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Abstract

Diabetic retinopathy (DR) is a leading cause of vision impairment, which significantly
impacts working-class populations, necessitating accurate and early diagnosis for
effective treatment. Traditional DR classification relies on Convolutional Neural Net-
work (CNN)-based models and extensive preprocessing. In this work, we propose

a novel approach leveraging pre-trained models for feature extraction, followed by
Graph Convolutional Networks (GCNs) for refined embedding representation. The
extracted feature vectors are structured as a graph, where GCN enhances embed-
dings before classification. The proposed model incorporates quality assessment by
predicting a confidence score through a dedicated fully connected layer, trained to
align with ground truth quality using binary cross-entropy loss. Uncertainty estima-
tion is achieved by calculating the variance across multiple stochastic passes, pro-
viding a measure of the model’s prediction reliability. We evaluate the proposed DR
detection approach on APTOS2019, Messidor-2, and EyePACS datasets, achiev-
ing superior performance over state-of-the-art methods. Using MobileViT as the main
feature extractor, we reached a remarkable 98.45% accuracy, 98.45% F1-Score, and
98.06% Kappa on the APTOS2019 dataset. The DenseNet-169 proved to be the best
backbone of the pipeline for the Messidor-2 dataset, with an accuracy of 94.90%,
F1-Score of 94.87%, and Kappa of 93.63%. Additionally, for external validation, the
model demonstrated strong generalization capability on the EyePACS dataset, where
DenseNet-169 achieved 97.38% accuracy, 97.37% F1-Score, and 96.72% Kappa,
while MobileViT obtained 96.02% accuracy, 96.02% F1-Score, and 95.03% Kappa.
Our innovative architecture incorporates uncertainty estimation and quality assess-
ment techniques, enabling accurate confidence scores and enhancing the model’s
reliability in clinical environments. Furthermore, to strengthen interpretability and
facilitate clinical validation, Grad-CAM heatmaps were employed to demonstrate the
significance of different input regions on the model’s predictions.
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Author summary

Diabetic retinopathy is a diabetes-induced severe eye condition that leads to
permanent blindness if not treated at an early stage. In this study, we introduce

a new method that uses pre-trained models to extract features, which are then
refined by Graph Convolutional Networks (GCNs) for better embedding rep-
resentation. These feature vectors are structured as a graph, where the GCN
improves the embeddings before classification. Our model assesses image quality
by predicting a confidence score and estimates prediction reliability by calculating
variance from multiple stochastic passes. We tested our DR detection approach
on three datasets: APTOS2019, Messidor-2, and EyePACS, outperforming cur-
rent state-of-the-art methods. We evaluate the proposed DR detection approach
on APTOS2019, Messidor-2, and EyePACS datasets, achieving superior per-
formance over state-of-the-art methods. Using MobileViT as the main feature
extractor, we reached 98.45% accuracy, 98.45% F1-Score, and 98.06% Kappa
on the APTOS2019 dataset. The DenseNet-169 proved to be the best backbone
of the pipeline for the Messidor-2 dataset, with an accuracy of 94.90%, F1-Score
of 94.87%, and Kappa of 93.63%. The model demonstrated strong generalization
capability on the EyePACS dataset, where DenseNet-169 achieved 97.38% accu-
racy, 97.37% F1-Score, and 96.72% Kappa, while MobileViT obtained 96.02%
accuracy, 96.02% F1-Score, and 95.03% Kappa.

1 Introduction

Diabetic retinopathy (DR) is a diabetes-induced severe eye condition that can lead to
permanent blindness if not treated at an early stage [1,2]. Anyone with type 1, type
2, or gestational diabetes (suffering from diabetes while pregnant) can develop this
vision-threatening disease [3]. In this condition, elevated blood sugar levels damage
the tiny blood vessels in the retina, leading to swelling, leakage, and abnormal vessel
formation [4]. During the early stages, DR may not be diagnosable through symptoms
or very mild vision problems [4]. However, if left untreated for a long time, it can lead
to partial vision loss or permanent blindness. The progression of DR can be identi-
fied in four main stages, which are: (a) Mild Non-Proliferative DR (Mild NPDR): In
this stage, microaneurysms (small bulges) are seen in the retinal blood vessels. Usu-
ally, no symptoms are seen during this stage. (b) Moderate Nonproliferative DR
(Moderate NPDR): Increased microaneurysms start interfering with the regular retina
blood flow. Other lesions begin to develop, such as hemorrhages and hard exudates.
(c) Severe Non-Proliferative DR (Severe NPDR): The body starts to signal the for-
mation of new and abnormal blood vessels in the retina. (d) Proliferative DR (PDR)
is the severest stage of DR, where new abnormal blood vessels (neovascularization)
form in the retina that are very fragile and prone to leakage. Possible vision problems
during this stage are blurriness, reduced vision, and blindness [5,6].

According to the International Diabetes Federation (IDF), approximately 537 mil-
lion adults (aged between 20 and 79) are living with diabetes. Their study shows
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that by 2045, the number of diabetic patients will increase by 46% (approximately 763 million), which means one in eight
adults will suffer from diabetes [7]. It has also been found from a study in 2021 that among the population of diabetic
patients worldwide, 22.27% suffer from DR, which indicates that nearly one in four diabetic patients suffer from DR [8].
The potential rise in DR cases in the near future underscores the urgent need for reliable and effective strategies for early
detection of the problem to prevent blindness.

The traditional methods for detecting DR involve a few methods, i.e., (a) Optical Coherence Tomography (OCT): It
provides detailed cross-sectional images of the retina, thus enabling doctors to check whether it has swelled or not [9].
(b) Funduscopy: The eye’s retina is examined with an ophthalmoscope to check for different types of lesions, such as
microaneurysms, hemorrhages, etc. [10]. However, the traditional tools needed for the detection of DR are costly and
time-consuming, which can be a barrier for many healthcare providers. The recent advancements in the field of artifi-
cial intelligence (Al), particularly in the deep learning field, have made it possible for researchers to address these chal-
lenges [11]. (c) Deep learning predictive modelings: Convolutional Neural Networks (CNNs), Vision Transformers
(ViTs), and Graph Neural Networks (GNNs) have shown significant promise in medical diagnosis [12—14] These tech-
niques can be used to classify DR accurately and reliably. To date, Al methods excel in binary DR classification but strug-
gle with reliable multiclass DR predictions.

To address this gap, we propose a novel pipeline, summarized in Fig 1, that integrates a graph convolutional network
(GCN) with pre-trained models as feature extractors (FE) for DR prediction using real fundus images. Existing research
often relies on extensive data preprocessing, making the pipeline computationally heavy and sensitive to real-world
images. These preprocessing steps can degrade image authenticity, which is particularly critical for fundus images. To
overcome this issue, a novel approach has been proposed in this work that directly utilizes fundus images with only basic
resizing and normalization. It is important to distinguish this minimal preprocessing from the common practice of online
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Fig 1. Traditional DR classification (up) relies on CNN-based models with extensive preprocessing on raw data [15,16]. In contrast, the proposed
novel strategy (down) utilizes pre-trained models for feature extraction (FE). The generated feature vectors (FV) are refined using a Graph Convolutional
Network (GCN) and subsequently leveraged for classification, quality assessment (QA), and uncertainty estimation (UE).

https://doi.org/10.1371/journal.pcbi.1013745.g001
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data augmentation (e.g., random rotations and flips), which we employ during training to improve model generalization. To
validate the robustness of our primary, preprocessing-free pipeline, we conduct a comparative analysis against versions
of our model that incorporate intensive preprocessing steps, such as CLAHE and Ben Graham’s method. Our results con-
firm that the applied additional steps are unnecessary to achieve state-of-the-art performance with our proposed frame-
work. Additionally, we explore an innovative training strategy that incorporates quality assessment (QA), uncertainty
estimation (UE), and classification losses, enhancing model reliability.

This study aims to achieve robust and accurate multiclass DR classification and demonstrates the following
contributions:

* Introduces a novel framework that integrates GCN with FE for multiclass DR classification using fundus images without
excessive preprocessing.

+ Employs a unique loss formulation that combines QA and UE losses with classification loss, enhancing model reliabil-
ity and performance. QA evaluates the reliability of predictions using a fully connected layer trained with binary cross-
entropy loss, and UE quantifies prediction confidence by calculating the variance across multiple stochastic passes
through the network.

* Proposes a strategy that preserves image authenticity, enhancing robustness to real-world variations.

 Utilizes Grad-CAM heatmaps to strengthen interpretability and facilitate clinical validation and the significance of differ-
ent input regions on the model’s predictions.

The rest of the article is structured into distinct sections as follows: Sect 2 reviews related works; Sect 3 describes the
methodology of the proposed graph convolutional networks-based diabetic retinopathy detection system; Sect 4 shows
the experimental setup, evaluation metrics; Sect 5 presents the test results, compares the performance of our proposed
model against established benchmarks, and includes an ablation study; Sect 6 provides a discussion; and Sect 7 con-
cludes the study.

2 Related works

The traditional techniques needed to detect DR are inefficient and time-consuming, which can be a barrier for many
healthcare providers. Early DR identification often varies depending on the ophthalmologist’s subjective interpretation.
The availability of experienced doctors and expensive tools affects the detection process. In recent years, computer
vision-based frameworks have been employed for DR classification.

2.1 Diabetic retinopathy prediction

Mondal et al. [15] proposed an ensemble model using DenseNet101 and ResNeXt for DR classification, achieving 96.98%
accuracy, but faced challenges with class imbalances in multiclass scenarios. Tokuda et al. [16] used a U-Net with Effi-
cientNet6 for DR diagnosis, focusing on retinal hemorrhages, achieving sensitivity (0.812—1.0) and specificity (0.888-1.0),
but the model’s generalizability to diverse datasets and real-time deployment was not thoroughly addressed. Mohanty

et al. [17] used a hybrid VGG 16-XGBoost and DenseNet121 for DR detection in the APTOS2019 dataset, with DenseNet121
achieving 97.30% accuracy, outperforming the hybrid model (79.50%), but the study did not explore the model’s scalabil-
ity or performance on more diverse datasets. Arora et al. [19] introduced an innovative deep learning framework leverag-
ing EfficientNetB0 and CNN layering for accurate diabetic retinopathy diagnosis. Their model, trained on 35,108 retinal
images, achieved an impressive 86.53% average accuracy and a 0.5663 loss rate. This robust computational approach
offers precise and dependable classification of DR severity levels. Yadav et al. [20] developed a framework combining
Modified Inertia Weight Particle Swarm Optimization (MIWPSO) and Fuzzy C-Means (FCM) for diabetic retinopathy image
segmentation. This method achieved a remarkable 98.42% accuracy, significantly enhancing diagnostic capabilities by
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effectively eliminating noise and precisely segmenting medical images. Herrero-Tudela et al. [21] applied ResNet-50 on
APTOS-2019, EyePACS, and DDR datasets, achieving 94.64% accuracy, 0.94 QWK on APTOS-2019, and lower met-
rics on others. Explainable Al (SHAP) improved interpretability, but dataset imbalance and lack of multimodal integration
remained challenges. These limitations motivated us to address imbalanced multiclass DR classification. Akhtar et al. [18]
proposed RSG-Net, a CNN for diabetic retinopathy grading on the Messidor dataset, achieving 99.36% accuracy, an
F1-score of 0.994, a specificity of 99.79%, a sensitivity of 99.41%, an AUROC of 0.9998, and an AUPR of 0.994. The
model surpasses state-of-the-art methods, with future directions including multi-dataset validation, stronger regularization,
ensemble integration, and refined augmentation to enhance generalizability.

2.2 Feature extractor backbone

Inamullah et al. [22] proposed an ensemble CNN with augmentation techniques for DR, achieving 91.06% accuracy,
95.01% sensitivity, and 98.38% specificity, but the study did not address the model’s performance on real-world, diverse
clinical datasets or its interpretability. Macsik et al. [23] fused Xception and EfficientNetB4 models for DR classification,
using CLAHE and augmentation, achieving 96.4% accuracy on DDR and 94.5% accuracy on APTOS2019. The authors
did not address the model’s robustness across different populations or its real-time applicability. Elsharkawy et al. [24]
introduced Fused-AETNet, a VAE-Transformer framework integrating OCT biomarkers for DR detection. On 481 sub-
jects, it achieved 93.08% accuracy, 93.33% precision, 96.00% recall, 94.48% F1-score, 96.70% AUROC, and a high
Kappa. Future work includes multi-stage DR grading, 3D OCT biomarkers, uncertainty quantification, and clinical deploy-
ment. Rieck et al. [25] proposed a Transformer—CNN hybrid (EfficientNet-B4 + Swin Transformer V2) on the EyeDisease
dataset, achieving 76.40% accuracy, 81.91% balanced accuracy, F1-score 76.65%, AUROC 0.96, AUPR 0.78, and
Kappa 0.71. The model showed strong generalization, with future work targeting external validation, multimodal integra-
tion, and improved interpretability. Shaban et al. [26] employed a deep CNN with 18 convolutional units and multiple fully
connected layers (FCL) for fundus image analysis, achieving 89% accuracy and a 0.915 kappa score, but faced general-
ization challenges due to data augmentation and class imbalance handling. Advanced deep learning models have shown
positive direction for DR prediction, but they fail to grasp complex patterns, even though using extensive image prepro-
cessing.

2.3 Graph neural network

Hai et al. [2] introduced the DRGCNN model for DR grading, leveraging GNNs and balanced EyePACS and Messidor-2
datasets, achieving kappa values of 86.62% and 86.16%. However, the study did not assess the model’s performance
on larger, more diverse datasets or real-time deployment scenarios. Feng et al. [6] proposed a hybrid CNN-GNN model
for DR grading, achieving 95.6% and 94.3% accuracy on APTOS2019 and Messidor-2 datasets, respectively. Chal-
lenges include dataset diversity, computational demands, and comorbidity effects. The study did not explore the model’s
generalization to the real world. Sundar and Sumathy [27] proposed a hybrid Graph Convolutional Network (HGCN) for
DR classification, achieving 90.34% accuracy on EyePACS and a 6.59% accuracy improvement over DenseNet. Chal-
lenges include clinical validation and dataset imbalance. Zhang et al. [28] proposed a Deep Graph Correlation Network
(DGCN) for DR grading without manual annotations, integrating convolutional and graph neural networks. The model
achieved 89.9% accuracy, 88.2% sensitivity, and 91.3% specificity on EyePACS-1 dataset, and 91.8%, 90.2%, and 93.0%
on Messidor-2. Challenges remain in sensitivity performance and real-world clinical deployment. Cheng et al. [29] devel-
oped a multi-label classification model based on Graph Convolutional Networks (GCN) for analyzing fundus images. The
model achieved an F1-score of 0.808 and an AUC of up to 0.986. Despite its impressive performance, the model faces
challenges like dataset imbalance and detecting small lesions.

After reviewing the recent articles on automatic DR, it can be concluded that most of the works focused on extensive
data preprocessing techniques, multiclassification performance remains a challenge in many studies, the majority of the
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articles only use a single fundus image dataset, and very few of them employ explainable Al techniques. The challenges
of relying on extensive preprocessing and the suboptimal performance of complex models in DR prediction motivated

us to find a feasible solution. In this study, we address these gaps by introducing an unprecedented strategy that mini-
mizes preprocessing while achieving a significant performance improvement. Table 1 summarizes the contributions and
research gaps of recent DR studies applying CNN/backbone and GNN-based methods.

3 Methodology

In this section, we present the problem formulation, outline our solution strategy, detail the model selection process, and
describe the pipeline construction, including dataset utilization and the training framework.

3.1 Ethics statement

This study adhered to ethical guidelines for medical Al research, using publicly available datasets (APTOS2019,
Messidor-2, and EyePACS) that comply with data privacy regulations. No personally identifiable information was used,
and all experiments were designed to improve healthcare accessibility while reducing bias. The goal is to support, not
replace, clinicians in diagnosing DR. Future work will address additional ethical concerns, including fairness, trans-
parency, and accountability, to ensure the model’s responsible development and deployment in clinical settings.

Problem Formulation: Let, the input dataset 2 consists of retinal images x; € R"*W, where H, and W represent the
height and width, respectively. We aim to predict DR from input images x and classify into 5 classes using a backbone f
that extracts feature vectors (FV) z = f(x) € RY, where d denotes the feature dimension. A graph G = (7, £) is constructed,
where nodes represent the features z and edges are based on spatial and semantic distances. A GCN refines the feature
embeddings through a series of graph-based layers. The refined embeddings h are then passed through a softmax classi-
fier y = softmax(Wysh + bgs), where y € R® corresponds to the predicted class probabilities. Additionally, the uncertainty
of predictions is modeled by performing T stochastic passes through the network, and the final prediction is obtained

as the mean of the outputs, with uncertainty quantified as the variance across the passes. The objective is to create a
robust pipeline with a pre-trained model f and GCN for accurate multiclass DR prediction. The pipeline is shown in Fig 2,
where two layers of GCN refine the embeddings, resulting in the final embedding h® e R?56. This final embedding is then
passed through two fully connected layers (FCLs), producing predictions § € R2%6*5 for classification and g € [0, 1] for

Table 1. Related work on diabetic retinopathy (DR): Contributions, datasets, and gaps.

Ref. | Contribution Dataset(s) Limitation / Gap
[2] | DRGCNN (GNN-based DR grading) with balanced EyePACS, Messidor-2 Not assessed on larger/diverse datasets; no real-time
sets study
[6] | Hybrid CNN-GNN for DR grading APTOS-2019, Messidor-2 Dataset diversity, computational demand, comorbidity
effects; real-world generalization not explored
[15] | Ensemble (DenseNet101 + ResNeXt) for DR DIARETDB1 Class-imbalance issues in multiclass settings
classification
[16] | U-Net with EfficientNet6 targeting retinal hemorrhages | Collected fundus images Generalizability and real-time deployment not
addressed
[17] | DenseNet121 vs. hybrid VGG16—XGBoost on APTOS-2019 Scalability and performance on diverse datasets not
APTOS2019 explored
[21] | ResNet-50 with SHAP explainability APTOS-2019, EyePACS, Dataset imbalance; lack of multimodal integration
DDR
[23] | Xception + EfficientNetB4 with CLAHE + augmentation | DDR, APTOS-2019 Robustness across populations and real-time
applicability not addressed
[28] | Deep Graph Correlation Network (DGCN), no manual | EyePACS-1, Messidor-2 Sensitivity and clinical deployment remain challenging
annotations

https://doi.org/10.1371/journal.pcbi.1013745.t001
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Fig 2. Model architecture: The dataset D undergoes basic preprocessing (e.g., resizing, transformations, rotations) to prepare the data. The
FE function f processes each sample x € D to generate a feature vector (FV) z € RY. This FV is then refined to a vector in R? using Global Average
Pooling (GAP). A graph is constructed with nodes corresponding to FVs, and the edge distance is computed based on spatial distance ds, and semantic
distance dge.

https://doi.org/10.1371/journal.pcbi.1013745.9g002

quality assessment. The total loss is computed by combining the classification loss £ and the quality assessment loss
L4, weighted by a hyperparameter 1. Backpropagation is used to train both the FE and GCN layers.

In this study, we incorporate two of the most novel aspects of multiclass DR classification. (a) Quality Assessment:
Quality Assessment (QA) is used to evaluate the reliability or confidence of the model’s predictions. It is typically modeled
as a scalar value § = o(Wgah" + bg,), indicating the model’s prediction certainty. It is calculated using a QA head, which
is a fully connected layer (FCL), with a learnable weight Wy, € R?%%%1, The goal is to minimize the discrepancy between
predicted and true quality assessments during training. To quantify the quality of the predictions, a Binary Cross-Entropy
(BCE) loss function is used. Given the predicted quality § and the true quality g, the loss function is defined as:

Lq=BCE(§,9) =—qlog(§) — (1 — q)log(1 - g) (1)

where § is the predicted quality score (between 0 and 1), and q illustrates the ground truth indicating the quality of the
prediction (binary: 0 or 1). This loss function encourages the model to output high-quality predictions when the true qual-
ity is high and low-quality predictions when the true quality is low. (b) Uncertainty Estimation: Uncertainty Estimation
(UE) quantifies the model’s confidence in its corresponding predictions by modeling the variance across multiple stochas-
tic passes through the network. For a given input x, the model constructs T stochastic passes, resulting in a set of pre-
dictions y® for t= 1,2, ..., T. The predicted label is averaged over these passes to get the final prediction: y = %Zt; y®

where y is the prediction from the t-th forward pass. The uncertainty is measured as the variance across the T predic-
tions: o2 = ;2;1(37(0 —¥)?. Here o2 represents the uncertainty of the model’s prediction, with higher values indicating
greater uncertainty. The uncertainty value can be used to gauge the reliability of the predictions; lower uncertainty indi-
cates more confidence in the result. In all experiments, we set the number of Monte Carlo (MC) forward passes to T = 10.
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Each pass keeps dropout active (p = 0.3 for the classifier head and p = 0.2 within the GCN layers), ensuring that different
subnetworks are sampled on each pass. The final class-probability vector is computed as the arithmetic mean:

1 T
}_/:_Z}"/(t)’
Tt:1

and the predictive uncertainty is measured as the standard deviation:

- 1TAt) 7>
o= 7;(}’( -y

To ensure reproducibility, we fixed all random seeds using torch.manual seed(42),
torch.cuda.manual seed all(42), and np.random.seed (42).

3.2 Dataset

Three distinct fundus image-based datasets are used for this study for DR classification. (a) APTOS (Asia Pacific Tele-
Ophthalmology Society): The APTOS2019 Blindness Detection dataset is a public collection of retinal fundus images
designed to enable research on DR detection and severity classification. A single CSV file with respective labels accom-
panies 3,662 training images. These images were obtained in various clinical contexts and imaging parameters, show-
casing differences in illumination, contrast, and clarity, thus presenting realistic diagnostic debates. (b) Messidor-2:
Messidor-2 is a publicly available dataset that has been used extensively to develop and evaluate automated methods
for DR detection and grading. It extends the original Messidor dataset, a benchmark collection of retinal fundus images
of diabetic patients obtained under standardized conditions. Messidor-2 consists of 1,748 color retinal images, all with
good image quality for method training and testing. Despite their uses in research, datasets are highly imbalanced. (c)
EyePACS: EyePACS is one of the largest publicly available datasets for Diabetic Retinopathy detection. It was origi-
nally released for a Kaggle competition titled 'Diabetic Retinopathy Detection’. EyePACS provides high-resolution fundus
images captured under different imaging conditions, labeled with diabetic retinopathy severity grades from 0 (no DR) to 4
(proliferative DR). The total number of images provided in the EyePACS dataset with known labels is 35,126. Statistics for
all three datasets are given in Table 2.

3.3 Dataset preparation

We first addressed the class imbalance problem by balancing the number of samples across the five DR classes to pre-
pare our dataset for model training. We employed an oversampling approach for minority classes, ensuring that all five

Table 2. All datasets are categorized into five distinct groups based on the severity levels of DR present in the fundus images. Here, “0” stands
for No DR, “1” stands for Mild NPDR, “2” stands for Moderate NPDR, “3” stands for Severe NPDR, and “4” stands for PDR.

Classes DR Grades # of Instances

APTOS2019 Messidor-2 EyePACS
Class -0 No DR 1805 1017 25810
Class - 1 Mild NPDR 999 270 2443
Class - 2 Moderate NPDR 370 347 5292
Class - 3 Severe NPDR 295 75 873
Class - 4 PDR 193 35 708
Total 3662 1748 35126

https://doi.org/10.1371/journal.pcbi.1013745.t002
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DR classes had an equal number of images for training. This balancing was achieved through a combination of duplicat-
ing samples using some transformations. These transformations are distinct from the intensive, dataset-wide preprocess-
ing techniques that our primary model seeks to avoid. By following this procedure, the final class distribution across these
batches was uniform, thereby mitigating bias in the model towards classes with higher initial representation.

3.4 Model architecture

Backbone: We employed fifteen backbone architectures, including four DenseNet variants: DenseNet-121 (7M),
DenseNet-161 (28M), DenseNet-169 (14M), and DenseNet-201 (20M), leveraging dense connectivity for efficient fea-
ture reuse [30]. Additionally, we used three ResNet variants: ResNet50 (25M), ResNet101 (44M), and ResNet152 (60M),
which introduced residual connections for improved gradient flow [31]. Lastly, we incorporated Inception V3 (23M) and
Inception-ResNet-v2 (55.9M) for multi-scale feature extraction and enhanced gradient propagation [32].

For Transformer architectures, we used ViT-base (86M), Swin-base (88M), and DeiT-Base (86M) for enhanced attention
computation [33,34]. Additionally, we employed EfficientNet B3 (12M), MobileViT (5.6M), and Xception (22M) for efficient
scaling, MobileNet integration, and depthwise separable convolutions [35].

Graph Construction: The graph construction process begins by defining the nodes of the graph. Each node corre-
sponds to a feature vector z, representing the image’s key characteristics after feature extraction. The set of nodes is
denoted as V = {z}, where each node represents an individual image’s feature vector. Next, the edges between nodes
are defined based on the distances between their corresponding feature vectors. These distances are a combination of
spatial distance, d,,(/,/), and semantic distance, ds(/,/). The combined distance between two nodes i/ and j is computed
as:

deomb () = B - dsp (1)) + (1 = ) - dse (i, ), B € [0, 1] (@)

Here, 8 is a hyperparameter that controls the weighting between spatial and semantic distances. The resulting graph
is represented as G = (7, &), where V are the nodes and & are the edges, with each edge carrying the combined distance
weight between nodes. The graph is constructed following algorithm 1.

Algorithm 1 Graph construction and GCN refinement.

1: Input: FV zeRY, graph parameters f, number of graph convolution layers L, graph neighborhood
N(i), GCN weights W), biases by

: Step 1: Graph Construction

: Construct graph G=(1,&)

: Nodes V={z}

Initialize node embeddings: =2z

: Compute combined distance d..(f,j) using:

h®
I

o ;s W N

dcomb(i’j) = ﬁ : dsp(i’j) + (1 - 6) : dse(i’])a ﬁ € [0’ 1]

where d.,(i,j)) is the spatial distance and d..(ij) is the semantic distance.
7: Step 2: GCN Refinement
g: for layer I=1 to L do
9: for fode i do ] ®
o 0 <0 (B T+ )
11: end for
12: end for
13: Step 3: Output
14: Return the final node embeddings h®
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Graph Convolutional Network (GCN): GCN operates by refining node embeddings through multiple layers, where each
layer aggregates information from neighboring nodes. At each layer, the embedding of a node hf’“) is updated by per-

forming a weighted sum of the embeddings of its neighbors hj@, normalized by the degree of the nodes. This update rule
is given by:

(I+1) 1 0)
h+D = o — wh?+ b,) (3)
’ (‘e]zv:(l) Vdeg(hdeg() '

where W, and b, are learnable weights and biases for layer /, ¢ is a nonlinear activation function (typically ReLU), and
deg(i) is the degree of node i. The normalization term ensures that nodes with higher degrees do not dominate the aggre-
gation process. The GCN operates over L layers, where each successive layer aggregates information from nodes that
are increasingly further away in the graph, allowing each node’s embedding to incorporate more global information.

After L layers, the node embeddings hfL) capture both local and global structural information of the graph. These refined
embeddings are then used for multiclass DR prediction.

3.5 Tuning pipeline

FV is passed to the constructed GCN block. The GCN is applied to refine the final node embeddings hfm). After refin-
ing the embeddings, a classification head is used to obtain the predicted label y Alongside classification, the predicted
quality g is computed, and the QA loss £, is calculated. The total loss is a combination of the classification loss £s and
quality assessment loss £,, weighted by the hyperparameters 1 : Ly = L5 + 1L, Finally, the model parameters © are
updated by minimizing the total loss: ® « ® —nV gL where 7 is the learning rate. This process is repeated iteratively for
each training batch to optimize the model. The training pipeline is given in algorithm 2.

Algorithm 2 Training pipeline.

1: Input: Training dataset {(X,-,y,-)}fiw learning rate 7, epochs E, regularization A, stochastic passes T
: Initialize model parameters ©
for epoch = 1 to E do
for batch = 1 to num batches do
Sample mini-batch {x,-,y,-},.';
for each image X; do
Extract features: z;=fX;)
Call Graph GCN(Z;) to get hfL)
Classification:
Predict: ¥;=softmax(W,. ¢h
Perform uncertainty estimation: )'l,-,cr,-z
Compute loss: £=L.,+AL,
end for
Backpropagate: Vgl
Update parameters: @ « 0 —1nVgl
16: end for
17: end for
18: Output: Optimized O

W O d o U W N

®
i)

e e e e
(S, S VR R

4 Experiment

In this section, we provide a comprehensive overview of our experimental setup, detailing the hardware and software con-
figurations, dataset preprocessing, and training procedures. We then present the results obtained from our experiments,
followed by an in-depth discussion analyzing the performance of different approaches.
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4.1 Setup

In this section, we outline the setup criteria for our experiments, including dataset preparation, model configurations, and
evaluation strategies. We describe the preprocessing steps applied to the datasets, the architectures and hyperparame-
ters used for training the models, and the metrics employed to assess their performance.

Dataset: To prepare the dataset for training, we balanced the samples across the five DR classes by oversampling and
augmenting minority class images. First, let N, be the number of samples in the majority class. We oversampled the
minority classes by duplicating and augmenting their images to match N,,,,. Augmentation was done using the Albumen-
tations pipeline with transformations such as random rotations, flips, blur operations, and brightness/contrast adjustments.
All of the images were resized to 224 x 224. The original and augmented samples were combined to maintain class bal-
ance. Finally, the dataset was split into training (70%), validation (15%), and test (15%) sets using stratified splitting to
preserve class distributions. This balanced dataset was then used for model training and evaluation.

Implementation Details: In our implementation, we employ a GCN technique, which takes a graph as input with k=4
nearest neighbors and radius = 0.1 for creating the graph edges. During evaluation, the model performs T =10 Monte
Carlo dropout passes with dropout rates of p = 0.3 in the classifier and p = 0.2 in the GCN. Random seeds were fixed to
42 for PyTorch, CUDA, and NumPy to ensure exact reproducibility. We trained this model with the AdamW optimizer using
an initial learning rate of 56~ and weight decay of 0.01. The cross-entropy loss is employed as £ With a hyperparame-
ter 1 =0.1. It is worth mentioning that various hyperparameters of the applied models are automatically tuned employing
the Optuna framework. We have used a ReduceLROnPIlateau scheduler with a patience of 7 and a minimum learning rate
of 177, Early stopping is employed with a patience of 15 epochs, a total of 50 epochs, to avoid overfitting. Table 3 depicts
the detailed hyperparameters used in this experiment. It categorizes parameters into training configuration, graph con-
struction, Uncertainty Estimation, GCN configuration, and loss function. Key details include batch size, learning rate, opti-
mizer, graph parameters, and loss weights, ensuring an optimized model training process with efficient learning and gen-
eralization. Table 4 represents the training parameters and time analysis for both datasets (APTOS2019 and Messidor-2)
during experiments. All experiments were performed on an NVIDIA GeForce RTX 4070 GPU with 12GB of VRAM, using
the PyTorch framework. We used 32 images as the batch size for balancing memory constraints and training efficiency.
The implementation codes can be found at: https://github.com/mfar201/diabetic_retinopathy_classification_gcn.

Table 3. Hyperparameter values used in our experiments.

Category Hyperparameter Value Description
Training Configuration Number of Epochs 50 Total number of training epochs
Batch Size 32 Samples per batch during training
Learning Rate 5e-5 Initial learning rate
Optimizer AdamW Optimization algorithm
Weight Decay 0.01 L2 regularization parameter)
Learning Rate Scheduler ReduceLROnPlateau Adjusts learning rate based on validation loss
Scheduler Patience 7 Epochs with no improvement before reducing LR
Early Stopping Patience 15 Epochs with no improvement before stopping training
Graph Construction Number of Neighbors (k) 4 Nearest neighbors in graph construction
Radius 0.1 Threshold for edge creation
Feature Weight 0.5 Balance between spatial and semantic features
Uncertainty Estimation MC Dropout Samples 10 Number of forward passes for Monte Carlo dropout
Inference Dropout Rate 0.3 Dropout rate used during uncertainty estimation
GCN Configuration Input Dimension 1024 Dimension of input features
Hidden Dimensions [512, 256] Sizes of hidden layers
Output Dimension 1024 Dimension of GCN output features
Dropout Rate 0.2 Dropout applied to prevent overfitting
Loss Function Classification Loss Weight 1.0 Weight for classification loss
Quality Assessment Loss Weight 0.1 Weight for quality assessment loss

https://doi.org/10.1371/journal.pcbi.1013745.t003
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Table 4. Model-specific training parameters. The number of parameters refers to trainable parameters in the backbone. Single Image Inference Time
(SIIT) is measured in milliseconds (ms), and Per Epoch (TTPE) is measured in seconds (s). These properties are independent of datasets.

Architecture Backbone Model Size (MB) # of Parameters SIIT (ms) IIPE (s)

CNN ResNet50 295.27 25,755,462 16.59 88.95
ResNet101 513.07 44,747,590 19.23 95.61
ResNet152 692.52 60,391,238 22.82 1138.60
Xception 458.76 40,017,990 15.26 1458.57
InceptionV3 275.69 24,032,998 18.88 93.30
InceptionResNetV2 642.58 56,025,510 36.20 100.40
EfficientNetB3 142.99 12,415,278 17.82 99.00
DenseNet121 94.20 8,144,518 20.92 114.47
DenseNet161 332.29 28,884,550 26.13 103.75
DenseNet169 165.58 14,335,622 23.34 97.11
DenseNet201 233.23 20,208,262 28.93 105.91

Transformer ViT-Base 992.76 86,725,126 15.65 104.87
Swin-Base 1006.84 87,933,886 24.36 101.43
DeiT-Base 992.77 86,726,662 13.49 91.84
MobileViT 28.60 2,463,030 19.22 98.91

https://doi.org/10.1371/journal.pcbi.1013745.t004

Evaluation metrics: We measure the performance of our model using five metrics: accuracy (Acc) for overall perfor-
mance; macro-averaged F1-score (F1) for per-class effectiveness; Cohen’s Kappa for chance-adjusted agreement; Area
Under the Receiver Operating Characteristic Curve (AUROC) for classification capability; and Area Under the Precision-
Recall Curve (AUPR) for handling class imbalance. For justifications, we analyzed confusion matrices and precision-recall
curves.

Comparative Analysis of Preprocessing Techniques: A central claim of our work is that our proposed GCN-enhanced
framework performs robustly without requiring extensive image preprocessing. To support this claim, we designed experi-
ments to compare our primary pipeline against two widely used preprocessing methods for DR classification. These meth-
ods were applied to the entire dataset before the training process and were evaluated separately from our main model.

(a) CLAHE: Contrast Limited Adaptive Histogram Equalization (CLAHE) is a contrast enhancement algorithm used to
improve image contrast while preventing over-amplification. It enhances local contrast and is particularly effective in high-
lighting features in homogeneous regions [36].

(b) Ben-Graham Method: Ben Graham, a researcher in the deep learning domain, devised a preprocessing technique
often used in medical image analysis tasks to improve images with varying lighting conditions, noise, or imbalance in con-
trast. This algorithm is used to enhance the features of the retinal fundus images and make the dataset more uniform by
handling the variations in the brightness of the images [37].

The results of this comparative analysis, presented in Figs 3, 4, and 5 and Table 5, evaluate the performance of our model
under three conditions: (1) our proposed pipeline with no advanced preprocessing, (2) with CLAHE preprocessing, and (3)
with Ben Graham preprocessing.

5 Results

We have compared our model with existing state-of-the-art (SOTA) approaches, highlighting improvements in accuracy,
robustness, and reliability. Additionally, we assess the impact of our novel loss formulation, including classification loss
and QA loss, on model performance. To ensure a comprehensive evaluation, we provide detailed quantitative results in
Table 5, Table 6, and visual interpretations using GradCAM in Fig 5.

We evaluated our proposed framework under three distinct preprocessing conditions to assess the impact of these tech-
nigues on performance. The conditions were: our primary pipeline using only basic resizing and normalization, a pipeline
incorporating CLAHE, and a pipeline using the Ben-Graham method. The following results compare our primary approach

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1013745 December 5, 2025 12/ 20



https://doi.org/10.1371/journal.pcbi.1013745.t004
https://doi.org/10.1371/journal.pcbi.1013745

PLO§ Computational

" Biology

No Preprocessing
Normalized Confusion Matrix

Predicted Label

Clahe Preprocessing
Normalized Confusion Matrix

Predicted Label

Ben-Graham Preprocessing
Normalized Confusion Matrix

No DR No DR No DR

-0.8 0.8 0.8
Mild Mild Mild

4 E; 06 % 0.6 E; 06
E é Moderate g Moderate é Moderate

< E 04 E 0.4 E -04
Severe Severe Severe

0.2 -0.2 0.2
Proliferative DR Proliferative DR Proliferative DR

-0.0 -0.0 -0.0

Predicted Label Predicted Label Predicted Label
Normalized Confusion Matrix 10 Normalized Confusion Matrix 10 Normalized Confusion Matrix

No DR 0.00 No DR No DR

0.8 0.8 0.8
2 Mild 0.00 Mild Mild

<3 06 06 2 06

o= @ © ©

§ i Moderate 0.00 i Moderate j Moderate

s = 04 2 04 2 0.4
Severe 0.00 Severe Severe

-0.2 -0.2 -0.2

Proliferative DR 0.00  0.00 0.00 0.01 Proliferative DR Proliferative DR 0.02  0.02
@ 3 B " < -0.0 ) < -0.0 @ © B " < -0.0
%OQ N o 2 o 8 .\&0 %"Q N o 2 o 8 .\&0 %00 N o 2 J 8 -\&0
P Q}q} I Q}q} RS Q}q}

Predicted Label

Fig 3. Comparison of normalized confusion matrices for multiclass DR classification on the APTOS and Messidor-2 datasets using differ-
ent preprocessing methods: Our pipeline with No Preprocessing (left), CLAHE preprocessing (middle), and Ben-Graham preprocessing

(right). MobileViT model on APTOS2019 dataset shows excellent performance, with minimal misclassification and high precision-recall (AP=1.00).
DenseNet169 on the Messidor-2 dataset achieves high accuracy.

https://doi.org/10.1371/journal.pcbi.1013745.g003

with existing state-of-the-art (SOTA) methods and analyze its performance relative to the preprocessing-intensive
variants.
Performance Comparison: After training the models on a balanced dataset, we evaluated their performance on the
actual test sets of APTOS2019 and Messidor-2, where the data distribution is inherently imbalanced. This evalua-

tion ensures the model’s generalizability to real-world scenarios. We have compared our models with all of the SOTA
pipelines. Table 5 presents a comparative analysis of various deep-learning models for DR grading on the APTOS2019
and Messidor-2 datasets, showcasing results from existing studies alongside the authors’ proposed models. Among CNN-
based architectures, DenseNet169 achieves the highest accuracy (94.51%) and F1-score (94.49%) on Messidor-2, while
MobileViT outperforms other models on APTOS2019, achieving the highest accuracy (98.45%) and AUROC (0.9994).
The proposed models, particularly MobileViT and DenseNet variants, consistently surpass prior CNN and transformer
architectures, demonstrating improved classification performance across both datasets. Table 6 presents the external
validation performance on the EyePACS dataset using two top-performing backbones—DenseNet-169 (pretrained on
Messidor-2) and MobileViT (pretrained on APTOS2019). After fine-tuning on EyePACS, both models demonstrated con-

sistently high performance across all evaluation metrics: Accuracy, F1-score, AUROC, AUPR, and Cohen’s x. The applied
DenseNet-169 technique achieved the best performance, with 97.38% accuracy and 99.83% AUROC. The demonstrated
results suggest that the proposed framework is robust and transferable across datasets, addressing the common concern
of limited dataset dependency in previous studies.
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Fig 4. Precision-recall curves for multiclass DR classification on the APTOS and Messidor-2 datasets using three different preprocess-

ing methods: our pipeline with no preprocessing (left), CLAHE Preprocessing (middle), and Ben-Graham preprocessing (right). MobileViT
model on APTOS2019 dataset shows excellent performance, with minimal misclassification and high precision-recall (AP=1.00). DenseNet169 on the
Messidor-2 dataset achieves high accuracy.

https://doi.org/10.1371/journal.pcbi.1013745.9004

Explainable Al Visualization: To ensure the model’s predictions are not only accurate but also interpretable, Grad-CAM
is employed to visualize the regions influencing its classification decisions, as shown in Fig 5. A detailed analysis of these
heatmaps reveals that the model has learned to identify clinically relevant pathologies and that its focus correctly shifts in
alignment with the increasing severity of Diabetic Retinopathy.

* No DR (Class 0): For fundus images of healthy retinas, the Grad-CAM activations are diffuse and lack a specific focus.
This indicates the model is confirming the absence of key pathological markers, which is the desired behavior for a neg-
ative diagnosis.

» Mild NPDR (Class 1): In this early stage, the model’s attention is drawn to small, punctate areas of high activation.
These highlighted spots indicate the emergence of microaneurysms, which are the earliest signs of DR.

* Moderate NPDR (Class 2): As the disease progresses to the moderate stage, the activated regions on the heatmaps
become larger and more pronounced. This shift in focus aligns with the clinical presentation of dot and blot hemor-
rhages and hard exudates, which are more significant vascular lesions than microaneurysms.

+ Severe NPDR & Proliferative DR (PDR) (Class 3 and 4): In the most advanced stages, the Grad-CAM visualizations
show large, intense areas of activation. These regions often correspond to significant retinal hemorrhages and, cru-
cially, areas of neovascularization (the growth of new, abnormal blood vessels). The model’s focus on these features,
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Fig 5. Grad-CAM heatmaps were generated for retinal fundus images in the DR classification task. Each row presents the original image, its
corresponding Grad-CAM heatmap, and the model’s prediction. The red regions in the heatmaps indicate areas that strongly influence the classification.
(a) represents our approach without any sophisticated preprocessing techniques, which performs significantly better than the other two: (b) with CLAHE
preprocessing.

https://doi.org/10.1371/journal.pcbi.1013745.g005

which are the indications of severe and proliferative DR, demonstrates its ability to recognize the most critical, vision-
threatening signs of the disease.

This stage-by-stage analysis confirms that this framework bases its decisions on recognized clinical indicators of DR. The
progressive shift in the model’s attention from minor to major pathologies provides strong evidence of its clinical relevance
and enhances trust in its utility as a reliable diagnostic tool.

Analysis: The GCN-based framework with MobileViT and DenseNet169 consistently improves DR classification accu-
racy, showcasing its effectiveness in ophthalmological studies. Fig 3 illustrates strong classification performance with min-
imal misclassification in both datasets. The confusion matrix reveals accurate predictions for the No DR and Moderate

DR classes, while the precision-recall curves show an average precision (AP) of 1.00 across all categories for the APTOS
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Table 5. Comparison with SOTA: After training the models using three different approaches—(1) applying CLAHE (&), (2) applying Ben Gra-
ham’s preprocessing technique (¢), and (3) our proposed (V) pipeline without sophisticated preprocessing—we evaluated them on the

actual test sets of the APTOS2019 and Messidor-2 datasets. Our approach outperformed all existing benchmarks for DR classification on both
datasets. Whether using CNN (H) or Transformer architectures (a), our method consistently achieved superior performance compared to all previous DR
classification methods.

Arch. | Meth. Backbone APTOS2019 Messidor-2
Acc(%) | F1(%) | AUROC(%) | AUPR(%) | Kappa(%) | Acc(%) | F1(%) | AUROC(%) | AUPR(%) | Kappa(%)
[ | [6] ResNet50 84.80 84.30 |- - 90.90 67.10 65.50 | - - 66.30
[6] DenseNet121 85.50 84.90 |- - 90.60 68.00 66.00 | - - 67.30
[17] DenseNet121 97.30 - - - - - - - -
[18] RSG-Net - - - - - 99.36 99.40 | 99.98 99.40 -
[21] ResNet50 85.65 - 89.00 - - - - - - -
[38] DenseNet201 91.62 91.52 |- - - 85.79 85.08 | - - -
[38] MobileNetV2 93.09 93.53 |- - - 83.81 85.23 | - - -
39 MobileNetV2 92.00 - - - - - - - - -
40 DenseNet121 97.68 97.00 | 96.20 - 98.50 - - - - -
41 ResNet152 85.94 71.29 | 82.96 - - - - - - -
[18,42] | RSG-Net - - - - - 99.36 - - - -
[43] Xception 84.36 70.49 |93.82 - - 74.21 55.18 | 87.26 - -
A [44] Swin-Base 88.70 88.70 | - - - 83.12 83.12 | - - -
[45] Swin-Base 86.40 - - - - - - - - -
[ | & ResNet50 94.61 94.58 | 99.52 98.34 93.27 75.69 75.89 | 96.54 87.86 69.61
ResNet101 80.52 79.81 | 98.78 96.02 75.65 37.91 27.37 | 81.48 60.93 22.39
ResNet152 92.10 92.16 | 99.23 97.39 90.13 81.57 81.45 [ 0.9780 93.76 76.96
Xception 95.42 95.42 |99.68 98.95 94.28 94.12 94.14 | 99.33 97.94 92.65
InceptionV3 96.53 96.53 | 99.78 99.25 95.66 92.29 92.22 |99.22 97.55 90.36
InceptionResNetV2 | 96.38 96.37 | 99.63 98.75 95.48 93.20 93.17 | 99.47 98.17 91.50
EfficientNetB3 96.97 96.98 | 99.84 99.45 96.22 92.94 92.98 | 99.41 98.11 91.18
DenseNet121 90.11 90.02 | 99.70 99.02 87.64 85.62 85.43 | 98.64 95.85 82.03
DenseNet161 95.50 95.48 | 99.71 99.02 94.37 93.46 93.46 | 99.40 98.02 91.83
DenseNet169 96.68 96.68 | 99.75 99.20 95.85 93.46 93.46 | 99.34 97.84 91.83
DenseNet201 95.65 95.63 | 99.78 99.23 94.56 94.25 94.23 | 99.53 98.44 92.81
A & ViT-Base 95.57 95.56 [ 99.51 98.51 94.46 89.41 89.41 [ 98.54 95.71 86.76
Swin-Base 96.90 96.89 | 99.81 99.36 96.13 91.24 91.28 | 98.96 96.69 89.05
DeiT-Base 96.01 96.00 | 99.69 99.01 95.02 91.90 91.87 [ 99.08 97.02 89.87
MobileViT 98.01 98.00 | 99.94 99.79 97.51 91.37 91.43 [ 99.03 96.67 89.22
[ | * ResNet50 81.99 81.99 | 96.59 89.36 77.49 68.37 67.01 | 93.62 77.77 60.46
ResNet101 70.63 69.56 | 93.71 83.85 63.28 20.00 6.670 | 62.60 30.70 00.00
ResNet152 78.67 77.63 | 94.88 88.10 73.34 54.12 49.96 | 86.21 63.66 42.65
Xception 93.21 93.15 | 99.16 97.50 91.51 93.46 93.43 | 99.00 96.91 91.83
InceptionV3 94.39 94.34 | 99.61 98.72 92.99 93.59 93.59 [ 99.48 98.27 91.99
InceptionResNetV2 | 90.04 90.10 | 99.14 97.33 87.55 92.03 91.96 | 99.10 97.05 90.03
EfficientNetB3 93.21 93.16 | 99.48 98.29 91.51 91.50 91.43 | 98.78 96.22 89.38
DenseNet121 89.08 89.15 | 98.62 95.83 86.35 85.62 85.64 | 98.12 94.73 82.03
DenseNet161 95.13 95.13 | 99.63 98.80 93.91 94.64 94.62 | 99.50 98.34 93.30
DenseNet201 94.17 94.16 | 99.37 97.97 92.71 93.73 93.70 | 99.57 98.49 92.16
DenseNet169 94.83 94.78 | 99.55 98.56 93.54 95.03 95.01 | 99.50 98.32 93.79
A * ViT-Base 94.39 94.37 | 99.34 98.08 92.99 90.33 90.24 | 98.42 95.08 87.91
Swin-Base 95.42 95.42 | 99.58 98.73 94.28 90.59 90.62 | 98.73 96.00 88.24
DeiT-Base 94.98 94.95 | 99.51 98.48 93.73 90.72 90.70 | 98.69 95.90 88.40
MobileViT 93.95 93.95 | 99.22 97.31 92.44 92.55 92.57 | 99.31 97.68 90.69
[ | Q ResNet50 93.95 94.02 | 99.70 98.98 92.44 70.46 67.28 | 92.55 78.90 63.07
ResNet101 84.65 84.04 | 97.79 93.54 80.81 40.00 22.86 | 79.60 54.07 25.00
ResNet152 92.18 92.13 [99.25 97.67 90.22 79.87 80.07 | 96.53 90.61 74.84
Xception 95.28 95.26 | 99.59 98.67 94.10 93.07 93.05 [ 99.14 97.34 91.34
InceptionV3 96.97 96.97 | 99.82 99.38 96.22 94.12 94.08 | 99.49 98.35 92.65
InceptionResNetV2 | 94.98 94.95 | 99.41 97.97 93.73 94.38 94.37 [ 99.37 97.95 92.97
EfficientNetB3 96.83 96.82 | 99.83 99.40 96.03 94.12 94.12 | 99.52 98.42 92.65
DenseNet121 93.87 93.80 |99.44 98.12 92.34 87.58 87.59 | 98.65 96.06 84.48
DenseNet161 96.24 96.23 | 99.70 99.02 95.30 94.38 94.39 [ 99.52 98.41 92.97
DenseNet201 96.61 96.60 | 99.84 99.43 95.76 92.94 92.92 [ 99.35 97.90 91.18
DenseNet169 96.75 96.74 | 99.81 99.37 95.94 94.90 94.87 | 99.50 98.42 93.63
A Q ViT-Base 95.57 95.55 | 99.62 98.79 94.46 88.63 88.66 | 98.06 94.17 85.78
Swin-Base 96.90 96.89 | 99.83 99.44 96.13 91.24 91.23 | 99.04 96.85 89.05
DeiT-Base 95.72 95.71 | 99.71 99.07 94.65 90.20 90.17 | 98.91 96.52 87.75
MobileViT 98.45 98.45 | 99.94 99.81 98.06 92.03 92.02 | 99.25 97.45 90.03

https://doi.org/10.1371/journal.pcbi.1013745.t005
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Table 6. External validation on EyePACS: Performance of the two best backbones from our pipeline—DenseNet-169 (initially optimized on
Messidor-2) and MobileViT (initially optimized on APTOS2019)—after a brief fine-tuning stage on the EyePACS dataset.

Initially Trained on Backbone EyePACS

Acc(%) F1(%) AUROC(%) AUPR(%) Kappa(%)
Messidor-2 DenseNet169 97.38 97.37 99.83 99.39 96.72
APTOS2019 MobileViT 96.02 96.02 99.60 98.69 95.03

https://doi.org/10.1371/journal.pcbi.1013745.t006

dataset. Similarly, for Messidor-2, the best model achieves high accuracy despite some misclassification, as shown in
Fig 4.

5.1 Ablation study

Out of several experiments, our primary focus was on evaluating the impact of the imbalanced dataset and the choice of
optimizer. Fig 6. presents a performance comparison for the APTOS2019 and Messidor-2 datasets using the MobileViT
and DenseNet169 backbones, respectively.

Impact of Imbalanced Datasets: Initially, we experimented with the original imbalanced dataset (OgD). As shown in
Fig 6(a), the models demonstrated the lowest performance with the OgD. To address this issue, we applied two class
balancing strategies: “Compute Class Weight” (OgD WC) and “Weighted Random Sampler” (OgD RS). Despite these
balancing techniques, Fig 6(a) demonstrates that our approach outperformed all other strategies across all metrics.
Impact of Optimizer: We also observed a decline in model performance when switching from AdamW to SGD as the
optimizer. This scenario is illustrated in Fig 6(b).

6 Discussion

This study demonstrates the efficacy of DL models in diagnosing and grading DR. Classification accuracy and AUC
scores are improved when CNNs are used for spatial feature extraction and ViTs are used for global context. The model
outperforms conventional CNN techniques by exhibiting high sensitivity and specificity through ROC curves and confusion
matrices. Explainable Al techniques, such as Grad-CAM, improve transparency and trust in clinical applications. However,
challenges remain, including dependence on high-quality labeled data and computational complexity, limiting real-time

b
(a)1 (b) )
0.8 038
0.6 0.6
0.4 0.4
02 02
0 0
Accuracy  F1Score AUC-ROC AUC-PR  Kappa Accuracy F1 Score AUC-ROC AUC-PR  Kappa
OgD WC mOgDRS »OgD mOurs mSGD = Ours

Fig 6. (a) Training strategies were applied to OgD WC, OgD RS, and OgD, with the proposed method evaluated on APTOS. Our approach
(black bar) consistently achieves the highest accuracy, F1-score, AUROC, AUPR, and Kappa, demonstrating superior classification per-
formance and agreement. (b) In comparison, our proposed approach outperforms SGD across all metrics, highlighting its better generalization and
robustness.

https://doi.org/10.1371/journal.pcbi.1013745.9006
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deployment. Future research should optimize efficiency, incorporate multimodal data, e.g., optical coherence tomography
(OCT), and enhance interpretability through saliency maps and attention mechanisms for broader clinical applicability.
Limitations: Our training is conducted on an augmented dataset, which is justified for experimental purposes. However,
incorporating real-world retinal images would enable the models to learn actual DR patterns, leading to more accurate
and reliable predictions. Additionally, emerging vision-language models (VLMs) and ensemble-based approaches remain
unexplored, which could further enhance classification performance.

7 Conclusions

This study emphasizes ethical integrity in developing and evaluating a DR classification framework using GCNs. A novel
approach has been developed for DR classification using pre-trained models for feature extraction, followed by Graph
Convolutional Networks (GCNSs) to refine embeddings. The extracted feature vectors are structured as a graph, where
GCN enhances embeddings before classification, and a quality assessment module predicts a confidence score using a
fully connected layer trained with binary cross-entropy loss. Uncertainty estimation is performed by calculating the vari-
ance across multiple stochastic passes, providing a measure of prediction reliability. The proposed method is evaluated
on the APTOS2019 and Messidor-2 datasets, demonstrating superior performance compared to state-of-the-art methods.
Grad-CAM heat maps were employed to improve interpretability and facilitate clinical validation. Furthermore, including
the large-scale EyePACS dataset in external validation demonstrates the framework’s ability to generalize across diverse
imaging conditions, demographics, and grading variations, enhancing robustness and reliability for real-world DR screen-
ing. This study aligns with ethical guidelines to promote trustworthy artificial intelligence applications in ophthalmology,
thereby facilitating impartial and accurate detection of DR.

Future work: We aim to explore Vision-Language Models (VLMs) for enhanced interpretability and ensemble learning for
improved robustness. Incorporating real-world retinal images will ensure better generalization, while self-supervised learn-
ing can reduce reliance on labeled data. Additionally, advancing uncertainty estimation and explainability tools will further
enhance the reliability of Al-assisted DR diagnosis.
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