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Abstract

Since the 1980s, semi-automated sperm motility analysis of phase contrast
microscopy videos has been used to measure and categorize sperm motility pat-
terns. Motility categories are determined from various kinematic parameters such as
Curvilinear Velocity (VCL) and Beat Cross Frequency (BCF). These measures ulti-
mately rely on the quality of the tracking for each individual sperm in the microscopy
video. However, common approaches to sperm tracking require sample dilution

and shortening the time window of observation (less than 1 to 2 seconds) to avoid
tracking errors that occur when sperm cross paths. The post-ejaculatory lifespan

of sperm can exceed several hours to days in some species, and long-term adap-
tive changes in motility pattern may be an important distinguishing factor for pre-
dictive modeling of sperm fertilizing competence. Improving the predictive value of
computer assisted semen analysis will require accurate tracking of sperm trajec-
tories over physiologically-relevant time scales and at the high cell densities typi-
cally found in semen. In this work, we identify a framework for accurately assess-
ing the quality of sperm trajectory tracking that is independent of standard motility
measures. We utilize cell tracking metrics adapted from the more common task of
tracking adherent somatic cells and propose modifications based on the unique chal-
lenges of sperm video-microscopy. We also provide a small dataset of microscopy
videos that includes 340 labeled sperm trajectories to allow for future comparisons
and developments. Finally, we demonstrate that variations in configuration can lead
to as much as a 30% improvement on metrics, showcasing their effectiveness at
analyzing tracking quality.
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Author summary

This report develops a computer vision framework to track individual sperm cells
in crowded (high cell-density) microscopy videos, with the goal of improving auto-
mated analysis of sperm motility patterns. The task of accurately analyzing sperm
movement is deceptively challenging due to the high rate of cell crossovers, an
issue that has long impeded long-term tracking of sperm trajectories. Here, we
introduce new evaluation metrics and provide a labeled dataset to serve as a
baseline for future improvements.

Introduction

Computer aided semen analysis (CASA) is used to assess male fertility as a func-
tion of motility pattern, cell count, and/or morphology for a wide range of species in
clinical, field, and research applications [1]. Inherent difficulty arises when analyzing
sperm phase contrast microscopy videos due to the tendency of cells to cross paths,
resulting in misclassification of assigned trajectories by common tracking algorithms.
For many years, tracking systems have relied on standardized kinematic parameters
[2] to measure and classify motility properties. These kinematic parameters include
curvilinear and straight-line velocity, beat cross frequency, maximum amplitude of
lateral head displacement, linearity, etc. These parameters, however, are ultimately
derivations of underlying tracking values and become erroneous if the tracking itself
is inaccurate. In order to mediate the misclassification of trajectories, it is common
for automated CASA systems to simply shorten the observation time window (video
frame number) and dilute cells to well below physiological densities.

The sperm of many internally fertilizing species exhibit relatively long lifespans and
undergo a series of post-ejaculatory physiological maturation steps, a process collec-
tively known as capacitation [3]. In mammals, capacitative changes are sensitive to
environmental chemistry and involve coordinated motility pattern changes, that are
strongly correlated with fertility competence, such as the transition from progressive
to hyperactive modes [3,4]. Despite the known importance of motility pattern transi-
tions during capacitation, the lack of accurate tracking algorithms has not permitted
direct time-series analysis of sperm behaviors, leaving a significant gap in the under-
standing of how changes in the motility patterns of individual sperm correspond with
fertility competence during this important maturation period. Nearly all available evi-
dence related to post-ejaculatory motility pattern changes are derived from ensemble
sampling of different sperm over time with measurement windows of less than one to
two seconds for trajectory analysis [5]. Importantly, recent analyses in bovine sperm
that used microfluidics devices for long term monitoring suggest that phase transi-
tions in motility pattern that oscillate over periods of several minutes may enhance
search efficiency for an egg [6,7]. These observations are further supported by
biophysical models that predict that phase transitions in motility pattern from high to
low persistence may optimize the statistical success of random search in confined
domains such as the female reproductive tract [8,9].
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The next generation of sperm analysis will require long-term tracking of each sperm in high density microscopy video.
Some reports have presented analysis techniques for sperm [10,11], but these reports have focused only on tracking of
isolated sperm. Robust tracking techniques will need to be developed for long-term and high-density video. Given recent
advances, these methods are likely to benefit from adoption of Al methods used in other video-microscopy applications
such as object identification, segmentation, tracking, and pattern classification. Though these methods are common in the
adherent cell tracking and lineage tracing spaces [12—15], there is currently no established baseline for determining the
effectiveness of tracking results specific to the needs of sperm motility analysis. Additionally, common metrics and analy-
ses established for general cell tracking tasks differ from the unique considerations that need to be addressed for sperm
microscopy videos. Any newly proposed metrics must account for ambiguities in sperm segmentation, possible crossover
of sperm from the 2D perspective, and other unique difficulties that are not common in other cell tracking problems such
as signal loss in the thin pixel-sparse flagellar structure. Additionally, there are few high-quality and fully-labeled training
datasets available, necessitating over-reliance on a priori assumptions for evaluating different tracking approaches.

In this report, we establish a framework for evaluating tracking algorithms for sperm microscopy videos. Common cell
tracking metrics are adapted to work within the unique context of sperm video-microscopy. Given predicted and ground
truth trajectories (represented in a simple .csv format), our bespoke Python program computes these metrics to evalu-
ate the performance of the tracker independently of derived kinematic outputs. Establishing this framework will allow for
continued development of advanced computer vision approaches that will dramatically improve this important task com-
pared with current approaches that generally depend on simple algorithms and calculations that are sensitive to arbitrarily
chosen parameter values (e.g., the smoothing window size in frame-by-frame path averaging) [2]. As a baseline, we pro-
vide five fully-labeled crowded microscopy videos of washed human sperm and perform standard trajectory analysis using
the common Trackpy library [16,17]. We report the associated metrics to support iterative improvement by the computer
vision community in the future. Additionally, we provide several examples using our own data and the publicly available
VISEM-Tracking dataset [18] to demonstrate how poor tracking assumptions lead to erroneous kinematic outputs. We
also demonstrate that improving tracking metrics improves kinematic outputs in these examples.

Materials and methods
Ethics statement

All procedures involving human subjects were approved by the Institutional Review Board of the Brody School of Medicine
at East Carolina University (study ID: UMCIRB 20-001862). All samples were collected in accordance with the Declaration
of Helsinki and with informed consent.

Data collection

We collect a microscopy video dataset of sperm movement. The setup was designed to control the density of the sperm
per video for effective trajectory labeling and analysis.

Participants. This study was approved by the East Carolina University Institutional Review Board and all subjects pro-
vided written informed consent prior to participating in research activities. Males ages 18-40 were included in the study.
Donors with self-reported sexually transmitted infections within the previous six months were excluded. Baseline fertility
was assessed via pre-screening health questionnaire and qualitative semen analysis following World Health Organization
Guidelines [5].

Chemicals and reagents. All chemicals and reagents used in this study were obtained from Sigma Aldrich (St. Louis,
MO).

Human sperm isolation. Semen samples underwent liquefaction at 37 °C for 30 minutes in a 5% CO, incubator.
Sperm were isolated from seminal plasma by differential centrifugation in 50% isotonic percoll. Sperm were then washed
by centrifugation in modified Biggers, Whitten, and Whittingham media with 3.5% bovine serum albumin. Cells were
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resuspended in BWW medium for analysis. Cell counts were performed using a hemocytometer. Samples were stored in
a 37 °C incubator with 5% CO, until imaging. All imaging was performed within 90 minutes of sample collection.

Phase contrast video microscopy. Samples were diluted in BWW medium for imaging. Phase contrast microscopy
was performed at 37 °C on a Zeiss Axervert.A1 compound light microscope fitted with a thermal stage (Carl Zeiss AG,
Jena, Germany). Cell suspensions were diluted to approximately 8 million cells per mL. Diluted suspensions were added
to a 20um glass depth chamber slide (Hamilton Thorne, Beverly, MA). Phase contrast microscopy videos were obtained
at 5X (0.25NA) objective or at 10X (0.25NA). Videos were recorded continuously for two minutes at nine frames per sec-
ond using Zeiss Zen Lite acquisition software with accompanying time-series data collection module. Raw video files were
stored as uncompressed .avi format. Videos for analysis were compressed using h.264 encoding.

Baseline tracker and labeling

For our baseline tracking pipeline, we use the Trackpy library in Python [17]. For a baseline detector, we use the parti-

cle detector locate function from the Trackpy library [17]. For all experiments, we use default parameters of an 11-pixel
diameter and 500 minmass. For a baseline tracker, we use the particle tracker link function from the Trackpy library [17].
Additionally, we use default parameters of 25 for the search range and 3 for the frame memory given the resolution, frame
rate, and max speed of the sperm in our videos.

To create the fully-labeled sperm trajectory data, the sperm microscopy videos were first fed through the baseline
Trackpy workflow. The resulting tracks ultimately had errors that needed to be corrected. To correct the mistakes, a tool
was built using OpenCV [19] in Python that allows a human labeler to manually modify track estimates. Simple mouse
and keyboard commands for adding, deleting, and merging trajectory data were included. The labeler program is included
as part of our code repository provided at github.com/CAS-ReproLab/Sperm_0Object_Tracking. A small dataset of five
30-second videos from different donors was hand labeled for our experiments. This provides 340 fully labeled sperm
trajectories.

Analysis of tracking algorithms - Kinematic parameter distributions

Semen characteristics are typically analyzed using a small set of standard kinematic parameters [5]. These outputs come
from Computer-Aided Semen Analysis (CASA), typically performed using commercial hardware/software systems. CASA
is often used to define and classify sperm motility and movement patterns [2]. CASA parameters are calculated based on
the observed x and y coordinates of each sperm’s nuclear centroid position in each video frame. In this work, we will focus
on the following kinematic parameters.

 Curvilinear Velocity (VCL): Measures the total distance traveled along the sperm’s actual curvilinear trajectory,
expressed in microns per second.

« Straight-Line Velocity (VSL): Calculates the shortest distance between the starting and ending points of the trajectory,
divided by the total time, also expressed in microns per second.

» Average Path Velocity (VAP): Represents the average velocity along a smoothed path of the sperm’s trajectory,
expressed in microns per second.

The tracking algorithms generally output distributions of these kinematic parameters, so variation in these parame-
ters provide insights into the quality of the tracking, which the three experiments in the Results and Discussion showcase.
When visualizing the distributions, we use 20 equally spaced bins between 0 and the maximum velocity value observed
among all algorithms. When comparing distribution from different algorithms, we use the Earth Mover’s Distance (EMD)
between the predicted kinematic parameters and the ground truth distributions from the hand labeled data. This is imple-
mented using the Wasserstein distance function in the SciPy Python library [20].
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Analysis of tracking algorithms - Direct metrics

Because of the indirect nature of the kinematic distribution comparison, this work proposes a set of metrics that allow for
direct quantitative evaluation of the tracking quality.

A microscopy video is made up of individual image frames. The task of effectively tracking sperm throughout the
entirety of the video can be separated into two distinct subtasks. First, the sperm must be detected in each individ-
ual frame. Second, individual sperm must be correctly identified and linked to corresponding sperm objects in subse-
quent frames. This process has many similarities to the general cell tracking problem in video-microscopy of adherent
somatic cells. Thus, many of the metrics used to evaluate the effectiveness of cell tracking may be adapted for sperm
tracking.

Of particular interest are metrics from two common benchmarks: The Multi-object Tracking Benchmark [13] and
the Cell Tracking Challenge [12]. General multi-object tracking has context outside of the biological realm and well-
established metrics have been used such as Multi Object Tracking Accuracy (MOTA) [21], Identification F1 Score (IDF1)
[22], and Higher Order Tracking Accuracy (HOTA) [23]. These general benchmarks are calculated based on both the
accuracy of the detections (true positives, false positives, and false negatives) and the number of correctly and incorrectly
linked objects between frames. For cell tracking, metrics are often defined based on the spatio-temporal graph represen-
tation of the trajectories [24]. Each metric can be thought of as the number of steps needed to reconstruct the ground
truth graph given the predicted graph. Metrics for the detection (DET) and linking (LNK) focus on accurate node and edge
placement respectively, with these two being combined to determine the overall tracking performance (TRA). Another
metric of interest is track fractions (TF) which describes the average length of trajectory that is correctly identified by a
predicted trajectory. Additional details providing the mathematical definitions of each metric are provided in S1 Appendix.
For this work, we implemented the tracking metrics using the py-ctcmetrics Python library [25]. For sperm tracking, the
pairwise matching of prediction labels and ground truth labels is calculated based on distance between sperm centroids
as discussed in the Results and discussion section.

Results and discussion
Tracking quality’s effect on standard sperm analysis outputs

Sperm velocity distributions from CASA can reveal important insights into sperm movement patterns and functionality. For
example, a bimodal distribution in a 5x magnification suggests the presence of distinct subpopulations, such as progres-
sive, non-progressive, and hyperactivated sperm, while an exponential distribution at a 10x magnification can indicate that
most sperm move slowly, with only a few reaching high velocities. Factors like sperm concentration, medium viscosity,
and magnification can shift these various distributions and affect the estimated proportions of motile sperm. Analyzing and
understanding these distributions helps explain how sperm movement is statistically distributed among cell populations
and how selection pressures may favor certain motility traits. Kinematic parameters and their associated motility pattern
classifications can be used in more complex analyses to determine if sperm are efficiently navigating their environment as
a measure of fertilizing potential.

Calculating these distributions, however, ultimately depends on the reliability of the underlying tracking software. Poor
tracking may give erroneous results in the calculated kinematic parameters. To demonstrate common tracking issues
that may occur, we provide three experiments that illustrate poor tracking assumptions and the effects on the calculated
kinematic parameters.

Experiment 1: A poorly configured tracker. Many tracking algorithms have default configurations that are used that
control properties such as maximum linking distance between frames. The default parameters that are used are unlikely
to be effective across the many types of sperm microscopy videos that are captured. However, researchers and techni-
cians may not have access to meaningful ways to tune these parameters based on their specific data depending on the
acquisition and analysis software configuration.
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For this first experiment, we demonstrate the effect of a poorly tuned tracker on one of our microscopy videos. For illus-
trative purposes, we intentionally handicap our baseline approach using the same Trackpy detect and tracking methods,
but using a search range of 7 pixels (the default parameter) instead of 25 which we have previously determined to be
optimal. This greatly limits the algorithm’s ability to track fast-moving sperm. Many inaccuracies in the tracking may occur
from just one poorly optimized hyperparameter. In particular, because of the frequently dropped fast-moving sperm, the
velocity distributions become highly skewed, drastically misrepresenting the true underlying behavior of the sperm popu-
lation. An example of the difference between the poorly predicted velocity distribution and the actual velocity distribution is
shown in Fig 1. This example is taken from video 3 in our dataset.

To quantify this difference, we use Earth Mover’s Distance (EMD) between the two distributions. For this example,
the EMD in VAP, VSL, and VCL between the poor prediction and the actual labeled data is 8.20, 5.43, and 7.97 respec-
tively. In comparison, the properly configured baseline has EMD values of 1.73, 1.48, and 1.89 respectively. This experi-
ment demonstrates the need for more effective tools and metrics for evaluating the quality of the underlying tracking and
improving confidence in predicted kinematic outputs.

Experiment 2: Short vs. Long timescale trajectories. It is a common practice to collect or aggregate sperm
microscopy tracking data over very short time intervals (~1-3 seconds) [2]. This practice is necessary to eliminate track-
ing errors that occur due to sperm moving near or over each other in the 2D image projection. Though this practice may

Predicted VAP Predicted VSL Predicted VCL
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Fig 1. Velocity distribution comparison. Example distributions for the Average Path Velocity (VAP), Straight Line Velocity (VSL), and Cuvilinear Veloc-
ity (VCL). If a particular tracking algorithm is unsuited to capture high-velocity or crowded trajectories (top), it will misrepresent the motility properties of
the sperm population (bottom).

https://doi.org/10.1371/journal.pcbi.1013955.g001
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alleviate some tracking errors, it comes at the cost of being unable to capture more complex, long timescale behaviors of
sperm [6,7]. Here, we analyze our labeled dataset which includes longer videos in comparison with standard CASA anal-
ysis (i.e., 30 seconds), enabling comparative analysis of both the short and long term movement behaviors among the
same group of sperm.

Two second subsets of the thirty second videos were compared and kinematic parameters were calculated. The 30-
second video provides much richer information for understanding more complex sperm movement behaviors. For exam-
ple, on the short timescale, progressively moving sperm look very similar, however, on longer timescales oscillating pat-
terns are observed with various phases and symmetries. As expected, the 2-second subsets fail to capture the underlying
long-term behavior of the sperm. A visual comparison between short-term and long-term trajectories is provided in Fig 2.

Additionally, we compared the output parameter distributions between the short-term and long-term trajectory ensem-
bles in Fig 3. As indicated, shorter videos may not capture long-term behavior of sperm that would more accurately reflect
their motility properties. This effect highlights limitations in the restricted timescales required by tracking issues in standard
CASA, as well as challenges associated with the kinematic parameter calculations themselves. Because VAP, VSL, and
VCL are generally represented using time-averages, the values tend to converge despite the visually apparent differences
in motility behaviors. Though some useful additional information may be gleaned from analysis of kinematic parameter
variance, this information is not part of the standard CASA analysis framework and is rarely reported [5].

Experiment 3: Bounding Boxes vs. Centroids. Multi-object tracking has seen a large amount of interest in the
computer vision field [26,27] and many Al based approaches are revolutionizing videomicroscopy analysis [15,28,29]. Al
based methods are in the early stages of application in solving the sperm tracking problem [11,30]. Several rely on the
publicly available VISEM-Tracking dataset [18] which used manual annotation to define bounding boxes around sperm
nuclei, similar to the YOLO frameworks [31] used frequently in other areas of computer vision.

As more of these bounding box trackers are used, an important issue arises. Since the bounding boxes are only
approximately centered on the sperm nuclear centroid position, the path of the bounding boxes may not accurately
portray the movement of the sperm, resulting in misleading positional data for sperm kinematic parameter calculations. A
visualization of the bounding box movement and the sperm nuclear centroid movement is shown in Fig 4.

1> AN
-~ .S

2-second Trajectories 30-second Trajectories

Fig 2. Sperm tracking example. Example visualization of sperm paths for a single video. In the short term, sperm trajectories present similar
information (left). In contrast, long-term tracking highlights evolving differences in motility behaviors (right).

https://doi.org/10.1371/journal.pcbi.1013955.9g002
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Fig 3. 2-second vs 30-second trajectory distributions. Short-term trajectory analysis tends to underestimate convergent parameter distributions that

result from longer time-averaging.

https://doi.org/10.1371/journal.pcbi.1013955.9g003

Fig 4. VISEM-tracking corrections. The publicly available and commonly used VISEM-Tracking dataset uses manually applied bounding boxes to
indicate the location of sperm nuclei. However, taking the center of these bounding boxes (shown in red) does not necessarily correspond to the centroid
of the sperm heads (shown in green), calculated using the Gaussian Blob method from the Python Trackpy library [17]. Trackpy was used to correct the
nuclear centroid locations given by VISEM-Tracking, making the measured motility behavior much more accurate.

https://doi.org/10.1371/journal.pcbi.1013955.9004
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For this experiment, we used the VISEM-Tracking dataset and extracted head centroid placement in each bounding
box. This was done using the baseline Gaussian Blob method provided by Trackpy followed by taking the presented x,y
coordinates that fell within each bounding box. If zero or multiple coordinates were present in a box, the bounding box
center was taken to avoid ambiguity, allowing for correction of nuclear centroid placement throughout the entire modified
VISEM-Tracking dataset.

As expected, the bounding box center vs the head centroids give different velocity distributions. An example is given
in Fig 5. The average EMD for each kinematic parameter across the 20 video dataset was also computed. The VSL EMD
remained small with an average value of 1.1. This was expected because VSL is simply the time-averaged Euclidean dis-
tance from the starting location and ending location in the video segment. In this case, each sperm still approximately
started and ended at the same positions. The VAP and VCL, however, saw dramatic changes between the corrected
and non-corrected versions, with average EMD values of 11.8 and 53.0 respectively. These kinematic parameters were
expected to be more susceptible to tracking method because even small inaccuracies in position accumulate as noise
over time.

Evaluating sperm detection and tracking

As we have demonstrated with these simple examples, there is a substantive need to establish standardized metrics that
can quantitatively compare and evaluate the performance of sperm tracking algorithms. We now turn to discussion of
some candidate metrics and justify their use for the unique challenges associated with sperm video-microscopy.
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Fig 5. Velocity distribution comparison between bounding box centers vs Trackpy centeroids. Using Trackpy to correct the centers of the
bounding boxes leads to differences in the resulting kinematic parameter distributions.

https://doi.org/10.1371/journal.pcbi.1013955.9g005
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In the Methods section, we described common cell and multi-object tracking metrics. These common tracking metrics
provide a foundation for evaluating and comparing the quality of sperm tracking algorithms. Notably, sperm tracking does
present some unique differences compared with standard cell tracking that must be considered and properly accounted
for. We will describe specific considerations for each of these differences in the following subsections.

Unique considerations for evaluating sperm detection. Unlike most cells, sperm are incredibly thin, typically rang-
ing from 0.8 to 0.01 wm along the flagellar length. Even at high magnifications and resolutions, the flagellar width may
only occupy a few pixels at its width, but may be many pixels long. In most somatic cell-tracking detection metrics, it is
assumed that a segmentation or a bounding box is provided during the detection process. This is needed to accurately
compute the Jaccard similarity scores (Intersection over Union) and match predicted trajectory IDs to the reference IDs
[12]. However, relying on these common similarity scores for sperm trajectories will likely lead to inconsistent association
scores due to the ambiguity in labeling of the sperm pixels. Additionally, there are multiple confounding factors that can
mislead the detection process when compared to somatic cell-tracking algorithms:

+ Variations in brightness of pixels within a video can make some sperm more visible than others and make sperm out-
lines unclear.

» Dust, dead cells, and other debris in the video may appear like sperm, but ultimately do not move within the video.

« Sperm may enter and exit the frame, and sperm near boundaries of the video may be partially missing in shape.

» Sperm pixels can overlap as they swim above or below each other, making them appear as one or more sperm of
irregular shape.

+ Labeling programs may be inconsistent in the use of points, bounding boxes, or segmentations for identifying sperm, as
well as differences in the labelers that are used to isolate the whole cells, flagellum, or nucleus only.

Examples of the unique computer vision challenges associated with phase contrast microscopy videos of sperm are
shown in Fig 6.

To combat these issues and establish correct predicted-to-actual ID linking for all types of sperm trajectory videos,
it is reasonable to represent sperm detection using a single point rather than a segmentation or bounding box. The x,y
coordinate is approximately centered on the head of the sperm which we call the sperm centroid (since most of the mass
is located in the sperm nucleus). Localization between the actual and predicted point can be quickly computed using

Brightness Variations Border Cutoff Overlap

Fig 6. Sperm detection issues. Example issues with detection of sperm. Variations in brightness and dead cells in view (left), partially missing sperm
near boundaries (middle), overlap and irregular shapes (right).

https://doi.org/10.1371/journal.pcbi.1013955.9g006
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the Hungarian algorithm with a distance cutoff. This association step based purely on centroid location is vital for effec-
tive evaluation since all standard tracking metrics require a consistent pairing mechanism between prediction labels

and ground truth labels. For this work, the standard multi-object metrics (MOTA, IDF1, HOTA) and cell tracking metrics
(DET, LNK, TRA, TF) are modified to include this distance-based association step. Additional details are described in the
Methods section and S1 Appendix.

Unique consideration for evaluating sperm tracking. Once sperm have been identified in all frames of the video,
they must be properly linked together to make a complete tracking of individual sperm. Some approaches may also rely
on detections in previous frames to update detections in future frames and link in a forward fashion. Regardless of the
approach, the goal is to assign each sperm with a unique identifier that it keeps throughout the whole microscopy video.
Doing so enables drawing the trajectory path of each sperm and calculating the kinematic parameters.

Tracking sperm presents unique challenges compared to most cell tracking problems. First, many sperm move very
quickly compared to the spatial resolution of most microscopy videos. Even during high FPS recordings, some sperm may
move multiple pixels per frame. For tracking algorithms, this can cause frequent dropout and relabeling of sperm in sub-
sequent frames. Second, as mentioned previously, sperm paths can cross over each other as one sperm swims above
another. This crossover can cause an incorrect path labeling, where the two sperm swap trajectory labels in subsequent
frames. These two issues are illustrated in Fig 7.

In addition to these challenges, immotile sperm and debris may be of interest for automated counting, but are not of
interest for more computationally intensive motility analysis and may mislead performance benchmarking of the track-
ing algorithm. Immotile sperm are easier to identify in each subsequent frame compared with motile sperm and may dis-
proportionally inflate tracking metrics for a given algorithm. Additionally, some nonmoving dust and debris may look like
sperm, and be incorrectly labeled in reference datasets. Finally, failure to capture long-timescale movement patterns is
another major challenge for sperm motility analysis. Improved analysis of long-timescale behavior is essential to bet-
ter understand the complex process of capacitation, because it involves heterogeneous context-dependent changes in
motility pattern that are either not captured, or are misled, by current motility analysis algorithms [3,4,32,33].

Effective tracking algorithms must be able to account for these confounding factors and capture objects moving at vari-
able speeds over longer timescales. When labeled ground truth data is present, the standard tracking metrics are used in

Dropout Crossover

Fig 7. Sperm tracking issues. Example visualization of sperm paths issues. A single sperm may appear to dropout for a few frames, causing the
algorithm to think that new sperm are appearing in and out of view (left). Two sperm that intersect may cause the path of one sperm to be assigned to
another, causing a straightline path to be incorrectly marked as jagged (right).

https://doi.org/10.1371/journal.pcbi.1013955.9007
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this report. However, we also propose an additional filtered version of these metrics which removes non-moving objects
and very-short trajectories. For both the ground truth and predicted paths, a pre-processing step was used to remove all
trajectories that do not spatially extend past a small radius of (¢). This removes all trajectories for nonmoving or nearly
nonmoving sperm, giving more weight on the metric to faster moving sperm and longer-term trajectories.

Evaluation on the dataset.

With the evaluation process established in the previous section, the detection and tracking metrics are presented for a
baseline tracking method with a small dataset of five microscopy videos that were collected from separate healthy human
sperm donors. For comparison, we also present results from a re-analysis of the publicly available VISEM-Tracking
dataset [18]. In the following subsections, we present the outputted metrics for the baseline Trackpy method. Additionally,
we demonstrate how the metrics can indicate the reliability of standard motility outputs.

Metric computations. For our dataset containing videos with manually corrected trajectories, we use the baseline
Trackpy library and report the common cell tracking metrics for five videos. The ID association process described previ-
ously was used. We compared results with and without filtering the non-moving objects in the calculations. The results
are shown in Table 1. The results for VISEM-Tracking are given in Tables 2 and 3. For all metrics, a higher score indicates
better performance and 1.0 is the highest score. The outputted metrics serve as a baseline for future tracking algorithms
to compare against.

Relating tracking to motility outputs. The presented metrics can determine the effectiveness of the tracking, where
improving on the metrics also improves confidence in the calculated motility parameters. To demonstrate this, we conduct
the following analysis.

First, we present the detection and tracking metrics, comparing the suboptimal (default) configuration to the optimal
configuration for the Trackpy approach after filtering. These results are presented in Table 4. The data support the con-
clusion that the default configuration significantly under-performs in every metric, indicating that the metrics adequately
represent the ability to track fast-moving objects.

Second, we present the computed motility outputs for the predictions from the suboptimal and optimal configurations,
as well as the actual outputs from the hand labeled data. These distributions are shown in Fig 8. As can be seen, these
motility outputs are drastically affected by the tracking parameters. Specifically, the suboptimal approach cannot track
the trajectories of fast moving sperm, greatly skewing the resulting distributions, ultimately affecting the predicted motility
categories.

We also output Earth Mover’s Distance (EMD) scores for each kinematic parameter for the suboptimal and optimal
approach when compared to the ground truth. These scores are provide in Table 5. As expected, the handicapped
approach has larger EMD scores, indicating its inability to provide accurate kinematic parameters. Overall, this indicates
the wide variation in possible tracking consistency between algorithms and configurations and the need for open tracking
metrics to evaluate the reliability of these motility values.

Table 1. Detection and tracking results.

Type\Metrics Count DET LNK TRA TF MOTA IDF1 HOTA
Unfiltered 340 0.980 0.748 0.950 0.887 0.886 0.857 0.876
Filtered 264 0.959 0.749 0.932 0.872 0.814 0.811 0.834

Table notes: Common multi-object and cell-tracking metrics computed for the sperm trajectories in the dataset. For all metrics, a higher score indicates
better performance and 1.0 is the highest score. The baseline Trackpy approach is measured against the human-labeled and corrected data. Addition-
ally, the results are also compared before and after filtering the predictions and labels to exclude nonmoving objects, better capturing the trackers ability
to follow fast moving sperm.

https://doi.org/10.1371/journal.pcbi.1013955.t001
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Table 2. Detection and tracking results - VISEM-Tracking (Bbox).

Video Count DET LNK TRA TF MOTA IDF1 HOTA
1 57 0.766 0.881 0.781 0.605 —0.366 0.472 0.528
12 117 0.773 0.748 0.769 0.392 0.583 0.526 0.555
13 73 0.854 0.855 0.854 0.570 0.779 0.770 0.760
14 8 0.642 0.974 0.685 0.748 —2.374 0.331 0.425
15 42 0.668 0.882 0.696 0.827 -1.269 0.422 0.499
19 51 0.358 0.846 0.421 0.449 —4.240 0.176 0.282
21 80 0.808 0.918 0.822 0.653 —-0.251 0.534 0.574
22 37 0.681 0.958 0.717 0.764 -1.835 0.334 0.434
23 11 0.133 0.867 0.228 0.880 —6.469 0.210 0.342
24 1M1 0.821 0.844 0.824 0.511 0.481 0.599 0.633
29 11 0.507 0.779 0.543 0.545 —2.087 0.310 0.411

30 54 0.801 0.918 0.816 0.716 —0.289 0.514 0.571

35 63 0.669 0.798 0.686 0.330 —0.958 0.215 0.301

36 135 0.810 0.897 0.821 0.711 —-0.057 0.440 0.511

38 46 0.906 0.937 0.910 0.693 0.569 0.710 0.744
47 24 0.534 0.841 0.574 0.458 —2.505 0.295 0.374
52 48 0.693 0.874 0.716 0.739 -0.992 0.402 0.476
54 79 0.787 0.921 0.804 0.676 —0.569 0.486 0.550
60 52 0.780 0.849 0.789 0.761 0.089 0.617 0.640
82 72 0.832 0.880 0.838 0.782 0.313 0.653 0.685

Table notes: Resulting metrics of our baseline approach when run on the VISEM-Tracking dataset using the

https://doi.org/10.1371/journal.pcbi.1013955.t002

Table 3. Detection and tracking results - VISEM-tracking (centroid).

original bounding box centers as reference.

Video Count DET LNK TRA TF MOTA IDF1 HOTA
1 57 0.852 0.907 0.859 0.718 —-0.275 0.496 0.558
12 117 0.950 0.866 0.939 0.722 0.819 0.599 0.669
13 73 0.965 0.900 0.957 0.818 0.931 0.835 0.868
14 8 0.645 0.977 0.688 0.855 —2.373 0.343 0.427
15 42 0.758 0.976 0.786 0.851 -1.311 0.432 0.507
19 51 0.477 0.884 0.530 0.555 —4.095 0.195 0.306
21 80 0.855 0.934 0.865 0.780 —-0.229 0.532 0.588
22 37 0.705 0.974 0.740 0.824 —-1.883 0.335 0.438
23 11 0.152 0.992 0.261 0.842 —7.420 0.211 0.343
24 1M1 0.901 0.728 0.878 0.678 0.589 0.645 0.689
29 1 0.727 0.993 0.762 0.918 -1.683 0.401 0.498
30 54 0.857 0.965 0.871 0.884 —0.285 0.526 0.597
35 63 0.799 0.855 0.806 0.530 -0.727 0.265 0.368
36 135 0.861 0.806 0.854 0.729 —0.012 0.441 0.521
38 46 0.950 0.968 0.953 0.855 0.624 0.720 0.767
a7 24 0.636 0.956 0.678 0.825 —2.417 0.317 0.413
52 48 0.760 0.873 0.774 0.793 —0.917 0.419 0.493
54 79 0.843 0.962 0.858 0.805 —-0.502 0.499 0.569
60 52 0.907 0.977 0.916 0.926 0.231 0.667 0.695
82 72 0.919 0.923 0.920 0.867 0.397 0.684 0.722

Table notes: Resulting metrics of our baseline approach when run on the VISEM-Tracking dataset using the corrected centroids as reference.

https://doi.org/10.1371/journal.pcbi.1013955.t003

Implications for future sperm analysis

Recent advances in computer vision are revolutionizing fields that rely on automated image analysis such as healthcare,
self-driving vehicles, and manufacturing. Adaptation of computer vision algorithms and machine learning models from
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Table 4. Detection and tracking ablation.

Config\Metrics DET LNK TRA TF MOTA IDF1 HOTA
Suboptimal 0.692 0.548 0.673 0.610 0.608 0.647 0.691
Optimal 0.959 0.749 0.932 0.872 0.814 0.811 0.834

Table notes: Comparison of tracking and detection metrics between the suboptimal configuration and the optimal configuration on the filtered data of 264
trajectories. The suboptimal configuration is the default configuration for Trackpy parameters which fails in tracking fast-moving objects, showcasing the
metrics effectiveness in the sperm tracking task with differences ranging from 15% to 30% between configurations.

https://doi.org/10.1371/journal.pcbi.1013955.t004
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Fig 8. Motility outputs. The outputs for VAP, VSL, and VCL on the suboptimal configuration, optimal configuration, and actual hand labeled and filtered
data for across the set of sperm trajectories. As can be clearly seen, the suboptimal approach fails to capture any of the higher velocities in the dataset.

https://doi.org/10.1371/journal.pcbi.1013955.g008

Table 5. Earth mover’s distance.

Parameter Suboptimal Optimal

VAP 7.21 3.40

VSL 3.38 2.79

VCL 7.19 3.59

Table notes: Comparison of Earth Mover’s Distance between the suboptimal and optimal approach

when compared to the actual hand labeled data.

https://doi.org/10.1371/journal.pcbi.1013955.t005

these fields has dramatically benefited microscopy applications in cell biology due to improved cell location, segmen-
tation, and tracking but has been largely restricted to adherent somatic cells in subculture. Though CASA has proven
extremely useful in basic research and agricultural breeding programs, its use in clinical andrology laboratories remains
limited because it does not yet outperform manual semen analysis by trained lab technicians. Here, we identified sev-
eral key issues with current sperm tracking algorithms and kinematic calculations employed in CASA. One maijor barrier
to improvement is a lack of standardized metrics to compare tracking performance that conform to the unique challenges
inherent in phase contrast microscopy of motile sperm. We suggest several methods, borrowed from other applications
in computer vision, to facilitate quantitative comparison of sperm tracking program performance. Additionally, we high-
light important issues that arise from inaccurate labeling methods in common training datasets, such as the bounding box
method used in the publicly available VISEM-tracking dataset which unintentionally resulted in significant short timescale
noise [18]. Our report highlights two major issues: 1) CASA could be much more powerful than it currently is but requires
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specialized metrics to compare performance among algorithms and models, and 2) there is a conspicuous need for high
quality training datasets with accurate labels.

Enhanced CASA holds significant potential for improving fertility analysis, largely because of its automation and stan-
dardization, which remains problematic for analyses that rely on the subjective performance of laboratory technicians
[34,35]. Despite its potential, CASA has historically underperformed in its predictive value for assisted reproductive ther-
apies and diagnostic tests, often necessitating additional functional assays [36]. Currently, CASA is most useful for rela-
tively extreme phenotypes such as low sperm counts (oligozoospermia), completely immotile sperm (asthenozoospermia),
or obviously malformed sperm (teratozoospermia) but lacks discriminatory ability when sperm function or morphology is
subtle or context dependent [37]. For example, sperm motility patterns in non-viscous fluids differ significantly from more
physiologically relevant viscous or visco-elastic fluids [6]. Sperm that appear to move normally in the non-viscous fluids
recommended in the WHO standard, may fail to move appropriately in visco-elastic fluids characteristic of the female
reproductive tract or the vestments of the egg.

Another important limitation to CASA analysis is that default tracker configurations may significantly alter results, as
demonstrated in this report in experiment 1. Sperm are typically classed into motility types (e.g., progressive, hyperac-
tive) for fertility analysis, but apparent motility profile of a sperm sample can change substantially depending on algorith-
mic parameters such as search radius, maximum frame gap for object loss, or trajectory linking rules [17]. These choices
determine whether a moving object is linked into a continuous track or fragmented into multiple short tracks, which in turn
alters the derived kinematic parameters and even whether a sperm trajectory is accurately assigned. Tracking program
defaults can be a significant strength of CASA, because they enable far more rigorous standardization than lab techni-
cians can provide. However, if applied without quantitative measures that quantify program performance, two laborato-
ries analyzing the same dataset may arrive at different results simply due to differences in tracker configuration [38]. A
general lack of transparency regarding algorithmic configuration limits CASA reproducibility and undermines comparisons
across studies. Addressing this issue will require not only standardized reporting of tracker settings but also the develop-
ment of sperm-specific benchmarks that define biologically appropriate parameter ranges, analogous to hyperparameter
optimization in broader machine learning practice [39].

Another important source of variability in CASA output is the timescale of analysis. Most CASA implementations rely
on relatively short tracks, often spanning less than one to two seconds of observation [5]. This introduces two major prob-
lems: 1) sperm motility is summarized via ensemble averaging despite observation over a period of time that represents
only a miniscule fraction of the time required to fertilize an egg, and 2) this practice produces noisy estimates of kinematic
parameters because the variance is computed for the sperm sample, rather than individual trajectory time-series [2]. Addi-
tionally, short timescale observations may be computationally convenient, but are biologically misleading, since sperm
motility is highly dynamic and characterized by transitions between progressive movement, periods of quiescence, and
hyperactivation that unfold over much longer timescales [6,7]. Capturing the biological variation in these transitions may
yield more stable kinematic measures, but doing so also presents practical challenges: sperm frequently cross paths or
move out of focus in dense samples leading to limited track continuity. As a result, CASA systems often prioritize feasi-
bility over biological fidelity by diluting sperm samples or by tracking for shorter periods of time - compromises that likely
contribute to the limited predictive power for more subtle fertility outcomes. These timescale dependent tracking limita-
tions are closely intertwined with the methods used for cell detection, since reliable long-term tracking ultimately depends
on the accuracy and stability of the underlying detection step. Improved methods are an absolute necessity for CASA to
reach it full predictive potential.

The accuracy of CASA output ultimately depends on the method of detection, since tracking quality cannot exceed
the fidelity of the initial object identification. Most current systems and training datasets, such as VISEM-tracking, rely
on bounding-box based approaches [18]. While computationally efficient, these methods introduce substantial error:
bounding boxes are sensitive to orientation changes and background noise, and inaccurately placed bounding box
centers creates artifactual noise in kinematic parameter calculations as demonstrated in experiment 3 of this report.
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These limitations are particularly problematic for the phase-contrast imaging typical of CASA due to ‘halo’ effects which
complicate bounding box placement. In dense samples, overlapping trajectories further exacerbate misidentification, lead-
ing to spurious tracks and inflated motility metrics. Overcoming these challenges will require more sophisticated detec-
tion methods, potentially combining deep learning—based segmentation with physics-informed constraints on trajectory
smoothness and flagellar-beat periodicity. This approach has been applied previously, but remains relatively low through-
put and lacks an open-source codebase limiting its application [40]. Framing detection, tracking, and timescale of analysis
as interdependent problems will provide a clear path toward next-generation CASA systems with high predictive value for
use in clinical andrology and elsewhere.

Several limitations of this study should be acknowledged. First, our labeled dataset is relatively small and is sim-
ply intended as a proof-of-principle to highlight the importance of long timescale tracking. Additionally, the samples do
not represent complex changes that sperm undergo during in vitro capacitation, nor was fertility of the samples directly
assessed. The ground truth trajectories were derived by manual correction of Trackpy outputs, an approach that intro-
duces potential bias from the initial algorithm and emphasizes head centroids rather than full cell morphology. Imag-
ing constraints, including relatively low frame rates (necessitated by tracking duration), low magnification, and phase-
contrast artifacts also contribute noise that propagates into both kinematic parameters and tracking metrics. In addi-
tion, while we adapted well-established multi-object tracking metrics and distributional comparisons, these measures
may not fully capture sperm-specific features such as flagellar beat periodicity or long-term motility pattern phase transi-
tions linked to capacitation. Despite these limitations, the framework presented here provides a transparent and exten-
sible foundation highlighting the importance of releasing open data and code in standardized formats. Our aim is to
enable iterative improvements by the community and to encourage future studies that address these challenges through
larger, more diverse datasets, multimodal imaging, and metrics tailored specifically to the unique challenges of sperm
video-microscopy.

Conclusion

Taken together, these results point toward the need for a new framework in CASA that treats detection, tracking config-
uration, and timescale of analysis in an interconnected way. The limitations highlighted in this report such as variability
in tracker configuration, short observation windows, and imprecise detection methods are fundamental barriers to repro-
ducibility and predictive value of CASA. Overcoming them will require three key advances: 1) the establishment of stan-
dardized benchmarks and biologically relevant metrics to compare algorithms, 2) the creation of high-quality accurately
labeled training datasets that reflect the unique challenges of sperm morphology and imaging artifacts, and 3) the devel-
opment of integrated pipelines that combine machine learning approaches with physics-informed constraints on sperm
motion. Such a framework would transform CASA from a descriptive tool that reports kinematic averages into a predic-
tive system capable of informing clinical decision-making and improving outcomes in assisted reproduction. By adopt-
ing open-source, transparent codebases and fostering reproducible methods, CASA could finally deliver on its promise
to standardize semen analysis in the same manner that computer vision has revolutionized diagnostics in radiology and
other fields.

With this goal in mind, we make our code publicly available for others to use and run their methods on. The source
code can be found at github.com/CAS-ReproLab/Sperm_Object_Tracking. For a given video, trajectory data can be
stored in a single comma-separated-values file (.csv). This .csv file contains x,y coordinates, a sperm label, and frame in
each row. This provides an efficient, human-readable, and unambiguous way of storing predictions and/or ground truth
data. Once the prediction data is provided in a standard format, the metrics can be computed to evaluate its performance
as previously described.

In future work, we aim to expand our comparisons to additional datasets such as MlaMIA-SVDS [41]. Each dataset
stores the trajectory information in a different way, so tools will need to be developed to convert between representations.
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Additionally, though the segmentation is not ultimately needed for trajectory tracking, obtaining full sperm outlines can be
helpful for biological outputs such as flagellar waveform analysis. Additional baselines and metrics can be established to
properly account for these use cases.

Supporting information

S$1 Appendix. Mathematical formulation of common cell tracking metrics.
(PDF)
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