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Abstract

Accurately inferring cell-cell interactions from spatial transcriptomics data remains

challenging due to tissue complexity and spatial heterogeneity. Recent deep learning

models have started to combine different types of cellular information, such as spatial

proximity, gene expression similarity, ligand–receptor signaling, and in some cases,

gene regulatory networks. However, they often treat a cell’s external interactions and

internal gene regulation separately, merging them at the final step using simple con-

catenation or addition. This limits the model’s ability to capture how cell–cell commu-

nication and internal molecular states are connected. In this paper, we present MAG-

NET (Multi-view Graph Autoencoder with Cell-Gene Attention Network), a framework

that reconstructs cell–cell interaction networks by building multiple biological graphs

and developing a Cell-Gene attention module to link a cell’s environment with its

internal gene activity in a unified representation. On benchmark datasets (seqFISH,

MERFISH, STARMAP), MAGNET demonstrates superior performance in reconstruct-

ing cell-cell interaction networks, achieving an Average Precision(AP) of 0.901 on

the seqFISH dataset and outperforming TENET by 0.185. The Cell-Gene Attention

module is critical to MAGNET’s performance, as its removal alone caused the AP on

the seqFISH dataset to drop from 0.901 to 0.521. Applied to a breast cancer dataset,

MAGNET found functional heterogeneity among cancer cells, distinguishing clusters

with molecular signatures for either immune evasion or autonomous tumor growth.
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Author summary

Intercellular interaction is a fundamental biological process that governs tissue
function and is frequently dysregulated in diseases. While spatial transcriptomics
technologies provide unprecedented data on cellular organization, accurately infer-
ring the underlying interaction networks remains a significant challenge. Existing
computational models oversimplify this complexity by prioritizing spatial prox-
imity at the expense of other critical biological information. To address this, we
developed MAGNET, a method designed to reconstruct cell-cell interactions by
capturing a more comprehensive set of cellular relationships. By constructing a
multi-view graph, MAGNET incorporates diverse biological signals in addition to
spatial proximity, which are then integrate by a novel Cell-Gene attention module
for a more accurate prediction. We show that this integrated approach enables
MAGNET to perform well compared to existing methods. In breast cancer tissues,
MAGNET identified diverse signaling networks, including those related to immune
responses and extracellular matrix remodeling. In summary, MAGNET helps inter-
pret intercellular signaling by combining different sources of cell–cell interaction
information with gene expression data.

Introduction

Cell-cell interactions (CCI) play a fundamental role in the regulation of critical biologi-
cal processes such as tissue development, immune responses, and disease progres-
sion [1,2]. Understanding these interactions is essential for deciphering cellular com-
munication and functional coordination, yet accurately constructing CCI remains chal-
lenging due to molecular complexity and spatial distribution heterogeneity [3]. Spatial
Transcriptomics, which integrates gene expression data with spatial context, offers a
promising strategy to resolve these intricate networks [4].

Although methods have been developed to detect CCI directly from spatial tran-
scriptomic data, most existing methods such as CellPhoneDB, stLearn, NCEM ,
SpaCCC, GiottoTWCOM, CellChat [5–11] focus on interactions at the cell-type or
cluster level, which neglects single-cell resolution and missing intratype cellular het-
erogeneity.

While COMMOT can reconstruct cell–cell communication networks at single-
cell resolution, it primarily detects spatial factors and requires additional pathway
information, which limits its ability [12]. NICHES visualizes heterogeneous signaling
archetypes within cell groups, reflecting the local cellular microenvironment, but col-
lapses cells into neighborhoods via principal component analysis, which may reduce
noise, but lacks resolution at the single-cell level [13]. Due to limited spatial resolu-
tion and reliance on prior knowledge, most methods lack access to the full spectrum
of cell information.

Recent graph-based deep learning methods have single-cell resolution interaction
reconstruction. However, they mostly use spatial information to infer CCI and neglect
key biological factors, such as ligand-receptor signaling, gene expression similarity,
and gene network [14]. For example, DeepLinc focuses mainly on spatial distance in
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adjacency matrix preparation [15]. Clarify, employs the k-nearest neighbor algorithm, effectively capturing local spatial
context but neglecting ligand-receptor signaling [16]. Similarly, TENET integrates Hierarchical Navigable Small World
(HNSW) and Louvain modularity optimization to enhance spatially-driven community detection, yet it falls short in detect-
ing transcriptionally similar but spatially distant cellular interactions [17]. A recent method CellNEST integrates ligand–
receptor signaling with spatial context to model cell–cell communication [18] but do not consider gene network. Another
limitation of the current methods is their use of pre-defined fusion strategies for integrating single-cell features. Although
Clarify and TENET consider both cell-level and gene-level information in GNN, they implement feature fusion through sim-
ple strategies, such as concatenation or summation. OrgaCCC similarly integrates the two modalities via orthogonal graph
autoencoders with a posterior loss-based coupling strategy, but lacks explicit intermediate-layer interactions [19]. These
fusion approaches lack explicit architectural mechanisms to guide cross-modal feature interactions, placing the full burden
of discovering these relationships on the message-passing mechanism. This limitation reveals a key need for a learnable
fusion mechanism that can adaptively integrate cross-modal features in a biologically informed manner[20].

To address the limitation of existing methods, we propose MAGNET (Multi-view Graph Autoencoder with Cell–Gene
Attention Network) to integrate gene networks and cell networks by capturing diverse aspects of cellular relationships.
MAGNET incorporates multiple views of biological networks, such as spatial location, gene expression similarity, ligand–
receptor interactions, and gene regulatory networks, to provide a comprehensive understanding of CCI.

Methodology

As illustrated in Fig 1, MAGNET is a framework for reconstructing cell–cell interaction (CCI) networks from spatial tran-
scriptomics data. It first constructs multiple graphs to capture gene-level and cell-level relationships from diverse biological
views. Graph neural networks are applied to extract latent representations of genes and cells. These features are inte-
grated through a Cell–Gene attention module that models fine-grained interactions between cells and genes. The fused
representations are used to reconstruct the CCI network, guided by reconstruction and alignment loss functions.

Multi-view graph construction

To comprehensively model potential cell–cell interactions at single-cell resolution, we construct four specific graphs from
spatial transcriptomics data, namely a spatial proximity graph Gd, a ligand–receptor interaction graph Glr, a transcriptional
similarity graph Gs, and a gene-level regulatory graph Gg.

The spatial graph Gd = (Ad,Xc) captures physical proximity between cells. The node feature matrix Xc ∈ ℝN×G repre-
sents the gene expression profiles of all cells, where each row corresponds to a cell and each column to a gene. Spatial
relationships are encoded by the weighted adjacency matrixWd ∈ ℝN×N, where each entry is computed using an adaptive
Gaussian kernel:

Wd
ij = exp(−

d2ij
2𝜎2i

) (1)

Here, dij is the Euclidean distance between cells i and j, and 𝜎i is an adaptive bandwidth defined as the distance from
cell i to its nearest neighbor m. The adaptive kernel modulates spatial influence by setting the bandwidth 𝜎i according to
local density. In dense regions, a small 𝜎i leads to sharply localized affinities, whereas in sparse regions, a larger 𝜎i allows
the kernel to capture longer-range interactions, reflecting spatial influence between cells [21]. The binary adjacency matrix
Ad is obtained by retaining the top k (k = 5)most spatially relevant neighbors for each cell inWd, excluding self-loops.

The ligand–receptor graph Glr = (Alr,Xc) is constructed to models ligand–receptor interactions, where the weighted
adjacency matrix reflects interaction potentials between cell pairs.:

Wlr
ij = E′l (i) ⋅ E

′
r(j) ⋅ exp(−

d2ij
2𝜎2) (2)
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Fig 1. Overview of the multi-view graph autoencoder with cell-gene attention network.

https://doi.org/10.1371/journal.pcbi.1013810.g001

where E′l (i) and E
′
r(j) represent the normalized expression of ligand and receptor in cells i and j. For each cell pair, inter-

action scores are computed across all ligand–receptor pairs and filtered using permutation testing (p < 0.05) to identify
statistically significant interactions. The final edge weight is obtained by aggregating the scores of all significant ligand–
receptor pairs for that cell pair. The adjacency matrix Alr is constructed by sparsifying the interaction matrixW lr , retaining
the top k (k = 5) strongest outgoing edges per cell.

The transcriptional similarity graph Gs = (As,Xc) captures transcriptomic similarity between cells. To construct the adja-
cency matrix As, gene expression profiles are first normalized and reduced using PCA, producing an auxiliary embedding
matrix Xs ∈ ℝN×32 used only for computing intercell distances. Pairwise Euclidean distances in this space are computed
as:

dij = ‖X(i)s − X(j)s ‖2 (3)

Local density is modeled using two parameters for each cell, where 𝜌i is the distance to its nearest neighbor and 𝜎i is
the distance to its kth nearest neighbor [22]. Based on these parameters, the conditional similarity from cell i to j is com-
puted as

P(j ∣ i) = exp (−
max(0,dij − 𝜌i)

𝜎i + 𝜖 ) (4)
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where 𝜖 is a small constant added for numerical stability. To obtain a symmetric similarity measure, the final similarity
between cells i and j is given by

Ws
ij = P(j ∣ i) + P(i ∣ j) − P(j ∣ i) ⋅ P(i ∣ j) (5)

The adjacency matrix As is then constructed by retaining the top k ( k = 5) most similar neighbors for each cell, exclud-
ing self-loops.

The gene-level graph Gg = (Ag,Xg) models intracellular gene regulatory networks (GRNs), where nodes represent
genes and edges indicate regulatory interactions. For each cell, a set of 30 genes was selected by prioritizing ligand–
receptor pairs from curated databases (e.g. CellTalkDB) to ensure paired retention, and filling the remaining slots with the
most highly expressed genes within the cell. The resulting expression matrix was normalized and reduced by principal
component analysis (PCA) for covariance estimation. GRNs are inferred using CeSpGRN [23], producing block-diagonal
adjacency matrices Ag, each block corresponding to a cell-specific GRN. This structure captures regulatory patterns within
individual cellular contexts while maintaining sparsity. Ligand–receptor annotations from curated databases [24] guide
interaction directionality, ensuring biological plausibility. To extract latent topological features, Node2Vec [25] is applied to
Gg, generating the node feature matrix Xg ∈ ℝM×d where M = N × k denotes the total number of gene nodes, and N is the
number of cells and k (k = 30) is the number of selected genes per cell. The embedding dimension d is set to 64. These
embeddings encode both local and global regulatory structures, enhancing gene-level interaction representations.

To guide the multi-view integration process, we construct a consensus cell–cell target adjacency matrix Atarget using
Similarity Network Fusion (SNF) [26]. This matrix combines three cell-level similarity measures into a unified represen-
tation of intercellular relationships. Each similarity matrix is first sparsified and normalized, then iteratively fused through
cross-view message passing. The resulting matrix is thresholded to produce a binary adjacency matrix Atarget, which
serves as a high-confidence supervisory target in the loss function. It is used only for training supervision and not as an
input graph to the model.

Multi-view feature extraction

To capture different aspects of cellular interactions, we construct four graph-based views and extract features from each
using dedicated two-layer Graph Convolutional Networks (GCN) [27]. Three cell-level graphs, namely the spatial graph
Gd, the ligand-receptor graph Glr, and the transcriptional similarity graph Gs, share the same set of nodes (cells) but dif-
fer in edge definitions that reflect spatial proximity, signaling potential, and transcriptional similarity. The input features for
these graphs are the gene expression profiles Xc ∈ ℝN×G, where N is the number of cells and G is the number of genes.
The gene-level graph Gg models gene–gene relationships in cell, with input features Xg ∈ ℝM×64, where M denotes the
number of expressed genes in that cell.

For each graph we let Z(0) = Xc (cell graphs) or Z(0) = Xg (gene graph) and perform feature extraction with the standard
GCN propagation rule

Z(l+1) = 𝜎 (D̃−1/2ÃD̃−1/2Z(l)W(l)) , (6)

where Ã is the adjacency matrix with self-loops, D̃ is its degree matrix, andW (l) is the trainable weight matrix. The two-
layer GCN follows a bottleneck architecture. The first layer projects input features into a higher dimensional space, and
the second maps them into a shared 32-dimensional latent space. This encourages the model to learn compact and infor-
mative representations [28].

To align the gene-level representation with cell-level features, we apply self-attention pooling over the structured gene
embedding of each cell [29]. The input graph Gg is processed by a GCN to produce gene embeddings Zg ∈ ℝM×32, which
are then reshaped into Eg ∈ ℝN×k×32.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013810 December 15, 2025 5/ 25
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Attention scores are computed within each cell using a shared two-layer MLP with a non-linear activation [29]. The
resulting scalars are then normalised by a softmax over the k genes of that cell to produce attention weights 𝛽ij satisfying
∑k

j=1 𝛽ij = 1.
The cell-specific gene representation is then

Z′g(i) =
k

∑
j=1

𝛽ij ⋅ eij. (7)

producing the matrix Z′g ∈ ℝN×32 that captures local regulatory context and is dimensionally compatible with other cell-level
embeddings.

As a result we obtain four embedding sets: three cell-level embeddings (Zd,Zlr,Zs) ∈ ℝN×32 and the gene-level embed-
ding Z′g ∈ ℝN×32.

Contrastive regularization

To ensure integration across modalities, we introduce a contrastive regularization step. This step aligns each of the three
cell-view embeddings Zd,Zlr,Zs with the shared gene-level embedding Z′g.

To achieve this, we formulate the contrastive loss Lcontrast as the sum of two complementary components. The first com-
ponent is the standard symmetric InfoNCE loss [30]. It performs a global alignment by treating all non-matching samples
within a batch as negatives, encouraging the model to distinguish the correct positive pair from a diverse set of distractors:

InfoNCE(Zv,Z′g) =
1
2N

N

∑
i=1
[ − log

exp ( sim(z
i
v,z′ig )
𝜏

)

∑N
j=1 exp (

sim(ziv,z
′j
g )

𝜏
)

− log
exp ( sim(z

′i
g ,ziv)
𝜏

)

∑N
j=1 exp (

sim(z′ig ,z
j
v)

𝜏
)
]

(8)

where all embeddings are L2-normalized, and similarities are computed using the dot product scaled by a temperature
parameter 𝜏 = 0.3. While InfoNCE is effective, its efficiency may decline as the model quickly learns to ignore negative
samples that are easily separable from the anchor [31].

To improve training dynamics and enhance the model’s ability to distinguish between similar cases, we introduce a
margin-based contrastive loss. Let Z′g ∈ ℝN×32 denote the aligned gene-level embeddings, where each row corresponds
to a representative gene feature assigned to cell i. We denote Hg(i) ⊂ {1, … ,N} ⧵ {i} as the indices of non-matching gene
embeddings used as hard negatives for the cell anchor ziv. Similarly, let Hv(i) ⊂ {1, … ,N} ⧵ {i} denote the indices of non-
matching cells used as hard negatives for the gene anchor z′ ig , selected from the view-specific embeddings Zv. The
margin-based loss for a single view v is defined as:

Lmargin =
1
N

N

∑
i=1
[ ∑
j∈Hg(i)

max(0, sim(ziv, z
′ j
g ) − sim(ziv, z′ ig ) +m)

+ ∑
j∈Hv(i)

max(0, sim(z′ ig , z
j
v) − sim(z′ ig , ziv) +m)]

(9)

We fix the margin hyper-parameter at m = 0.1 for all experiments.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013810 December 15, 2025 6/ 25

https://doi.org/10.1371/journal.pcbi.1013810


i
i

“pcbi.1013810” — 2025/12/15 — 16:11 — page 7 — #7 i
i

i
i

i
i

The overall contrastive loss combines the symmetric InfoNCE term and the margin-based term, weighted by a hyperpa-
rameter 𝜆 (𝜆 = 0.1):

Lcontrast = ∑
v∈{d,lr,s}

(InfoNCE(Zv,Z′g) + 𝜆 ⋅ Lmargin(Zv,Z′g)) (10)

This combined regularization encourages consistent representations, while focusing the model on distinctions, thus
providing a foundation for the downstream Cell-Gene Attention fusion module.

Cell-gene attention

Cell-Gene Attention integrates cell-level and gene-level representations based on multiple biological views. We retain
three distinct cell representations: the spatial proximity view Zd ∈ ℝN×32, the ligand-receptor interaction view Zlr ∈ ℝN×32,
and the transcriptional similarity view Zs ∈ ℝN×32. Each view is independently derived using a dedicated GCN, allowing the
model to capture complementary information from different aspects of cellular organization. For gene-level input, we use
the aligned embedding Z′g ∈ ℝN×32, obtained via attention pooling over cell-specific gene subgraphs.

Cross multihead attention is computed in three parallel branches. Each cell view, spatial (Zd), ligand-receptor (Zlr), and
transcriptional (Zs), serves as the query input to its respective attention branch, while the shared gene embeddings Z′g ∈
ℝN×d are used as keys and values across all branches. For a given attention head h , the computation is:

Qh = ZcW
h
q, Kh = Z′gW

h
k , Vh = Z′gW

h
v , (11)

where Zc ∈ ℝN×d denotes one of the three cell views, andWh
q,Wh

k ,W
h
v ∈ ℝd×dk are trainable projection matrices for the hth

head. We use H = 4 heads and set dk = d/H.
Attention weights are computed using scaled dot-product attention, and each head output is aggregated:

𝛼hij =
exp (Qh(i)⊤Kh(j)/√dk)

∑N
j′=1 exp (Qh(i)⊤Kh(j′)/√dk)

, Oh(i) =
N

∑
j=1

𝛼hijVh(j). (12)

Outputs from all H heads are concatenated and projected through a shared matrixWo ∈ ℝHdk×d, yielding three fused
representations: Zf1,Zf2,Zf3 ∈ ℝN×d, each corresponding to one of the three branches.

Each output is subsequently refined through a residual connection, a layer-normalization layer, and a position-wise
feed-forward network (FFN). The FFN applies two linear transformations with an intermediate GELU nonlinearity:

FFN(x) =W2GELU(W1x + b1) + b2, (13)

whereW1 ∈ ℝ4d×d,W2 ∈ ℝd×4d, and b1, b2 are bias terms. A second residual connection after the FFN preserves repre-
sentational stability.

Finally, to integrate the three fused outputs, we employ a gated fusion mechanism. A lightweight two-layer MLP takes
the concatenated outputs Concat(Zf1,Zf2,Zf3) and produces dynamic weights (w1,w2,w3) via softmax [32]. The final
embedding is computed as:

Zfinal =
3

∑
k=1

wk ⋅ Zfk. (14)

This design enables the model to dynamically emphasize the most informative view for each cell, enhancing robust-
ness and representational capacity.
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Model optimization and loss functions

MAGNET is trained to learn the final cell embeddings Zfinal ∈ ℝN×32, which are optimized to reconstruct a target adjacency
matrix Atarget ∈ {0,1}N×N. A standard inner product decoder is used to compute the predicted adjacency matrix:

Âij = 𝜎(Zfinal,i ⋅ Z⊤final,j), (15)

where 𝜎(⋅) denotes the sigmoid activation. The final and primary reconstruction loss is a Binary Cross-Entropy (BCE) loss
[33], designed to approximate the target adjacency matrix:

Lrecon = − 1
N2

∑
i,j
[Atarget,ij log(Âij) + (1 − Atarget,ij) log(1 − Âij)] , (16)

In addition to this primary objective, we include two lightweight regularization terms. The first is a contrastive loss
L_contrast, applied before fusion to align cell-view and gene-level embeddings. The second regularization term is a Center
Alignment LossLalignment, which encourages the final embeddings to remain close to a projected mean expression anchor:

Lalignment =
1
N

N

∑
i=1

‖
‖Z4,i − P(X̄c)‖‖

2

2
, X̄c =

1
N

N

∑
i=1

Xc,i. (17)

The total training objective is defined as:

Ltotal = Lrecon + 0.1 ⋅ Lcontrast + 0.1 ⋅ Lalignment. (18)

This formulation ensures that the final embeddings are primarily optimized for interaction prediction, while remaining
stable and well-aligned across biological modalities.

Experimental design and model evaluation

We benchmarked MAGNET on three publicly available spatial transcriptomics datasets: seqFISH (1,597 cells, 125 genes)
[34], MERFISH (2,000 cells, 160 genes) [35], and STARMAP (1,207 cells, 257 genes) [36]. To evaluate model perfor-
mance under different supervision signals, we used two types of target adjacency matrices: a standard Distance-Based
adjacency derived from spatial proximity, and a Multi-View adjacency constructed via Similarity Network Fusion by inte-
grating spatial, ligand–receptor, and transcriptional similarities. To further investigate the trade-off between dataset size
and computational efficiency, we performed additional scalability experiments on the MERFISH dataset, as shown in
S2 Fig.

MAGNET was compared against four recent deep learning models for CCI inference. DeepLinc uses a Variational
Graph Autoencoder (VGAE) to model proximity-based graphs. Clarify integrates gene-level and cell-level information
through GCN to enhance representation learning. TENET improves interaction prediction by denoising spatial expression
data and optimizing deep graph architectures. CellNest, the most recent among them, adopts an unsupervised framework
that integrates spatial coordinates and ligand–receptor priors to learn latent cell representations. As it does not rely on an
explicit graph reconstruction objective, we evaluated its performance by using the learned embeddings for downstream
interaction prediction, in line with the setup used for other models. All models were trained for up to 120 epochs with early
stopping, and we report the mean and standard deviation of AP and AUC, averaged over 10 runs with different random
seeds. An edge-level split strategy was used, where positive edges were randomly sampled from the target adjacency
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matrix and negative edges were randomly selected from non-connected pairs. These were divided into training, valida-
tion, and test sets. This setting follows the evaluation protocols of CLARIFY, DeepLinc, and TENET to ensure a fair and
consistent comparison.

To further understand the internal mechanisms and design choices of MAGNET, we conducted two sets of ablation
experiments. The first assessed the contribution of three architectural components: the Cell Gene Attention mechanism
for multimodal fusion, the Contrastive Regularization for aligning loss function. This analysis helped reveal which modules
most strongly influence overall performance. The second ablation focused on the input graph modalities by evaluating
the model using only one pair of graphs at a time, namely spatial proximity with transcriptional similarity, spatial proximity
with ligand receptor interactions, and transcriptional similarity with ligand receptor interactions. This design allowed us to
assess both the necessity of multi view integration and the informativeness of each individual view.

Finally, we demonstrate MAGNET’s applicability to datasets with broader transcriptomic coverage in a case study using
10x Visium data. Specifically, we evaluate the model on two samples: a human breast cancer section (4,000 cells, 200
genes) and a mouse brain section (3,597 cells, 200 genes). Gene selection was performed by retaining highly variable
genes that are non-zero across all cells. Since official annotations of cell cluster types are not available for these datasets,
we performed cluster-level labeling using external references. For the human breast cancer sample, we applied Seurat to
identify transcriptionally distinct clusters [37], and annotated each cluster as either cancerous or non-cancerous based on
known biomarker gene expression patterns. For the mouse brain sample, we assigned anatomical labels to clusters by
aligning spatial locations with the Allen Mouse Brain Atlas [38], using region-specific landmarks to distinguish major brain
structures such as cortical layers, hippocampus, and subcortical regions. The MAGNET method and trained models have
been released as open-source resources and are available at https://github.com/FrankBNBU/MAGNET.

Downstream analysis and biological validation

To assess the biological relevance of MAGNET’s predictions, we conducted a structured downstream analysis focused
on the top 5% of high-confidence cell–cell interactions. This analysis encompassed spatial and topological validation,
functional enrichment, and mechanistic inference.

In network of spatial structure, we evaluated spatial coherence by comparing the Euclidean distance distributions of
intra cluster and inter cluster interacting cell pairs. Differences were assessed using cumulative distribution plots and the
Kolmogorov–Smirnov test [39]. Additionally, we analyzed network topology via node degree and closeness centrality to
identify hub cells and characterize global connectivity [40].

For functional validation, we analyzed the most frequent ligand–receptor pairs mediating the predicted interactions.
Gene Ontology (GO) and KEGG enrichment analyses were performed to determine whether these interactions are asso-
ciated with biologically meaningful signaling pathways relevant to the tissue context.

To explore underlying biological mechanisms, we used FlowSig [41] to infer active gene expression modules (GEMs)
for each cell, providing a compact representation of intracellular functional state. To characterize cluster-level functional
responses, we examined receiver clusters that were frequently targeted in the reconstructed interaction network. For each
such cluster, we identified GEMs that were repeatedly involved in incoming interactions and performed KEGG enrichment
to infer the dominant processes likely mediating their signal reception.

Results

We evaluated MAGNET’s performance in CCI networks and its utility for biological interpretation through a comprehen-
sive set of analyses. First, we assessed its accuracy by comparing it with recent deep learning models, including TENET,
DeepLinc, CellNEST, and Clarify, on three publicly available spatial transcriptomics datasets. Second, we conducted abla-
tion studies to investigate the contributions of key architectural components and input modalities to overall performance.
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Third, we applied MAGNET to human breast cancer and mouse brain datasets to evaluate its capacity to support bio-
logical discovery. In these case studies, we analyzed high-confidence interactions in terms of their spatial organization,
network topology, and associated cellular functions, using gene module aggregation and pathway enrichment analysis.
Together, these results demonstrate that MAGNET not only achieves accurate reconstruction of CCI networks but also
provides insights into their spatial and functional organization across diverse biological contexts.

Model performance comparison

MAGNET outperformed baseline models in reconstructing CCI networks across multiple spatial transcriptomics datasets,
demonstrating generalizability and robustness.

First, comparative results across models, datasets, and data split ratios are summarized in Table 1. MAGNET achieved
the highest AP scores across all datasets and splits, with advantages under limited-data conditions. For example, it
reached AP scores of 0.926 and 0.870 at splits of 0.7 and 0.9 on MERFISH (Distance-Based target adjacency), and 0.872
at split 0.9 on seqFISH (Multi-View target adjacency). Similar performance was observed on STARmap (Multi-View), with
APs of 0.897, 0.846, and 0.823 at splits of 0.5, 0.7, and 0.9, respectively. Baseline models exhibited varied behaviors
under different conditions. CellNEST performed well with abundant training data but deteriorated significantly in sparse or
multi-view settings. TENET showed competitive results on Distance-Based targets but declined sharply under Multi-View
evaluations. DeepLinc and Clarify yielded relatively stable yet consistently lower scores across all conditions.

In addition to the multi-view comparison, we further validated MAGNET on individual single-view graphs to examine its
robustness across different types of cellular relationships. As summarized in Table 2, MAGNET generally achieved supe-
rior or comparable performance to the baselines across the three single-view settings, including distance-based, ligand–
receptor, and transcriptional similarity graphs, indicating that the model effectively leverages diverse biological priors and
maintains stable generalization across distinct graph modalities.

Second, as shown in Fig 2, MAGNET outperformed all baselines throughout the training process across three spatial
transcriptomics datasets. It achieved higher final scores in AP, Area Under the Receiver Operating Characteristic Curve
(AUROC), and Area Under the Precision–Recall Curve (AUC). In addition, MAGNET exhibited greater training stability,
with smaller fluctuations and smoother trajectories over 120 epochs.

Table 1. Performance comparison of MAGNET and baseline models on MERFISH, seqFISH, and STARmap datasets under Multi-View target
adjacency matrix.

Method MERFISH seqFISH STARmap
split0.3 split0.5 split0.7 split0.9 split0.3 split0.5 split0.7 split0.9 split0.3 split0.5 split0.7 split0.9

DeepLinc 0.857 0.812 0.734 0.632 0.707 0.700 0.666 0.595 0.826 0.784 0.723 0.588
Clarify 0.846 0.793 0.701 0.607 0.880 0.830 0.740 0.630 0.871 0.806 0.726 0.614
TENET 0.822 0.768 0.649 0.570 0.918 0.761 0.715 0.589 0.787 0.795 0.713 0.574
MAGNET 0.932 0.924 0.906 0.888 0.949 0.937 0.901 0.872 0.901 0.897 0.846 0.823
CellNEST 0.721 0.695 0.648 0.570 0.714 0.658 0.623 0.531 0.763 0.756 0.661 0.581

https://doi.org/10.1371/journal.pcbi.1013810.t001

Table 2. Performance comparison of MAGNET and baseline models on three spatial transcriptomics datasets (seqFISH, MERFISH, and
STARmap) using single-view target adjacency matrices at split 0.3.

Method Distance-based Ligand–receptor (LR) Transcriptional similarity
seqFISH MERFISH STARmap seqFISH MERFISH STARmap seqFISH MERFISH STARmap

DeepLinc 0.746 0.723 0.824 0.928 0.897 0.854 0.778 0.872 0.650
Clarify 0.910 0.905 0.674 0.853 0.807 0.812 0.788 0.889 0.716
TENET 0.933 0.925 0.627 0.895 0.892 0.771 0.879 0.778 0.754
MAGNET 0.948 0.935 0.880 0.952 0.949 0.931 0.856 0.919 0.849
CellNEST 0.910 0.951 0.910 0.826 0.724 0.793 0.860 0.850 0.823

https://doi.org/10.1371/journal.pcbi.1013810.t002
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Fig 2. Training trends of different methods on three single-cell resolution spatial transcriptomics datasets (MERFISH, seqFISH, and
STARmap), evaluated using Average Precision (AP), AUROC, and AUC over 120 training epochs.

https://doi.org/10.1371/journal.pcbi.1013810.g002

Third, extended experiments with 300 training epochs (Fig 3) confirmed that MAGNET maintained the highest and most
stable performance across datasets and metrics, exhibiting smaller performance drops and narrower variability as training
data became increasingly scarce. Compared to TENET, MAGNET achieved superior results, with paired Wilcoxon signed-
rank test p-values <0.05 across all three metrics. In addition to GNN-based baselines, we further compared MAGNET with
two representative non-GNN CCI inference frameworks: COMMOT, which implements an optimal transport (OT) formula-
tion, and CellNEST, an unsupervised method based on gene expression embedding. As shown in Fig 3B, benchmarking
under three simulation settings and diverse data distributions demonstrated that MAGNET consistently achieved higher
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Fig 3. (A) Box plots summarizing the test performance of different models on three single-cell–resolution spatial transcriptomics datasets
under the multi-view target adjacency matrix. Results across varying train–test split ratios demonstrate the robustness and consistency of MAGNET
after 300 training epochs. Statistical significance between MAGNET and TENET was evaluated using p-value comparisons across all metrics. (B) Bar
plots comparing MAGNET with other representative cell–cell communication models (COMMOT, OT, and CellNEST) on simulated spatial datasets from
the COMMOT benchmark under the multi-view setting. The evaluation based on Average Precision (AP), AUROC, and Balanced Accuracy highlights
MAGNET’s superior and stable performance across datasets.

https://doi.org/10.1371/journal.pcbi.1013810.g003

AP, AUROC, and balanced accuracy scores than both COMMOT and CellNEST, highlighting its reliability across hetero-
geneous conditions. Together, these results underscore MAGNET’s superior robustness, generalization, and interpretabil-
ity in modeling complex intercellular communication networks.
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To further evaluate the reconstructed networks, we compared MAGNET and SNF at both global and regional lev-
els (see S1 Fig). For quantitative evaluation, we selected the top 20,000 edges from both networks and calculated the
proportions of ligand–receptor (LR) related and high-expression supported edges. The LR edges were determined
based on curated ligand–receptor gene pairs, and expression values were Z-score normalized across cells, with high-
expression edges defined as those in which both ligand and receptor genes had Z-scores greater than 1 in the connected
cells. Under these criteria, MAGNET reconstructed a higher proportion of ligand–receptor–related and high-expression–
supported edges than SNF, indicating that MAGNET-derived networks capture a larger number of biologically supported
interactions.

These results demonstrate that MAGNET captures complex multi-view cellular relationships and supports accurate and
robust CCI network reconstruction across a range of spatial transcriptomics contexts.

Ablation experiment

To comprehensively assess the contribution of each core component to MAGNET’s performance, we conducted two sets
of ablation experiments. The first evaluated key architectural modules, and the second investigated the importance of
different input graph modalities.

The first set of ablations assessed the role of major components. As shown in Fig 4, radar plots summarize the per-
formance of ablated variants across the MERFISH, seqFISH, and STARmap datasets, evaluated using six metrics: AP,
AUROC, AUPRC, F1-score, Precision, and Recall. The full MAGNET model outperformed all ablations. Removing the
Cell-Gene Attention module resulted in the most substantial performance drop across all metrics, underscoring its crit-
ical role in capturing interactions between cells and genes. Excluding the contrastive learning module led to moderate
reductions in AUPRC and F1-score, indicating its contribution to improving representation quality and inter-modality con-
sistency. Eliminating the feature alignment loss caused smaller but consistent performance declines, suggesting its role
in stabilizing multi-view fusion. Together, these results highlight the importance of all three components, with Cell-Gene
Attention being the most indispensable for MAGNET’s overall effectiveness.

The second ablation study evaluated the necessity of different input graph modalities: spatial proximity, gene similarity,
and ligand–receptor interactions. Table 3 reports the AP, AUC, and ROC scores across various modality combinations.
Using all three modalities consistently achieved the best performance. For example, on seqFISH, the complete combina-
tion reached an AP of 0.916, while performance dropped when any modality was excluded. Specifically, AP fell to 0.868

Fig 4. Performance impact of MAGNET’s core modules assessed via ablation studies. Each radar chart visualizes the model’s performance on
a specific dataset after the removal of a key architectural component. The axes represent different evaluation metrics or datasets, and the area of the
polygon indicates overall performance, demonstrating the critical contribution of each module.

https://doi.org/10.1371/journal.pcbi.1013810.g004
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Table 3. Ablation study of graph type usage on different datasets.

Dataset Graph Type Performance
Spatial LR Gene AP AUC ROC

seqFISH ✓ 0.753 0.742 0.745
✓ ✓ 0.868 0.864 0.870
✓ ✓ 0.786 0.787 0.781

✓ ✓ 0.804 0.792 0.792
✓ ✓ ✓ 0.901 0.905 0.921

MERFISH ✓ 0.772 0.778 0.781
✓ ✓ 0.888 0.889 0.893
✓ ✓ 0.792 0.799 0.799

✓ ✓ 0.807 0.795 0.794
✓ ✓ ✓ 0.926 0.911 0.912

STARmap ✓ 0.738 0.734 0.732
✓ ✓ 0.812 0.806 0.806
✓ ✓ 0.779 0.773 0.772

✓ ✓ 0.769 0.755 0.755
✓ ✓ ✓ 0.853 0.836 0.842

https://doi.org/10.1371/journal.pcbi.1013810.t003

with spatial and gene similarity graphs, 0.786 with spatial and ligand–receptor graphs, and 0.804 with gene similarity and
ligand–receptor graphs. Similar trends were observed on MERFISH and STARmap datasets. In addition, to ensure a fair
comparison with single-view approaches, we included a setting that used only the spatial distance graph as input, identi-
cal to other baselines Table 3. The model still achieved better results under this condition, indicating that its improvement
does not solely stem from shared information sources. These results highlight the complementary roles of all three graph
types and confirm that their integration is essential for MAGNET to effectively model spatial transcriptomics data.

Together, these ablation studies establish that MAGNET’s performance arises from the synergistic integration of its
architectural innovations and diverse graph inputs, each playing a crucial and complementary role in robust spatial tran-
scriptomics analysis.

Hyperparameter experiment

To evaluate the stability and robustness of MAGNET with respect to its key hyperparameters, we conducted a compre-
hensive sensitivity analysis covering both loss-related and structural parameters. The tested hyperparameters included
the contrastive loss weight (𝜆contrast), feature alignment loss weight (𝜆alignment), temperature parameter (𝜏), attention margin
(m), and the neighborhood size (k) used in graph construction (Fig 5).

As shown in Fig 5A–5D, the model’s average precision (AP) fluctuated within 1% across a broad range of loss coef-
ficients and attention parameters, indicating that the optimization objectives are well balanced and not overly sensitive
to tuning. Quantitative comparisons of parameter ranges and corresponding p-values (Fig 5E–5F) confirmed that none
of these hyperparameters exerted statistically significant effects on final performance (p > 0.05). This suggests that the
training process remains stable under moderate parameter variation.

We further examined the influence of the neighborhood size k, which defines local connectivity in the spatial, ligand–
receptor, and transcriptional graphs (Fig 5G). When k was varied from 3 to 10, the model’s AP, ROC-AUC, and F1 scores
remained nearly constant, demonstrating robustness across a wide range of spatial resolutions. This result also aligns
with previous studies such as Clarify, DeepLinc, and TENET, which adopt k = 5 as a standard configuration for spatial
transcriptomics graphs.

Overall, these analyses indicate that MAGNET is not highly sensitive to individual hyperparameter settings. The model
achieves stable and reliable performance without tuning, supporting its practicality and reproducibility across datasets.
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Fig 5. Hyperparameter sensitivity analysis of MAGNET. (A–D) Effects of 𝜆contrast, 𝜆alignment, 𝜏, and m on average precision (AP). (E–F) Quantitative
summaries showing the variation range (<1) and corresponding p-values for each parameter, all remaining above 0.05, indicating no statistically signifi-
cant difference across settings. (G) Evaluation of the neighborhood size k (the number of nearest neighboring cells) in graph construction across spatial,
ligand–receptor, and transcriptional graphs. MAGNET maintains stable AP, ROC-AUC, and F1 scores when k varies from 3 to 10, confirming robustness
to local connectivity settings.

https://doi.org/10.1371/journal.pcbi.1013810.g005

Investigation of functional heterogeneity in breast cancer using MAGNET

We applied MAGNET to spatial transcriptomics data from human breast cancer to investigate the functional heterogeneity
of intercellular interactions within the tumor microenvironment. Reconstructed CCI networks within and between transcrip-
tionally defined clusters are shown in Fig 6A–6B. Spatial domain analysis using Seurat [37] identified Clusters 5 and 9 as
tumor-enriched regions, whereas Clusters 1 and 2 were transcriptionally distinct, non-malignant compartments adjacent to
the tumor.
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Fig 6. This Fig presents the MAGNET reconstructed cell-cell interaction network derived from spatial transcriptomic cancer data, highlighting
potential roles in the tumor microenvironment. It visualizes ligand–receptor interactions within individual clusters(A), while highlighting functional
interactions between different clusters (B), and provides detailed insights into interactions among specific cell clusters at the level of Gene Expression
Modules (GEMs) (C). The analysis is based on GEMs, showing the number of times and the flow values with which different clusters are connected
through each GEM (D). Functional insights are provided through Gene Set Enrichment Analysis (GSEA) of key biological pathways (E). (F) shows
representative gene signatures for each GEM.

https://doi.org/10.1371/journal.pcbi.1013810.g006
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MAGNET uncovered distinct modes of communication across these regions, reflecting divergent transcriptional pro-
grams. GEM14 was identified as the dominant communication module mediating frequent interactions between Clus-
ters 1 and 9 (Fig 6C–6D). This module was enriched for immune-related pathways such as antigen processing and inter-
feron signaling (Fig 6E) and prominently featured SCGB1D2 and SCGB2A2 (Fig 6F), two secretoglobin family members
previously associated with luminal-type epithelial cells and epithelial differentiation [42]. These results may suggest that
GEM14 captures a localized epithelial–immune transcriptional program at the tumor–normal interface.

In contrast, GEM6 was identified as the main module connecting Clusters 2 and 5. Enrichment analysis showed that
this module is strongly associated with transmembrane receptor protein tyrosine kinase signaling and extracellular matrix
remodeling pathways (Fig 6E). It includes high expression of SPP1 and FN1 (Fig 6F), two genes that are recognized for
their roles in promoting matrix remodeling and tumor invasion [43,45? –47]. These results suggest the presence of a pro-
invasive transcriptional program in a microenvironment that is rich in extracellular matrix and relatively lacking in immune
activity.

Together, these findings show that MAGNET can help analyze the functional heterogeneity within tumor microenviron-
ments by linking reconstructed CCI to their underlying gene expression programs. By identifying communication modules,
MAGNET reveals spatially organized patterns of intercellular signaling, from immune-related activity at the tumor bound-
ary to pro-invasive programs in extracellular matrix–rich regions. This demonstrates the utility of MAGNET for studying
spatial variation in tumor biology.

MAGNET identifies cell–cell interaction networks in the mouse brain. Spatial transcriptomics data from the mouse
brain were used to assess how MAGNET infers intercellular communication. Annotation provided reference labels for
major anatomical regions, including the cortex (CTX), thalamus (TH), and hippocampus (HPF), against which transcrip-
tionally defined clusters were compared (Fig 7A). MAGNET revealed dense intra cluster signaling, while also identifying
coherent inter cluster interactions across region boundaries (Fig 7B).

As shown in Fig 7C, MAGNET identified several GEMs that mediate communication between specific cluster pairs,
each associated with spatially distinct brain regions. For example, GEM2 and GEM9 were predominantly active between
Clusters 2 and 3, which are located in adjacent cortical zones, suggesting region-specific synaptic signaling. GEM5 medi-
ated interactions between Clusters 1 and 6, which spatially bridge cortex and thalamus, potentially reflecting integration
across functional areas.

We quantified the spatial properties of the reconstructed network (Fig 7D–7E). Intra cluster interactions were short-
range, while inter cluster communication occurred over longer distances, consistent with physical tissue organization.
Cells with high degree and closeness centrality were enriched at cluster boundaries, suggesting they serve as communi-
cation hubs bridging spatially distinct cell populations.

Finally, We defined cells with total interaction degree > 10 as hubs and, for each cluster, selected five hubs and five
non-hubs for comparison. In terms of cell-type composition (Fig 7F), hubs are predominantly neuronal, mainly excitatory
with a contribution from inhibitory neurons (and Purkinje neurons where cerebellar tissue is present), whereas non-hubs
show a more mixed makeup with a higher oligodendrocyte fraction. In Fig 7G, hubs preferentially wire within their own
clusters and preserve lineage-matched programs, whereas non-hubs connect more broadly across clusters and exhibit
neighbor-aligned expression. Cluster-wise, Cluster 1 hubs stay within the excitatory network and maintain Ptms, Tmsb4x,
Gnas; Cluster 1 non-hubs link to astrocytes and choroid. Cluster 2 hubs remain oligodendrocyte-centric yet express
Snap25, Atp1b1, Slc25a4; Cluster 2 non-hubs are more purely oligodendrocytic. Cluster 3 hubs keep Psap, Mdh1, Gnas;
Cluster 3 non-hubs connect to oligodendrocytes and excitatory cells and show Mbp and Pcsk1n. Across Cluster 4/Clus-
ter 7/Cluster 8, hubs interconnect excitatory modules and retain Camk2n1 and Snap25 (with Dynll2), while non-hubs are
more diffuse with these synaptic genes weaker. In Cluster 5, hubs bridge to excitatory cells and show Mbp with Tmsb4x,
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Fig 7. MAGNET reconstructs spatially organized intercellular communication in the mouse brain. (A) Manual annotation of major anatomical
regions (CTX, HPF, CP, TH, HY, NFT). (B) Reconstructed ligand–receptor interaction networks showing intracluster (left) and intercluster (right) sig-
naling patterns. (C) Spatial distance distribution of interaction edges. (D) Edge counts by distance bin and the cumulative distribution function (CDF) of
distances. (E) Node-level topology: distributions of cell degree and closeness centrality, highlighting local communication hubs. (F) Cell-type composition
of hubs (degree > 10) and non-hubs. (G) Per-cluster comparison of five hubs and five non-hubs. Left: for each cluster, we compare the distribution of
linked neighbor clusters for hubs versus non-hubs. Right: for each cluster, we compare normalized gene-expression between hubs and non-hubs.

https://doi.org/10.1371/journal.pcbi.1013810.g007
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whereas non-hubs stay mostly intra-astrocytic. In Cluster 6, hubs link at the Cluster 2–Cluster 6 interface and express
Camk2n1, Ndrg4, App, Slc25a4, Olfm1. Together, hubs preferentially wire within clusters and preserve function-matched
programs, while non-hubs mix across clusters and reflect neighbor-aligned expression.

Together, these results show that MAGNET reconstructs spatially organized communication networks with hub cells
that are neuron-enriched, exhibit directed cluster preferences, and express gene programs aligned with synaptic signaling
and calcium-dependent pathways.

Attention-based analysis

To further probe interpretability, we analyzed MAGNET’s attention and gating outputs (Fig 8). MAGNET integrates three
view-specific graphs—spatial proximity (Gd), ligand–receptor interaction (Glr), and transcriptional similarity (Gs)—via a
gated fusion module that assigns a per-cell weight to each view. In Fig 8, the gating mapsW1,W2, andW3 visualize
these weights and therefore indicate the relative contribution of the spatial, ligand–receptor, and transcriptional channels,
respectively; higherW1 highlights proximity-driven links, higherW2 emphasizes ligand–receptor signaling, and higherW3

reflects transcriptional similarity.
First, the multi-head curves show that different heads preferentially attend to distinct spatial distance ranges (Fig 8A),

thereby mitigating a trivial bias toward immediate neighbors and enabling the model to capture both local and mid- to
long-range interactions. Second, cell-level and cell-type–level summaries show how attention scores are apportioned
among cells and among cell types (Fig 8B), revealing context-dependent attention allocation rather than a uniform focus.
Third, the gating maps display complementary spatial patterns in which the spatial (W1), ligand–receptor (W2), and tran-
scriptional (W3) views emphasize proximity, signaling, and expression similarity, respectively (Fig 8C), underscoring how
the three views contribute to the fused prediction. In Fig 8D, the spatial distribution of ligand–receptor expression inten-
sity is visualized; areas of high LR intensity coincide with larger spatial weightsW1, andW1 scales positively with ligand
intensity. Finally, cancer-enriched regions exhibit heterogeneousW1–W3 profiles and spatial distributions (Fig 8E). For
example, Cluster 5 (C5) shows stronger spatial gating (W1), whereas Cluster 9 (C9) shows stronger ligand–receptor gat-
ing (W2).

Discussion

We present MAGNET, a deep learning framework designed to reconstruct CCI networks. By integrating multi-view graph
modeling with a Cell–Gene attention mechanism, MAGNET integrates intercellular communication graphs with gene regu-
latory network information to uncover functional heterogeneity within cell cluster.

MAGNET demonstrates strong performance across multiple benchmark datasets in predicting interaction networks,
with ablation studies underscoring the critical roles of both multi-view integration and the Cell–Gene attention module.
Applied to breast cancer spatial transcriptomics data, MAGNET identified two distinct spatial modules: GEM14 and
GEM6. GEM14, located at the tumor–normal interface, showed enrichment in antigen-processing and interferon signal-
ing, suggesting epithelial–immune interactions. In contrast, GEM6, prevalent near malignant cells in matrix-rich regions,
was associated with receptor tyrosine kinase signaling and matrix remodeling, marked by elevated SPP1 and FN1
expression.

These results demonstrate that MAGNET effectively reconstructs cell–cell interaction networks, where high-scoring
edges reflect meaningful functional relationships. While the preliminary functional analysis highlights the potential rele-
vance of the predicted modules, further studies are needed to validate the specific cell–cell interactions underlying these
modules, and to experimentally characterize the signaling pathways and ligand–receptor pairs involved.
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Fig 8. Attention–gating analysis of MAGNET. (A) Mean normalized attention per head across spatial distance bins. (B) Cell-level heatmap and cell-
type summaries showing how attention scores are distributed across cells and across cell types. (C) Gating maps for the three views (W1,W2,W3).
(D) Ligand–receptor expression visuals: spatial map of LR-pair intensity (left), high-expression spots (middle), and an example pair (COL1A1–DDR1)
overlaid with spatial gateW1 (right). (E) Cancer-enriched regions focusing on cluster 5 and cluster 9: spatial locations of the two clusters; summaries of
W1,W2, andW3 by cluster and by cell type; and spatial maps ofW1,W2, andW3 within cluster 5 and cluster 9.

https://doi.org/10.1371/journal.pcbi.1013810.g008
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Supporting information

S1 Fig. Comparison of reconstructed cell–cell interaction networks by MAGNET and the SNF fusion network.
(A) Global (left two panels) and regional (right two panels) views of the top 20,000 weighted edges from MAGNET and
from the SNF fusion network. (B–E) Representative ligand–receptor subnetworks (Nts–Ntsr1, Oxt–Oxtr, Gal–Galr1, and
Tac1–Tacr1) demonstrating that MAGNET recovers more spatially contiguous and biologically plausible communication
links across cell types and regions. (F) Quantitative summary for the top 20,000 weighted edges. For each method we
report the proportion of LR-supported edges with both ligand and receptor expressed (non-zero expression); the propor-
tion of Nts–Ntsr1–supported edges at high expression; the proportion of Tac1–Tacr1–supported edges at high expression;
and the overall proportion of LR-supported edges at high expression. High expression is defined as both genes having
Z-scores greater than one in the respective source and target cells. Expression values were Z-scored across cells.
(TIFF)

S2 Fig. Computational scalability of MAGNET on the MERFISH dataset. To evaluate the computational scalability of
MAGNET, we analyzed its performance on subsets of the MERFISH dataset containing 100, 500, 1000, and 2000 cells.
For each subset, gene regulatory networks (GRNs) were constructed using different numbers of genes (20–45). Each row
corresponds to a gene-number setting (20, 25, 30, 35, 40, or 45 genes), and each column represents a different evalua-
tion aspect: (left) total training time, (middle) peak memory usage, and (right) model performance (ROC-AUC, AP, and F1
score). Bars denote computational cost, and lines indicate performance metrics. MAGNET exhibited approximately linear
increases in runtime and memory with the number of cells (N), while predictive performance remained stable once N ≥
500 across all gene-number settings. Overall, these results suggest that the model scales well and remains stable as the
dataset size increases.
(TIFF)

S3 Fig. Robustness of MAGNET to gene selection. To assess the robustness of MAGNET, we evaluated its perfor-
mance on the MERFISH mouse brain dataset by varying the number of selected genes per cell (20–45) while keeping
other parameters unchanged. For each configuration, model performance was evaluated using Average Precision (AP),
AUROC, and F1 score. The results show that performance remains stable across gene selection ranges and different
subset sizes (100–2000 cells), indicating that MAGNET is robust to moderate changes in hyperparameters and gene
selection strategy.
(TIFF)

S4 Fig. Robustness of MAGNET to GRN noise. To assess the sensitivity of MAGNET to noise in the gene regulatory
network (GRN), Gaussian noise of different magnitudes (0%, 10%, 20%, 30%, 60%, and 90%) was added to the GRN
matrices before model training. The left panel shows training curves of test AP over 120 epochs under different noise lev-
els, while the right panel summarizes the final AP scores. MAGNET maintained stable training and high accuracy even
under severe noise, indicating robustness to uncertainty or incompleteness in GRN estimation.
(TIFF)

S5 Fig. Consistency of MAGNET across random seeds. MAGNET was trained using five random seeds to assess
the reproducibility of gene selection and model performance. The figure summarizes the overlap of the top 30 biomarker
genes, the distribution of gene categories (overlapping, biomarker-only, and seed-only), and the corresponding test AP
scores across seeds. Mean expression profiles and gene compositions are further compared across categories, with pie
charts showing their proportions. Overall, model performance remains consistent across seeds, demonstrating robustness
to initialization and sampling variability.
(TIFF)
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S6 Fig. Edge-length characteristics of reconstructed interaction networks (MAGNET vs. TENET). Top: spatial lay-
outs of reconstructed edges for MAGNET (left) and TENET (right). Bottom-left: mean and median edge distances for each
method. Bottom-right: minimum and maximum recovered distances. MAGNET recovers a larger maximum edge distance
than TENET while maintaining comparable mean and median distances, indicating selective discovery of distant interac-
tions.
(TIFF)

S1 Table. Performance of MAGNET under different gene network sources. MAGNET was trained using four alterna-
tive gene network, including the original gene regulatory network (GRN), the STRING-db protein–protein interaction (PPI)
network, and two random network types (Erdős–Rényi and scale-free). The table reports the average AP scores across
three spatial transcriptomics datasets.
(PDF)
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