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Abstract

In this article we demonstrate a general protocol for constructing systematically

experimental steady-state bifurcation diagrams for electrophysiologically active cells.

We perform our experiments on entorhinal cortex neurons, both excitatory (pyramidal

neurons) and inhibitiory (interneurons). A slowly ramped voltage-clamp electrophys-

iology protocol serves as closed-loop feedback controlled experiment for the subse-

quent current-clamp open-loop protocol on the same cell. In this way, the voltage-

clamped experiment determines dynamically stable and unstable (hidden) steady

states of the current-clamp experiment. The transitions between observable steady

states and observable spiking states in the current-clamp experiment provide par-

tial evidence for stability and bifurcations of the steady states. This technique for

completing steady-state bifurcation diagrams in a model-independent way expands

support for model validation to otherwise inaccessible regions of the phase space.

Overlaying the voltage-clamp and current-clamp protocols leads to an experimental

validation of the classical slow-fast dissection method introduced by J. Rinzel in the

1980s and routinely applied ever since in order to analyse slow-fast neuronal mod-

els. Our approach opens doors to observing further complex hidden states with more

advanced control strategies, allowing to control real cells beyond pharmacological

manipulations.

Author summary

We demonstrate a general protocol for constructing systematically experimental
steady-state bifurcation diagrams of neurons. We test it with both excitatory (pyra-
midal neurons) and inhibitory (interneurons) cells from the entorhinal cortex of rats.
A slowly ramped voltage-clamp electrophysiology protocol serves as closed-loop
feedback controlled experiment for the subsequent current-clamp open-loop
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protocol on the same cell. In this way, the voltage-clamped experiment determines
dynamically stable and unstable (hidden) steady states of the current-clamp exper-
iment. The transitions between observable steady states and observable spiking
states in the current-clamp experiment provide partial evidence for stability and
bifurcations of the steady states. This technique for completing steady-state bifur-
cation diagrams in a model-independent way expands support for model validation
to otherwise inaccessible regions of the phase space. We explain why the method
works by using multiple-timescale dynamics arguments.

Introduction

When characterising the dynamics of nonlinear systems, one fundamental criterion
for a model is if its stable states such as stationary solutions or periodic orbits match
experimental observations. The ability to fit and validate models is, thus, greatly
expanded by experimental tools with the capacity to unveil non-observable (sensitive
or dynamically unstable) states that are otherwise inaccessible to standard measure-
ments. The combination of observable and non-observable states gives access to
an experimental equivalent of parameter-dependent families of stable and unstable
states in a model, which are usually referred to as a bifurcation diagram.

This article applies a new experimental technique of using feedback control to
find unstable states to electrophysiology experiments on neuronal cells. Our aim
is to support systematic validation of neuron models by comparing bifurcation dia-
grams and observing their between-cell variability. We focus on unstable parts of
input-dependent families of steady-state solutions obtained by feedback-controlled
experiments and compare them with indirect evidence from standard measurements
from open-loop experiments. This extends recent work of Ori et al. [1,2] construct-
ing phase diagrams from neuronal data, and complements other approaches such as
using data to verify the bifurcation structure of neuronal models [3,4], model-based
data analysis [5] or parameter estimation from data [6].

Our technique is a simplification of the so-called control-based continuation (CBC)
method, an approach which has been recently demonstrated in mechanical experi-
ments [7], vibrations and buckling experiments [8], pedestrian flow experiments [9],
atomic-force microscopy [10], cylindrical pipe flow simulations [11], and feasibility
studies for synthetic gene networks [12,13]. Indeed, CBC is a procedure that com-
bines feedback control [14] and pseudo-arclength continuation [15] in a model-free
environment, that is, only reliant upon noisy experimental data in a closed-loop con-
trol setup. The objective is to compute experimental bifurcation diagrams, that is,
both families of stable and unstable states (either stationary or periodic) together with
bifurcation points joining such families. Importantly, the control is noninvasive in the
sense that it vanishes once an equilibrium or periodic of the uncontrolled system has
been reached; the control is decreased iteratively using a Newton’s method. In our
case, the approach is simpler and does not require the use of Newton iterations since
we consider a slow ramp on the control target. Hence we exploit de presence of two
timescales in the experimental procedure in order to obtain directly an approximation
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of the steady-state bifurcation curve, and we explain why such a bifurcation curve is obtained at low cost; see below. Our
approach is hence useful for both modelers and experimentalists, as it relies upon standard protocols routinely used in
patch-clamp electrophysiology. It can further decipher the excitability class of a given real neuron as well as help fitting a
model to data by using both current-clamp and voltage-clamp protocols.

In our electrophysiology experiments on entorhinal cortex neurons we treat the cell as an electric circuit, and apply a
voltage clamp (VC) [16,17], followed by current clamp (CC). In the VC setup the electrode acts as a voltage source at
the neural membrane, fixing the potential across the neural membrane, measuring the current, while the CC setup adds
a fixed external current, measuring the resulting membrane potential; see the illustration for the experimental setup in
Fig 1A and the S1 Text for further details. In-vivo neurons are subject to current signals that drive spiking (oscillatory) or
rest (steady) states of the neural membrane potential [18]. This makes the CC setup the open-loop part of the protocol.
In contrast, the VC part of our experiment is the closed-loop feedback-controlled part of the protocol because the voltage
source regulates the external current to maintain the hold voltage. VC has been applied successfully to study neuronal
nonlinear current-voltage relationships, so-called N-shaped I-V characteristics, which cause enhanced neuronal excitabil-
ity and influence the regenerative activation of certain ionic currents (e.g., sodium) [19–23] across the neural membrane,
into and out of the cell. We show that the VC protocol with a slowly varied reference voltage signal gives access to stable
and unstable neuronal steady states of the neuron, which was hinted at in [24,25]. In contrast, the open loop CC protocol
with a slowly varying applied current always follows stable (observable) states, driving the neuron to dynamically transition
between its observable rest states and its observable spiking states.

We interpret these combined experimental protocols (VC and CC) using multiple-timescale dynamics, in particular, the
dissection method [26], which reveals the dynamic bifurcations in the experiment, as demonstrated in the experimental
bifurcation diagram in Fig 1B. In this slow-fast framework, the states traced by the VC protocol with slow variation corre-
spond to the steady-state experimental bifurcation diagram of the so-called fast subsystem of the mathematical model
describing the protocol [26], that is, the model system with constant input current. Hence, the N-shaped I-V relation of a
neuron should be seen as a S-shaped V-I bifurcation diagram, such as in Fig 1B.

Following this strategy, we demonstrate the feasibility of tracking a family of neuronal steady states (stable and unsta-
ble) via variations of reference signal and reparameterizing the obtained curve using the feedback current.

Results

The experimental neuronal bifurcation diagram in Fig 1B shows the time profiles (Ih(t),Vcc(t)) of the CC protocol run
(orange, thin) and (Ivc(t),Vh(t)) of the VC protocol run (bright blue, thin) for cell 5 overlaid in the (I,V)-plane. For both runs
Ih(t) and Vh(t) were slowly increased, respectively (see Materials and Methods). After smoothing, the VC time profile is the
S-shaped curve (Ivc,sm(Vh),Vh) (blue/brown/red, thick). It equals the (I,V)-characteristic of the stationary neuronal states of
the CC protocol, including dynamically unstable states (brown and parts of red). The transition to stable spiking states is
compatible with (Hodgkin) class-I excitability, however we do not have sufficient data to distinguish the different classes of
excitability. See FigB in S1 Text for how the interspike intervals depend on Ih.

The dynamical stability and instability of stationary states is inferred based on two pieces of evidence: (i) the nega-
tive slope of the (Ivc,sm,Vh)-curve (brown) after smoothing over a moving window with larger size (Δw = 1.5×104 steps
equaling = 0.75s in Fig 1C), or (ii) by the presence of slow-fast oscillations (neuronal firing) in the CC run at Ih equalling
the Ivc,sm (red). Criterion (i) implies instability for topological reasons. Criterion (ii) provides only circumstantial evidence.
In Fig 1B (cell 5) the darker shading of the (orange-colored) CC run indicates slow dynamics as identified by the norm
|(V′

cc(t)√Δt,V′′
cc(t))Δt| being less than a fixed threshold (after smoothing of Vcc(t) and V′

cc(t), see S1 Text for detailed def-
inition). This shading shows that the firing oscillations in Fig 1B spend most time near their voltage minimum Vmin for
the respective Ih(t). Fig 5C and 5E show an embedding of the firing oscillations of cell 5 into the (Vcc,V′

cc)-plane, and a
zoom near Ih ≈ 200pA. The projection and zoom indicate that the firing oscillation passes slowly near the presumed fixed
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Fig 1. A: Sketch of experimental setup with brain slice (a), patch pipette (b), reference electrode (Ag-AgCl pellet) connected to ground (c),
amplifier (e, Multiclamp 700B) with CV-7B headstage (d), AD-converter (f, National Instruments NI USB-6343) and standard PC computer (g,
https://pixabay.com/vectors/computer-desktop-workstation-office-158675/). B: VC and CC protocol runs for cell 5: (Ivc(t),Vh(t))-curve for VC run (thin
bright blue: unfiltered data with sampling time step 5 × 10−5 s, blue/red/brown: median of Ivc over moving windows of size Δw= 4 × 103 steps equalling
0.2s) and (Ih(t),Vcc(t))-curve for CC run (orange, mean of Ih over moving windows. C: (Ivc(t),Vh(t))-curves for VC protocol of all 5 cells on waterfall
Vh-axis (color coding indicates conjectured stability as indicated for (b)).

https://doi.org/10.1371/journal.pcbi.1013748.g001

point, but leaves its neighborhood again. At the low-current end of the (Ivc,sm,Vh)-curve, the CC protocol for cell 5 shows
no firing oscillations (recall that Ih is ramped up) in Fig 1B. Thus, the part of the (Ivc,sm,Vh) curve between fold and pres-
ence of slow-fast oscillations is labelled “undetermined” (colored yellow) as the combination of single-ramp VC and CC
protocol do not provide evidence for or against stability of this part. We do not label the “transition” from stability label
“undetermined” to “unstable” as a Hopf bifurcation as the slow parts of the firing oscillations are approximately 20mV
below the equilibrium indicated by the VC run. So, it is unclear if (and where precisely) a change of stability occurs
between Idb ≈ 365pA and the fold of steady states at Ih ≈ 3pA.

The stability boundaries of the stationary states are labelled as bifurcations in Fig 1B. The change of stability near
the disappearance of stable spiking states at Idb is labelled as a Hopf bifurcation. We observe that for Ih > Idb small-
amplitude oscillations are visible, which emerge from relaxation type oscillations with a slow phase near the stationary
state for Ih < Idb. Fig I in S1 Text shows a zoom of Fig 1B near Idb. These features are typical for a singular Hopf bifur-
cation [27] as encountered also in model simulations for excitatory neurons. The fold points of the (Ivc,sm,Vh)-curve are
saddle-node (fold) bifurcations. Fig 1C shows the stationary-state curves with their inferred dynamical stability for all 5
cells (see S1 Text for CC run time profiles used to partially infer stability of cells 1–4). The cells are vertically ordered and
numbered according to depth of the S-shape, determining if they fall into the category of class-I or class-II neurons. We
use the same convention as in Fig 1B for parts of the curve where we have partial evidence for instability: no bifurcation
is indicated at transitions between stability labels “undetermined” and “unstable”. Fig 1C demonstrates wide variability in
steady-state curve shape among cells of nominally same function.

The method described in this work is versatile and uses only standard electrophysiological procotols. Hence, it can be
applied to any neuron type. The experimental bifurcation diagrams in Fig 2A illustrate this point. Panel A shows the results
of the VC and CC protocols applied to an inhibitory neuron from the entorhinal cortex while panel B shows the results
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Fig 2. A: Experimental bifurcation diagram for an interneuron from the entorhinal cortex. B: Experimental bifurcation diagram for a class-II PY
neuron from the same region. Protocols identical and color coding to Fig 1B.

https://doi.org/10.1371/journal.pcbi.1013748.g002

of same protocols applied to a class-II neuron. The steady-state curve in Fig 2A is more complicated than for PY neu-
rons’ recordings shown in other figures. However it is compatible with a class-I excitable neuron. Since the steady-state
curve in Fig 2A has multiple folds, there are some parts of the branch where we cannot determine stability safely from
topology (that is, by checking that dIvc,sm/dVh < 0), or from the near-by embedded trajectories of relaxation oscillations.
Similar to Fig 1 we have colored the parts of the steady-state curve in Fig 2A with undetermined stability yellow, while
keeping the part for which instability is suggested by existence of relaxation oscillations in red. For the range of Ih between
43pA and 60pA during the CC protocol in Fig 2A we observe a stable steady state Vcc response, with intermittent voltage
spikes typical for an excitable stable steady state near a singular Hopf bifurcation subject to noise [28]. For this reason we
label the low-Ih onset of large-amplitude relaxation oscillations in Fig 2A also as a Hopf bifurcation. A potential alternative
mechanism for the sudden transition of firing oscillations to steady state near Idb (≈ 210pA for Fig 2A, ≈ 190pA for Fig 2B)
is that the firing oscillations experience a saddle-node of periodic orbits. This would imply a bistability between firing and
steady state for Ih < Idb, a scenario that has been observed near depolarization blocks in models of dopaminergic neu-
rons by [29]. Our illustrative examples of mathematical neuron models shown in Figs 3A and 4 have such a small region
of bistability (Fig 3A near Idb and Fig 4 near Ih ≈ 135pA) for the parameters used in the computations (see Figs F, G and H
in S1 Text for numerical bifurcation diagrams).

We observe that the steady-state curves for the CC run and the VC run slightly deviate from each other, which we
attribute to a drift in cell properties. There are examples of scenarios with multiple folds in the steady-state curve in the
literature, in particular with low-threshold spiking neurons [30].

Analysis

To see why VC-run time profiles approximate the experimental bifurcation diagram with unstable stationary states of neu-
rons in CC protocol, we use the formalism of multiple-timescale dynamical systems. Superimposing the data from VC and
CC protocol also gives the first experimental illustration of slow-fast dissection. The effect of the respective clamps can be
understood in a general class of conductance-based models for the neuron,

CV̇ = −∑jIj(xj,V) + Iext,
𝜏j(V)ẋj = x∞,j(V) − xj,

(1)
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Fig 3. VC and CC in silico. Protocol as described for Fig 1B applied to A: a class-I Morris-Lecar neuron model (10) [33] as example of excitatory cell,
and B: a class-I Wang-Buzsáki neuron model (12) [34] as example of inhibitory interneuron; see (10) and (12) for differential equations and Tables 1 and
2 for parameter values. The two-dimensional fast subsystem has a S-shaped steady-state curve satisfying steady-state conditions (4). The steady-state
I–V curve (4) and the (multi-color) S-shaped curve from the VC protocol (2) are indistinguishable throughout the range of input currents Ivc. The orange
curve resulting from the CC protocol is very close to S0 and the VC protocol near its dynamically stable parts. See Figs F and G in S1 Text for numerical
bifurcation diagrams.

https://doi.org/10.1371/journal.pcbi.1013748.g003

Fig 4. VC and CC protocols as described for Fig 1B applied to the Morris-Lecar model in a parameter regime where it behaves as a class-II
neuron model. See (10) for differential equations and Table 1 for parameter values and FigH in S1 Text for numerical bifurcation diagram.

https://doi.org/10.1371/journal.pcbi.1013748.g004

describing the current balance across the neuron’s membrane. The membrane potential is V, Ij(xj,V)j=1,…,N are the cur-
rents across different voltage-gated ion channel types and Iext is the external current. Each channel type j has a set of
associated gating variables xj, which are possibly vectors of length nj if the channel gate has both activation and inactiva-
tion states, with steady-state gating functions x∞,j(V) (also of size nj) and relaxation times 𝜏j(V) (a diagonal nj × nj matrix).
The observed dynamic effects such as oscillations (firing/spiking) and negative-slope (I,V) characteristics are determined
by these channel coefficients Ij, x∞,j and 𝜏j that are traditionally obtained by parameter fitting from VC experiments, a diffi-
cult and ill-posed problem, as gating variables xj are not directly measured [31].

The VC and CC protocols use different mechanisms for generating Iext(t). The VC protocol is a closed loop where
a voltage source regulates Iext with high gain gc to achieve the slowly varying hold voltage Vh at the voltage source for
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general model (1), measuring Ivc:

Iext ≈ Ivc = gc(Vh − V), V̇h = 𝜀ΔV (2)

which turns general model (1) with VC protocol (2) into a multiple-timescale dynamical system with 1+ ∑nj fast state
variables (V, xj) (where∑nj is the overall number of gating variables) and one slow state variable Vh, corresponding to
the feedback reference signal [32]. The speed at which Vh varies is 𝜀ΔV with ΔV(t) = 0.183mV/ms, where we extract the
dimensionless small factor 𝜀 = 10−2.

In contrast, the CC protocol holds Iext, measuring the generated voltage Vcc, thus, corresponding to an open-loo
system, permitting e.g. the spiking seen in Fig 1B:

Iext ≈ Ih, Vcc ≈ V, ̇Ih = 𝜀ΔI. (3)

The applied hold current Ih is varied slowly at speed 𝜀ΔI with 𝜀 = 10−2 and ΔI = 0.66…0.75pA/ms. General model (1)
with CC protocol (3) is also a slow-fast system with 1+N fast variables (V, xj) and 1 slow variable Ih. The gain gc in VC
protocol (2) is limited by the imperfect conductance across the non-zero spatial extent of the membrane. Even though the
conductance-based model (1) is for the potential V across the entire membrane and only Vh at the clamp is measured, we
approximate Vh,Vcc ≈ V for the membrane potential, and Ih, Ivc ≈ Iext for the external current in (1).

Following a classical multiple-timescale approach, we consider the 𝜀 = 0 limit of general model (1) with VC protocol (2),
which corresponds to its (1+ ∑nj)-dimensional fast subsystem (1), with Iext = gc(Vh −V), where Vh is now treated as a
parameter. For fixed Vh and voltages in the range −80…30mV of interest, model (1) with VC protocol (2) has only stable
steady states (no limit cycles, that is, no neuronal spikes); see S1 Text for details. For a fixed hold voltage Vh, the steady
states of system (1), (2) with Iext = gc(Vh − V) satisfy the algebraic equations for (V, xj)j=1,…,N

∑jIj(xj,V) = gc(Vh − V), xj = x∞,j(V), (4)

where Ieq(V) = ∑j Ij(x∞,j,V) is the equilibrium current for fixed membrane potential V. The solutions of algebraic system
(4) form a (1D) steady-state curve for model (1) with VC protocol (2), which is normally hyperbolic (transversally attract-
ing) for 𝜀 = 0. For 𝜀 ≠ 0 the increase of Vh with speed 𝜀ΔV introduces a slow variation of all states (V, xj). Hence, V and the
feedback current Ivc = gc(Vh −V) (as measured), are not at their steady-state values given by (4), but they are changing
dynamically. This results in a difference between the measured curve (Ivc,Vh) in Fig 1B and the (I,V)-values of the desired
steady-state I–V curve given by (4).

Geometrical singular perturbation theory (GSPT) by Fenichel [35] implies that after decay of initial transients every tra-
jectory of the general model (1) with VC protocol (2) satisfies the algebraic conditions (4) for the steady-state curve up to
order 𝜀. The first-order terms in 𝜀 are

Ieq(V) − Ivc(V) ≈ I′eq(V)V̇
𝜏1/2
ln 2

≲ I′eq(Vh)0.2mV, (5)

where 𝜏1/2 is the time for deviations from the transversally stable steady-state I–V curve (4) to decay to half of their ini-
tial value; see eq (7) and FigC in S1 Text for details. We estimate 𝜏1/2 from recovery transients after disturbances natu-
rally occuring from imperfections in the voltage clamp during VC runs as 𝜏1/2 ≲ 0.075 s (see FigCB in S1 Text), such that
V̇𝜏1/2/ ln 2 ≈ V̇h𝜏1/2/ ln 2 ≲ 0.2mV. Thus, the systematic bias between Ivc,sm(Vh) in Fig 1B and the true steady state curve
Ieq(V) caused by dynamically changing Vh is below measurement disturbances.
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Deviation estimate (5) can also be tested in silico. Figs 3 and 4 emulate both VC and CC protocols with the Morris-
Lecar model [33] (see quation (10)), a biophysical model typically used for excitatory neurons of either class-I (Fig 3A) or
class-II (Fig 4) excitability, and with the Wang-Buzsáki model (Fig 3B), which is a classical model of inhibitory interneu-
ron [34] (see quation (12)). Both models are of general form (1) with j = nj = 1. For the chosen parameter set (see S1
Text), the curves (Ivc(t),Vh(t)) and (Ieq(Vh(t)),Vh(t)) are order 𝜀 (≈ 1%) apart.

Consequently, time profile (Ivc(t),Vh(t)) follows closely the steady-state I–V curve (4) of stable steady states of the fast
subsystem (1) with VC protocol Iext = gc(Vh − V), treating Vh as a parameter. This implies that faster ramp speeds are per-
missible when optimising trade-off between drift of cell properties and bias due to nonzero ramp speed. At high voltages
the factor I′eq(V) becomes large, such that estimate (5) predicts larger deviations for large Vh, as confirmed in Figs 1B, 2,
AB, AC and AD in S1 Text.

We now connect the steady-state I–V curve (4) of the VC protocol to a curve of fast-subsystem equilibria of the CC
protocol, which is in part unstable. To this end we recast the VC protocol in the form of a CC protocol with non-constant
current ramp speed 𝜀ΔI,vc(t) and disturbances: the smoothed time profile Ivc,sm(Vh(t)) in Fig 1B of the VC run (thick, in
blue/brown/red) equals the raw-data measured time profile Ivc(t) (thin blue curve with fluctuations) plus disturbances 𝜂vc(t),
defined by 𝜂vc(t) = Ivc,sm(Vh(t)) − Ivc(t). After smoothing, the derivative I′vc,sm(Vh) w.r.t. Vh is moderate (≲ 20pA/mV in mod-
ulus at its maximum near Idb), such that during the VC protocol the external current Iext satisfies

Iext ≈ Ivc,sm + 𝜂vc, ̇Ivc,sm = 𝜀ΔI,vc(t), (6)

where ΔI,vc(t) = I′vc,sm(Vh(t))ΔV. Hence, ΔI,vc(t) ≈ I′eq(Vh(t))ΔV, with upper bound maxt |ΔI,vc(t)| ≲ 3.7pA/ms in the range of
Fig 1B. Thus, Ivc,sm is indeed still slow. So, except for disturbances 𝜂vc(t), the external current Iext is slowly varying accord-
ing to a CC protocol with slowly time-varying speed 𝜀ΔI,vc(t), such that the VC protocol (2) is equivalent to the CC protocol
(6) with disturbances 𝜂vc.

This means that general model (1) with current Iext given in (6) with zero disturbances (𝜂vc = 0) is a model for a CC pro-
tocol with driving current Ivc,sm, in contrast to the model with open-loop CC protocol (1), (3). Both models have the same
fast subsystem (1) when setting 𝜀 = 0 (i.e., for constant input current) and identifying Ih and Ivc,sm. The respective fast-
subsystem steady states (V, xj)j=1,…,N satisfy

∑jIj(xj,V) = Ih(= Ivc,sm),
xj = x∞,j(V).

(7)

However, the two models differ by the nature of their respective slow variables Ih and Ivc,sm: Ih is an externally applied
hold current for the open-loop CC protocol (3), while Ivc,sm is a measured (and smoothed) current from the closed-loop
feedback control gc(Vh −V) of the voltage source for (6). Thus, while the S-shaped steady-state curve (Ieq(V),V) is iden-
tical for both models, it contains large unstable segments as a steady-state curve of open-loop CC protocol (1), (3), while
it is always stable as a steady-state curve of closed-loop VC protocol (1), (6). The change in stability is caused by the dis-
turbances 𝜂vc, which are current adjustments generated by the feedback term in VC protocol (2), Ivc = gc(Vh −V). Along
most of the curve (Ivc,sm(Vh),Vh) the 𝜂vc are small fluctuations such that Ivc,sm(Vh) ≈ Ivc(Vh) and the feedback is approxi-
mately non-invasive [7]. Estimate (5) ensures that the measurements Ivc(V) stay close to Ieq(V). Therefore, we can con-
clude that the VC protocol (2) with slowly varying feedback reference signal Vh reveals the entire family of steady states
of a neuron (class I or II) with constant external current Iext, both stable (observable) and unstable (non-observable, hid-
den). Consequently, the N-shaped I-V relations for class-I neurons reported in [19,20,23] equal S-shaped steady-state
bifurcation diagrams for these neurons with respect to Iext. They are tractable with a VC protocol where the current Iext is a
sufficiently slowly varying feedback current with sufficiently small fluctuations 𝜂vc. In particular, this allows us to detect and
pass through fold bifurcations directly in the experiment.
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In contrast, during the CC open-loop protocol (3), when applying a slowly varying electrical current, the neuron dynam-
ically transitions between its observable rest states and its observable (dynamically stable) spiking states (see Fig 1B
orange time profile). The speed of variation 𝜀ΔI ≲ 0.75×10−3 pA/ms is such that Iext varies by 1 pA or less per spiking
period. For a transient decay analysis we stimulate the neuron with larger current steps during a calibration phase before
executing CC protocol runs. Fig 5A and 5B show the response to such a current step to Iext = 200pA for cells 5 and 1.
We observe that the transients in the step current response such as in Fig 5A and 5B in the stable spiking region have a
half-time for decay toward the stable spikes

𝜏1/2 ≲ 0.2 s. (8)

This half-time 𝜏1/2 enters estimates for the bias caused by varying the hold current Ih dynamically with speed 𝜀ΔI. For
example, the estimate for the bias in the minimum voltage Vmin of the spike equals to first order in 𝜀

bias(Vmin) ≈ V′
min(Ih) ×

d
dt
Ih(t) ×

𝜏1/2
ln 2

. (9)

Fig 5. Periodic spiking responses to step-current protocols for PY cells 5 (left column) and 1 (right column). Panels A, B: time profiles of voltage
responses Vcc(t) from a current-clamp stimulation with a step to constant hold current Ih = 200 pA from 0.1 to 1.6 s (0.1–0.6 s in blue, 0.6–1.6 s in black).
Red markings show how half-decay time 𝜏1/2 is extracted from voltage maxima during transients. Panels C, D: (Vcc,V′cc) phase-plane projection the
time series from panels A, B, using a one-step finite-difference approximation of V′cc(t) with color code matching panels A, B to distinguish transients and
steady-state spiking. Panels E, F: reproduction of Figs 1A and AA in S1 Text without bifurcation or stability markings, respectively. The value Ih = 200pA
(vertical dotted black line) and a 10ms window around it (vertical solid black lines) are highlighted. The insets show a zoom into this 10ms window
around Ih = 200pA of panels E, F. Black crosses in panels E, F are minimum and maximum of steady-state spiking from panels A, B for comparison.

https://doi.org/10.1371/journal.pcbi.1013748.g005
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We can see in Fig 5E and 5F that Vmin(Ih) changes in the spiking region with about 8mV per 120 pA, so
V′
min(I) ≈ 0.07mV/pA. The current changes with dI/dt ≈ 7.5pA/s. Thus, to first order in 𝜀, the error then amounts to:

bias(Vmin) ≈ V′
min(Ih) ×

d
dt
Ih(t) ×

𝜏1/2
ln 2

≈ 0.14mV.

Hence, the effect from changing the current Ih dynamically is small (below visibility in bifurcation diagrams such as
Fig 1B or Fig 5E and 5F. The linear bias estimate grows to infinity when the amplitude Vmax(Ih) envelope assumes a
square-root like shape and 𝜏1/2 goes to infinity, as is the case at Hopf bifurcations.

Thus, combining the VC protocol (6) for varying Ivc,sm, and the CC protocol (3) for varying Ih, enables us to interpret the
data sets from both protocols in Fig 1B as a bifurcation diagram including unstable states.

Drift and intermittent dropouts. In Fig 5E and 5F the black markers (+) at Ih = 200pA mark the maximum and min-
imum values of the voltage response (after transient) to the step-current stimulation, as shown in panels A and B. They
indicate that for PY cell 5 there is quantitative agreement between the response to the CC protocol with slowly-varying
applied current Ih(t) and the response to the current step. There is less agreement for PY cell 1, between step response
and the response to the CC protocol with slow variation of Ih. The time profile suggests that there are either different pos-
sible spiking responses and, hence, more bifurcations in the dynamic protocol, such as period-doubling bifurcations, or
the condition of the PY cell has drifted between step response calibration and CC ramp.

Furthermore, the distances between (Ivc,sm(t),Vh(t)) in the VC run and (Ih(t),Vcc(t)) in the CC run for the same cell are
visibly larger than predicted by eq (5) along parts of the curve corresponding to dynamically stable stationary states. This
is due to the natural drift of the neuron’s physiological properties as it changes conductance properties (e.g., temperature,
degradation,…). In S1 Text we show that over time.

Finally, for the experimental curves presented in Figs 1B, 1C, 2 and A in S1 Text, the disturbances 𝜂vc are not small
in some unstable parts of the reported steady-state curve (e.g., near Vh = −30mV in Fig 1B), caused by imperfect volt-
age clamping across the membrane. FigCB in S1 Text shows a zoom demonstrating that the observed current spikes are
indeed intermittent dropout events. Detailed simulations using Morris-Lecar model (10), shown in S1 Text Sect 3, repro-
duce these dropouts closely, if adds short current spikes and small-amplitude white noise to (10).

Discussion

Tracking non-observable (hidden) states and their stability boundaries in experimental settings bridges the gap between
real-world phenomena and nonlinear science. Specifically, closed-loop control methods with slow variations of feedback
reference signals enable to dissect the underlying states of multi-scale complex systems. Following this strategy, we
demonstrate the feasibility of tracking a family of neuronal steady states (stable and unstable) via variations of reference
signal and reparameterizing the obtained curve by feedback current. The method is versatile in that it applies to different
cell types, both pyramidal (PY) neurons (like in Fig 1), of excitability class I or II (Figs 3A and 4), and inhibitory interneu-
rons (Fig 3B).

Our analysis and the resulting estimate for the nonzero-speed induced bias during the VC protocol in (5) indicates
that for the steady states detected in VC ramps our ramp speed (less than 3mV/s) does not create a bias that is notable
when compared to drift of cell properties over time or fluctuations caused by external effects (such as the dropouts visi-
ble in Fig 1B). For the CC protocol and parameter areas were periodic spiking is stable, transient analysis for step current
responses results in estimates such as (9), where bias caused by nonzero current ramp speed (≈ 7.5pA/s) is also negli-
gible. This implies that faster ramp speeds are permissible when optimising trade-off between drift of cell properties and
bias due to nonzero ramp speed. The single-ramp nature of the CC protocol leaves the question of stability open for some
parts of the steady-state branch. These results can be improved by varying the hold current Ih non-monotonically and be
switching from VC to CC protocol at selected parts of the steady-state branch determined by the VC protocol.
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These results can be also extended to more complex neuronal states (e.g. limit cycles) by combining two recent
advances, namely: 1. dynamic-clamp electrophysiology [2,36–40], which allows for a two-way real-time communication
between a neuronal tissue (e.g. neuron, network or neuronal sub-processes) and a computer simulation of a component
of the neuronal tissue. This introduces the full range of feedback control theory and engineering techniques into electro-
physiology; 2. Control-based continuation for experiments (CBCE, which combines feedback control theory and pseudo-
arclength numerical continuation for tracking solution branches of nonlinear systems directly from noisy experimental
data [7]. Indeed, CBCE method has been successfully applied in various experimental systems, for instance, in mechan-
ical vibration and buckling experiments [8], pedestrian flow experiments [9], cylindrical pipe flow simulations [11] and fea-
sibility studies for synthetic gene networks [12,13]. Noteworthy, the methodology presented in this work can be seen as
a special case of CBCE. Future work will focus on employing the full CBCE to track more complex neuronal states, for
instance, unstable spiking states in single neurons or unstable traveling-wave states in neural tissue using micro-electrode
arrays (MEA). This is crucial as it will allow us to validate computational models by comparing their numerical bifurcation
diagrams with experimental ones; it will also help obtaining better model fitting based on both voltage-clamp and current-
clamp data. This approach will have direct impact in experimental labs enabling biologists to have access to novel states
with which to carry out new experimental paradigms. We envisage this extended protocol could be used to develop next-
generation closed-loop deep-brain stimulation devices to treat certain brain diseases such as epilepsy [41], where it could
help monitor control the excitability threshold of key neural populations in real time.

Materials and methods
Ethics statement

All animal treatments were authorized by the Sechenov Institute of Evolutionary Physiology and Biochemistry Bioethics
Committee (protocol no. 1-7/2022, 27 January 2022) and adhered to the European Community Council Directive
86/609/EEC.

Protocols

Male Wistar rats were used in this study (age P21, N=8 animals). For the bifurcation diagrams (see Figs 1B and A in
S1 Text), 4 of these 8 rats were used. PY Cells 1-3 were recorded from different animals, PY cells 4-5 were recorded
from the same animal. To study the effects of hysteresis (see Fig 2) 20 neurons were recorded from the 4 remaining ani-
mals (221222, 230110, 230111, 230112). The control group were 6 neurons from 2 rats (230110, 230112). The QX group
were 8 neurons from 4 rats (221222, 230110, 230111, 230112). The QX+Cd group were 6 neurons from 4 rats (221222,
230110, 230111, 230112).

The use and handling of animals was performed in accordance with the European Community Council Directive
86/609/EEC. Horizontal 300-μm-thick brain slices were prepared as described in our previous studies [42]. The slices con-
tained the hippocampus and the adjacent cortical regions and were kept in the artificial cerebrospinal fluid (ACSF) with the
following composition (in mM): 126 NaCl, 24 NaHCO3, 2.5 KCl, 2 CaCl2, 1.25 NaH2PO4, 1 MgSO4, 10 glucose (bubbled
with 95% O2/5% CO2 gas mixture). All the listed chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA).

We performed the whole-cell patch-clamp recordings of the principal neurons in the entorhinal cortex. Neurons within
the slices were visualized using a Zeiss Axioscop 2 microscope (Zeiss, Oberkochen, Germany), equipped with a digital
camera (Grasshopper 3 GS3-U3-23S6M-C; FLIR Integrated Imaging Solutions Inc., Wilsonville, OR, USA) and differential
interference contrast optics.

Patch pipettes were produced from borosilicate glass capillaries (Sutter Instrument, Novato, CA, USA) and filled
with one of the following pipette solutions. A potassium gluconate-based pipette solution had the following composi-
tion (in mM): 136-K-Gluconate, 10 NaCl, 10 HEPES, 5 EGTA, 4 ATP-Mg, 0.3 GTP. For control experiments described
in SectionSI4, the intracellular block of the voltage-gated sodium channels was required, for which we used the solution
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with added QX314 (Alamone labs, Jerusalem, Israel), which had the following composition (in mM): 130-K-Gluconate,
10 HEPES, 6 QX314, 6 KCl, 5 EGTA, 4 ATP-Mg, 2 NaCl, 0.3 GTP. The pH of both solutions was adjusted to 7.25 with
KOH. The resistance of filled patch-pipettes was 3-4 MΩ.

A Multiclamp 700B (Molecular Devices, Sunnyvale, CA, USA) patch-clamp amplifier, a NI USB-6343 A/D converter
(National Instruments, Austin, TX, USA) and WinWCP 5 software (SIPBS, UK) were used to obtain the electrophysiologi-
cal data. The recordings were lowpass filtered at 10 kHz and sampled at 20-30 kHz. The access resistance was less than
15 MΩ and remained stable during the recordings. The liquid junction potential was not compensated for. The flow rate of
ACSF in the recording chamber was 5 ml/min. The recordings were performed at 30∘C.

Specifically for the voltage-clamp protocol. We note the CV-7B headstage has four different feedback resistors (Rf):
50 MΩ, 500 MΩ, 5 GΩ, and 50 GΩ. The Rf determines the maximum currents that can be recorded or injected. In
voltage-clamp mode it is generally recommended to use the largest possible value of Rf (larger Rf results in less noise),
though high values can result in current saturation. Since in our preparation the electrical currents varied between 50-
2000 pA (several nA for the potassium ion currents at positive holding potentials), we chose Rf = 500 MΩ (i.e. feedback
gain
gc = 2nS).

We applied first VC and then CC protocol to 5 neurons in the entorhinal cortex of 4 male Wistar rats [42]. We first
performed the VC neuronal recordings varying the hold voltage Vh from –80mV to +30mV slowly with V̇h = 1.83mV/s,
while measuring current, called Ivc in Figs 1B and 5C. Subsequently, for the CC recordings we first determine the mini-
mal injected current required to induce a depolarization block of action potential generation (Idb in Fig 1B, upper limit of
current input where firing occurs). Then we injected hold current Ih, gradually increasing from 0pA to Idb during 60 s, such
that ̇Ih is in the range 6.6…7.4pA/s for the 5 neurons, while recording voltage Vcc(t). See S1 Text for further checks (e.g.,
for hysteresis).

Computational models

We applied the VC and the CC protocols, with slow variations in the feedback reference signal and in the applied current,
respectively, to the classical neuron model adapted to many contexts, namely the Morris-Lecar model [33] (ML), and to a
standard neuron model that was specifically designed to account for inhibitory neural activity, namely the Wang-Buzsáki
model [34] (WB). Parameter values are given in Tables 1 and 2 below, respectively.

The ML equations are as follows

CV̇ = −gL(V − VL) − gCam∞(V)(V − VCa) − gKw(V − VK) + gc(Vh − V),

ẇ = 𝜙w∞(V) − w
𝜏w(V)

,
(10)

Table 1. Parameter values for the Morris-Lecar model (10).

parameter C gL VL gCa VCa gK VK gc 𝝓 V1 V2 V3 V4
unit pF nS mV nS mV nS mV nS mV mV mV mV
value class-I 20 2 -60 4.0 120 12 -84 40 0.067 -1.2 18 12 17.4
value class-II 20 2 -60 4.4 120 12 -84 150 0.040 -1.2 18 2 30.0

https://doi.org/10.1371/journal.pcbi.1013748.t001

Table 2. Parameter values for the Wang-Buzsáki model (12).

parameter C gL VL gNa VNa gK VK gc 𝝓
unit pF nS mV nS mV nS mV nS
value 1 0.1 –65 35.0 55 9 –90 20 5

https://doi.org/10.1371/journal.pcbi.1013748.t002
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with the following voltage-dependent (in)activation and time-constant functions:

m∞(V) = 0.5(1 + tanh((V − V1)/V2)),
w∞(V) = 0.5(1 + tanh((V − V3)/V4)),
𝜏w(V) = cosh((V − V3)/(2V4))−1.

(11)

To obtain Figs 3A and 4, we have used the following parameter values.
Finally, for both the VC protocol with slow variation, and the CC protocol with slow variation, the speed of the varia-

tion was chosen to be equal to 𝜀 = 0.01. Note that gc can be decreased to 7, which is in the same order of magnitude as
the experimental one. Moreover, the capacitance chosen for the model simulations is on the same order of magnitude
as observed in the experiments. Nevertheless, the key point to note is that we are not aiming for quantitative agreement
since this is a conductance-based phenomenological model.

The WB equations are as follows

CV̇ = −gL(V − VL) − gNam
3
∞(V)h(V − VNa) − gKn4(V − VK) + gc(Vh − V),

ḣ = 𝜙h∞(V) − h
𝜏h(V)

,

ṅ = 𝜙n∞(V) − n
𝜏n(V)

,

(12)

with the following voltage-dependent (in)activation and time-constant functions:

𝛼m(V) = 0.1(V + 35)/(1 − exp(−0.1(V + 35)))
𝛽m(V) = 4.0exp(−0.0556(V + 60))
𝛼h(V) = 0.07exp(−0.05(p + 58))
𝛽h(V) = 1/(1 + exp(−0.1(V + 28)))
𝛼n(V) = 0.01(V + 34)/(1 − exp(−0.1(V + 34)))
𝛽n(V) = 0.125exp(−0.0125(V + 44))
p∞(V) = 𝛼p(V)/(𝛼p(V) + 𝛽p(V)), p ∈ {m,h,n},
𝜏p(V) = 1/(𝛼p(V) + 𝛽p(V)), p ∈ {m,h,n}

(13)

To obtain Fig 3B, we have used the following parameter values.
Finally, for both the VC protocol with slow variation, and the CC protocol with slow variation, the speed of the variation

was chosen to be equal to 𝜀 = 0.01.
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