 100% of the environments, whereas all 25 genes
together are expressed in none of the environments. Such
functional dependencies between environmental cues and

network-wide expression states would be difficult to delineate
without the structured framework that R* affords.
The percentage of environments in which a given gene is

expressed was also calculated (Figure 6B). For example, Gene 9
is expressed in about 94% of all possible environments
(indicated by the solid arrow). These data offer insight into
genes that may be essential for fundamental biological
processes such as cell survival or cell growth. Since Gene 9 is
expressed in so many of the possible environments, these in
silico expression data suggest that this gene may be necessary
for critical cellular objectives. Furthermore, the expression of
Gene 9 is dependent upon the absence of both Metabolite c and
Protein 6, and this interconnectivity within the TRS makes it
difficult to identify the significance of Gene 9 simply by looking
at its regulatory rule. Since the set of all possible inputs is not
indicative of the ‘‘typical’’ or ‘‘average’’ environments a given
TRN may encounter, particular environments are certainly
much more probable for a given TRN. The present analysis
interrogates the structure of the TRS and the extreme points
of all its possible states. Recent studies have demonstrated that
metabolic networks occasionally operate at the extremes of
their network capabilities [33,34]; thus, characterizing the set

Figure 7. The Correlation between Gene Expression across All the Environments for the Prototypic TRS

Colors indicate that the expression of two genes is correlated (green if the expression of one gene is correlated with the expression of another, red if the
expression of one gene is correlated with the lack of expression of another), and the darker the color the stronger the correlation. For example, the
expression of Gene 13 is strongly correlated with that of Gene 15 (0.75) (as indicated by the solid arrow), whereas the expression of Gene 17 is strongly
correlated with the lack of expression of Gene 16 (and vice versa) (�0.68) (as indicated by the striped arrow). This representation identifies genes that
function together versus those that function independently, and, consequently, genes that are part of the same regulated units can be identified. These
correlated gene sets can therefore guide experimental design.
DOI: 10.1371/journal.pcbi.0020101.g007

Figure 8. Expression States for the Prototypic TRS for the Environment in Which All Metabolites Are Present as well as the Environment in Which All

Metabolites Are Absent

The expression (i.e., functional) states for two different environments, as generated by extreme pathway analysis of R*, are presented.
(A) The expression states for the environment in which all metabolites are present are shown. In this environment, a total of 42 extreme pathways exist
leading to the activation or inactivation of the genes within the TRS.
(B) The expression states for the environment in which all metabolites are absent are shown. In this environment, a total of 62 extreme pathways exist
leading to the activation or inactivation of the genes within the TRS. As a legend, triangles represent extracellular cues, namely the six metabolites;
squares represent the genes; and circles represent the protein products. Gray elements denote inactivity, whereas colored elements denote active
components of the TRS for the given environment. Green arrows indicate that an upstream metabolite or transcription factor activates gene expression,
whereas red lines indicate that the upstream metabolite or transcription factor inhibits gene expression. Lines that join together at dots denote ‘‘and’’
relationships within the Boolean regulatory rules, whereas lines that simply join together denote ‘‘or’’ relationships within the Boolean regulatory rules.
DOI: 10.1371/journal.pcbi.0020101.g008

PLoS Computational Biology | www.ploscompbiol.org August 2006 | Volume 2 | Issue 8 | e1010010

Matrix Formalism for Regulatory Systems



PLoS Computational Biology | www.ploscompbiol.org August 2006 | Volume 2 | Issue 8 | e1010011

Matrix Formalism for Regulatory Systems



of possible states that encompass the capabilities of a network
is particularly relevant.

The set of possible expression states was also evaluated to
identify the correlated presence (and absence) of groups of
genes. Specifically, the correlation coefficient (rij) between
any two genes i and j in the network across all 64 environ-
ments was calculated. The matrix of pairwise correlation
coefficients for all 25 genes was computed (Figure 7). Pairs of
genes that are expressed together have positive correlation
coefficients, whereas a pair of genes in which one gene is
expressed and another gene is not expressed has a negative
correlation coefficient. Genes whose expression is completely
independent of each other have an r-value equal to zero. For
example, the expression of Gene 13 and Gene 15 are strongly
correlated (r ¼ 0.75) (indicated by the solid arrow), whereas
Gene 17 and Gene 16 are strongly anticorrelated (r ¼ �0.68)
(indicated by the striped arrow). Again, because regulatory
rules are inherently complex (e.g., the expression of Gene 17 is
dependent upon the simultaneous presence of Protein 8 and
Protein 11, whereas the expression of Gene 16 is dependent
upon the simultaneous presence of Protein 6 and absence of
Protein 8), it is difficult to identify correlated gene sets
without the kind of formalism and associated analysis
presented herein. Correlated gene sets can describe which
genes function together as well as which genes function
independently and may provide insights into genes that are
part of the same regulated units, much as correlated reaction
sets represent reactions in metabolic and signaling networks
that always appear together [27,35].

The null space of R*. As described above, the extreme
pathways are convex basis vectors of the null space of a
matrix that satisfy constraints which ensure that the
associated pathways are biologically relevant. Since the
compounds in R must be balanced with the environment
for (R*)�e ¼ 0 to be satisfied, the extreme pathways must be
calculated for R* (since the null space is spanned by vectors
that satisfy the equation (R*)�e ¼ 0). Thus, these extreme
pathways correspond to basis vectors that together describe
the expression state for a given set of environmental
conditions. All possible expression states for a given TRS
are therefore non-negative linear combinations of these
extreme pathways.

The extreme pathways were generated for each of the 64
possible R* matrices, one for each possible environment (E).
There were 133 unique extreme pathways for the prototypic
TRS (see Protocol S2 for a complete listing). The 133 extreme
pathways can be grouped together to form all possible
expression states of the prototypic TRS. For example, there
are 42 of the 133 extreme pathways that correspond to the
environment in which all six metabolites are present (see
Figure 8A). Consequently, these 42 extreme pathways
together constitute an expression (i.e., functional) state for
the environment in which all six metabolites are present. The
expression state for any particular environment (e.g., the

presence of Metabolite a and Metabolite b, and the absence of
Metabolite c, Metabolite d, Metabolite e, and Metabolite f) can be
described by the combination of individual extreme pathways
(a subset of the 133 extreme pathways for the prototypic TRS)
that correspond to the presence or absence of the associated
environmental cues.
The expression (i.e., functional) states of the prototypic

TRS for four distinct environments, as captured through this
extreme pathway analysis, are depicted in Figures 8 and 9. For
example, in Figure 8A, the 42 extreme pathways correspond-
ing to the environment in which all six metabolites are
present are shown, and together they represent the expres-
sion state for that environment. Figure 8B depicts the
extreme pathways that correspond to the environments in
which all metabolites are absent; Figure 9A depicts the
extreme pathways that correspond to the environment in
which Metabolite a is absent but all others are present; and
Figure 9B depicts the extreme pathways that correspond to
the environment in which Metabolite e and Metabolite f are
absent but all others are present. Different regulatory
reactions occur, and different genes are activated or
inactivated as a result of these interactions. In general, the
portrait of complex hierarchy of gene expression that results
in Figures 8 and 9 would be difficult to ascertain without this
kind of analysis. The structured framework for representing
TRSs presented herein can thus provide considerable insight
into regulatory programs.
Another portrait of this complex hierarchy is illustrated in

Figure 10, which depicts the extreme pathways of R* in two
different cases. For example, in the presence of Metabolite a,
Metabolite b, and Metabolite c, one extreme pathway of R*
corresponds to the expression of Gene 18 (Figure 10B). This
extreme pathway consists of the terms Gene 1, Metabolite a, and
Metabolite b, implying that the expression of Gene 1 is
dependent upon the presence of Metabolite a and Metabolite
b; Gene 8(a) and Metabolite c, implying that the expression of
Gene 8 is dependent upon the presence of Metabolite c
(specifically, the first clause of the Boolean rule for Gene 8,
Gene 8(a), is satisfied by the presence of Metabolite c); Gene 11(a),
implying that the expression of Gene 11 is dependent upon
the presence of Protein 1, the product of Gene 1; and Gene 18,
implying that the expression of Gene 18 is dependent upon
the presence of Protein 8 and Protein 11, the products of Gene
8 and Gene 11, respectively. In a similar fashion, extreme
pathway analysis can shed considerable light on a TRS, and,
when performed on the system at different time points, can
evaluate other types of interactions that are not part of the
prototypic TRS, e.g., regulatory loops leading to oscillations
in gene expression.
Furthermore, the basis vectors that result from extreme

pathway analysis effectively produce an in silico expression
array. Figure 11 illustrates how two possible environments
may be compared. For example, Protein 1 is not expressed
when the six extracellular metabolites are absent, yet it is

Figure 9. Expression States for the Prototypic TRS for Two Additional Environments

The expression (i.e., functional) states for two different environments, as generated by extreme pathway analysis of R*, are presented.
(A) The expression states for the environment in which Metabolite a is absent but all other metabolites are present are shown. This environment yields
27 extreme pathways, the least of all possible environments, leading to the activation or inactivation of the genes within the TRS.
(B) The expression states for the environment in which Metabolite e and Metabolite f are absent but all other metabolites are present are shown. This
environment yields 75 extreme pathways, the most of all possible environments, leading to the activation or inactivation of the genes within the TRS. A
legend for these drawings is described in the caption for Figure 8.
DOI: 10.1371/journal.pcbi.0020101.g009
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expressed when they are present. By contrast, Protein 4 is
expressed in both of these environments, i.e., when the six
extracellular metabolites are all absent as well as when they
are all present. These in silico expression analyses are faster
and cheaper than experimental arrays, and they can provide
novel hypotheses and consequently serve as starting points
for further experimental work.

The left null space of R*. The basis vectors for the left null
space of the matrix of the prototypic system identified intra-
network pools in the TRS. For the case of the prototypic
system, these were expected groupings of the genes and gene
products. For example, one such intra-network pool con-
sisted of Protein 14, Protein 20, and Protein 22. The
expression of Protein 20 requires the presence of Protein
14. Similarly, the expression of Protein 22 requires the
presence of Protein 14. Consequently, these proteins com-
prise a single pool within the TRS that is coordinately
regulated as a single regulated unit. For TRSs of a larger scale
as is seen in actual biological systems on the order of the
genome-scale reconstruction of E. coli, more complex group-
ings may emerge.

The row and column spaces of R*. The row and column
spaces were calculated for the prototypic system (unpub-
lished data). The data indicated patterns as described in the
Materials and Methods section above. Further investigation
into the row and column spaces of genome-scale TRSs may
generate predictions regarding optimal experimental pro-
grams for characterizing regulatory programs as described
above. Such interrogations may also reveal how a TRS moves
from one expression state to another given environmental
perturbations and genetic modifications.

Discussion

This study describes a matrix formalism for studying TRSs
that connects environmental cues to transcriptional re-

sponses. The TRS of the lac operon in E. coli was described.
Furthermore, the TRS for a prototypic system that mimics
features of the E. coli TRS was characterized and the
fundamental subspaces of the corresponding R* matrix were
described. Key results of this study are: 1) a systems definition
and approach to TRNs, distinguishing between a TRS and a
TRN; 2) the matrix formalization of a TRS as an alternative to
a Boolean formalism; 3) the characterization of the null and
left null spaces of R*; and 4) the exhaustive enumeration of
the effect of all possible environments and consequent
systemic interpretations.
The formalism presented herein is a conceptual shift in the

representation of a TRN (Figure 1). While a network map
illustrates relationships between components of a network, it
does not allow for the computation of functional states.
However, TRNs can be represented mathematically with the
quasi-stoichiometric formalism presented herein. With care-
ful delineation of inputs and outputs, a TRS is defined from
which functional states can be computed.
There is a growing set of computational tools and

approaches for the analysis of biological systems. For
example, stoichiometric matrices are analyzed with flux-
balance analysis, extreme pathway analysis [25], Monte Carlo
sampling [16], and energy balance analysis [36], among many
other such computational tools [16]. These analysis methods

Figure 10. Extreme Pathways for the Prototypic TRS

Two examples of extreme pathways of the prototypic TRS are
highlighted for the environment in which all six metabolites (a through
f) are present. In pathway 1, the presence of Metabolite a and Metabolite
b activates the expression of Gene 1, and Protein 1, the product of Gene
1, inhibits of the expression of Gene 10 (A). In pathway 2, the presence of
Metabolite a and Metabolite b activates the expression of Gene 1; Protein
1 activates the expression of Gene 11; the presence of Metabolite c
activates the expression of Gene 8; and Protein 8, the product of Gene 8,
and Protein 11, the product of Gene 11, together activate the expression
of Gene 18 (B).
DOI: 10.1371/journal.pcbi.0020101.g010

Figure 11. In Silico Expression Array for the Prototypic TRS

The expression of genes is evaluated across two different environments
using extreme pathway analysis. The first column depicts the expression
state for an environment in which all six metabolites are present. The
second column depicts the expression state for an environment in which
all six metabolites are absent. For both columns, the proteins shaded in
green are transcribed, whereas those in red are not transcribed. The third
column illustrates an in silico expression analysis: the expression states of
the two environments are compared, and changes in expression are
illustrated in yellow, as described in the legend box on the figure.
DOI: 10.1371/journal.pcbi.0020101.g011
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generate unbiased descriptions of the functional states of
biochemical networks. As TRSs are reconstructed with a
matrix formalism as presented herein, these analysis tools can
be used to characterize fundamental features of such systems.

Key properties of the TRS are found in the two null spaces
of R*. As stated in the description of the quasi-stoichiometric
formalism above, the null space of R* represents the set of
causality pathways that connect given environments to the
expression state of the TRS, accounting for the primary,
secondary, and tertiary regulatory relationships. This null
space can be described by a unique set of link-neutral
pathways in which all regulatory rules or links are balanced.
This balanced set of pathways can be calculated with extreme
pathway analysis which characterizes the extreme pathways of
the given TRS from which all expression (i.e., functional)
states can be described. The left null space of R* contains the
pools of invariant quantities of the TRS. These invariant
pools represent transcriptional units in the given system that
may generate hypotheses regarding correlated regulatory
programs. Extreme pathway analysis can also be used to
calculate these invariant pools by defining the node-neutral
set of extreme states.

All possible expression states of the prototypic TRS are
readily evaluated. This data allows for the classification of
the percentage of environments in which a given gene is
expressed as well as the average number of genes expressed
in a set of environments. This analysis clearly delineates the
genes that are generally active or generally inactive across a
variety of environments and perhaps more critical or less
critical for network function. For larger TRSs, sampling
algorithms can be implemented to perform similar analyses
[21]. Characterizing the space of possible expression states
also leads to the identification of correlated gene sets.
These correlations identify how ‘‘related’’ the expression
profiles are for the associated pairs, and can generate
hypotheses regarding operon or regulon structure. These
correlations also identify genes that are anticorrelated or
that behave independently. By analyzing all possible
expression states of a TRS, such systems-level properties
are readily described.

The regulatory network matrices presented herein are in
quasi-stoichiometric formalism. As more data emerges
regarding specific chemical transformations and interactions
that define TRSs, increasingly detailed matrices to include the
precise underlying reaction stoichiometry may be generated.
The analysis of the lac operon network presented herein led
to results representative of what may be seen in genome-scale
analyses. The analysis of the stoichiometric matrix for the set
of regulatory mechanism reactions (e.g., the binding of a
transcription factor and associated regulatory proteins to a
specific region of DNA) will reveal much greater quantitative
detail regarding TRSs [17]. However, the necessary data is
only now becoming available. The matrix formalism pre-
sented herein is a structured method for organizing the set of
hypotheses regarding TRS function. For example, additional
novel regulatory rules for the expression of genes can be
added to the matrix as they are characterized and existing

rules can be refined as the specific reaction stoichiometries
are more clearly defined. Any change in network properties
resulting from the inclusion of new rules can be verified to
support or refute the given hypothesis. Furthermore, as
greater stoichiometric detail becomes available, this frame-
work readily incorporates the associated data. If one
regulatory reaction is better characterized, the associated
quasi-stoichiometric reaction is replaced with the stoichio-
metric detail (the corresponding column of R is replaced).
Previous work characterized essential nodes for the

processing of signaling inputs to TRNs [37]. These subnet-
works, called ‘‘origons,’’ are believed to represent specific
topological units of TRNs that detect the decomposed
elementary components of complex environmental signals
and subsequently develop a reassembled, large-scale tran-
scriptional response. Furthermore, ‘‘network motifs,’’ or
patterns of interconnections that recur in many different
parts of a network at frequencies higher than those found in
randomized networks, have been evaluated, and may define
basic building blocks of TRNs [38]. The study described
herein differs from these previous works because it focuses
on the structure of an entire TRS that is reconstructed by
delineating functional relationships between genes and
inputs. As such, the characterizations described herein are
more directly connected to network function as opposed to
network structure.
With this formalism in hand, the challenge now becomes to

scale it up and construct genome-scale TRS matrices for
model organisms, such as E. coli and Bacillus subtilis. With these
matrices in hand, experimental programs can be systematized
and guided with predictions regarding which signaling inputs
may provide the greatest characterization of network
function. Furthermore, these analyses will generate predic-
tions regarding the coordinated regulatory programs that
drive cellular phenotypes.

Supporting Information

Protocol S1. Stoichiometric Network Reconstruction and Associated
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Found at DOI: 10.1371/journal.pcbi.0020101.sd001 (58 KB DOC)
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Found at DOI: 10.1371/journal.pcbi.0020101.sd002 (106 KB PDF)
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