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Abstract

MicroRNAs (miRNAs) are pivotal regulators of drug resistance and sensitivity in can-
cer cells, functioning as tumor suppressors or oncogenes that modulate the cellular
response to anticancer drugs. While experimental identification of miRNA-mediated
drug resistance and sensitivity is both costly and laborious, computational methods
present a promising alternative. Recent advances in pre-trained language models
(PLMs) offer new opportunities to leverage large-scale unlabeled biomolecular data
for enhanced relationship prediction. In this study, we introduce PLMF-MDA, a PLM-
based cross-modal fusion model designed to predict mMiRNA-drug resistance (MDR)
and miRNA-drug sensitivity (MDS) associations. PLMF-MDA integrates miRNA and
drug multimodal embeddings derived from PLMs and intrinsic feature extractors, and
employs a cross-modal attention fusion module to adaptively capture key interac-
tions between modalities. To evaluate the performance of the approach, we manu-
ally constructed two benchmark datasets. Experimental results demonstrate that the
PLMF-MDA achieves superior prediction performance. Furthermore, case studies on
anticancer drug docetaxel' demonstrate its potential in discovering novel MDR (MDS)
associations. All data and source code are available on GitHub: https://github.com/
sheng-n/PLMF-MDA:

Author summary

MicroRNAs (miRNAs) are important modulators of cancer cell response to
chemotherapy, but experimentally identifying miRNA-mediated drug resistance
and sensitivity relationships is slow and resource-intensive. Here we present
PLMF-MDA, a computational framework that leverages pre-trained language
models (RNA-FM and ChemBERTa-2) to generate global embeddings for miRNA
sequences and drug SMILES, and combines these with fine-grained
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nucleotide- and atom-level representations learned by multi-scale CNN and GCN.
A cross-modal attention fusion module adaptively integrates these heterogeneous
features to capture key interactions between miRNAs and drugs. We curated two
benchmark datasets (MDRdataset and MDSdataset) to evaluate the approach,
PLMF-MDA consistently outperforms existing methods on AUC and AUPR met-
rics and maintains strong performance on datasets containing previously unseen
nodes. A case study on the anticancer drug docetaxel further demonstrates the
model’s ability to prioritize plausible novel miRNA-drug resistance and sensitivity
candidates. PLMF-MDA can serve as a practical tool for researchers by identifying
miRNAs that may potentiate the efficacy of specific drugs, thereby helping to nar-
row experimental targets and accelerate the development of more effective cancer
therapies. All data and source code are freely available at to facilitate reuse and
further research by the community.

Introduction

Cancer represents the second leading cause of death globally, following cardiovas-
cular disease, and poses a severe threat to patient life and health [1]. Currently, sur-
gical resection, radiation therapy, targeted therapy, and chemotherapy constitute the
primary treatment methods for cancer [2,3]. Among these approaches, chemotherapy
serves as the first-line standard treatment protocol across all cancer stages. How-
ever, the emergence of drug resistance significantly limits the clinical application of
chemotherapeutic drugs, ultimately leading to treatment failure and patient mortality.
Recent research has demonstrated that miRNAs, small non-coding RNAs approxi-
mately 19-25 nucleotides (nt) in length, can participate in tumor cell drug resistance
by targeting drug resistance-related genes or influencing genes associated with cell
proliferation, cell cycle regulation, and apoptosis [4]. For instance, miR-301b-3p has
been shown to suppress TXNIP expression, thereby promoting cisplatin and vin-
cristine resistance in gastric cancer cells and providing novel insights for gastric can-
cer chemotherapy [5]. Recent evidence indicates that miR-590-5p promotes cisplatin
resistance in ovarian cancer through regulating hMSH2 expression [6]. Notably, cer-
tain miRNAs also serve as potential therapeutic targets for enhancing drug sensitiv-
ity. Du et al. demonstrated that miR-375 promotes cisplatin sensitivity in lung ade-
nocarcinoma, potentially offering new therapeutic strategies [7]. Furthermore, Wu et
al. established that miR-204b enhances osimertinib sensitivity in non-small cell lung
cancer by targeting CD44 to suppress cancer stemness [8]. Therefore, elucidating
miRNA-mediated drug resistance and sensitivity mechanisms is crucial for rational
drug development and clinical treatment strategy optimization.

Since traditional laboratory experiments for inferring these potential resistance and
sensitivity relationships are both expensive and time-consuming, they present signif-
icant challenges for large-scale exploration of novel therapeutics. As an alternative,
computational methods offer a promising approach to narrow down the number of
potential miRNA-drug resistance and sensitivity pairs requiring investigation.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013968 February 10, 2026

2017



https://doi.org/10.1371/journal.pcbi.1013968

N\ Computational
PLOR’ Biology

In recent years, several computational approaches have been developed to identify miRNA-related drug resistance

and sensitivity associations, most of which are graph-based methods. For example, Huang et al. constructed miRNA-
drug heterogeneous graphs using miRNA expression profiles, molecule graph, gene ontology, disease ontology, and
known MDR associations. They employed graph convolutional neural network (GCN) to extract node features and predict
drug resistance-related miRNAs [9]. Deng et al. integrated miRNA and drug similarity networks with known MDS asso-
ciations to construct miRNA-drug heterogeneous graphs, proposing a dual-channel heterogeneous graph neural net-
work model for node feature extraction [10]. Wei et al. leveraged known sensitivity relationships between miRNAs and
drugs to develop a graph collaborative filtering-based contrastive learning model for inferring potential MRS associa-
tions [11]. Zheng et al. constructed non-coding RNA (ncRNA)-drug bipartite networks without considering ncRNA types
and employed LightGCN for node feature extraction, using inner products to predict associations between ncRNAs and
drug resistance [12]. Liu et al. integrated miRNA sequence similarity, drug SMILES similarity, and known MDS associa-
tions to build miRNA-drug heterogeneous networks, utilizing graph attention networks for node feature aggregation [13].
Recently, Sheng et al. proposed a method that leverages attribute information of miRNAs and drugs instead of commonly
used interaction graph information, but it failed to distinguish between predictions of drug resistance and sensitivity [14].
Zhang et al. not only extracted miRNA and drug features from miRNA-drug bipartite networks but also employed temporal
convolutional networks and bidirectional long short-term memory to learn drug fingerprint features and miRNA sequence
features, respectively [15]. Sheng et al. integrated multi-source information, including miRNAs and drug-related genes,
and proposed a GCN with attention mechanisms to predict miRNA-associated drugs [16]. Ouyang et al. introduced a
meta-path-induced graph sparse transformer deep matrix factorization method to predict MDS associations based on the
miRNA-drug bipartite graph [17].

While these methods demonstrate satisfactory performance, they typically suffer from one or two of the following limita-
tions. (1) They generally rely on constructed miRNA-drug resistance/sensitivity heterogeneous networks, where sparsity in
annotated association data affects the prediction accuracy and generalization capability of these models. (2) Graph neu-
ral network approaches based on heterogeneous graphs may not generalize well to novel drugs or miRNAs. Neverthe-
less, these methods represent significant advances in the MDR and MDS fields and continue to advance the possibilities
of computational drug discovery.

In recent years, PLMs have profoundly impacted modern natural language processing by leveraging self-supervised
learning to acquire significant representations that can be fine-tuned for various downstream tasks [18]. Given the simi-
larity between the “language” of RNA sequences/SMILES and textual language, PLMs have been extended to RNA and
molecular-related domains, such as RNA-FM [19] and ChemBERTA-2 [20]. PLM models typically utilize large corpus con-
taining tens of millions of ncRNA sequences or SMILES strings for training, effectively learning substantial latent informa-
tion. This information proves particularly valuable for biomedical tasks with limited annotated data. However, the applica-
tion of PLMs to construct multiple modalities for MDR and MDS association prediction remains unexplored.

In this study, we propose a deep learning framework based on PLMs named PLMF-MDA, for the accurate prediction
of miRNA-mediated drug resistance and sensitivity. PLMF-MDA leverages PLMs to extract global embeddings of miR-
NAs and drugs, and combines multi-scale convolutional neural network (CNN) and GCN to capture finer-grained embed-
dings at the nucleotide and atom levels, respectively. Furthermore, a cross-modal attention fusion module is incorporated
to maximize the integration of node embeddings from different modalities. Our main contributions are summarized as
follows:

* We present PLMF-MDA, a novel cross-modal fusion framework based on PLMs, which aims to fuse multimodal features
of miRNAs and drugs to enhance the prediction performance of miRNA-drug resistance and sensitivity associations.

» We achieve comprehensive extraction of global and intrinsic embedding for miRNAs and drugs by integrating advanced
PLMs like RNA-FM and ChemBERTa-2, multi-scale CNN, and GCN. The cross-modal attention mechanism adaptively
fuses these embeddings, facilitating robust representation learning.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013968 February 10, 2026 3/ 17



https://doi.org/10.1371/journal.pcbi.1013968

N\ Computational
PLOR’ Biology

» Extensive experiments on two manually curated benchmark datasets demonstrate that PLMF-MDA consistently outper-
forms existing methods by leveraging both PLM and intrinsic embeddings to boost prediction performance. Further case
studies substantiate the model’s effectiveness in discovering novel drug resistance and sensitivity-related miRNAs.

Materials and methods
Benchmark datasets

Due to the limited availability of miRNA-drug resistance and miRNA-drug sensitivity data, we manually constructed two
benchmark datasets, MDRdataset and MDSdataset, based on the latest n\cRNADrug database [21]. This database, pub-
lished in 2023, focuses on collecting manually curated and computationally predicted drug resistance/sensitivity-related
ncRNAs (miRNAs, IncRNAs, circRNAs). In this study, we primarily collected experimentally validated human miRNA-
mediated drug resistance and sensitivity data. Furthermore, miRNAs that had been removed from the miRBase v22 [22]
and non-small molecule drugs were excluded. Finally, after screening and preprocessing, we obtained 5411 resistance
associations between 1317 miRNAs and 105 drugs as well as 5054 sensitivity associations between 1252 miRNAs and
140 drugs. Additionally, miRNA sequence information and drug SMILES were downloaded from miRBase v22 and Drug-
Bank [23], respectively. Statistical analysis revealed that 949 miRNAs were potentially associated with both drug resis-
tance and sensitivity during disease treatment, and 81 drugs appeared in both datasets (as shown in Fig 1A and 1B. As
illustrated in Fig 1C and 1D, for the constructed MDRdataset and MDSdataset datasets, 98% of miRNA sequences were
shorter than 24 nucleotides, and over 80% of drug SMILES strings had a length of 100 characters. Therefore, the maxi-
mum lengths of mMiRNA sequences and drug SMILES strings were fixed at 24 and 100, respectively. The basic statistics
of the two datasets are presented in Table 1.

Overview

In this section, we present a novel framework PLMF-MDA for predicting miRNAs-drug resistance and sensitivity associ-
ations (see Fig 2). Our approach leverages PLMs and intrinsic embedding extractors to comprehensively encode both
sequences and molecular structures. By integrating multi-perspective representations through a cross-modal attention
fusion mechanism, the framework jointly learns informative embeddings from both global and fine-grained modal. Through
supervised training, it effectively captures the interactions between miRNAs and drugs, thereby improving prediction
accuracy.

PLM embedding extractors for miRNA and drug

PLM for miRNA. RNA-FM is a universal RNA language model built on a 12-layer bidirectional transformer encoder
and trained through self-supervised learning on 23 million ncRNA sequences from the RNAcentral database [19]. This
self-supervised learning approach is based on the BERT language model architecture. Through this process, RNA-FM
enhances its understanding of sequence distributions and patterns related to potential structural and functional informa-
tion. It has been demonstrated that embeddings generated by RNA-FM consistently outperform state-of-the-art meth-
ods in various downstream prediction tasks related to structure and function. In this work, given a miRNA sequence S™
of length L, RNA-FM generates high-dimensional representations containing global sequence features. Specifically, the
model produces an L x 640 embedding matrix Z’,i,/m e R840 where each position in the sequence is represented by a
640-dimensional feature vector.

7™ = RNA — FM(S™) (1)
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Fig 1. Data distribution in the benchmark datasets.

https://doi.org/10.1371/journal.pcbi.1013968.g001

Table 1. The statistics of the benchmark datasets.

Datasets miRNAs drugs Associations
MDRdataset 1317 105 5411
MDSdataset 1252 140 5054

https://doi.org/10.1371/journal.pcbi.1013968.t001

Subsequently, we utilize [CLS] token, resulting in a 640-dimensional embedding vector that summarizes the entire
sequence. This vector is then passed through a fully connected neural network (FCNN) projection layer to adapt the gen-
eral feature space to the requirements of specific downstream tasks:

Zh = FCNNy (Z0") (2)
where Zf,’1 € R1*9™ denotes the miRNA embedding obtained via PLM, and dm represents the final miRNA embedding
dimension.

PLM for drug. ChemBERTA-2 is a chemical language model based on the RoBERTa transformer implementation
from HuggingFace [20]. This model was trained on data from PubChem, containing up to 77 million compound molecules.
ChemBERTA-2 utilizes a masked language modeling (MLM) approach, in which 15% of the tokens in each input string are

masked and the model is trained to correctly predict these masked tokens. In this study, given a drug SMILES sequence
S’, we selected ChemBERTA-2 to encode it and generate drug molecular embeddings Z°" € ®L384_ Given the drug
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SMILES, features Z”'™ are derived from the PLM:
7’ = ChemBERTa(S") 3)

For each drug of length L input to ChemBERTA, the model produces an embedding matrix of size L x 384. Similarly, we
extract the first [CLS] token to obtain a one-dimensional vector of size 384, which is refined through FCNN projection layer
to further adapt the drug embedding for downstream tasks:

Z8 = FCNNg (Z2'™) (4)

where Z¥ € R denotes the drug embedding obtained via PLM, and dr represents the final drug embedding dimension.

Intrinsic embedding extractors for miRNA and drug

Sequence embedding extractor for miRNA. To comprehensively extract task-specific features from miRNA
sequences with varying lengths and motif complexities, we designed a multi-scale CNN feature extractor. This architec-
ture consists of multiple parallel convolutional layers with different kernel sizes, each layer for capturing motifs at different
spatial resolutions. Specifically, each input miRNA sequence is first one-hot encoded to obtain a two-dimensional matrix
of size L x 4, where L represents the miRNA sequence length and 4 represents the size of the base symbol dictionary.
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As mentioned previously, 98% of miRNA sequences in this dataset are shorter than 24 nt. To facilitate the training pro-
cess, sequences are adjusted to a uniform length of 24 through truncation or zero-padding. The standardized sequences
are then fed into a trainable embedding layer, which maps each nucleotide to a dense miRNA embedding matrix M. Next,
the embedding M are processed in parallel by the multi-scale CNN layers. The multi-scale CNN primarily consists of three
parallel convolutional branches with kernel sizes of 2, 3, and 4, respectively. Each branch is responsible for extracting fea-
tures corresponding to dinucleotide, trinucleotide, and tetranucleotide sequence patterns. For each branch, the sequence
embedding is first processed by a 1D convolutional layer, followed by nonlinear activation and max pooling. These steps
are formally described as follows:

ZGW = concat (CNN (WM, M, k)) , k=2,3,4 (5)

where k represents the convolutional kernel size, W) represents the weight matrix for the branch with kernel size k,
and concat denotes concatenating the outputs of all branches to form a comprehensive multi-scale feature representa-
tion of the miRNA sequence. Finally, this concatenated vector is passed through a FCNN layer with dropout to obtain
the final sequence encoding Z5, € ™9™, This multi-scale CNN framework enables the model to capture rich and diverse
sequence patterns, effectively encoding local information in miRNA sequences.

Graph feature extractor for drug. For the drug feature extractor, to effectively utilize the connectivity properties
between drug atoms, we convert SMILES to undirected molecular graphs using RDKit. A drug molecular graph can be
represented as G = (v, ¢), where each node a; represents an atom in the compound, and each edge e;; € ¢ represents
a chemical bond between atoms a; and a;. The initial node features X of the molecular graph are constructed based on
the chemical properties of each atom, including atom type, hybridization type, atomic degree, formal charge, number of
hydrogen atoms, number of radical electrons, etc. The drug encoder takes the molecular graph G as input and learns d-
dimensional representations for each atom. In this paper, we employ GCN as the drug encoder, which is a powerful vari-
ant of graph neural networks that has been widely used as a feature extractor for various graph data. Specifically, GCN
first collects feature vectors of all atoms in the neighborhood, performs aggregation operations to obtain “messages”,
which are then used to update each atom’s features. Formally, given a drug graph G = (v,¢), GCN takes its adjacency
matrix A and node features X as input. We employ a three-layer GCN, with each layer can be represented as follows:

209 — o (AxO W) 6)

where A = D_%(A + I)D_% represents the normalized adjacency matrix, / is the identity matrix, and D is the degree matrix
of A + 1. X" represents the drug embedding matrix of the /-th hidden layer, with X© = X. W is the weight matrix of the /-
th GCN layer, and o is the ReLU function. To obtain the overall drug representation, various aggregator architectures can
be applied to aggregate node (atom) representations, such as mean or max pooling. In this work, we combine both mean
and max pooling by summing their outputs, resulting in the final molecular graph representation Zt € R, thereby better
preserving the high-level node representation.

Cross-modal attention fusion network

Cross-attention has shown outstanding performance in multimodal fusion and feature interaction tasks by guiding informa-
tion interaction between distinct modalities [24]. In this work, we obtain two types of miRNA embedding, derived from PLM
encoder (RNA-FM) that captures global contextual semantics Z-,, and produced by a multi-scale CNN encoder that cap-
tures local motif patterns Z8,. Similarly, for drugs, we generate drug embedding Z° and Z! from ChemBERTA-based trans-
former encoder representing chemical language features and GCN reflecting molecular topological structure, respectively.
To effectively integrate miRNA and drug feature obtained from PLMs and Intrinsic embedding extractors, we propose a
fusion module based on cross-modal attention.
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Taking the fusion of mMiRNA embedding Z‘,';, and Z; as an example, the following computations are performed. First,
query matrices are generated based on miRNA PLM embedding Z’,';,, then key and value matrices are derived from the
miRNA sequence embedding Z;:

h 79 h
h h
h h
V( )_Zs M()

—~ o~ o~
© 0 N
- = -

where W(CI;), W(Kh) W(Kh) are learnable parameter matrices, and h =1, ..., H corresponds to attention heads. Then, the atten-
tion score for a single head is calculated as:

.
Q(h) KM

Attenl) (28, Z5,) = softmax M Vi (10)
Vi

where “(-)7” denotes matrix transpose, and d, = dm/H. The outputs from all attention heads are concatenated to produce
the updated miRNA features:

MHAtten,, (Zh,, Z5,) = concat(Attenf,:) ,Attenf:)) W (1)

where W) is a learnable parameter matrix, and concat represents the concatenation operation. Furthermore, we employ
a residual connection and normalization to preserve original feature information.

Z5 = LayerNorm(Zp,, + MHAtten ) (12)

To ensure bidirectional information flow, we also compute MHAtten,, (anZ’,;) in parallel to obtain updated miRNA fea-
tures Z,¥. The two fusion outputs are then selectively aggregated:

Zn=25+2Zy (13)

where Z,, represents the final miRNA vector that fuses global contextual semantics and local motif patterns. Similarly,
given each drug’s ChemBERTA-based global features Z’,J and GCN-based topological features Z!, cross-attention is used
to obtain the final drug vector Z,. By adopting cross-attention fusion at the intra-modal level, our framework effectively
leverages the advantages of both PLMs and deep learning extractors, thereby providing more robust and informative
representations for MDR and MDS association prediction.

Optimization objective and classification

Utilizing the fused embeddings produced by the cross-modal attention module, we constructed a feed-forward predictor to
estimate the likelihood of interaction between a given miRNA and drug pair. The predictor is implemented as a FCNN that
receives the concatenated miRNA and drug fusion embeddings as input and outputs a probability score. Formally, given
the embedding Z,,,; and Z,; for the i-th miRNA and j-th drug, the prediction process is defined as:

¥j=FCNN (Z,1|Z,;) (14)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013968 February 10, 2026 8/ 17
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where “||” denotes vector concatenation, and FCNN(-) consists of a fully connected layer with activation function ReLU
and dropout. The output ; represents the predicted association probability of association between the miRNA and drug.
The model is trained using binary cross-entropy loss:

1 N N
L=—= 2 yilog (7) + (1= y;)log (1 - %) (15)
(i))eT

where y; represents the true association (resistance or sensitivity) between the i-th miRNA and j-th drug, and T is the
training set of MDR (MDS) pairs.

Experiments and results
Experimental setup

We implemented the proposed PLMF-MDA framework in Python using the popular deep learning library PyTorch and
trained the model with the Adam optimizer. Both the learning rate and weight decay were set to 5e-4. The implementation
relies on several key libraries, including PyTorch v2.1.2, PyTorch-Geometric v2.4.0, RDKit v2023.9.6, and NumPy v1.24 4,
All experiments were conducted on a system equipped with an RTX 4070 laptop GPU to accelerate model training and
inference. The final miRNA (drug) embedding dimension dm (dr) was set to 128. For sequence feature extraction, convo-
lutional kernels of sizes 2, 3, and 4 were used, while molecular graph features were extracted using a three-layer GCN.
Additional implementation details are available on GitHub: https://github.com/sheng-n/PLMFE-MDA.

To evaluate PLMF-MDA, we focus on two key metrics: area under the receiver operating characteristic curve (AUC)
and area under the precision-recall curve (AUPR). These metrics are particularly suited for assessing binary classification
tasks, which are prevalent in biomolecular interaction prediction. AUC measures the model’s ability to distinguish between
classes, while AUPR is especially informative for imbalanced datasets.

Performance comparison on benchmark datasets

We assessed the prediction performance of PLMF-MDA using 5-fold cross-validation (5-cv) on two manually curated
benchmark datasets, MDRdataset and MDSdataset. In our experiments, known MDR (MDS) associations served as pos-
itive samples, while unknown associations were considered candidate negatives. To ensure balanced sample sizes, we
randomly selected negative samples to match the number of positive samples from the negative pool. Both positive and
negative samples were then randomly split into 5 folds. In each round, 4 folds were used for training and the remain-
ing fold for testing. This procedure was repeated five times, with each fold serving as the test set once. PLMF-MDA was
benchmarked against several baseline methods, including GCNNMMA [25], SubMDTA [26], GraphDTA [27], and ML_DTI
[28]. All models were evaluated using 5-cv under identical conditions. Given that miRNA sequences are considerably
shorter than protein sequences, we fine-tuned the competing methods to better suit the miRNA-drug association predic-
tion task and optimize their performance.

GCNNMMA is a drug-miRNA association prediction model that employs GNN to learn molecular structural features of
drugs and CNN to capture sequence features of miRNAs.

SubMDTA is a drug-target affinity prediction model that uses graph isomorphism network and Bi-directional LSTM
to encode drug structural features and protein sequence features. In this study, protein sequences were replaced with
miRNA sequences to enable the prediction of MDR and MDS associations.

GraphDTA is a GNN-based drug-target binding affinity prediction model. It utilizes multiple GNN architectures and CNN
to extract drug structural and protein sequence representations, respectively.

ML-DTI is a sequence-based drug-target interaction prediction model that combines CNN encoder with mutual learning
to learn and refine sequence features from drugs and targets.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013968 February 10, 2026 9/ 17
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All models were evaluated using 5-cv under identical conditions. Given that miRNA sequences are considerably shorter
than protein sequences, we fine-tuned the competing methods to better suit the miRNA-drug association prediction task
and optimize their performance. The experimental results for PLMF-MDA and baseline methods are summarized in Fig 3,
leading to the following key observations and analysis: (1) PLMF-MDA consistently outperformed all baseline methods
on both benchmark datasets, achieving AUC and AUPR of 0.9222 and 0.9062 for the MDR association prediction task,
and 0.9301 and 0.9207 for the MDS association prediction task. (2) PLMF-MDA demonstrated a substantial performance
advantage over GCNMMA, SubMDTA, GraphDTA, and ML-DTI. This superiority can be attributed to PLMF-MDA’s multi-
source information fusion strategy, which substantially enhances model performance compared to approaches utilizing
only drug molecular graph and miRNA sequences. In summary, we hypothesize that the strong performance of PLMF-
MDA is due to the integration of PLM and intrinsic embeddings for miRNAs and drugs. Next, we further verify this hypoth-
esis through experiments in subsequent sections.

Contribution of the PLMs and intrinsic embeddings

PLMs generate node embeddings that capturing global semantic information to characterizes molecules. In contrast,
multi-scale CNN and GCN focus on extracting task-specific intrinsic features. Combining these two types of representa-
tions not only enhances the performance of existing networks but also improves the model’s generalizability in predicting
miRNA-drug associations involving unseen miRNAs and drugs.

To assess the contributions of PLMs and intrinsic embeddings, we designed six PLMF-MDA variants: (1) PLMF-MDA
(w/o-PLMM), which omits the PLM-based miRNA embedding extractor; (2) PLMF-MDA (w/o-PLMD), which omits the
PLM-based drug embedding extractor; (3) PLMF-MDA (w/o-MCNN), which omits the multi-CNN miRNA sequence embed-
ding extractor; (4) PLMF-MDA (w/o-GCN), which omits the GCN drug graph embedding extractor; (5) PLMF-MDA (w/o-
PLM), which omits both PLM-based miRNA and drug embedding extractors; and (6) PLMF-MDA (w/o-MCNN-GNN),
which omits both multi-CNN and GNN intrinsic embedding extractors. These ablation models were evaluated using 5-cv
on the benchmark MDRdataset and MDSdataset, with detailed performance results presented in Fig 4. The results show
that PLMF-MDA consistently achieves higher AUC and AUPR values compared to the six ablation variants, indicating that
both the PLMs and intrinsic feature extractors offer advantages for miRNA and drug representation. Importantly, although
the removal of any single embedding feature leads to a performance decrease, the overall reduction is modest. This sug-
gests that the features exhibit some degree of information overlap or correlation, allowing the model to maintain high pre-
diction accuracy even when partial information is lost, thereby demonstrating the robustness of the proposed architecture.

Performance of “orphan” drugs and miRNAs

To further evaluate PLMF-MDA under realistic and challenging conditions, we tested the model in cold-start (unknown-
node) scenarios. These scenarios simulate practical situations where a model must generalize to new drugs or miRNAs
whose associations were not observed during training. We considered two cold-start settings: (1) drug cold, test drugs are
absent from the training set. (2) miRNA cold: test miRNAs are absent from the training set. Here, known drug (miRNA)
associated to miRNAs (drugs) in the benchmark dataset exhibit a long-tail distribution (as shown in Fig 5). To obtain sta-
ble and meaningful evaluation results while still reflecting realistic scarcity, we selected test nodes from intermediate fre-
quency ranges rather than randomly. For the drug cold experiments, we selected drugs that are associated with 11-20
miRNAs. For the miRNA cold experiments, we selected miRNAs that are associated with 5-6 drugs.

The experimental results are presented in Table 2, which yields several observations: (1) The full PLMF-MDA consis-
tently outperforms most ablated variants in both cold-start settings, demonstrating that PLMs and intrinsic embedding sup-
ply complementary information that increases robustness to unseen nodes. (2) The drug cold is substantially more chal-
lenging than miRNA cold. This may be because the dataset covers only a limited set of drug categories, which insufficient
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Fig 3. Overall performance of PLMF-MDA and baseline methods on benchmark datasets.

https://doi.org/10.1371/journal.pcbi.1013968.g003

to fully characterize chemical diversity, while encompassing most human miRNAs. (3) Removing either molecular graph
features or PLM-based drug embeddings substantially degrades drug cold performance (e.g., removing molecular graph
features reduces MDR AUC from 0.6642 to 0.5833). This indicates that both graph topology and PLM-derived global
features are essential for generalizing to novel drugs. (4) Under miRNA cold-start settings, PLMF-MDA remains highly
robust, exhibiting only modest performance degradation. This suggests that RNA-level PLMs combined with multi-scale
CNNs capture generalizable sequence signals that transfer well to unseen miRNAs.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013968 February 10, 2026

1/17


https://doi.org/10.1371/journal.pcbi.1013968.g003
https://doi.org/10.1371/journal.pcbi.1013968

PLOR- Computational

Biology
W/o-PLMM w/0-GNN W/0-MCNN-GNN w/o-PLMM W/0-GNN w/0-MCNN-GNN
0.940 w/o-PLMD w/o-PLM PLMF-MDA 0.940 w/o-PLMD W/o-PLM PLMF-MDA
w/o-MCNN w/o-MCNN
0.9301
0.930 0.930
0.9227
0.9204 0.9207
0.920 0.9178 0.9183 0.920 0.9183
0.9145; 0.9139
09124 0.9131 0.91220.9120 § 9714
0.9102
0910 0.9076 0.910
0.9063
0.9005
0.900 0.900 0.8986 0.8983
0.8975
0 89550.8964
08917 oo 08001
0.890 0.890
0.8864
0.8851
0.880 0.880
AUC AUPR AUC AUPR
(A) MDRdataset (B) MDSdataset

Fig 4. Performance of PLMF-MDA and variants.
https://doi.org/10.1371/journal.pcbi.1013968.9g004

Analysis of main parameters

In this section, we systematically investigated the sensitivity of two key parameters: the convolution kernel k combinations
in multi-scale CNNs and the miRNA (drug) embedding dimension dm (dr). We conducted 5-cv experiments on the MDR-
dataset and MDSdataset datasets and reported AUC and AUPR values. Analysis of k. Convolutional kernels of vary-

ing scales determine the combination pattern of k nucleotides. Given the short length of miRNA sequences, this study
selected only four distinct kernel combinations: (1,2,3), (2,3,4), (3,4,5), and (4,5,6). The experimental results are shown in
Fig 6A and 6B. The combination of convolutional kernels has a certain impact on model performance. On both datasets,
the combination (2,3,4) achieved the highest AUC and AUPR. Analysis of dm (dr). Next, we tested the effect of the
embedding dimension of miRNA and drug, varying it from 32 to 1024. The results are shown in Fig 6C and €D. It can be
observed that performance initially improve with the embedding dimension before gradually declining. On one hand, lower
embedding dimensions may be insufficient to capture complex biomolecular features; on the other hand, excessively high
dimensions may lead to model overfitting and increase computational complexity. Ultimately, an embedding dimension of
128 was selected for both MDR and MDS association prediction tasks.

Identification of resistance and sensitivity-related miRNAs for docetaxel and gefitinib

Docetaxel (ID: DB01248) is a clinically effective antimitotic agent widely used in the treatment of various cancers, includ-
ing breast cancer, ovarian cancer, and non-small cell lung cancer. Previous research has shown that docetaxel resistance
and sensitivity are closely linked to a variety of human miRNAs [29]. To thoroughly validate the ability of PLMF-MDA to
uncover novel MDR and MDS associations, we first performed a focused case study on docetaxel. In this analysis, all
known miRNAs associated with docetaxel resistance or sensitivity were masked as unknown, thereby considering doc-
etaxel as a novel drug. The training set consisted of all remaining known MDR and MDS associations in the dataset. After
model training, PLMF-MDA generated resistance and sensitivity scores for each candidate miRNA in relation to docetaxel.
The top 10 miRNAs were then identified based on their predicted scores in descending order, as presented in Table 3.
Our findings reveal that among the top 10 miRNAs predicted to be associated with docetaxel resistance and sensitiv-

ity, 8 candidates were corroborated by databases. This result highlights the good prediction capability of PLMF-MDA in
identifying potential miRNA-drug associations.
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Gefitinib (ID: DB00317) is a first-line therapy for non-small cell lung cancer. However, its clinical efficacy is frequently
limited by the development of drug resistance. Research indicates that miRNAs may participate in gefitinib resistance
and sensitivity mechanisms in cancer through multiple pathways. Accordingly, we applied PLMF-MDA to predict miRNAs
associated with gefitinib resistance and sensitivity using the same evaluation strategy. As showed in Table 4, 7 of the top
10 predicted miRNAs were validated by existing databases. Overall, these results highlight the good prediction capability
of PLMF-MDA in identifying potential MDR and MDS associations.
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Table 2. Performance of PLMF-MDA under orphan drugs and miRNAs.

Drug cold miRNA cold

MDR MDS MDR MDS

AUC AUPR AUC AUPR AUC AUPR AUC AUPR
w/o-PLMM 0.6498 0.6343 0.5666 0.5741 0.9008 0.8851 0.9079 0.8901
w/o-MCNN 0.6019 0.6166 0.6092 0.5865 0.9055 0.8836 0.9066 0.8860
w/o-PLMD 0.6392 0.6355 0.6244 0.6198 0.9089 0.8860 0.9055 0.8868
w/o-GCN 0.5833 0.6072 0.5883 0.5544 0.9047 0.8825 0.9067 0.8871
w/o-PLM 0.5821 0.5822 0.5723 0.5821 0.9031 0.8862 0.9064 0.8826
w/0-MCNN-GNN 0.5968 0.5728 0.5978 0.5790 0.9028 0.8817 0.9018 0.8803
PLMF-MDA 0.6642 0.6534 0.6579 0.6352 0.9115 0.8977 0.9190 0.9037

https://doi.org/10.1371/journal.pcbi.1013968.t002
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Fig 6. Sensitivity analysis of main hyperparameters.

https://doi.org/10.1371/journal.pcbi.1013968.9g006

Discussion and conclusion

As disease patterns evolve and the demand for precision medicine continues to grow, drug resistance has emerged as a
significant challenge, profoundly affecting disease treatment and public health. Recent research has revealed that human
miRNAs are closely related to drug resistance and sensitivity, making the accurate identification of MDR and MDS associ-
ations a critical step toward the advancement of personalized medicine. Leveraging the vast capacity of PLMs addresses
the inherent limitations of finite biological datasets, enabling more robust and comprehensive prediction modeling. The
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Table 3. The top-10 predicted docetaxel resistance and sensitivity-associated miRNAs by PLMF-MDA.

Rank Resistance miRNAs Evidences Rank Sensitivity miRNAs Evidence

1 hsa-miR-17-5p ncRNADrug 1 hsa-miR-34a-5p ncRNADrug
2 hsa-miR-181a-5p ncRNADrug 2 hsa-miR-100-5p ncRNADrug
3 hsa-miR-106a-5p Unconfirmed 3 hsa-miR-200c-3p ncRNADrug
4 hsa-miR-146b-5p ncRNADrug 4 hsa-miR-145-5p ncRNADrug
5 hsa-miR-138-5p ncRNADrug 5 hsa-miR-181a-5p ncRNADrug
6 hsa-miR-21-5p ncRNADrug 6 hsa-miR-125b-5p ncRNADrug
7 hsa-miR-181b-5p ncRNADrug 7 hsa-miR-129-5p ncRNADrug
8 hsa-miR-1915-3p Unconfirmed 8 hsa-miR-20b-5p ncRNADrug
9 hsa-miR-100-5p ncRNADrug 9 hsa-let-7b-5p Unconfirmed
10 hsa-miR-146a-5p ncRNADrug 10 hsa-miR-9-3p Unconfirmed
https://doi.org/10.1371/journal.pcbi.1013968.t003

Table 4. The top-10 predicted gefitinib resistance and sensitivity-associated miRNAs by PLMF-MDA.

Rank Resistance miRNAs Evidences Rank Sensitivity miRNAs Evidence

1 hsa-miR-17-5p ncRNADrug 1 hsa-miR-126-3p ncRNADrug
2 hsa-miR-21-5p ncRNADrug 2 hsa-miR-200c-3p ncRNADrug
3 hsa-miR-106a-5p ncRNADrug 3 hsa-miR-34a-5p ncRNADrug
4 hsa-miR-181a-5p ncRNADrug 4 hsa-miR-630 Unconfirmed
5 hsa-miR-27a-3p ncRNADrug 5 hsa-miR-206 ncRNADrug
6 hsa-miR-100-5p Unconfirmed 6 hsa-let-7b-5p ncRNADrug
7 hsa-miR-126-3p Unconfirmed 7 hsa-miR-574-5p Unconfirmed
8 hsa-miR-27b-3p Unconfirmed 8 hsa-miR-16-5p Unconfirmed
9 hsa-miR-20b-5p ncRNADrug 9 hsa-miR-98-5p ncRNADrug
10 hsa-miR-29¢c-3p ncRNADrug 10 hsa-let-7f-5p ncRNADrug

https://doi.org/10.1371/journal.pcbi.1013968.t004

PLM leveraging vast data, effectively addresses the limitations of biological data. In this study, we introduced PLMF-MDA,
a novel multimodal framework for predicting MDR and MDS associations that harnesses the power of advanced PLMs.
PLMF-MDA utilizes the RNA language model RNA-FM and the molecular language model ChemBERTa-2 to enhance
global embedding extraction from biomolecules. More fine-grained nucleotide- and atom-level modal embeddings are cap-
tured by task-specific multi-scale CNN and GCN. A cross-modal attention fusion module effectively integrates the diverse
modalities relevant to miRNA-drug association prediction. Comprehensive evaluation on two manually curated bench-
mark datasets demonstrated that PLMF-MDA consistently achieves superior AUC and AUPR scores compared to base-
line methods, maintaining high prediction accuracy even on datasets containing previously unseen nodes. Ablation stud-
ies further confirmed the individual and combined contributions of the PLM and intrinsic embedding modules. Additionally,
a case study involving the anticancer drug docetaxel showcases the framework’s potential for discovering novel MDR and
MDS associations.

Despite PLMF-MDA's advantages in predicting miRNA-drug resistance and sensitivity associations, there are still cer-
tain limitations. First, the current model lacks interpretability, future work will focus on integrating biologically meaningful
features, such as conserved miRNA motifs and drug substructures, to enhance model transparency. Second, the cur-
rent model primarily incorporates miRNA sequences, drug SMILES, and molecular structural information, future exten-
sions may include additional molecular entities, such as genes and proteins, to further enrich prediction capabilities. In
summary, PLMF-MDA represents a promising approach for predicting miRNA-drug resistance and sensitivity associa-
tions, but requires further refinement and optimization to achieve broader applicability and long-term sustainability in drug
discovery.
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