
i
i

“pcbi.1013912” — 2026/1/29 — 17:31 — page 1 — #1 i
i

i
i

i
i

OPEN ACCESS

Citation: Ji T, Yang B, Wang M, Ji H,
Yang H, Liu Y (2026) AugGCL:
Multimodal graph learning for spatial
transcriptomics analysis with enhanced
gene and morphological data. PLoS
Comput Biol 22(1): e1013912. https://doi.
org/10.1371/journal.pcbi.1013912

Editor: Michael Hawrylycz, Allen Institute
for Brain Science, UNITED STATES OF
AMERICA

Received: September 9, 2025

Accepted: January 12, 2026

Published: January 23, 2026

Copyright: © 2026 Ji et al. This is an
open access article distributed under the
terms of the Creative Commons
Attribution License, which permits
unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: The
datasets used in this study are publicly
available. The first dataset consists of
human dorsolateral prefrontal cortex data,

RESEARCH ARTICLE

AugGCL: Multimodal graph learning for spatial
transcriptomics analysis with enhanced gene and
morphological data
Tengfei Ji

 

 

, Bo Yang
 

 

*, Meng Wang, Hong Ji, Huazhe Yang, Yizhuo Liu

School of Computer Science, Xi’an Polytechnic University, Xi’an, Shaanxi, China

* yangboo@stu.xjtu.edu.cn

Abstract

Spatial transcriptomics enables the measurement of gene expression in intact tis-

sues. Despite this, reconstructing anatomically accurate spatial domains remains

challenging, primarily due to expression sparsity, complex tissue architecture that is

characterized by sharp boundaries and long-range continuity, and weak spatial sig-

nals. Traditional pipelines typically rely on expression-driven clustering and spatial

smoothing, which underperform at boundaries and in sparse regions while neglect-

ing morphological information. To address these challenges, AugGCL is proposed,

an augmented graph-convolutional learning framework that enhances spatial struc-

ture decoding and gene expression reconstruction through targeted augmentation of

both gene and image data. A key component of AugGCL is neighborhood information

aggregation mechanism, which integrates expression similarity and spatial proximity

to construct a weighted graph and an enhanced expression matrix, addressing spar-

sity without sacrificing boundary clarity. Additionally, a two stream weighted graph

convolutional network jointly models refined gene features and image-derived mor-

phological information, with image-aware auxiliary reconstructions enhancing weak

spatial signals and sharpening boundaries. On datasets from the human dorsolateral

prefrontal cortex, breast cancer, and mouse embryo, AugGCL outperforms baseline

methods across multiple metrics, showing robustness and generalization across a

range of datasets. Downstream analysis validated the reliability of the method, con-

firming its effectiveness in cell annotation, functional enrichment, and mechanistic

studies. AugGCL generates clearer spatial domains and significantly advances the

application of spatial transcriptomics in tissue structure and disease research.
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captured using 10× Visium technology,
and can be accessed at http://research.
libd.org/spatialLIBD/. The second dataset
includes spatial transcriptomic data from
mouse embryos at E9.5, obtained via
Stereo-seq technology, and is available
for download at https://db.cngb.org/
stomics/mosta/. The third dataset includes
human breast cancer data, sourced from
the public 10× Genomics database, and
can be downloaded from https://www.
10xgenomics.com/datasets/human-
breast-cancer-block-a-section-1-1-
standard-1-1-0. Additionally, the AugGCL
source code and reproduction scripts are
publicly available at GitHub: https://github.
com/Jtfboom/AugGCL.git.

Funding: This study was partially
supported by the National Natural Science
Foundation of China (6210023056 to HJ)
and the Natural Science Basic Research
Program of Shaanxi (2024JC-YBMS-473
to BY). Additionally, this research was
supported by the Scientific and
Technological Program of Xi’an
(24GXFW0016 to MW) and the Graduate
Innovation Fund of Xi’an Polytechnic
University (chx2025026 to TJ). The funder
6210023056 contributed to the study
design, data collection and analysis,
publication decision, and manuscript
preparation. The funder
2024JC-YBMS-473 supported the study
design, data collection, and analysis. The
funder 24GXFW0016 supported the
technical implementation and data
analysis of the study. The funder
chx2025026 primarily supported the data
collection and analysis work.

Competing interests: The authors have
declared that no competing interests exist.

Author summary

Spatial transcriptomics is an important technique for revealing tissue structure and
disease mechanisms. However, existing spatial domain identification methods
have not fully exploited the spatial information embedded in the data, especially
when it comes to detailed exploration of tissue structure. This study presents a
new tool for spatial domain identification, which makes full use of various types of
spatial transcriptomic data from multiple perspectives to accurately identify real
cell groupings. The method significantly improves spatial domain recognition accu-
racy by integrating gene expression with tissue morphology analysis. Experimental
results show that this tool not only accurately identifies spatial domains but also
provides strong support for the comprehensive exploration of biological tissue
structure. On this basis, a series of downstream analyses, including volcano plot
generation, functional enrichment analysis, and gene heatmap visualization, were
performed. These analyses not only validated the effectiveness of the method but
also revealed the functional characteristics and expression patterns of cells within
spatial domains. This step further confirmed the broad application potential of the
method in cell type annotation, functional enrichment, and mechanistic research,
highlighting its significant potential in advancing biological and disease research.

Introduction

Recent advancements in spatial molecular imaging have opened new avenues
for studying tissue architecture and gene expression at the subcellular level [1–3].
Deeper insight into cellular interactions within their microenvironment is crucial for
elucidating disease mechanisms. Leading technologies such as 10× Visium and Viz-
gen MERSCOPE/MERFISH [4,5] are highly effective in capturing the spatial con-
text of transcripts, cellular positioning, and boundaries, often integrated with high-
resolution multi-channel immunohistochemistry (IHC) imaging. As these spatial tran-
scriptomics (ST) tools continue to evolve, they are reshaping our approach to spa-
tial biology, offering unparalleled insights into tissue organization and the molecular
pathways underlying diseases [6–8].

Accurately identifying spatial domains using multimodal data remains a signifi-
cant challenge in spatial transcriptomics research. Traditional spatial domain iden-
tification methods, such as Seurat [9] and Louvain-based Scanpy [10], rely solely
on gene expression data, which often leads to suboptimal clustering results. In con-
trast, spatial clustering methods that incorporate spatial information and tissue image
features have shown enhanced clustering performance. For example, BayesSpace
[11] utilizes Bayesian statistics to analyze both gene expression matrices and spatial
neighborhood information, achieving effective spatial clustering. Similarly, DeepST
[12] improves correlations between spatially adjacent points by early fusion of gene
expression data and tissue image features, leading to richer latent representations
of spatial transcriptomics data. SiGra [13] applies an image-enhanced graph trans-
former model to analyze single-cell spatial data, which decodes spatial domains while
amplifying spatial signals.
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Despite the integration of tissue image features in these methods to enhance spatial gene expression representations and
improve domain identification, gene expression matrices often suffer from sparsity [14–16], with many genes exhibiting
very low or even zero expression in certain cells or regions. This issue is particularly prevalent in spatial transcriptomics
datasets. Existing methods for addressing this sparsity include techniques such as imputation methods like MAGIC [17],
spatial smoothing, and dimensionality reduction approaches. These methods aim to fill in missing data, reduce noise,
and extract meaningful latent representations from sparse gene expression matrices. However, the sparsity and noise in
gene expression data continue to significantly impact the latent information in spatial transcriptomics, making it a critical
challenge for accurate spatial domain identification.

To address these challenges, the AugGCL method was developed, which uniquely tackles gene expression matrix
sparsity while enhancing the identification of spatial domains. Unlike traditional methods that primarily rely on gene
expression data, AugGCL integrates spatial neighborhood information with original gene features to create a smoother,
more consistent spatial gene expression representation. By leveraging the spatial relationships between genes and cells,
this method alleviates the expression void problem, which refers to regions of missing expression in gene expression
matrices due to sparsity or noise. Additionally, the method uses graph convolutional networks (GCN) [18–20] to fuse mul-
timodal data, including raw gene expression, enhanced gene expression, multi-channel tissue imaging, and cell spatial
locations. By incorporating both gene and morphological information, AugGCL is able to capture complex spatial struc-
tures and dynamic tissue changes that traditional methods often overlook.

In contrast to existing methods, AugGCL addresses the inherent sparsity in gene expression matrices, improving the
consistency and clarity of gene expression representations across spatial domains. Existing approaches, while effective
in many cases, struggle to handle these sparsity issues, often leading to suboptimal clustering and low spatial resolution.
AugGCL’s ability to fuse multimodal data and enhance the spatial consistency of gene expression maps makes it a more
robust solution for identifying complex spatial domains and accurately modeling tissue structures.

Extensive tests across various ST datasets and benchmarks against existing algorithms demonstrate that AugGCL out-
performs other methods in spatial domain identification, latent embedding, and data augmentation. AugGCL significantly
improves clustering performance and spatial resolution, providing more biologically relevant and accurate spatial gene
expression maps. AugGCL will play a key role in revealing the intricate spatial architecture within heterogeneous tissues,
exploring cell-to-cell interactions, and advancing the field of spatial transcriptomics.

Results
Overview of AugGCL

The AugGCL workflow (Fig 1) consists of several key stages, each corresponding to a specific component of the frame-
work. First, data preprocessing filters out low-expression genes and generates an enhanced gene expression matrix, as
shown in Fig 1A, where both data preprocessing and spatial graph construction take place. Spatial graph construction
integrates gene expression and spatial adjacency data [21], laying the foundation for spatial analysis. Neighborhood Infor-
mation Aggregation (NIA) then combines these elements to refine the expression matrix [22], improving spatial coher-
ence. This step is illustrated in Fig 1B. The AugGCL model then fuses gene expression and tissue image features to
improve spatial structure decoding, achieved through a multi-layer graph convolutional network, whose design is shown
in Fig 1C. Finally, spatial clustering and biological analysis are conducted to interpret the represented results of data,
yielding insights into cell interactions and molecular processes, as illustrated in Fig 1D.

Spatial clustering of AugGCL on human dorsolateral prefrontal cortex tissue

To evaluate the clustering performance of AugGCL, it was compared with six commonly used spatial transcriptomics anal-
ysis methods: StLearn [23], SpaGCN [24], SEDR [25], GraphST [26], DeepST, and SiGra. All methods were applied to
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Fig 1. Illustrates the AugGCL-based spatial transcriptomics pipeline. (A) The data preprocessing and spatial graph construction steps are shown,
where histological images are divided into patches, and spatial coordinates are used to create an adjacency matrix that captures cell proximity. (B) The
neighborhood information aggregation process, where cosine similarity between cells is calculated based on both image and gene expression embed-
dings, constructing aggregation graphs with weighted edges. (C) The graph-based encoding and latent feature learning, where graph neural networks
fuse the image and gene feature aggregation graphs to generate latent representations for each cell. These fused features are then used for spatial
clustering and gene expression reconstruction, enabling a more accurate decoding of complex spatial structures. (D) The downstream biological analy-
sis, where reconstructed gene expression matrices are used for spatial analyses such as heatmaps, volcano plots, and GO enrichment of upregulated
genes, showcasing the biological relevance of the reconstructed data.

https://doi.org/10.1371/journal.pcbi.1013912.g001

the human dorsolateral prefrontal cortex (DLPFC) dataset [27–30] obtained from the 10× Visium platform. This dataset
contains 12 tissue slices, each annotated with six cortical layers (Layer 1–6) and white matter (WM).
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To assess clustering accuracy, the widely adopted external clustering metric Adjusted Rand Index (ARI) was used.
As shown in Fig 2A, AugGCL achieved the highest median ARI score among all compared methods, with the smallest
interquartile range, demonstrating not only high accuracy but also exceptional stability across the heterogeneous tissue
slices. In contrast, methods such as StLearn and SpaGCN exhibited broader ARI distributions and lower median scores,
indicating that they are more sensitive to expression variability and structural complexity. These results emphasize that
AugGCL is robust and generalizable in delineating spatial structures, consistently performing well across different tissue
slices.

Further analysis is provided in Fig 2B, where the per-sample ARI scores of AugGCL across all 12 slices are shown.
The results indicate that AugGCL achieved an ARI score greater than 0.5 for all slices, with most slices reaching scores
close to or exceeding 0.6. This further validates AugGCL’s stable and reliable performance across various slice variations,
emphasizing its robustness in different biological contexts.

To visually assess the spatial clustering capability of AugGCL, a representative sample from the DLPFC dataset (ID:
151507) was selected. As depicted in Fig 2C, the ground truth annotation clearly reveals the layered structure of the cor-
tex, from Layer 1 to Layer 6, as well as the white matter. The spatial clustering result from AugGCL, shown in Fig 2D (ARI
= 0.67), is highly consistent with this ground truth, presenting clear boundaries between layers and excellent structural
continuity. This confirms that AugGCL effectively captures the complex spatial structures of the DLPFC tissue.

To further validate, the learned embeddings were visualized using UMAP, as shown in Fig 2E. The UMAP plot demon-
strates well-separated clusters that align closely with the tissue structure annotations, indicating that AugGCL has suc-
cessfully learned to represent the spatial features in the embedding space. In contrast, clustering results from baseline
methods, presented in Fig 2F, exhibit varying degrees of segmentation noise, boundary blurring, and layer mixing. For
instance, GraphST misclassifies several regions, while SpaGCN and StLearn exhibit over-segmentation at layer bound-
aries, further highlighting the superior performance of AugGCL in accurately reconstructing complex cortical structures
with minimal distortion.

Biological validation and analysis of spatial clustering results in AugGCL

To better understand the biological significance of gene expression changes, differential expression analysis was first per-
formed, and the results were visualized using a volcano plot (Fig 3A). This plot highlights several genes with significant
expression changes, such as CXCL14 [31], RELN [32], PTN [33], and CNN3 [34], all of which show large fold changes
and statistical significance. These findings suggest that these genes may play crucial roles in the human DLPFC and
could serve as potential biomarkers for further investigation into brain function and disease.

Further Gene Ontology (GO) enrichment analysis showed that the upregulated genes in Layer 2 of the DLPFC are pri-
marily involved in neurotransmitter signaling and synaptic activity. Notably, GO terms such as chemical synaptic transmis-
sion, anterograde trans-synaptic signaling, and regulation of glutamate receptor signaling pathways were highly enriched
(Fig 3B). These results suggest that the upregulated genes in Layer 2 play a critical role in synaptic communication and
the regulation of glutamate receptors, both of which are essential for the proper functioning of the DLPFC.

To visually assess gene expression in the tissue, the expression patterns of several key genes were examined using
both raw and enhanced visualization methods (Fig 3C). While the raw expression maps displayed sparse and uneven dis-
tributions of gene activity, the enhanced maps provided clearer and more coherent visualizations, revealing distinct spa-
tial patterns of gene expression. Specifically, genes such as PCP4 and KRT17 exhibited clear spatial clustering in the
enhanced images, highlighting the spatial organization of gene activity in the DLPFC. The enhanced results enabled more
precise identification and analysis of gene distribution across different regions of the DLPFC, offering deeper insights into
the molecular architecture of this brain area.

With the enhancement provided by AugGCL, the spatial clustering and regional distribution of gene expression became
much clearer, highlighting the significant advantages of this method in extracting and enhancing gene expression patterns
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Fig 2. Comprehensive evaluation of spatial clustering models on DLPFC dataset. (A) ARI scores distribution of seven clustering models across
12 tissue slices. (B) ARI scores of AugGCL across individual samples, showing the stability of its performance across diverse tissues. (C) Ground truth
annotation (layered cortical structure) for DLPFC sample 151507. (D) Spatial clustering result of AugGCL (ARI = 0.67) on sample 151507, showing clear
identification of cortical layers. (E) UMAP visualization of AugGCL-learned embeddings on sample 151507. (F) Comparison of clustering results and
UMAP visualizations from baseline models (DeepST, GraphST, SEDR, SpaGCN, stLearn, SiGra) on sample 151507.

https://doi.org/10.1371/journal.pcbi.1013912.g002
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Fig 3. Biological evaluation of gene expression and clustering performance in DLPFC. (A) Volcano plot: The relationship between log2 fold change
and -log10 p-value of differentially expressed genes in the DLPFC dataset. Genes are categorized as upregulated (pink), downregulated (blue), and
non-significant (yellow). (B) GO enrichment analysis: The enrichment results of upregulated genes in DLPFC Layer 2, with the most enriched terms
including chemical synaptic transmission and glutamate receptor signaling pathways. (C) Gene expression visualization: Visualization of key genes
(RELN, HPCAL1, PCP4, KRT17, VAMP1, MBP) in both raw and enhanced formats. The enhanced images reveal clearer spatial expression patterns.

https://doi.org/10.1371/journal.pcbi.1013912.g003

in spatial transcriptomics. Compared to the raw images, the enhanced visualizations not only improved the clarity of gene
activity but also revealed more accurately the spatial distribution and structural patterns of genes within the tissue.

AugGCL for spatial domain recognition and biological evaluation in breast cancer dataset

In this study, AugGCL was applied to the spatial transcriptomics analysis of the human breast cancer dataset [35–38],
assessing its performance in spatial domain recognition and clustering accuracy. Compared to several existing methods,
AugGCL demonstrated distinct advantages in identifying spatial domains within tumor tissues.

The performance of different models on the dataset was evaluated using two key metrics: ARI and Normalized Mutual
Information (NMI) (Fig 4A). The results showed that AugGCL outperformed other models with ARI of 0.61 and NMI of
0.73, surpassing models such as stLearn (ARI = 0.57), SpaGCN (ARI = 0.55), and SiGra (ARI = 0.55). These results

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013912 January 23, 2026 7/ 18

https://doi.org/10.1371/journal.pcbi.1013912.g003
https://doi.org/10.1371/journal.pcbi.1013912


i
i

“pcbi.1013912” — 2026/1/29 — 17:31 — page 8 — #8 i
i

i
i

i
i

Fig 4. Model comparison and spatial clustering in breast cancer data. (A) Performance comparison of different models (stlearn, SpaGCN, SEDR,
GraphST, DeepST, SiGra, and AugGCL) based on ARI and NMI scores. (B) Volcano plot showing the differential expression of genes, highlighting
upregulated (pink) and downregulated (blue) genes based on log2 fold change and -log10 P-values. (C) Ground truth spatial clustering, with tissue
regions labeled for DCIS/LCIS, IDC, healthy tissue, and tumor edges. (D) AugGCL clustering result (ARI=0.61) showing spatial clustering of tumor and
healthy tissue regions. (E) Comparison of spatial clustering results from various models, including stLearn, DeepST, GraphST, SEDR, SpaGCN, and
SiGra, with corresponding ARI values.

https://doi.org/10.1371/journal.pcbi.1013912.g004

suggest that AugGCL not only identifies spatial domains more accurately but also delineates the boundaries between
tumor and healthy tissue more effectively, demonstrating higher clustering precision. In contrast, other models exhibited
lower ARI values, indicating their limited ability to distinguish spatial domains.

Next, the significantly upregulated and downregulated genes in the dataset were explored using a volcano plot analy-
sis (Fig 4B). The volcano plot clearly highlights several key upregulated genes, such as SERPINA3 [39], KLK6 [40], and
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MGP [41], whose expression patterns are closely associated with different tumor subtypes, offering important insights for
biomarker discovery and targeted therapies.

To better understand how these genes contribute to tumor progression, their functions and mechanisms were explored.
SERPINA3, a serine protease inhibitor, may act as either a tumor promoter or suppressor depending on the tumor type,
but its precise mechanisms remain unclear. KLK6 plays a crucial role in regulating tumor cell migration, invasion, and
response to radiotherapy. Its elevated expression in invasive tumor regions is considered a key factor in tumor progres-
sion and metastasis. MGP is involved in tumor angiogenesis, regulating the maturation of blood vessels, affecting nutrient
supply and tumor growth, and providing a potential therapeutic target for future treatment strategies.

In terms of spatial clustering, AugGCL effectively distinguished different tissue regions, including Invasive Ductal Car-
cinoma (IDC), healthy tissue, and tumor edges (Fig 4C). The clustering results from AugGCL were highly consistent with
the ground truth labels (Fig 4D), particularly in clustering the tumor edge regions. This indicates that AugGCL is capable
of effectively preserving spatial information and accurately reflecting the complex structure of the tumor microenvironment
when processing spatial transcriptomics data.

Through comparison with other models (Fig 4E), the clear advantages of AugGCL were further validated. For instance,
while GraphST (ARI = 0.56) and DeepST (ARI = 0.57) performed similarly, they still lagged significantly behind AugGCL.
This further highlights the remarkable superiority of AugGCL in spatial data analysis, particularly in distinguishing tumor
microenvironments from healthy tissues.

Model performance evaluation of the E9.5 mouse embryo dataset

This study applies spatial transcriptomic analysis to the Mouse Embryo E9.5 dataset [42] to explore gene expression
patterns across various tissue regions during embryonic development. The dataset includes key developmental tissue
regions, such as the aorta-gonad-mesonephros (AGM), brain, heart, liver, and neural crest (Fig 5A). These regions exhibit
distinct spatial distributions and transcriptomic features, providing insights into cell fate determination and organ formation
during early development.

The performance of different clustering models, including SpaGCN, SEDR, stLearn, GraphST, and AugGCL, was eval-
uated using the ARI and NMI (Fig 5B). AugGCL demonstrated superior precision in spatial domain identification and tis-
sue differentiation, particularly in regions such as AGM, neural crest, and heart, with ARI of 0.36 and NMI of 0.58. In con-
trast, models like SEDR and GraphST showed relatively lower performance, revealing limitations in handling complex
embryonic development data.

The spatial clustering results demonstrate that AugGCL effectively distinguishes key tissue regions, including the brain,
heart, and neural crest, with strong alignment between the clustering results and ground truth labels (Fig 5C). This indi-
cates that AugGCL accurately captures spatial tissue information, providing reliable data for further investigation of devel-
opmental processes.

Gene expression patterns for Myh7 were also compared between raw data and those reconstructed by AugGCL (Fig
5D). AugGCL demonstrated a clearer reconstruction of gene expression patterns, especially in the heart region.

A comparison of spatial clustering results from different methods (SpaGCN, SEDR, stLearn, GraphST) (Fig 5E) further
confirms the superiority of AugGCL. It showed higher clustering accuracy and better retention of spatial structure between
tissues compared to other methods.

Discussion

Current spatial transcriptomics analysis methods still face considerable challenges in integrating multimodal informa-
tion and improving the quality of spatial expression representations. In particular, when addressing challenges such as
high gene expression sparsity, complex tissue architecture, and weak spatial signals, traditional approaches that rely on
unimodal features or rule-based clustering often struggle to balance biological interpretability with structural resolution.
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Fig 5. Decoding spatial patterns and clustering dynamics in the E9.5 mouse embryo transcriptome. (A) Ground Truth: The true labels for tissue
regions in the mouse embryo E9.5 dataset, including key regions such as AGM, Brain, Heart, Liver, and Neural Crest. (B) Model Performance (ARI &
NMI): Bar plot comparing the performance of different clustering models (stlearn, SpaGCN, SEDR, GraphST, AugGCL) based on ARI and NMI.
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(C) AugGCL Spatial Clustering Result: Spatial clustering results using AugGCL, with regions color-coded according to their predicted labels. (D) Gene
Expression Analysis for Heart Marker Gene: Comparison of raw gene expression (Raw_Myh7) and AugGCL reconstructed gene expression (Aug-
GCL_Myh7) for the heart marker gene Myh7. (E) Spatial Clustering Results Comparison: Spatial clustering results from different methods (SpaGCN,
SEDR, stLearn, GraphST) with corresponding ARI values for each method.

https://doi.org/10.1371/journal.pcbi.1013912.g005

To address these limitations, this study proposes the AugGCL framework, which aims to systematically enhance spatial
structure decoding and expression pattern reconstruction through a neighborhood information aggregation mechanism
and multimodal graph neural network modeling.

The key innovation of AugGCL lies in its integration of the neighborhood information aggregation module. This mod-
ule jointly considers gene expression similarity and spatial proximity to dynamically generate a weighted graph struc-
ture, which is then used to perform spatial enhancement on the raw gene expression matrix. Compared to strategies that
rely solely on spatial coordinates, neighborhood information aggregation incorporates functional-level regulatory signals,
thereby improving both the consistency and discriminative power of cellular features. This is particularly advantageous
in regions of sparse gene expression, effectively mitigating the expression void problem and enabling the construction of
smoother, structure-aware expression representations for downstream modeling.

In terms of graph neural network modeling, AugGCL introduces a multimodal fusion architecture that integrates
enhanced expression features with image-based morphological features as joint inputs. Through graph convolutional
layers, the model unifies the encoding of spatial, functional, and morphological information of cells. The introduction of
the image modality not only provides spatial boundary and morphological priors, but also enhances the clarity of clus-
ter boundaries and continuity of tissue structures via auxiliary loss supervision. This multimodal fusion strategy enables
AugGCL to effectively capture both local spatial variations and global structural partitions.

Experimental results demonstrate that AugGCL achieves superior performance across several representative ST
datasets, including human cerebral cortex, breast cancer tissue, and embryonic development samples. In tasks such
as identifying cortical layering, tumor boundary delineation, and cell lineage differentiation, AugGCL significantly outper-
forms mainstream baseline models, exhibiting strong robustness and generalizability. Furthermore, AugGCL introduces
new approaches for gene expression reconstruction and spatial visualization. The enhanced expression maps it gener-
ates exhibit improved spatial coherence and biological relevance, providing a solid foundation for downstream functional
annotation and mechanistic exploration.

In conclusion, AugGCL establishes a unified analytical framework based on multimodal collaborative modeling of
expression, structure, and image data. By incorporating neighborhood-level information enhancement and image-guided
fusion mechanisms, it significantly improves the interpretability of spatial expression data and the accuracy of tissue struc-
ture resolution. This makes AugGCL a generalizable and scalable computational tool for advancing spatial transcriptomics
research.

Materials and methods
Data and image preprocessing

In the preprocessing phase, both the spatial transcriptomics data and corresponding tissue images were processed. First,
the gene expression matrices were loaded from various platforms, along with their associated tissue images. A filtering
process was applied to the gene expression data to remove low-expressing genes: (1) genes expressed in fewer than
three cells were discarded to reduce noise; (2) genes known to introduce biases were excluded. The processed data was
saved in .h5ad format for subsequent analysis, and the gene expression matrix was exported as a CSV file for further
examination.
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For the image preprocessing, the original histology image was read and converted to grayscale if necessary. To pre-
pare the image for model input, it was then transformed into a tensor. Using the spatial coordinates (such as cell posi-
tions), image patches around each coordinate, typically of size 50*50 pixels, were extracted and flattened into one-
dimensional vectors. All the extracted patches were stored in a dataframe, aligned with the original gene expression
data’s index for easy access and further analysis. This combined preprocessing workflow ensures the retention of biolog-
ically relevant genes and image features, significantly enhancing the quality and reliability of the dataset for downstream
analysis.

Spatial graph construction

The construction of a spatial graph aims to better integrate information from neighboring cells, enhancing the relationships
between the data points. By using spatial coordinates to compute the distances between cells and applying a predefined
distance threshold or number of neighbors, it is possible to effectively capture the neighboring cells and their respective
distance relationships.

Let X = [x1, x2, … , xN] represent the N cell sample data. Correspondingly, the matrix Xr represents the raw gene expres-
sion data, the matrix Xg represents the augmented gene expression data, and Xi represents the tissue image data. dij is
the distance between cells xi and xj. The adjacency matrix A is determined as follows:

Aij = {
1 if dij ≤ threshold

0 if dij > threshold
(1)

In Eq.(1), dij is selected as Euclidean distance of the spatial locations between two cells.
This equation illustrates that cell i and cell j are neighbors if their distance is less than or equal to a predefined thresh-

old, and non-neighbors otherwise. Self-loops are removed to ensure that only valid neighbor relationships are consid-
ered. This adjustment helps maintain a graph where each node (cell) is connected to others based on proximity, which is
essential for certain graph-based algorithms.

This process constructs a spatial relationship graph between cells, providing a quantitative perspective on cell-to-cell
interactions and offering critical biological insights into the spatial distribution and interactions of cells within tissues.

Neighborhood information aggregation

In spatial data analysis, data augmentation methods combine gene expression similarity with spatial neighborhood infor-
mation between cells to generate richer expression data. Specifically, the method calculates the similarity between cells
using the gene expression matrix and combines it with the spatial adjacency matrix to produce an enhanced expression
matrix. This approach not only retains the spatial structural characteristics of the cells but also enhances the correlation
of gene expression among neighboring cells. For ST data with morphological information, image segmentation is per-
formed based on the spatial positions of each cell to extract the image features of cell. Using the same data augmenta-
tion method, a weighted spatial adjacency graph and edge weights are generated, thereby improving the ability of model
to analyze complex spatial structures and providing more accurate data support for downstream tasks such as spatial
clustering.

In this process, the similarity metric Sij is used to measure the similarity between cells based on their gene expression
and spatial neighborhood relationships. It can be expressed as:

Sij = exp(𝛼 − dij) − 1, (2)
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where exp(⋅) is the exponential function, and 𝛼 is a parameter. dij could be selected as cosine distance [43], and corre-
spondingly, the 𝛼 is set to be 2, as shown in Eq.(2).

The cosine distance dij reflects the similarity between the gene expression profiles of two cells. A smaller dij indi-
cates higher similarity, which results in a larger Sij. This is because the exponential function exp(𝛼 − dij) increases as dij
decreases, emphasizing the similarity between cells. The higher the dij value, the more cells with similar expression pat-
terns will be connected, resulting in stronger connections between cells. The visualization of this function has been added
to Figure 1 in S1 Appendix, which appears in (1) Explanation of the Neighborhood Information Aggregation.

The aim of this step is to effectively integrate the spatial proximity relationship and gene expression similarity, and the
integration method is as follows:

Cij = Aij ⋅ Sij, (3)

This weighting operation allows us to reflect gene expression relationships while incorporating spatial information, facili-
tating further analysis.

The normalization operation is performed on the weighted adjacency matrix C and the edge weights, as demonstrated
below:

Ĉij =
Cij

∑jCij + 𝜖 , (4)

where 𝜖 is a small value (e.g., 10–10) used to avoid division by zero errors.
For the given gene expression matrix Xr, the enhancement aims to address the sparsity issue in gene expression data

by combining spatial information from neighboring cells with gene expression similarities. The data is enhanced using the
weighted adjacency matrix Ĉ. The resulting matrix Xg incorporates spatial neighbor information and improves the expres-
sion levels of the cells by leveraging the similarities of adjacent genes, as calculated below:

Xg = 𝛽 ⋅ Ĉ ⋅ Xr + Xr, (5)

where 𝛽 = 1.2 is a coefficient used to control the degree of enhancement.

Graph neural network model designing

In this study, a novel graph convolutional network model with a two-layer architecture is proposed to enhance spatial data
analysis by simultaneously processing both gene expression and tissue image features. The gene encoder processes
the enhanced gene feature matrix Xg with the gene adjacency matrix Ĉg, while the image encoder processes the image
feature matrix Xi, which represents the tissue image data, with the image adjacency matrix Ĉi. Each encoder consists
of 512 hidden units, with the ELU activation function applied after each convolution. The model is trained using a learn-
ing rate of 0.001 for 200 epochs, with a hidden dimension setting of [512, 30]. The model also integrates edge weights in
a weighted multi-layer GCN structure to improve feature extraction capabilities, enabling effective decoding of complex
spatial structures. After feature fusion, the model’s output is used for downstream spatial clustering tasks. These design
choices enable the model to effectively process and integrate multimodal spatial data, while the chosen hyperparameters
ensure optimal training for accurate clustering.

The model’s inputs include the enhanced gene feature matrix Xg, original gene expression matrix Xr, and image feature
matrix Xi, which are associated with the weighted gene adjacency matrix Ĉg and the weighted image adjacency matrix Ĉi,
respectively. The forward propagation process for gene features can be represented as:

Hl+1
g = 𝜎 (ĈgH

l
gW

l
g) , (6)
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where Hl
g is the feature matrix of the l-th layer for gene features, Additionally, H

0
g is the enhanced gene expression matrix

Xg.W
l
g is the weight matrix for the l-th layer of gene features, and 𝜎 is the activation function.

The forward propagation process for image features can be represented as:

Hl+1
i = 𝜎 (ĈiH

l
iW

l
i) , (7)

where Hl
i is the feature matrix of the l-th layer for image features, Additionally, H

0
i is the image expression matrix Xi.W

l
i is

the weight matrix for the l-th layer of image features.
After the individual feature propagation, the next step is to combine the gene and image features. By fusing H2

i and H
2
g,

Hc is obtained„ which is then passed through a final fusion convolution layer to output H
2
c . The specific calculation process

is as follows:

Hc = concat(H2
g,H2

i ), (8)

H2
c = 𝜎 (HcWc) , (9)

whereWc is the weight matrix for the fused features.
After further convolution and activation operations, the final output of the fused features H2

c will be used for downstream
spatial clustering tasks. Additionally, the model supports the option to use image loss by setting parameters, allowing for
optimization based on image features. This design enables the AugGCL model not only to retain the spatial structural
characteristics of cells but also to enhance the correlation of gene expression among neighboring cells, providing more
accurate support for spatial data analysis.

Loss function construction

In this section, to help the model learn better, the overall optimization objective consists of multiple components. Recon-
struction loss (gloss) calculates the difference between the original gene data and the reconstructed gene matrix, mea-
sured using Mean Squared Error (MSE). The goal is to minimize this difference, helping the model more accurately
restore the gene data. Next, image reconstruction loss (iloss) measures the difference between the original image fea-
tures and the reconstructed image matrix, ensuring that the spatial features of the image are well restored. Finally, regu-
larization loss (reloss) calculates the difference between the fused reconstructed matrix and the original gene data, ensur-
ing that the model can better fuse image and gene data while maintaining consistent feature representations. Note that
the regularization loss is optional and can be used depending on whether it is necessary for the task. The specific calcu-
lation process is as follows:

gloss = ‖Xr − Decg(H2
g)‖22, (10)

iloss = ‖Xi − Deci(H2
i )‖

2
2, (11)

reloss = ‖Xr − Decc(H2
c)‖22, (12)

where Decg, Deci, and Decc represent the decoding operations for gene features, image features, and the fused features,
respectively.

The final total loss is the weighted sum of these three components, with weights controlled by hyperparameters 𝜆1, 𝜆2,
and 𝜆3. The formula is as follows:

loss = 𝜆1 ⋅ gloss + 𝜆2 ⋅ iloss + 𝜆3 ⋅ reloss, (13)
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By minimizing this total loss, the model can simultaneously optimize the reconstruction of gene data, image data, and
the fused representation of both, thereby improving overall performance.

Spatial clustering and visualization

In this study, two clustering methods, K-means and MCLUST, are employed to effectively identify complex spatial struc-
tures. The K-means clustering method, based on centroid optimization, efficiently detects cell types and their interactions,
making it particularly suitable for large-scale datasets. On the other hand, MCLUST employs a Gaussian mixture model,
enabling it to handle clusters of varying shapes and sizes, thus enhancing the interpretability of spatial data. Dimensional-
ity reduction techniques, such as t-SNE or UMAP, are used to map high-dimensional data into lower-dimensional space,
complemented by heatmaps and spatial distribution maps for visualization, thereby improving the understanding of cell
distribution. By combining these two clustering methods with visualization techniques, an in-depth analysis of cellular
spatial distribution can be conducted, specific cell subpopulations can be identified, and their variations under different
biological conditions can be explored, providing crucial support for subsequent biomedical research.

To evaluate the clustering performance quantitatively, the adjusted rand index, a widely used external clustering metric,
is employed [44–46]. The ARI assesses the agreement between the predicted clustering labels and the manually anno-
tated ground truth while adjusting for chance. The ARI is calculated as follows:

ARI =
∑ij (

nij
2
) − [∑i (

ai
2
)∑j (

bj
2
)] /(n

2
)

1

2
[∑i (

ai
2
) +∑j (

bj
2
)] − [∑i (

ai
2
) +∑j (

bj
2
)] /(n

2
)
, (14)

The calculation of the ARI compares pairs of elements from the clustering result with pairs of cell types from the ground
truth labels. By evaluating pairs of cells within the same cluster and the same real cell type, as well as between different
clusters and different real cell types, ARI generates a value ranging from -1 to 1. A value of 1 signifies a perfect agree-
ment between the predicted clusters and the true cell types.

Normalized mutual information measures the amount of shared information between two clustering results and is com-
monly used to assess the accuracy of unsupervised clustering methods. Given two sets of cluster labels U and V, NMI is
defined as:

NMI(U,V) = MI(U,V)
mean(K(U),K(V)) , (15)

where MI is the mutual information between U and V, and K(U), K(V) are the entropies of each label set. The formulas
are as follows:

MI(U,V) =
|U|
∑
i=1

|V|
∑
j=1

P(i, j) log ( P(i, j)
P(i)P(j)) , (16)

K(U) = −
|U|
∑
i=1

P(i) logP(i), (17)

K(V) = −
|V|
∑
j=1

P(j) logP(j), (18)

where P(i) is the probability of a sample belonging to the i-th cluster in U, and P(j) = |Vj|
N
is the probability of a sample

belonging to the j-th cluster in V. P(i, j) = nij

N
, where nij denotes the number of samples simultaneously assigned to cluster
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Ui and Vj, and N is the total number of samples. A NMI value closer to 1 indicates a higher level of agreement between
the two clustering results.

Ablation study and statistical significance analysis

The ablation study assesses the impact of different components of the AugGCL model, specifically gene modality, image
modality, and multimodal fusion. The results show that combining both gene and image modalities consistently improves
performance across all samples, highlighting the advantages of multimodal integration. The impact of the neighborhood
information aggregation mechanism was also demonstrated, showing how the augmented gene matrix, after applying the
mechanism, mitigates sparsity and enhances spatial domain identification. For more details, consult Figure 2 and Table 1
in S1 Appendix, which appear in (2) Ablation Study.

To compare the performance of AugGCL against other baseline models, statistical significance analysis was conducted
using the independent sample t-test method. The results show that AugGCL consistently outperforms other models, with
highly significant performance improvements. The p-values indicate that AugGCL achieves superior results compared to
other models in most comparisons. The statistical performance metrics and p-value comparisons can be found in Table 2
and Table 3 in S1 Appendix, which appears in (3) Statistical Significance Analysis.

Downstream analysis

In this section, downstream biological analyses [47] are performed to gain deeper insights into the clustering results and
data processing. These analyses help uncover cellular and molecular characteristics. The gene expression heatmap
offers a clear visualization of expression patterns across various tissue regions, enabling the identification of gene vari-
ability and its distribution among different cell types. The volcano plot compares log-fold changes in gene expression with
statistical significance, helping to identify genes that are significantly upregulated or downregulated, and revealing cellular
responses under various biological conditions. Gene Ontology enrichment analysis identifies biological processes, molec-
ular functions, and cellular components that are significantly overrepresented among differentially expressed genes, pro-
viding further insight into the biological functions and regulatory mechanisms of the identified gene clusters. By combining
these analyses, a comprehensive understanding of gene distribution in spatial contexts is achieved, functional differences
across cell types are explored, and essential support is provided for subsequent biomedical research.

Supporting information

S1 Appendix. Supplementary materials. (1) Explanation of the Neighborhood Information Aggregation. (2) Ablation
Study. (3) Statistical Significance Analysis.
(PDF)
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