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Abstract

Presynaptic inhibition after spinal cord injury (SCI) has been hypothesised to dispro-
portionately affect flexion reflex loops in locomotor spinal circuitry. Reducing gamma-
aminobutyric acid (GABA) inhibitory activity increases the excitation of flexion circuits,
restoring muscle activation and stepping ability. Conversely, nociceptive sensitisa-
tion and muscular spasticity can emerge from insufficient GABAergic inhibition. To
investigate the effects of neuromodulation and proprioceptive sensory afferents in the
spinal cord, a biologically constrained spiking neural network (SNN) was developed.
The network describes the ankle flexor motoneuron (MN) reflex loop with inputs from
ipsilateral la- and Il-fibres and tonically firing interneurons. The model was tuned to

a Baseline level of locomotive activity before simulating an inhibitory-dominant and
body-weight supported (BWS) SCI state. Electrical stimulation (ES) and seroton-
ergic agonists were simulated by the excitation of dorsal fibres and reduced con-
ductance in excitatory neurons. ES was applied across all afferent fibres without
phase- or muscle-specific protocols. The present computational findings suggest

that reducing stance-phase GABAergic inhibition on flexor motoneurons could
facilitate more physiological flexor activation during locomotion. The model further
predicts that neuromodulatory therapy, together with body-weight support, modu-
lates the balance of synaptic excitation and inhibition in ankle flexor motoneurons to
mitigate excessive inhibitory drive in the ankle flexor circuitry.

Author summary

SCl is a life-altering condition that often leaves young adults paralysed and reliant
on others for support. Restoring the ability to walk is a critical goal to help improve
independence and quality of life for people living with SCI. Promising new treat-
ments, such as spinal cord stimulation and drug therapies, aim to reawaken the
neurons that control walking. However, scientists still do not entirely understand
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how these treatments work. In this study, we developed a detailed computer
model of the neural circuits involved in walking to test how therapies such as
serotonin-boosting drugs, ES, and BWS training might help. Our findings suggest
that these treatments can work together to reduce excessive inhibition that blocks
ankle movement, leading to smoother and more coordinated steps. This research
helps uncover how these therapies work and provides insights to develop better
rehabilitation strategies for improving walking after SCI.

Introduction

SCI globally affects an estimated 9 million people as of 2019, with an age standard-
ised incident rate of about 109 per 100,000 [1]. In the event of SCI, damage to the
nervous tissue can result in loss of voluntary control, sensation, spasticity, diaphragm
dysfunction, pressure ulcers, and pain syndromes [2,3]. Sufferers of SCI often report
non-physical symptoms such as emotional disorders, loss of independence, depres-
sion, anxiety, and clinical levels of stress [4]. The lifelong management places an
intense financial burden not only on the patients and their communities, but also on
the broader economic landscape [5,6]. Lifetime medical costs in Canada can range
from $1.47 to $3 million CAD (2013 prices) per person [7], £1.12 million per person in
the UK (2016 prices) [8], and range from $0.77 to $1.3 million USD (1995 prices) in
the US [9]. Recovering voluntary muscle activity and returning locomotion activity to
SCI sufferers could save societal and patient costs while also improving the patient’s
quality of life [10,11].

Recovering gait remains a top priority for people living with SCI [12]. Flexor activity
is critical for step progression during locomotion, acting as a shock absorber before
foot strike [13], adapting step-height to continue locomotion progression [14], and
resetting locomotion [15]. Increasing the excitability of locomotor networks after
paralysis can improve locomotor capabilities; however, hyperexcitation of flexor mus-
cles can result in spastic muscle expression, leading to poor balance and coordina-
tion [16—18]. Maintaining an excitation-inhibition balance of excitability emerges as an
intuitive solution to enabling robust locomotor expression.

SCl interrupts normal bidirectional signalling, leading to dysfunctional neural cir-
cuitry, tilting the balance of excitation and inhibition [19]. Lack of descending activity
keeps MNs at a predominantly inhibited state, while inhibitory populations in the dor-
sal and intermediate zone become over-reactive [20,21]. A large percentage of the
SCI population experience spastic muscle activity, likely due to insufficient release
of GABA neurotransmitters [22—26]. Nevertheless, even with an overly excited or
inhibited environment and detached from brain inputs, the locomotor spinal circuit
can continue to express coordinated motor function given sufficient excitation and
contextually relevant sensory information [27-31].

Proprioception is a critical sensory input to entrain and recover locomotion after
SCI [32-34]. Proprioceptive afferent innervation is widespread and diverse, project-
ing to MNs [35-37], GABAergic [38,39], and serotonergic [40—43] interneurons (INs)
in the dorsal and intermediate zone of the spinal cord. Long and short axons spread
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across multiple segments and are organised spatially and by modality [37,44—46]. Proprioceptive interneurons (PINs) are
mainly excitatory, most inhibitory populations projecting ipsilaterally [47]. Due to their complex and integratory nature,
PINs have been suggested to be a possible neural detour around spinal lesions, recovering voluntary sensorimotor con-
trol after SCI [46,48-51].

Genetic labelling of spinal cord interneurons has identified VV2a interneurons (Chx10%) as a crucial population for coor:
dinating left/right coordination [52] and locomotor speeds [53,54]. V2a interneurons reside in laminae VIl and receive
serotonergic, glutamatergic inputs from the brainstem and sensory inputs from dI5 INs and mechanosensory feedback
[63,55-58]. V2a interneurons locally project bursting glutamatergic excitation to ipsilateral VO interneurons and MNs [55,
59,60]. Moreover, ablation of V2a interneurons has been shown to prevent the recovery of suprathreshold ES facili-
tated locomotion recovery [61]. Therefore, inclusion of the V2a population in the present model allowed us to investi-
gate how neuromodulation and sensory feedback influence excitatory drive and recovery of flexor motor function after
injury.

After SCI, axons spared from injury allow voluntary activation and sensation of the body past lesion sites [51,62]. Tra-
ditional rehabilitation therapy leverages these residual connections to maximise motor skills via therapeutic exercise or
overcome losses with assistive devices [28,63]. Neuromodulation techniques such as spinal cord ES [30,31,64,65] and
pharmacology [51,66,67] have shown to recover locomotor activity after SCI. Moreover, chronic application of ES in con-
junction with physical rehabilitation enabled volitional muscle activation even without ES [29]. Although these observa-
tions show promise for new and effective neurorehabilitation therapies, the mechanisms of action and synergy between
sensory ensembles and ES remain in question [68,69].

It is natural to seek methods to return excitation to sub-lesional networks after losing descending input [70]. Most ES
techniques have sought to excite and entrain locomotion by activating dorsal roots in the epidural space [69,71-74].
However, ES, in the same anatomical space, can also evoke inhibition and restore balance to an overly excited network
[23,24,75]. A more in-depth and nuanced view of ES therapy is required to fully appreciate the complexity of modulating
the neural environments. A key question remains: How do neuromodulation therapies integrate with sensory information?
We hypothesise that spinal cord locomotor circuits require balanced excitation and inhibition to coordinate flexor activity.

Understanding excitation and inhibition balance experimentally remains challenging due to the complexity of interacting
neural pathways. Computational modelling offers a complementary method to test how specific neural architectures and
synaptic mechanisms contribute to locomotor activity.

Computational models have been central in linking neural architecture to locomotor output. Studies of commissural
and long propriospinal interneurons have helped elucidate how propriospinal circuits stabilise gait across speeds [76].
Building on these frameworks, combining modelling and experimental approaches has revealed the role of V3 neurons in
speed-dependent left-right interlimb coordination [77].

These models feature detailed architectures but often rely on reciprocally inhibiting phase oscillators [78,79] driven
by tonic inputs that mimic descending mesencephalic locomotor region activity [80—-82]. While suitable for neurologically
intact systems, such assumptions break down after SCI, where the supraspinal drive is reduced or absent, although sub-
lesional afferents remain intact.

To address this limitation, several studies have integrated peripheral feedback into spinal locomotor circuits, yielding
physiologically grounded spiking models and enabling the design of novel neuromodulation therapies [69,71,74,83]. A
bio-inspired controller combining a balance controller, a central pattern generator (CPG), and a sensory feedback net-
work reproduced human gait kinematics and ground reaction forces by optimising for effort and stability [83]. Similarly,
by combining spiking networks with finite element modelling, scientists were able to experimentally converge model
outputs to rodent ES results, revealing activation sites and recruitment dynamics [71]. Incorporating locomotion-specific
afferents into these models further enabled the development of function-specific ES therapies [69] and clarified interac-
tions between suprathreshold ES and proprioceptive afferents [74].
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Iterative refinements of CPG-based frameworks have expanded our understanding of locomotor control and informed
new therapeutic strategies. However, the current spinal locomotor network modelling landscape omits presynaptic
inhibition.

This study aims to understand the effect of SCl-induced imbalanced presynaptic inhibition in sensory-driven rodent
locomotor spinal networks. We describe a biologically constrained tibialis anterior (TA) SNN rodent model receiving het-
erogeneous excitatory and inhibitory synapses, including GABAergic presynaptic inhibition. A combination of ES and
serotonin agonist (5-HT) neuromodulators are simulated in an SCI and SCI with BWS locomotion setting. We show that
combining BWS with ES reduces overactive stance-evoked GABA inhibition and returns TA MN firing rates towards
Baseline.

Methods

A biologically constrained SNN was developed to investigate neuromodulation effects on sensory-driven rodent spinal
locomotor circuits. Simulations were run on an Intel Xeon Gold 6238R 2.2GHz Processor. The software was developed
in Python 3.10.0 using the Brian2 neural simulator module (v2.6.0) [84]. The simulation time step was set to 50 ys and
Euler approximations for ordinary differential equation solving. A total of eight locomotor steps were simulated, where
gait stance and swing phases were split at 65% of the gait cycle [85]. This study simulated three different neurological
environments, including a Baseline, SCI, and SCI with a BWS state. Each neurological state was modulated with inputs
from ES and 5-HT. The Baseline state was set by validating the static outputs of the SNN model against previously val-
idated computational data and experimental observations in healthy rodents. SCI condition was set by increasing the
paired synapses between GABA INs and TA MNs by a factor of 1.6, as experimentally reported in previous rodent SCI
studies [86]. Finally, the BWS state was defined as the scalar reduction of la and Il afferent firing rates as reported from
treadmill BWS experiments recording EMG [87].

The SNN model architecture was biologically constrained using synaptic connections inferred from previous cell stain-
ing [39,71,86,88], electrophysiological [53,89-94], and genetic works [55,95-99]. A second biological constraint was set
97,100-102]. Specific parameter settings are described in the sections below and set to be within biologically plausible
ranges. Parameter definitions have been summarised in Table 1. Finally, propriosensory inputs were constrained to pre-
viously validated musculoskeletal and muscle spindle models [74].

Simulated data were first tested for normality using the Shapiro-Wilk test, where p > 0.05 indicated that the data did
not significantly deviate from a normal distribution. Normally distributed data were compared using a paired t-test, while
non-normal data were analysed using the Wilcoxon signed-rank test. Distributions were considered significantly different
if p<0.05

Equivalence between groups was assessed using pairwise two one-sided tests (TOST) at an agq,, = 0.05 level (95%
Cl). The null hypothesis of non-equivalence was rejected if both one-sided tests were significant (p,,,;, < 0.05), indicat-
ing that the mean difference lay within the predefined equivalence region (+15Hz). The region of practical equivalence
(ROPE) for comparisons between conditions was defined as half the minimal detected burst rate for TA motoneurons in
rodents at rest (30 —60 Hz) [103]. Within-timestep differences were tested for significance using within-step permutation
testing with 2000 repetitions.

The experiment code can be found at https://github.com/rchia16/balancing-locomotor-networks.git.

Afferent signal inputs

la and Il TA and gastrocnemius medialis (GM) muscle afferent signals were calculated by using musculoskeletal and
muscle spindle models during locomotion. The signals were retrieved from the publicly accessible GitHub repository asso-
ciated with the original publication [74]. To emulate BWS afferent signals, both TA and GM la and Il data were offset by a
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Table 1. List of definitions relevant to the description of the SNN model.

Parameter Definition

N Number of axons/neurons

Tmem Membrane time constant

Tref Refractory period

Ty GABA spillover time constant

\% Membrane potential

E, Reverse potential

Vi Threshold potential

Veset Membrane potential after spike

Cnm Membrane capacitance

Faxon Axon radius

/ Length

gL Leak conductance

i Input current from noise or synapses
w Adaptation variable

Tw Adaptation variable time constant
Ay Sharpness of action potential initiation
a Voltage coupling parameter

b Spike triggered adaptation value
Psyn Synaptic connection probability

https://doi.org/10.1371/journal.pcbi.1013866.t001

scalar amount using values from electrophysiological experiments [87]. The new BWS equations were set to Eq (1) where
Kgu = —0.6 and K74 = —0.122, scaling the EMG envelope to 40% and 87.8% respectively, simulating 60% effective body
weight. This corresponds to an effective reduction in la and Il afferent firing rates of approximately 60% of GM muscle
afferents and 12.2% for TA muscle afferents, consistent with experimentally observed muscle-specific reductions in EMG
amplitude under 60% BWS [87].

EMG was adapted from past computational studies and calculated as per S2 Algorithm [74]. The equations refer to
Xstretch @S Stretch, vgocn as stretch velocity, and EMGy,,, as the min-max normalised EMG envelope [104]. Since EMG,,,,
magnitude ranged between 0 and 1, a scalar offset can be applied to the afferent signal inputs [74]. Afferent signals were
set as timed array Poisson-distributed inputs with a sampling frequency of 200 Hz, and connected to leaky integrate and
fire (LIF) axon models, see Eq 3 and Fig 1A and 1B. Parameters were set according to previously validated computational
models [71] and tuned to replicate the input firing rate, see Table 2 and Table 5. Background noise of afferent axons (/,,5;se)
was modelled as a normally distributed variable with a standard deviation scaled to 0.3 pA. Tuning was validated with
Pearson correlation coefficient and the mean absolute error. For detailed results, refer to S1 Table in the Supplementary
Information. For a complete algorithmic description of a LIF model, see S1 Algorithm.

la firing rate =50 + 2Xgyetch + 4.3 - SIGNVsgroten) - Vstratenl - + K - 50 - EMGep, (1)
Il firing rate =80 + 13.5Xgyetcn + K - 20 - EMGp, 2)
av _ E/ -V Inoise
it~ t " C,.arl 3

Spiking neural network

The SNN model simulated the ipsilateral rodent ankle flexor’s mono- and di-synaptic stretch and stretch velocity affer-

ent reflexes. Proprioceptive afferents innervated the TA MN, GABA, la inhibitory, and V2a interneurons [107,108]. la
inhibitory interneurons (lalNs) receiving la and Il afferent inputs of the flexor and extensor muscles were reciprocally inhib-
ited [96]. GABA INs applied presynaptic inhibition to excitatory inputs of the TA MN [86,109]. V2a INs received flexor |
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Fig 1. Computational SNN model of the flexor network with GM extensor and TA flexor proprioceptive la and Il inputs. (A) Biologically con-
strained SNN ankle flexor model. Arrow ends indicate excitation, circle ends indicate inhibition, and dotted line with circle ends indicate presynaptic
inhibition connections. The red dotted lines represent an increased number of SCl-induced GABA synapses. (B) Afferent axon firing rates for extensor
(GM) and flexor (TA) la- and ll-fibres in the Baseline and BWS condition. (C) Frequency-Current (F-1) curve for each neuron simulated in the SNN
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model. Each point reflects a single data point for the injected current and the solid lines were fitted using a logarithmic function. Input current was applied
with a 200 ms pulse width from a stimulus range of 10 to 3160 pA. (D) Excitatory exponential synapses and inhibitory alpha synapses across different
conductances. (E) Simulated TA MN output from a single step. Left illustrates the MN membrane potential activity with spiking activity indicated with

red triangles. The firing rates were converted into 25 ms window widths and smoothened with a Gaussian filter (middle). Synthetic EMG activity was
generated from recorded spiking activity by convolving Gaussian wavelets (right). Grey shading highlights detected bursts of firing rate activity.

https://doi.org/10.1371/journal.pcbi.1013866.g001

Table 2. Afferent axon parameters for LIF model, including references for each value where relevant.

Axon Parameter Value Reference
N 60 [69]
T 30ms [69]
Tref 1.6ms [69]
E, —-80mV [71]
Vin —60mV [105]
Vreset —70mV [105]
Cm 1.0 yF/cm? [106]
la 9 +0.2um [71]
ry 4.4 +£0.5um [71]
T 1mm -

T Assumed variable, held constant throughout tuning.

https://doi.org/10.1371/journal.pcbi.1013866.t002

afferent inputs and applied tonic excitation to TA MNs [55,59]. TA MNs received monosynaptic excitation from flexor la
afferents [98,110]. Refer to Fig 1A for an illustration of the entire network and Fig 1C for frequency-current (F-I) response
using 200 ms pulse widths across a stimulus range of 10to 3160 pA. For a visual example of tonic spiking neural firing,
refer to S2 and S3 Figs.

lalNs were modelled as conductance-based LIF neurons receiving excitation from la and Il afferent fibres and inhibi-
tion from opposing lalNs, see Eq 4./, is the cumulative synaptic current from excitatory and inhibitory components. lalN
parameters in Table 3 were set to match experimental results [74,88].

ﬂ/ _ gL(EL - V) + Isyn
dt Cn,

(4)

Table 3. la inhibitory, GABA, V2a IN and MN parameters. Parameter values were set based on results recorded in experiments or other validated
computational studies.

Parameter laIN GABA V2a MN

N 196 [74] 1967 196 [74] 169 [69]

Cnm 31.1pF [88] 100 pF¥ 45pF [55] 162 pF [111]

E, —70mV [88] —70mVT —53mV [55] —75mV [71,97]
Vin —50mVT —50mVT —42mV [55] —-50mV [111]
Vieset —65mV [88] —62.3mVT —47mV [55] —65mVE

aL 5nS [88] 1.2nSt 1.2n8S [55] 27nS [112]

A, - 2mVE 0.5mV* 0.05mV*

a - 2nst 2nSt -

Ty - 20ms [97] 55ms [55] -

TAssumed variables, held constant during tuning
*Tuned parameters, adjusted during model calibration.

https://doi.org/10.1371/journal.pcbi.1013866.t003
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GABA presynaptic inhibitory INs and V2a INs were modelled as conductance-based adaptive exponential (AdEX)
LIFs [101]. GABA parameters [97] and V2a parameters [53,55,95] were set as per experimental results. AdEx equations
were defined as per Egs (5) and (6). GABA and V2a IN parameters were set per Table 3.

iy,
dv 9L (EL—V)+g (Ayexp A—Vm) + lgyn — W
dt Cn,

daw a(V-E)-w
ot Tw
TA flexor MNs were modelled as exponential LIFs receiving excitation from TA la fibres, V2a INs, inhibition from GM
originating lalNs and presynaptic inhibition from GABA INs [38,58,74]. The equation for TA MNs was the same as Egs (5)
and (6) where w = 0. Parameters in Table 3 were set to best estimate experimental results [88,111,112]. MN responses
under varying stimulation pulse widths are shown in S2 Fig.
To capture the net excitability increase produced by 5-HT agonists, we used a single-parameter surrogate at the
motoneuron: a reduction of the leak conductance (g; ). This mirrors prior network models that emulate 5-HT with a sin-
gle conductance change (e.g. 40% reduction of K(Ca)) to reproduce persistent inward current mediated plateaus and
enhanced recruitment [69,113]. Consistent with these precedents, MN and V2a IN g, was reduced by 40% under SCl 1
and SCls_y1+gs conditions and by 15% under BWS;_ ;1 and BWSs_ 145, reflecting the modulated serotonergic activity after
5-HT administration. Decreasing the leak conductance increases membrane resistance and neuronal excitability, thus
simulating the modulatory effects of 5-HT on spinal circuits.

(6)

Synapses

Alpha and exponential conductance synapses were used to describe inhibitory and excitatory synapses, respectively, see
Table 4 and Fig 1D. The reversal potential of excitatory synapses was set to 0 mV, while inhibitory synapses were set to
—75mV [69]. This was to ensure the hyperpolarisation without instability. ll-fibre synapse weights were scaled by a factor
of 0.33 to simulate the effect of smaller axon size [74,114].

Synaptic connections, with the exclusion of GABA, were determined by probabilities specified in Table 5. Axon
synapses included a 2+0.3 ms delay accounting for diameter variability [115]. GABA connections to TA MNs were pre-
determined by index rules dependent on the experiment condition. Synaptic connections between GABA and TA MN
indexes were joined together if their absolute index difference was less than 4, see S1 Fig. GABA connections were
tuned to qualitatively match the population firing profile of previously reported simulations using the same dataset [69,74].
SCI condition GABA connections were increased by 160% as seen in flexor MNs after SCI transection, simulating an
inhibitory-dominant environment [86].

Presynaptic inhibition was a multiplicative gain, scaling synaptic weights of each excitatory connection to the TA MN
population [91,97,116,117]. GABA spillover was modelled as a linear decrease in release factor, y, see Eq (7). A deter-
mined the strength of the inhibition and set to a value of 0.4. Cg454 Was considered a unitless value for local GABA

Table 4. Alpha and exponential synapse and GABA spillover parameters. Alpha synapses were used for inhibitory connections
while exponential synapses were used for excitatory connections.

Synapse Parameter Value Reference
Texc 0.25ms [74]
Tinhyrise 2ms [74]
Tinh,decay 4.5ms [74]
Ty 20ms [97]

https://doi.org/10.1371/journal.pcbi.1013866.t004
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Table 5. Synapse connection probabilities (ps,,) and synaptic conductance by source and target neurons. Excitatory (exc.) and inhibitory (inh.)
synaptic conductance applies to target neurons. All values in this table were tuned to reproduce afferent signals and keep stability during afferent driven
locomotion.

Source Target Psyn Exc. Inh.
Axon laIN 0.3 7nS -
Axon GABA 0.4 12nS -
Axon V2a 0.6 1nS -
IaINTA/GM IaINTA/GM 0.1 - 3nS
Axon, V2a, laIN MN 0.3 30nS 10nS

https://doi.org/10.1371/journal.pcbi.1013866.t005

concentration [118].

d
TyF); = —y + max(0,min(1 = 1 - Caagas 1) (7)

Poisson distributed stimulus inputs were used to simulate subthreshold ES at a frequency of 40 Hz, amplitude of
10mV, and pulse width of 0.2 ms, consistent with experimental protocols for locomotor facilitation [119-121]. This
assumption is supported by previous studies demonstrating that exogenous excitatory drives can be represented as asyn-
chronous Poisson inputs in cortical structures [122,123]. Each stimulation input was connected to three non-overlapping
afferent fibres.

Photostimulation paradigms provide an experimentally controlled and reproducible framework for precise activation of
neuronal populations under static and well-defined stimulation conditions [124,125]. Recent work has demonstrated that
recurrent networks fitted to electrophysiological data can fail to predict responses to optogenetic perturbations, indicating
incorrect underlying circuit mechanisms, whereas biologically grounded SNNs generalise more reliably to unseen optoge-
netic perturbations [126]. This establishes photostimulation as a principled means for validating the causal mechanisms
implemented in SNN models.

To our knowledge, no validated SNN models have explicitly included presynaptic GABAergic inhibition in a controlled
manner. Given that photostimulation responses provide an appropriate benchmark for assessing simulated effects. There-
fore, we evaluated GABA interaction by testing if the model reproduced physiologically consistent firing patterns. This was
done across random initialisations and beyond non-perturbed conditions.

Validation of GABAergic interactions was performed by adopting electrophysiological evoked-response experiments
from intracellular recordings of the TA MN [97]. To simulate photostimulation of GABA neurons, a threshold current pulse
was injected using the same pulse durations (1 ms), frequencies (50 Hz), and delays (45 ms) reported in the experimental
protocol [97].

To validate the SNN model, an EMG signal (Fig 1E) was generated by convolving representative motor unit action
potentials ( S2 Algorithm), using the same parameters as experimental and previously validated computational mod-
els [69,74,127]. Population firing rates were averaged with a 25 ms Gaussian window for smoothening.

Bayesian modelling for seed equivalence

Given the random nature of the synaptic connections and background noise, the eight-step simulations were repeated
across 32 random seeds. Repeating simulations across random seeds was performed to ensure the parameters were
not overfit to a singular random seed and to improve the robustness of the study. To test for overfitting in the Baseline
condition, equivalence testing across all seeds was performed with Bayesian inference modelling. Conditional and seed-
dependent testing was completed using Bayesian hierarchical Linear Mixed Models (LMMs).
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Temporal resolution was reduced by calculating mean firing rates for each step, and time (x-axis) was rescaled to [0,1]
and expanded with a cubic B-spline bases S(;). A spline for time and seed-specific random effects, nested within condi-
tions, was fitted as per Eq (8). Let y; be the output for observation i from seed s(i) in condition c(i) at step .

Yi = ag() + asgy + Bt Bogy + B Bs(iy + € ®)
g ~N(0, 5)

In this equation, a, represents the condition-level intercept and BT 3, is the shared condition-level temporal trajectory.
Seed effects were nested within condition and written in a non-centred parameterisation. We used weakly informed infor-
mation priors a; ~ N'(0, 10), ;. ~ N(0, 2/), o um ~ HalfNormal(2), and 7, ¢, 73 . ~ HalfNormal(1). Posterior inference was
performed with No-U-Turn Sampler (NUTS) method in PyMC [128,129]. Spline degree-of-freedom was set to 3, and the
number of spline knots was set to 4. Regression was computed to minimise the root mean square between observations
and model outputs. LMMs were considered well fit if no divergences were detected, all Gelman-Rubin statistics (chain
convergence) were within the threshold (R < 1.05), and posterior predictive fit reached threshold (R? > 0.7) [130].

s = Z5sTac(s), Zas ™ N, 1)

Bs = Z3,sTB.c(s)>  ZB,s™ N(O, Ip)

We considered the SNN model to be equivalent across seeds if, at an intercept level P(z, . <¢j,) > 0.9, and at a
dynamics level, P(zg . < €4,,) > 0.9. The ROPE for both LMM intercepts was defined as ¢;,; = 5 Hz. This was calculated
as 16.67% of the minimum recorded TA firing rate (30 Hz) during quiet resting activity [131] and standard deviations
seen in locomotor activity experimentally recorded in rodents [132]. The ROPE for dynamic trajectory was defined as
€qyn = Max(5, 0.05 max(y,(1))), scaling with the fitted maximum rate amplitude. A 5 Hz floor was included to avoid van-
ishing thresholds in low-amplitude conditions, matching the relative temporal dynamics recorded during locomotion
[131,133]. By setting a low TA firing rate during quiet resting activity in healthy rodents, we can more confidently assess
seed
equivalence across conditions.

To avoid artificially inflating the effective sample size in subsequent statistical analyses, condition-dependent data were
aggregated by averaging across all seeds within each step for a given condition. For inter-step analyses, each step’s state
was inherently dependent on the preceding states and their corresponding seed configurations; therefore, inter-step data
were computed independently within each seed to preserve their dependency structure. Outliers were removed by using a
z-score threshold of 3 standard deviations from the mean.

Results

Bayesian hierarchical statistical modelling was applied to fit the nested data structure for equivalence analysis across 32
random seed initialisations and eight steps. To ensure reliable inference, model fit was first assessed by comparing the
observed and model-predicted firing rate distributions. Posterior predictive checks showed strong agreement between
observed and predicted values, indicating a satisfactory model fit. Although the model underestimated the exponential
behaviour near zero firing rates, see Fig 2B.

Model convergence and sampling stability were confirmed through multiple diagnostics. The posterior sampling energy
diagnostic density plot demonstrated close agreement between the transition and marginal energy densities, indicating
well-mixed chains (Fig 2B). Convergence diagnostics further supported stable sampling, with Gelman-Rubin statistics
(R < 1.01) and Bayesian fraction of missing information (BFMI >0.9) within acceptable ranges across all chains, see
S2 Table.
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Fig 2. Step trials (nsps = 8) were repeatedly simulated using 32 unique random seed value initialisations. Recorded TA MN cell spiking events
were used to verify model equivalence across all random seeds. (A) The mean population firing rate and standard deviation of TA MNs across the
step trials were calculated for each seed, represented by each colour. (B) The upper plot shows the posterior predictive check. Overlap between
observed and model-predicted firing-rate densities indicates good model fit. The lower plot illustrates the energy diagnostic of Markov Chain Monte
Carlo sampling. The close overlap between marginal and transition energies indicates stable sampling behaviour for the fitted LMM. (C) The posterior
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standard deviation (SD) of seed-level intercept deviations within each condition are shown in the bar plot. These are further differentiated within the
lower scatter plot as seed-specific intercept deviations. (D) Individual mean firing rates per step are plotted as individual markers. The fitted B-Spline
LMM for each seed are colour matched line plots. Sub-figures (C) and (D) only plot eight seeds per condition to avoid overpopulating the figure.

https://doi.org/10.1371/journal.pcbi.1013866.9002

Together, these results confirm that the hierarchical LMM converged robustly and provides a reliable basis for statisti-
cal inference. Seed-level intercepts and seed-specific deviations were contained within the ROPE, see Fig 2C. Additional
results on seed equivalence across steps and conditions are presented in S3 Table. In summary, aggregating temporal
firing rates to mean values per seed and step produced well-converged models that demonstrate equivalence across
conditions.

To complement this statistical validation, a spinal reflex recruitment protocol was implemented to verify the physiolog-
ical plausibility of interactions between neural populations, synapses, and stimulation inputs within the SNN framework.
Early- (ER), middle- (MR), and late-response (LR) latencies were defined as 1 ms, 4 ms, and 7 ms respectively [133]. The
protocol was adapted from previous animal and simulation experiments and qualitatively assessed model behaviour under
static conditions [69,134]. Afferent fibre and direct motoneuron recruitment data, retrieved from validated computational
models [74], were coupled with identical stimulation profiles [71]. Electrical pulses of 0.5 ms were applied with an inter-
stimulus interval of 1's, with stimulus amplitudes ranging from 20 to 600 yA, encompassing the parameters (100 —300 pA)
shown experimentally to facilitate locomotion in rats [66,134].

The SNN model described in the methods section does not couple spatial distances or electrode geometry. To match
the acquired recruitment data, the minimal required stimulus required to elicit a spike was determined for each neuron
and applied to the binary matrix encoding neuron index over time. As shown in Fig 3A, increasing stimulation intensities
progressively recruited efferent fibres and suppressed MR and LR amplitudes, consistent with previously reported sim-
ulations and in vivo recordings [69,74,134]. Although simulated EMG amplitudes lack physiological scaling, the relative
shape, latency, and modulation of evoked responses closely matched experimental [134] and validated computational
data [69,71], supporting the model’s biological realism.

Additionally, GABA interaction validation was performed by adopting electrophysiological evoked response experi-
ments in EPSP recordings of the TA MN (Fig 3B). The ratios of EPSPs during control and photostimulation conditions
were within range of experimental results (0.5 < EPSP,/EPSP < 0.8) [97].

The SNN model was further verified within a dynamic setting (Fig 3C) using previously simulated afferent fibre firing
rate profiles during locomotion [74]. MN firing rates were processed with the same window size (4 ms) used in rodent
experiments and validated by comparing TA MN burst firing rates and periods during locomotion [103,135]. The simulated
burst activity during locomotion fell within the experimentally reported ranges for burst firing rates (100 —500 Hz) [103] and
burst period (0.5 —-0.9s) [135], supporting the model’s ability to reproduce physiologically realistic locomotor dynamics.

Having established the model’s validity under dynamic conditions, we next examined how network activity evolved
across Baseline and SCI simulations averaged over multiple steps. During Baseline stepping, most variation occurred
during the swing phase and at the transition between the swing and stance phases of the gait cycle, see Fig 4A. The TA
MN population firing rates between Baseline and SCI conditions were significantly different across time (Fig 5A). Deter-
ministically scaling the number of GABAergic synapses onto flexor MNs by 160% increased GABA scaling factor, y, which
reduced seed-aggregated mean firing rates by a factor of 50 and increased the coefficient of variation by a factor of 3.8,
see Fig 4B and Table 6.

Simulated TA MN expression during the Baseline step cycles was attenuated with stimulation voltages greater than
20 mV and by stimulation frequencies greater than 60 Hz, refer to Fig 4C and 4D. Though, GABA and V2a INs firing rates
were scaled according to stimulation frequency. While seed variation was less noticeable in interneurons, the TA MN saw
a large variation during frequency sweeps greater than 60 Hz during stance to swing transition and swing periods.
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Fig 3. Static (n = 7) and dynamic (n = 9) qualitative and quantitative validation of the SNN model. (A) Motor evoked potentials (MEPs) at stimu-
lation intensities ranging from 0-600 pA and 0.5 ms pulse width with 1's between each pulse [69,134]. Results qualitatively match reported findings. (B)
Modulation of excitatory post-synaptic potential in control (black trace) and GABA IN stimulation (blue trace) experiments. Transparent traces dis-

play seed specific trials, and opaque lines indicate the average across seeds. Fifteen 1 ms pulses at 50 Hz with a 45 ms delay stimulated GABA INs
before delivering afferent fibre stimulation at 1.1x threshold [97]. The ratios between the photostimulated and control peaks were within the range of
experimental results (0.4-0.9). (C) TA burst firing rates and periods during Baseline locomotion were within the range of experimental results [103,135].

https://doi.org/10.1371/journal.pcbi.1013866.9g003

Statistical analysis on flexor activity after outlier removal during each phase presented a non-normal distribution in the
swing and stance phases (p < 0.05). Swing phase flexor activity significantly differed between all simulated conditions,
with the exclusion of Baseline-BWSgg only. Stance phase flexor activity was significantly different in all simulated con-
ditions. See Fig 5A and 5D for TA MN activity distributions in both swing and stance phases. Practical equivalence test-
ing using an equivalence boundary of +15Hz, performed with TOST procedure on firing rate data, revealed equivalence
between Baseline-BWSgg pairs during stance phase (see Fig 5D and S4 Table).

Comparison of firing rate differences between the stance and swing phases, where stance was positive and swing was
negative, showed significant differences in all Baseline pairs except for Baseline and BWS5 1.5 condition (see Fig 5A
and 5C). The same pattern was reflected in TOST equivalence tests (see Fig 5D and S4 Table.).

Pearson’s correlation coefficient was calculated after aggregating the firing rate by averaging across seeds for each
condition, see S4 Fig. Pairwise comparison of the Baseline condition with all other simulations found the highest correla-
tion with BWS gg, although only weakly correlated (r=0.11; p <0.0001).

While the GABA IN firing rates were the same between the simulated Baseline and SCI settings, increased GABAer-
gic connections resulted in more frequent presynaptic inhibition activity on TA MN populations, see Figs 4B, 5A, and 5B.
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Fig 4. The effect of increased GABA synapses and excessive stance induced inhibition on TA MNs in addition to the effect of ES stimula-

tion voltage and frequency on the Baseline condition stepping across each neuron are shown. Shaded areas represent standard deviations
across seeds. (A) Average and standard deviation plots of eight steps during Baseline and simulated SCI conditions. The vertical grey line separates
the stance (left of the grey line) and the swing (right of the grey line) phases, estimated at 65% of the gait cycle [85]. (B) SCI simulation of a single
motoneuron receiving presynaptic inhibition by local concentration of GABA transmitters during a single step. Increased GABA scaling factor reduced
the number of spike events near TA MN threshold. All shaded areas are standard deviations across seeds. (C) ES stimulation intensity sweep applied at
5, 10, 20, 30, 40, and 50 mV at a 40 Hz frequency. (D) ES stimulation frequency sweep applied at 20, 40, 60, 80, and 100 Hz at 10 mV amplitude. All ES
was simulated with Poisson inputs to all flexor and extensor afferent axons.

https://doi.org/10.1371/journal.pcbi.1013866.9g004

GABA IN firing rates were increased while receiving ES inputs (S5 Fig and S5 Table). V2a IN firing rates were equal
between Baseline and SCI since it did not receive GABA IN synapses (S6 Fig and S5 Table). Simulating SCI seroton-
ergic agonist activity by reducing the leak conductance of V2a INs significantly increased the V2a firing rates (S6 Fig),
though this only slightly increased firing rates in MNs by a factor of 1.4 (S5 Table). This facilitatory effect was abolished
when combined with ES, see Figs 6, 5A, and 5C. Without BWS, 5-HT application significantly increased V2a interneu-
ron firing rates (p < 0.0001; Figs S6 and 6) but did not restore TA motoneuron activity to Baseline levels (Fig 5A and 5C).
The facilitatory effects of 5-HT on TA motoneurons and V2a interneurons were abolished when ES was applied, coinciding
with increased GABA interneuron activity (S5 Fig and S5 Table). Combining 5-HT with ES in the absence of BWS further
reduced motoneuron excitation below that observed in the SCI condition.

BWS locomotion with SCI increased overall flexor activity to averages greater than the Baseline condition ( Fig 5A, 5C,
and 5D and Table 6). This was further amplified with the introduction of 5-HT. Applying ES without 5-HT smoothened
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Fig 5. Box-and-whisker plots with overlaid scatter data points for each step at each seed across conditions. (A) Box-and-whisker plots were
averaged over all seeds, yielding eight step datapoints and overlayed with scatter points for each phase. All swing and stance flexor activity was
non-normal and significantly different with the exception of Baseline to BWSgg during swing phase after paired t-tests. (B) Plots the overlayed box-
and-whisker plot and scatter points for the phase difference between stance and swing. No statistical difference was detected in the mean firing rate
phase differences between SCI and SCls 7. (C) Displays the heatmap p-values for pairwise t-tests. (D) Plots the kernel density estimate to visualise
the distribution of log-transformed observations for phases and their difference. TOST testing on log-transformed data resulted in no meaningful differ-
ence between Baseline and BWSgg condition for both stance and swing phase. All TOST for phase difference calculations returned meaningfully large
differences across all conditions.

https://doi.org/10.1371/journal.pcbi.1013866.9005
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Table 6. Statistical calculations of seed-aggregated, phase-specific firing rates across experimental conditions for TA MN following z-score
based outlier removal (values exceeding +3 standard deviations). Reported results include mean, standard deviation (SD), and kurtosis for each
locomotor phase (stance and swing) and their difference.

Phase Simulation Condition Mean SD Kurtosis
Stance Baseline 46.69 19.89 -0.50
SCI 0.91 1.24 4.73
SCls.yt 3.81 3.57 1.92
BWSgg 59.08 26.91 -0.41
BWSs.nyt 218.41 44.93 -0.34
BWSs yt4Es 81.81 32.67 -0.39
Swing Baseline 76.96 19.75 -0.14
SCI 1.57 1.91 2.01
SCls.yt 6.26 4.81 0.48
BWSgg 73.90 32.01 -0.03
BWSs.nyt 267.45 30.13 -0.31
BWSs pyt4ES 103.13 38.64 -0.14
APhase Baseline -29.88 26.49 -0.68
SCI -0.73 2.14 1.81
SCls.yt -2.65 5.98 0.74
BWSgg -16.15 48.74 -0.51
BWSs.nyt -50.84 42.49 -0.47
BWSs pyt4ES -22.85 59.04 -0.50
https://doi.org/10.1371/journal.pcbi.1013866.t006
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Fig 6. MN, V2a IN, and GABA IN firing rates during an example step, averaged over 32 seeds and shaded SD. The effect of SCI and SCI while
receiving serotonergic agonists, (5-HT), and the combination of 5-HT and ES (5-HT+ES) were compared. The top row illustrates the population firing
rates, and the bottom row shows the neuron population spike activity during the gait cycle.

https://doi.org/10.1371/journal.pcbi.1013866.9006

the output of MN activity, returning MN activations to Baseline. Combining 5-HT and ES further increased peak activity
during the swing phase and reduced activations during stance phases, see Figs 7, 5A, and 5C. By re-introducing ES the
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Fig 7. MN, V2a IN, and GABA IN firing rates during an example step during simulated BWS locomotion averaged over 32 seeds and shaded
SD. The effect of BWS while receiving serotonergic agonists (5-HT) and the combination of 5-HT and ES (5-HT+ES) were compared. The top row
illustrates the population firing rates and the bottom row shows the neuron population spike activity during the gait cycle.

https://doi.org/10.1371/journal.pcbi.1013866.9007

BWSs.47 condition, the inter-step differences in firing rate area under the curve (AUC) became statistically insignificant
between BWSgg and BWSs yyt.es Fig 8D.

The reduction in flexor afferents during BWS decreased 5-HT modulated V2a IN activity towards SCI levels, though this
effect did not reach statistical significance (S6 Fig and S5 Table). These changes were reversed under ES modulation.
GABA IN activity was reduced in response to diminished stance-phase EMG during BWS Fig 7. Introducing ES restored
GABA IN activity toward Baseline levels. GABA activity remained equivalent between BWSgg and BWSs y1.g5 as 5-HT
did not provide additional modulation; refer to Figs 7 and S5.

To further quantify how these neuromodulatory conditions affected the temporal dynamics of locomotion, inter-step dif-
ferences were analysed across the Baseline and BWSgg conditions by comparing firing rate, Fano factor (coefficient of
variation), and AUC ( Fig 8B, 8C, 8D, and Table 7). Permutation testing showed the greatest similarity in firing rates during
active bursting periods in both stance and swing phases, whereas the Fano factor similarity was highest during quiescent
periods (Fig 8B). A relative t-test revealed that 62.5% of stepwise AUC values differed significantly between Baseline and
BWSgg, compared with only 25% of Fano factor measurements, see Fig 8C and Table 8.

No significant AUC differences were found between Baseline and BWSgg or between BWSgg and BWSg 11.g5. Despite
comparable firing rate profiles, TA MN spike-train variability differed between Baseline and BWSgg during active spiking
periods (see Figs 5C, 5D, and 8).

Discussion

A biologically constrained SNN model of the flexor reflex circuit was developed to investigate the integrative mechanisms
between sensory and neuromodulation inputs to the spinal cord. Analysis of the stance and swing phases across eight
steps under SCI conditions revealed serotonergic agonists re-excited V2a INs and TA MNs after SCI. Nonspecific ES

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013866 January 6, 2026 17/ 29



https://doi.org/10.1371/journal.pcbi.1013866.g007
https://doi.org/10.1371/journal.pcbi.1013866

PLO&- Computational

Biology
A —— Population Firing Rate  Baseline B BWSgs - Baseline
1.0 = 1
150 =
0.5 =
N 100 =
0.0 = z
[ 50 =
-0.5 = 5
I o 07
- £
3 SCI £ —50 —
© 3
" 1.0 = I —100 =
g |
5 0.5 = | —150 =
> | |
o 0.0 = I
1) 4 -
o |
< -—-0.5 =—
g 1 ~ 3 -
s I | I | I I 3
© -
= BWSks T 2
o
1.0 = } 5 01=-
&
0.5 = o 97
[ ©
0.0 = i p -1 =
-0.5 — : -2 7
I | I | I ] I I ] | ] |
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
Time (s) Time (s)
C . * * D Mean Inter-step Differences
120 = === Baseline  ==e= BWSgs *,
*
100 — 20 =
N go — 7 P
< N
I —
S 60 T 10
©]
< D 5=
40 = <
O —
20 =
I I I I | I I | -5 = T
* *
160 = 80 =
5 140 — ~ 60 —
© 3 ns
T 120 = - 40 =
2] S ns *
T 100 = S 20 -
© ns
£ i
S 80 — S o ¢ Q - ¢
S c
©
w60 = u“z —20 =
40 =
I I I I I | | | I I I I | I
1 2 3 4 5 6 7 8 Baseline SCI SCls.yt BWSkgs BWSs.yr BWSs.hr4Es
Step Condition

Fig 8. Using the population firing rates across steps and seeds, Area Under Curve (AUC) and Fano factors were calculated after downsam-
pling by a factor of 10. (A) Population firing rates and EMG simulations for the Baseline, SCI, and BWSgg conditions. The pink vertical dashed line
indicates the end of the first step and the beginning of the next. All y-axis values were normalised for easier viewing. (B) The firing rate and Fano factor
difference between the Baseline and BWSgg conditions are plotted for the same step intervals as (A). Shaded in grey are areas that are not statistically
significant after hierarchical permutation testing within each step (p > 0.05). (C) The step-by-step AUC and Fano factor with seed-aggregated means and
highest density interval are plotted for the Baseline (black), SCI (blue), and BWSgg (red) conditions. (D) Inter-step differences in AUC and Fano factor
were calculated for each seed and condition, providing a dependent sample size of 32. Conditional differences were pairwise t-tested and pairs with
significance are shown. Baseline and BWSgg showed no significant difference in AUC. However, Baseline and BWSgg was significantly different when
tested using the inter-step Fano factor.

https://doi.org/10.1371/journal.pcbi.1013866.9g008
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Table 7. Grand mean and standard deviation results of interstep differences aggregated over seeds for AUC and fano factor in the TA MN.
Some steps did not return any spikes and so were not included in calculation for fano-factor.

Simulated Condition Count Mean SD
AUC Baseline 32 4.08 2.04
SCI 32 0.07 0.26
SCls.yt 32 0.34 0.71
BWSgg 32 4.53 3.21
BWSs 1 32 7.47 2.61
BWSs p14+ES 32 6.13 3.82
Fano Factor Baseline 32 2.13 5.23
SCI 9 3.29 15.50
SCls.pt 26 5.22 11.25
BWSgg 32 2.05 3.67
BWSs 1 32 0.79 2.62
BWSs p1+ES 32 1.55 2.92

https://doi.org/10.1371/journal.pcbi.1013866.t007

Table 8. Grand mean and standard deviation (SD) of Fano factor values during active bursting across seeds (n = 32). Relative t-test showed
significance between groups.

Baseline BWSgg p-value
Fano factor 0.66 (+ 0.06) 1.46 (+ 0.22) < 0.0001

https://doi.org/10.1371/journal.pcbi.1013866.t008

application to proprioceptive afferent axons amplified the effects of reciprocal inhibition, further accentuating excitatory
peaks and inhibitory valleys. Simulated BWS locomotion, implemented by adjusting the EMG gain in afferent equations,
decreased presynaptic inhibition and consequently restored TA MN firing rates. Combining ES with BWS locomotion pro-
duced an activation profile more closely resembling Baseline activity across and within step phases.

Historically, ES has been applied for chronic pain management and spasticity reduction [75,136,137]. The activation
pathways of spinal cord stimulation for pain management are understood to be via the large-diameter dorsal column and
root fibres that carry propriosensory, mechanosensory, and nociceptive information [138]. GABA INs activate and depress
afferent nociceptive signals by antidromic activation of the dorsal column at frequencies, electrode positions, and stimu-
lation amplitudes similar to those of ES for sensorimotor recovery [139,140]. Similarly, ES applied for spasticity reduces
the excitatory inputs to MNs through the proprioceptive inhibitory pathways [141,142]. Yet literature in SCI motor recovery
places an intense focus on excitation [31,143,144].

Given the heightened inhibitory state of the injured spinal cord, it seems intuitive to return excitation to depressed
neurons. However, results from this study suggest that activating the spinal cord with the same proposed mechanisms
as pain and spasticity modulation equally activate inhibitory pathways, strengthening an already maladapted inhibition-
dominant circuit [86,145]. A more refined and nuanced approach needs to be considered in order to return the required
balance of excitation and inhibition to allow phasic activity to propagate. Results in this study suggest that appropriate
sensory information must be provided to drive flexor network plastic adaptation towards a less inhibited and more task-
specific tuned state. Tonically depressing or exciting, the spinal circuits do not provide the necessary sensory informa-
tion to provide that plastic tuning [146,147]. This is in agreement with the requirement of propriosensory information for
locomotor recovery after SCI [32—34].

The normal sensory processing occurring within the injured spinal cord becomes more stochastic and lacks the nec-
essary bias required to perform the task [133]. As a result, pre-motor polysynaptic connections play a more active role in
the expression of muscle tone and activity [148]. By establishing an appropriate balance in excitation and inhibition, repet-
itive sensory information can reinforce appropriate synaptic adaptations towards a more functional spinal state [70,149].
Results in this study investigate the synaptic mechanisms by which this can be accomplished, and provide a step towards
understanding how BWS treadmill training works in concert with neuromodulation therapies [150-152].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013866 January 6, 2026 19/ 29



https://doi.org/10.1371/journal.pcbi.1013866.t007
https://doi.org/10.1371/journal.pcbi.1013866.t008
https://doi.org/10.1371/journal.pcbi.1013866

N\ Computational
PLOR’ Biology

The greater deviation in the normalised firing rate indicates increased variability in neuronal population activity after SCI
(Fig 4A and 4B). This variability may arise from insufficient excitatory drive to maintain coordinated inhibition and exci-
tation in phase with incoming sensory inputs [133]. Enhancing the excitability of motoneurons and premotor excitatory
neurons, while reducing stance-phase inhibition through BWS, can therefore mitigate excessive inhibition of flexor path-
ways [153—-156]. Once the network reaches a sufficiently excitable state that allows the timely propagation of phasic step
information, subthreshold electrical stimulation may act as a stabilising mechanism - reinforcing relevant pathways without
inducing excessive excitation or inhibition [74,120,121].

Interestingly, firing rate and Fano factor dynamics diverged during burst activity across steps. Although firing rate
profiles were similar between steps, the coefficient of variation in spiking activity shifted toward BWSgg values (Fig 8B
and Table 8). This divergence may reflect increased neuronal excitation resulting from reduced GABAergic presynaptic
inhibition and enhanced facilitation through ES inputs and their downstream synapses. These findings suggest that sen-
sory afferent input combined with BWS and ES produced a broader and more diverse activation of neuronal populations
compared with Baseline conditions. The return of stochastic bursting has been linked to improved stepping recovery [133],
yet the origins and functional implications of this variability during locomotor rehabilitation after SCI remain poorly
understood.

Computational studies such as this are limited in their ability to generalise due to the estimates and tuning that are
required to generate the model itself. The simulated flexor reflex loop’s SNN architecture is simplistic compared to the
complex bidirectional information exchange between the contralateral sides [157,158]. Although the cells were modelled
from experimental data, there are errors and missing variables within experiments that have a carry-over effect on com-
putational models. This study utilised LIF and AdEx equations to reduce computational burden and improve simulation
runtime. Though previous efforts have incorporated the same approach [69,74], mathematical approximations of firing
patterns limit the generalisability [159,160]. However, even with simple estimations, a computational model could provide
new hypotheses about the inner workings of neurological systems and unlock novel recovery protocols [140,161].

Future studies could include the experimental verification of these findings via electrophysiological or genetic abla-
tion experiments in rodent models under BWS neuromodulated locomotion contexts. Moreover, extending the model
to enable investigation of previous electrophysiological results that uncovered correlations between the appearance of
of uninterrupted late-response polysynaptic potentials may be the expression of increased excitability in local spinal
networks, re-balancing the inhibitory dominant pre-motor circuity [133,148]. Functional recovery may be mediated by
increased magnitude in polysynaptic activity, compensating for the loss in direct excitation [70]. Conversely, this model
could be extended to investigate the effects of ES in returning inhibition in a hyperexcitatable environment, such as that
of spasticity [23,137]. Currently, there are a diverse number of stimulation paradigms for different causes of spasticity
with several hypotheses for the mechanism of action [163]. Such hypotheses cover the inhibition of la afferents and stim-
ulation of Ag fibres to diminish the effect of overactive spinal reflex, reducing muscle tone [164]. Alternative hypotheses
suggest the activation of presynaptic inhibition and inhibitory networks within the dorsal column [165]. Finally, extend-
ing the computational model to include neuroplastic dynamics could uncover the relationship between neuromodulation
and neuroplastic adaptations [118,166,167]. Investigating these effects within an extended computational model would be
worthwhile.

Conclusions

The development of a biologically constrained SNN has provided insights into the mechanistic basis of sensory and
neuromodulatory integration after SCI. Simulations suggest that BWS locomotion in conjunction with ES returns phasic
flexor coordination in an inhibition-dominant environment. In contrast, serotonergic agonists alone increased sensory-
driven flexor activation but did not reestablish baseline excitation, while the combination of ES and 5-HT in the absence of
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BWS produced network overexcitability. These results highlight that recovering TA MN activity after excessive GABAer-
gic presynaptic inhibition depends on maintaining a dynamic balance between excitation and inhibition within spinal
circuits.

Although the current model incorporates key physiological constraints, it remains limited by simplifying assumptions
and an incomplete representation of spinal architecture. Future experimental validation will be essential to strengthen the
reliability of these inferences. Overall, this work presents a computational framework for probing the combined effects of
neuromodulation and sensory afferents on spinal network dynamics, supporting the design of targeted locomotor rehabili-
tation strategies.
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