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Abstract

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of cellular

heterogeneity. A major challenge, however, lies in the prevalence of non-biological

zeros—false measurements caused by technical limitations that mask a cell’s true

transcriptome. This fundamental issue of distinguishing these artifacts from true

biological zeros, where a gene is genuinely absent, remains a key hurdle for compu-

tational methods, as misclassification can distort biological signals during data recov-

ery. To overcome this, we introduce D3Impute, a discriminative imputation framework

built on three key innovations: (1) a distribution-aware normalization step that adapts

to dataset-specific characteristics while preserving meaningful biological variation; (2)

a dual-network discriminator that uses bulk RNA-seq data as a biological reference

to accurately identify non-biological zeros while retaining the true biological zeros;

and (3) a density-guided imputation engine that recovers expression values while

maintaining local cellular neighborhood structures. Through comprehensive bench-

marking against 12 state-of-the-art methods across six diverse datasets, D3Impute

demonstrates consistent and significant improvements in essential downstream anal-

yses, including cell clustering, trajectory inference, and differential expression detec-

tion. Furthermore, we provide an extensive practical evaluation of D3Impute, demon-

strating its robustness across varying data qualities and providing clear guidelines

for optimal application. By offering a robust, biologically informed, and user-oriented

solution, D3Impute not only enhances scRNA-seq data analysis but also offers a

generalizable framework for handling zero-inflated data in computational biology.

Author summary

Single-cell RNA sequencing (scRNA-seq) reveals cellular heterogeneity but
is compromised by technical “dropout” events—non-biological zeros that
obscure true expression patterns. To address this, we developed D3Impute, a
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computational framework built on three core innovations: (1) Distribution-aware
modeling adapts normalization to each cell’s statistical properties, moving beyond
one-size-fits-all approaches; (2) Dropout-aware discrimination integrates cell–
cell networks from scRNA-seq data with gene co-expression networks from bulk
RNA-seq to accurately identify non-biological zeros; (3) Density-guided impu-
tation employs a neighborhood-preserving algorithm with dynamic weighting to
recover missing values while preventing over-smoothing and retaining meaningful
cellular heterogeneity. Together, these components form a principled and inter-
pretable framework that significantly enhances the accuracy of scRNA-seq data
analysis.

Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized genomic research by
enabling high-resolution characterization of cellular gene expression profiles, reveals
tissue heterogeneity, and deciphers complex biological mechanisms [1]. However,
a critical analytical challenge stems from the exceptionally high prevalence of zero
values (65%-90%) in scRNA-seq data matrices [2]. These observed zero values
encompass biological factors-induced missing events (true zeros) and measurement-
induced technical artifacts (false zeros), constituting a substantial source of noise
that significantly impacts data interpretation [3]. True zeros, also referred to as
biological zeros, represent the absence of a gene’s transcripts or messenger RNAs
in a cell. In contrast, false zeros, termed non-biological zeros, reflect the loss of
information due to the inefficiencies of the technologies employed from sample col-
lection to sequencing [4]. Therefore, rigorously distinguishing between biological
zeros and non-biological zeros, along with developing precise imputation methodolo-
gies for dropout events, represents an essential foundational step for ensuring the
reliability and biological validity of subsequent analytical workflows.

The rapid progress in single-cell transcriptomics has driven significant innova-
tion in computational methods for scRNA-seq data imputation, yielding diverse
methodological approaches. In this study, we systematically organize existing tech-
niques through a dual-aspect classification framework (summarized in Table 1)
that considers both fundamental algorithmic principles and computational archi-
tectures. At the algorithmic level, we categorize them into: model-driven methods
that incorporate explicit biological assumptions about gene expression distributions;
data smoothing techniques that leverage local similarity patterns across cellular or
gene neighborhoods; deep learning approaches utilizing neural networks to capture
complex expression relationships; and hybrid frameworks that strategically com-
bine multiple paradigms to enhance performance. Architecturally, these methods can
be distinguished by their implementation strategy, falling into two categories: Direct
imputation and Indirect imputation.
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Table 1. Overview of scRNA-seq imputation methods.

Method Category Code Sources Language
MAGIC (2018) [5] H (Algorithm integration) /N1 https://github.com/KrishnaswamyLab/MAGIC Python/R
DrImpute (2018) [6] S (Cell)/N2 https://github.com/ikwak2/DrImpute R

scRMD (2018) [7] M (Low-rank)/N1 https://github.com/XiDsLab/scRMD R
scVI (2018) [8] H (Algorithm integration) /N1 https://github.com/YosefLab/scVI Python
scImpute (2018) [9] M (Gamma+Normal) /N2 https://github.com/Vivianstats/scImpute R

netSmooth (2018) [10] H (Data integration) /N1 https://github.com/BIMSBbioinfo/netSmooth R
SAVER (2018) [11] M (NB) /N1 https://github.com/mohuangx/SAVER R
SAVER-X (2019) [12] M (NB+) /N1 https://github.com/jingshuw/SAVERX R
SCRABBLE (2019) [13] H (Data integration) /N1 https://github.com/tanlabcode/SCRABBLE R/MATLAB
DCA (2019) [14] D (Autoencoders) /N1 https://github.com/theislab/dca Python
bayNorm (2020) [15] M (Bayesian) /N1 https://github.com/WT215/bayNorm R
CMFImpute (2020) [16] M (low-rank) /N2 https://github.com/xujunlin123/CMFImpute Python

SIMPLEs (2020) [17] S (Cell) /N2 https://github.com/JunLiuLab/SIMPLEs2020 R
VIPER (2020) [18] H (Algorithm integration) /N2 https://github.com/ChenMengjie/Vpaper2018 R
G2S3 (2021) [19] S (Gene) /Y https://github.com/ZWang-Lab/G2S3 MATLAB/R
scGNN (2021) [20] D (GNN+Autoencoder) /Y https://github.com/juexinwang/scGNN Python
SDImpute (2021) [21] S (Cell) /N2 https://github.com/Jinsl-lab/SDImpute R

scTSSR (2021) [22] S (Gene and Cell)/Y https://github.com/Zhangxf-ccnu/scTSSR Python
ALRA (2022) [23] M (Low-rank) /N2 https://github.com/KlugerLab/ALRA R
GE-Impute (2022) [24] S (Cell) /N1 https://github.com/wxbCaterpillar/GE-Impute Python

scBERT (2022) [25] D (Transformer) /Y https://github.com/TencentAILabHealthcare/scBERT Python
GraphSCI (2022) [26] D (GNN+Autoencoder) /Y https://github.com/biomed-AI/GraphSCI Python
scRNMF (2023) [27] M (Low-rank) /N1 https://github.com/QYuQing/scRNMF R
scGGAN (2023) [28] H (Algorithm integration) /N1 https:// www.sdu-idea.cn/codes.php?name=scGGAN Python
TsImpute (2023) [29] H (Algorithm integration) /N2 https://github.com/ZhengWeihuaYNU/tsImpute R

scAMF (2024) [30] S (Manifold) /Y https://github.com/zhigang-yao/scAMF MATLAB
AGImpute (2024) [31] H (Algorithm integration) /N2 https://github.com/xszhu-lab/AGImpute Python

S: data smoothing methods, M: model-driven methods, D: deep learning methods, H: hybrid methods, Y: direct imputation, N1: explicit or implicit
differentiation and imputation, N2: two-stage predict-then-impute approaches. The methods marked with horizontal lines are the 12 state-of-the-art
approaches selected for benchmarking in our comparative analysis.

https://doi.org/10.1371/journal.pcbi.1013744.t001

(1) Model-driven methods
Model-driven approaches operate on the fundamental assumption that scRNA-seq data matrices exhibit inherent low-

rank structures. These methods employ matrix factorization techniques to reconstruct missing values, with notable imple-
mentations including scRMD (single-cell Robust Matrix Decomposition) [7], ALRA (Adaptively thresholded Low-Rank
Approximation) [23], CMFImpute (Collaborative Matrix Factorization Imputation) [16], scRNMF (single-cell Robust and
Non-negative Matrix Factorization) [27], and others.

Alternatively, a distinct subset of model-driven methods incorporates explicit probabilistic frameworks, modeling gene
expression through specific distributions (e.g., Poisson or Negative Binomial). These methods estimate missing values
by fitting model parameters to the observed data, as exemplified by SAVER/SAVER-X (Single-cell Analysis Via Expres-
sion Recovery) [11,12], bayNorm (bayesian Normalization) [15], scImpute (single-cell Imputation) [9], and others. While
particularly effective at capturing global transcriptional patterns, these methods face inherent limitations when handling
ultra-sparse datasets, as excessive sparsity may violate core model assumptions, ultimately compromising imputation
accuracy.

(2) Data smoothing methods
Data smoothing approaches impute missing values by exploiting similarities between cells, genes, or their combined

patterns via similarity calculation or manifold fitting. Representative methods include DrImpute (Dropout Imputation) [6],
SIMPLEs (SIngle-cell RNA-seq iMPutation and celL clustErings) [17], scAMF (single-cell Analysis via Manifold Fitting)
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[30], GE-Impute (Graph Embedding-based Imputation) [24], G2S3 (Sparse Gene Graph of Smooth Signals) [19], scTSSR
(scRNA-seq using a Two-side Sparse Self-Representation) [22], SDImpute (Single-cell RNA-seq Dropout Imputation)
[21], and others proposed methods for imputing dropout events considering cell-level correlation. Data smoothing tech-
niques for imputing single-cell RNA sequencing data offer benefits such as reducing data sparsity, improving consistency,
and enhancing downstream analysis performance. However, these methods may introduce bias by replacing genuine
biological zeros with non-zero values. Additionally, reliance on specific model assumptions can increase computational
complexity, thereby hindering data processing efficiency.

(3) Deep learning methods
Deep learning has emerged as a powerful paradigm for scRNA-seq imputation, with four predominant architectures:

(1) autoencoders (e.g., DCA [14]); (2) generative adversarial networks (e.g., scGGAN [28]); (3) graph neural networks
(e.g., GraphSCI [26], scGNN [20]), and (4) Transformer models (e.g., scBERT [25]). Implementation requires careful con-
sideration of three critical factors: computational resource requirements, scalability to large datasets, and preservation of
biologically meaningful patterns in the imputed data.

(4) Hybrid methods
In addition to the methods mentioned above, several approaches integrate multiple techniques or combine multi-omics

and multi-modal data to enhance imputation accuracy. For example, VIPER (Variability-preserving ImPutation for Expres-
sion Recovery) [18] combines low-rank matrix factorization with cell similarity metrics, effectively merging model-based
and similarity-based approaches. scGGAN [28] integrates generative adversarial networks (GANs) with gene similarity
metrics and generates dropout values to impute the raw scRNA-seq data. Similarly, MAGIC (Markov Affinity-based Graph
Imputation of Cells) [5] employs diffusion processes and low-dimensional embedding techniques to exploit the manifold
structure of the data for imputation. AGImpute [31] combines probabilistic dropout modeling with an autoencoder-GAN
architecture to accurately recover missing values. TsImpute [29] distinguishes likely dropouts from true zeros using zero-
inflated negative binomial (ZINB) modeling, followed by inverse distance weighted (IDW) clustering for final imputation.
These methods synergize the strengths of diverse technologies, significantly enhancing imputation quality, though often
at the expense of increased computational complexity. Additionally, SCRABBLE [13] integrates bulk RNA-seq data with
single-cell RNA-seq data, while netSmooth (network Smoothing) [10] incorporates protein-protein interaction networks into
single-cell RNA-seq analysis. Although the integration of multi-modal or multi-omics data offers an effective means to mit-
igate the limitations of individual datasets, it also presents substantial computational challenges, including data retrieval,
alignment, and matching, which must be carefully addressed to ensure reliable results.

At the computational architecture level, existing methods can be divided into two categories: direct imputation and
indirect imputation.

(1) Direct Imputation
It refers to approaches that uniformly estimate and fill all missing values in the expression matrix without distinguish-

ing their biological or non-biological zeros. Among the methods discussed earlier, the following algorithms employ direct
imputation: G2S3, scGNN, scTSSR, scBERT, GraphSCI, and scAMF. In Table 1, we denote these methods as Y.

(2) Indirect imputation
In indirect imputation methods, two distinct strategies are employed to address missing values in scRNA-seq data. The

first strategy, explicit or implicit differentiation and imputation of non-biological zeros, relies on statistical or generative
models to explicitly distinguish between biological and non-biological zeros during the imputation process. Methods like
scRMD, scVI, SAVER/SAVERX, SCRABBLE, DCA, and bayNorm use probabilistic frameworks such as zero-inflated neg-
ative binomial (ZINB) distributions or Bayesian hierarchical models to parameterize technical noise and biological signals
separately. Besides, implicit differentiation and imputation leverage model architectures to inherently separate noise from
biological signals without explicitly labeling zero types. Techniques such as MAGIC, netSmooth, GEImpute, scRNMF, and
scGGAN capture underlying biological patterns while filtering out technical noise. These models impute only the values
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identified as non-biological zeros while preserving biological zeros, ensuring that true biological silence is maintained. In
Table 1, we denote these methods as N1.

The second strategy, two-stage predict-then-impute approaches, splits the imputation process into sequential steps.
In the first stage, non-biological zeros are predicted using heuristic rules or statistical criteria, such as deviations from
cluster-specific expression patterns (e.g., DrImpute, scImpute, SDImpute, VIPER, TsImpute, AGImpute, and SIMPLEs).
Methods like ALRA and CMFImpute refine this by combining low-rank approximation with adaptive thresholding to pre-
serve true zeros. In Table 1, we denote these methods as N2.

Current methods for imputing single-cell RNA sequencing data demonstrate diverse strategies to address technical
noise and sparsity, yet they exhibit shared strengths and limitations. Approaches grounded in statistical models excel
at distinguishing technical artifacts from biological signals through explicit assumptions, thereby preserving biological.
However, their performance heavily relies on predefined distributional priors, which often fail to adapt to the complex,
heterogeneous patterns observed in real-world datasets. Methods leveraging local data structures, such as cell or gene
similarity networks, effectively maintain topological features and enhance tasks like visualization or trajectory inference.
Nevertheless, their reliance on global smoothing operations risks obscuring cellular heterogeneity, which can particularly
compromise particularly compromising sensitivity to rare cell populations or transitional states. Deep learning-based tech-
niques, while powerful in capturing nonlinear, high-dimensional relationships and enabling cross-dataset generalization,
suffer from limited interpretability due to their “black-box” nature, hindering applications in mechanistic biological studies.
Indirect two-stage strategies, which decouple noise prediction from imputation, strike a balance between interpretability
and controlled correction. However, their efficacy depends on the accuracy of initial noise detection, and computational
scalability remains challenging for large-scale datasets.

Motivated by these advanced methods, we present D3Impute, a novel hybrid method that uniquely integrates dual
embeddings of cell-cell and gene-gene networks within a low-dimensional space (see [4]). In addition to biological
zeros, other non-biological zero values encompass technical zeros and sampling zeros, with non-biological zeros
being particularly challenging to predict. Thus, in this study, we posit that non-biological zeros essentially reflect the
spatial expression patterns of genes in cells, which can be inferred through cellular and gene-gene relationships.
Unlike existing approaches, D3Impute combines scRNA-seq and bulk RNA-seq data to precisely distinguish between
biological and non-biological zeros before imputation, ensuring that only true dropout events are corrected. This novel
zero-preserving mechanism significantly enhances the accuracy and reliability of downstream analyses. To validate its
effectiveness, we evaluated D3Impute on multiple simulated and real scRNA-seq datasets, benchmarking it against state-
of-the-art imputation methods. Our results demonstrate that D3Impute consistently outperforms these methods in key
downstream analyses, such as differential expression analysis, cell clustering, and cell trajectory inference. These find-
ings underscore D3Impute’s unique ability to not only improve the accuracy of scRNA-seq data imputation but also to
preserve biological relevance, making it a valuable tool for advancing single-cell genomics research.

The organization of the article is as follows: Sect 2 describes the materials and the newly proposed algorithm
D3Impute, Sect 3 describes the experiments and results, Sect 4 presents the discussions, and finally, Sect 5 summarizes
the entire article.

Materials and methods
Dataset

To systematically evaluate the performance of our D3Impute algorithm, we established a comprehensive benchmarking
framework incorporating six publicly available single-cell and bulk RNA sequencing datasets. As summarized in Table 2,
all bulk RNA-seq datasets were rigorously paired with scRNA-seq counterparts from matching species (human) and tis-
sue origins, with both data types required to meet stringent quality thresholds (>80% alignment rate). These datasets were
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Table 2. Summary of datasets.

Data Acession Code Data Type Tissue Cell/Sample Gene Cell Type
Siletti [32] - scRNA-seq Human Brain 4714 5935 11
Booth [33] GSE120306 Bulk RNA-seq Human Brain 7 19658 -
Guo2 [34] GSE63818 scRNA-seq Human Primordial Germ Cells 317 23787 2
Ito [35] GSE167570 Bulk RNA-seq Human Primordial Germ Cells 2 22866 -
Petropoulos [36] - scRNA-seq Human Preimplantation Embryos 1529 21749 5
Voorden [37] GSE250424 Bulk RNA-seq Human Trophoblast Stem Cells 14 27449 -
iPSC [5] - scRNA-seq Human iPS Cells 315 15724 5
Niwa [38] GSE275240 Bulk RNA-seq Human iPS Cells 18 40982 -
Pollen [39] SRP041736 scRNA-seq Human Cerebral Cortex 249 8869 11
Rao GSE244006 Bulk RNA-seq Human Cerebral Cortex 8 36164 -
CellType [40] GSE75748 scRNA-seq Human ES-derived Progenitors 1018 19097 7
CellType [40] GSE75748 Bulk RNA-seq Human ES-derived Progenitors 19 19097 7

https://doi.org/10.1371/journal.pcbi.1013744.t002

specifically chosen based on their (i) biological diversity across human tissue types, (ii) established experimental validity,
and (iii) widespread adoption as reference standards within the single-cell genomics community.

These datasets encompass diverse biological contexts—from neurodevelopment to embryogenesis—providing a
robust foundation for evaluating our method’s generalizability. The included datasets vary substantially in scale, rang-
ing from smaller gene sets (∼5000 genes) to comprehensive transcriptome coverage (∼30000 genes), while contain-
ing between 2 to 11 distinct cell types, enabling thorough assessment of our method’s performance across different data
complexities.

D3Impute framework

As illustrated in Fig 1, the D3Impute framework consists of three synergistic computational modules: (i) a distribution-
aware preprocessing denoiser, (ii) a dropout-aware discriminator, and (iii) a density-guided imputation engine.

• Distribution-aware preprocessing denoiser: This module performs adaptive normalization by modeling the statistical
properties of gene expression distributions. It systematically reduces technical noise while preserving biologically mean-
ingful variation across cell populations, establishing a mathematically grounded foundation for downstream analysis.

• Dropout-aware discriminator: This component employs a probabilistic model that leverages integrated cell–gene rela-
tionship modeling within a dual-network architecture. By combining cell-cell interaction networks from scRNA-seq data
with gene co-expression networks derived from bulk RNA-seq, it accurately identifies non-biological zeros without the
need for explicit distinction between technical artifacts and sampling limitations.

• Density-guided imputation engine: This engine utilizes a neighborhood-preserving strategy constrained by cellular man-
ifold density. Through dynamic weight regulation in shared nearest neighbor (SNN) graphs, it selectively reconstructs
dropout values identified by the discriminator. This approach conserves local heterogeneity and global data structure,
thereby preventing over-smoothing and maintaining genuine cell-to-cell variation.

Distribution-aware preprocessing denoiser

To ensure analytical fidelity, we implemented a multi-stage quality assurance protocol addressing both cellular and
genomic integrity. The pipeline comprised two sequential filtering phases:

Quality control strategy. (1) Cellular QC control
Cellular viability assessment integrated three orthogonal metrics: (i) Transcriptome completeness: Minimum 200

detectable genes in each cell; (ii) Sequencing saturation: Upper thresholds defined per dataset via nFeature_RNA
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Fig 1.Workflow of D3Impute framework. (A) Distribution-aware preprocessing denoiser: Quality control and denoising of raw scRNA-seq (Xraw−seq)
and bulk RNA-seq (Xraw−bulk) matrices. (B) Dropout-aware discriminator: Construction of interaction networks and generation of imputation index matrix
I1. (C) Density-guided imputation engine: SNN graph-based neighbor identification and matrix updating Yimputed = Y1 ⊙ I1 + XTo−seq. (D) Downstream
analysis: Clustering, trajectory inference, and differential expression analysis.

https://doi.org/10.1371/journal.pcbi.1013744.g001

distributions; (iii) Mitochondrial integrity: Sample-specific percent.mt cutoffs. The dataset-specific threshold optimization
followed benchmarking studies, as shown in Table 3.

(2) Genomic QC control
Post-cellular filtration, we applied: (i) Ubiquity filter: Genes detected in <3 cells excluded; (ii) Feature selection: Identi-

fied top 2000 HVGs using Seurat’s variance stabilization.
The raw single-cell RNA-seq data structure was mathematically defined as Xraw−seq ∈ ℝN×M, where N represents the

initial cellular population and M denotes the complete genomic features. Following the quality control strategy, this matrix

Table 3. Cellular QC parameters for each dataset.

Dataset n Feature_RNA percent.mt
Siletti 3000 1%
iPSC 4000 5%
Pollen 7500 5%
Guo2 8000 5%
CellTypes 10000 5%
Petropoulos 12000 5%

https://doi.org/10.1371/journal.pcbi.1013744.t003
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underwent dimensional reduction to XQC−seq ∈ ℝn×m, where n indicates the retained viable cell (n < N after Cellular QC
filtration) and m corresponds to the selected highly variable genes (HVGs).

Concurrently, bulk RNA-seq data maintained a distinct matrix configuration Xraw−bulk ∈ ℝZ×Q (Z experimental samples in
Q genomic features), where the feature space dimensionality Q substantially exceeded that of single-cell data (Q≫M).
Intersection analysis between HVGs and bulk RNA-seq features was conducted to establish cross-platform integration.
This process generated aligned expression matrices, designated as XQC−seq ∈ ℝn×m for scRNA-seq and XQC−bulk ∈ ℝZ×m

for bulk RNA-seq, where m ≤ 2000 represents the dimensionality of intersecting genes.
Transformation optimization. To address the inherent heterogeneity in scRNA-seq data distributions, we developed

a distribution-aware transformation framework. A candidate library comprising several mathematical methods was sys-
tematically evaluated to identify optimal preprocessing strategies. This approach specifically targets three technical chal-
lenges: (i) Normalizing scale disparities across experimental batches/cell types, (ii) Correcting skewed distributions in
high-dimensional sparse data, and (iii) Enhancing signal-to-noise ratios for improved clustering sensitivity. We formalized
the selection process through a performance metric by Eq (1).

T∗o = argmax
To∈Γ

SC(To(XQC−∗)), (1)

where Γ denotes the set of candidate transformations {T1,T1, … }, XQC−∗ denote the QC matrix (∗ ∈ {seq,bulk}), SC(⋅)
denote silhouette coefficient evaluating clustering performance. T∗o denotes the optimal transformation maximizing cluster
separation. Therefore, the transformed single-cell matrix is denoted by XTo−seq = T∗o(XQC−seq) ∈ ℝn×m, while the tranformed
bulk matrix is denoted by XTo−bulk = T∗o(XQC−bulk) ∈ ℝZ×m.

Dropout-aware discriminator

To establish a model for predicting whether genes are expressed in cells, we first constructed a cell interaction net-
work and a gene interaction network based on preprocessed data. Additionally, to improve computational efficiency,
we perform sparsification to predict the quantitative expression of genes in cells, specifically identifying the location of
non-biological zero values. It is hypothesized that gene expression exhibits cell-type specificity, while the overall gene
co-expression networks display module-specific characteristics due to functional differences among genes. To this end,
we construct a cell-cell interaction network using single-cell transcriptomic sequencing data and a gene co-expression
network using bulk transcriptomic data. By assuming these networks share a common low-dimensional embedding space,
we predict the positions of non-biological zero values using the reconstructed low-rank matrix.

Establishment of sparse cell network and gene network. In this part, we used scRNA-seq data to obtain a cell-cell
interaction network and used bulk data to obtain a gene co-expression network. For the convenience of subsequent calcu-
lation, we use the k-nearest neighbor (k-NN) method to obtain the sparse cell weight network and the sparse gene weight
network, respectively.

Step 1. The indicator matrix is established for reconstruction.
We obtained an indicator matrix denoted by I0 from the original scRNA-seq matrix XTo−seq, that is, the indicator matrix

I0 ∈ ℝn×m, and the element whose element is zero in the original matrix is also denoted by 0 in I0; Non-zero elements of
the original matrix are denoted as 1 in I0. This indicator matrix is the prepared target that we need to reconstruct during
the model process.

Step 2. Cell-gene dual networks are established for prediction.
We utilize scRNA-seq data and bulk gene expression data to calculate Pearson correlation coefficients row-wise and

column-wise, respectively, thereby obtaining cell-cell and gene-gene similarity matrices Rc ∈ ℝn×n and Rg ∈ ℝm×m.
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Step 3. Sparse matrices are established for simple computation.
We employ the k-NN sparsification method to sparsify the similarity matrices Rc and Rg. Based on the original XTo−seq

matrix, for each row (i.e., for every pair of the cell ci and the cell cj), we sort them according to the similarity measure in
Rc. We define Sij as:

Sij =
⎧⎪
⎨⎪
⎩

1, if cj ∈𝒩k(ci) and ci ∈𝒩k(cj)
0, if cj ∉𝒩k(ci) and ci ∉𝒩k(cj)
0.5, otherwise

, (2)

where𝒩k(ci) denotes the k-nearest neighbors for cell ci. Then, we obtain the sparsified representation of the similarity
matrix Rc by computing the element-wise (Hadamard) product via Eq (3):

Rc∗ = S⊙ Rc. (3)

The same operation is applied to Rg, resulting in the sparsified matrix Rg*. Thus, sparse cell network Rc* and sparse
gene network Rg* are prepared for reconstructing the indicator matrix I0.

Graph-regularized latent space projection. We propose a joint embedding framework that projects both gene and
cell networks into a shared low-dimensional latent space. Let V ∈ ℝp×m and U ∈ ℝp×n denote the latent feature matrices for
genes and cells, respectively, where p represents the reduced dimensionality (p≪ n,m). Given an initial indicator matrix
I0 ∈ ℝn×m, we optimize the latent representations to satisfy I0 ≈ UTV while incorporating three key constrains.

(1) Reconstruction accuracy:

Erecon = ‖I0 − UTV‖2F. (4)

This term ensures the low-rank approximation UTV faithfully represents the original data matrix I0. To preserve biolog-
ical interpretability and maintain consistency with the non-negative nature of scRNA-seq data, we impose non-negativity
constraints on both factor matrices, i.e., U ≥ 0 and V ≥ 0.

(2) Tikhonov regularization:

Etikhonov = 𝛽(‖U‖2F + ‖V‖2F). (5)

The L2-norm constraints prevent overfitting by controlling the magnitude of latent features.
(3) Dual graph regularization:

Egraph = 𝜆cTr(ULcUT) + 𝜆gTr(VLgVT). (6)

The graph Laplacian matrices Lc (cell graph Laplacian) and Lg (gene graph Laplacian) are constructed from the sparsi-
fied similarity matrices Rc* and Rg*, respectively. Specifically, the degree matrix Dc is a diagonal matrix where each diag-
onal element (Dc)ii is the sum of the i-th row of Rc*, i.e., (Dc)ii =∑j(Rc∗)ij representing the total connection weight of cell
i in the network. The gene degree matrix Dg is computed analogously from Rg*. The graph Laplacian is then defined as
Lc = Dc − Rc∗ (and similarly for Lg), which encodes the topological structure of the respective networks. The final complete
objective function combines these components:
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min(U,V) Erecon + Etikhonov + Egraph

subject to U ≥ 0, V ≥ 0.
(7)

Based on the Karush–Kuhn–Tucker (KKT) criterion [41], uli and vli were obtained:

uli ← uli
(VIT0 + 𝜆cURc∗)li

(VVTU + 𝛽U + 𝜆cUDc)li

vli ← vli
(UIT0 + 𝜆gVRg∗)li

(UUTV + 𝛽V + 𝜆gVDg)li

. (8)

Update matrices U and V until convergence or the upper limit of the number of iterations is reached. Afterward, UTV is
computed to obtain the reconstructed matrix I∗ ∈ ℝn×m. Detailed derivation of the update rules and convergence analysis
are provided in Supporting information S1 Text.

Non-biological zero value identification. This way, through comparing the I* and I0 matrices, we can derive an impu-
tation index matrix I1 containing biological zeros. Whenever an element is 0 in I0 but non-zero in I*, the corresponding
position in I1 will be assigned 1, with all other elements set to 0. The 1’s indicate the predicted gene expression positions
in corresponding cells, which need imputation, while the remaining 0’s are true biological zeros that should be preserved.
Having obtained I1, we now know precisely which positions require imputation.

Density-guided imputation engine

To determine imputation values, we leverage the biological principle that spatially or transcriptionally proximate cells
exhibit similar gene expression profiles. Our approach employs geometric mapping to compute a neighborhood-weighted
average, reconstructing an n×m single-cell expression matrix Y1 through the following steps. Here, samples represent
individual cellular data units, formally defined as a cell set C = {c1, c2, ..., cn}, where n is the total number of cells.

Step 1. Identification of Top Shared Nearest Neighbors.
For each target cell ci, we identify its top k neighbors based on shared nearest neighbors (SNNs). Specifically, for

every cj ∈𝒩k(ci), we compute the SNN set:

SNN(cj, cj) =𝒩k(ci) ∩ 𝒩k(cj). (9)

Cells cj ∈𝒩k(ci) are then ranked in descending order of |SNN(ci, cj)|, the top k cells with the highest SNN overlap form
the set E:

E = {c(1), c(2), … , c(k)}.

Using E, we estimate the mapping centroid F(ci) as the mean expression of cells in E by Eq (10).

F(ci) =
1
|E| ∑cj∈E

cj. (10)

Step 2. Optimal Projection for Imputation.
We define candidate projections along the direction F(ci) − ci using a set of weight values t ∈ {t1, t2,⋯}:

ct = ci + t(F(ci) − ci). (11)
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The optimal projection c∗t is selected by minimizing the sum of squared distances to refined neighborhoods E, equiva-
lent to maximizing the local density metric 𝜌(ct):

𝜌(ct) =
1

∑ct∈E
‖ci − ct‖

2
2

. (12)

The final imputed value c∗t corresponds to the projection with the highest density and smallest distance sum

c∗t = argmax
ct

𝜌(ct). (13)

During this process, the original gene expression matrix XTo−seq is iteratively updated to Y1. The matrix Y1 preserves
the structural information and heterogeneity of the original data. The complete imputation results are obtained through
element-wise multiplication with the indicator matrix and the original matrix XTo−seq by Eq (14)

Yimputed = Y1 ⊙ I1 + XTo−seq. (14)

Results

To rigorously benchmark our method, we performed systematic comparisons against 12 state-of-the-art single-cell impu-
tation approaches (shown in Table 1, which are marked with horizontal lines). The selected methods span state-of-the-art
imputation approaches from 2018 to 2024, carefully chosen to represent distinct methodological categories—including
established classical techniques and emerging novel frameworks—based on their prevalence in current practice and tech-
nical innovation. All reference methods were implemented strictly following their original publications’ specifications, using
default parameters unless otherwise noted.

Our results begin with an examination of the model’s parameter settings and controlled simulations on masked data.
We then detail the optimization approaches, followed by an in-depth exploration of each computational module’s biologi-
cal significance and experimental validation. We conclude by showcasing the method’s performance across three funda-
mental downstream applications—cell type clustering, pseudotime reconstruction, and differential expression analysis—
providing comprehensive evidence of its practical utility in single-cell data analysis. Finally, we report on the computational
efficiency of the proposed framework. All experiments were executed on a Windows 10 platform (Intel Core i7 @5.20GHz,
32GB RAM) using MATLAB R2022b and R 4.4.1 environments.

Compared algorithms

We conducted a systematic comparative analysis of 12 state-of-the-art scRNA-seq imputation methods, evaluating them
across two critical dimensions: (i) methodological categorization and (ii) zero-inflation handling capability (direct vs. indi-
rect imputation approaches). Our comprehensive benchmarking framework incorporates detailed specifications for each
method, including algorithmic implementations (with source code availability), programming language dependencies,
methodological classification, and imputation strategy types, all meticulously documented in Table 1.

Evaluation measures

In clustering analysis, true labels represent the ground-truth class assignments of samples, denoted as X = {x1, x2, ..., xn},
where xi ∈ {1,2, ...,K} indicates the true class of sample ci (with K classes in total). Predicted labels are the cluster assign-
ments generated by a clustering algorithm, denoted as Y = {y1, y2, ..., yn}, where yi ∈ {1,2, ..., L} represents the cluster
assigned to sample ci (with L clusters in total). The evaluation metrics categorized by their specific applications in our
study are presented below.
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Skewness coefficient (SK): quantifies the asymmetry in gene expression distributions, guiding the selection of appro-
priate data transformation methods. It measures the deviation from a normal distribution by Eq (15)

SK = n
(n − 1)(n − 2)

n

∑
i=1
(ci − c̄

𝜎 )3, (15)

where c̄ is the sample mean, and 𝜎 is the sample standard deviation. SK > 0 indicate right-skewed distribution; SK = 0
indicate symmetric distribution; SK < 0 indicate left-skewed distribution.

Silhouette coefficient (SC): Evaluates clustering quality based on intra-cluster compactness and inter-cluster sepa-
ration, without requiring true labels X. For a sample ci with the predicted label yi and the cell set C∗ for the *-th class, let

A(ci) =
1

|Cyi | − 1
∑

ci,cj∈Cyi
,j≠i

d(ci, cj) measure its average distance to other samples in the same cluster (intra-cluster com-

pactness) and B(ci) =minCk≠Cyi

1
|Ck|

∑
cj∈Ck

d(ci, cj) the smallest average distance to sample in other clusters (inter-cluster

separation). The per-sample SC is

SC(ci) =
B(ci) − A(ci)

max{A(ci),B(ci)}
,

and the global SC is the average across all samples defined by Eq (16)

SC = 1
n

n

∑
i=1

SC(ci). (16)

It ranges from –1 to 1, where higher values indicate better clustering performance.
Normalized mutual information (NMI): Measures information overlap between predicted single-cell RNA-seq cluster-

ing against annotated cell types using entropy.

NMI = 2I(X,Y)
H(X) + H(Y) , (17)

It ranges from 0 to 1, where 1 signifies perfect alignment (all information shared) and 0 indicates no dependency
between X and Y.

Ajusted rand index (ARI): Evaluates the agreement between true labels X and predicted labels Y by comparing the
consistency of pairwise sample assignments. Let a be the number of cell pairs correctly assigned to the same cluster by
a clustering method. b is the number of cell pairs incorrectly assigned to the same cluster. c is the number of cell pairs
incorrectly assigned to different clusters, and d is the number of cell pairs correctly assigned to different clusters. The ARI
is calculated by Eq (18):

ARI = 2(ad − bc)
(a + b)(b + d) + (a + c)(c + d) , (18)

which ranges from –1 to 1. ARI = 1 indicates perfect match; ARI = 0 indicates random-level agreement; ARI = −1 indi-
cates systematic discordance.
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Pseudo-temporal ordering score (POS) [42]: Validates whether inferred cell differentiation trajectories align with
known biological developmental timelines.

POS =
n

∑
i=1

∑
j∶j>i

g(𝜋, ci, cj), (19)

where 𝜋 represents an ordered path of n cells generated by a specific trajectory inference method. Let g(𝜋, ci, cj) be the
score that describes how well the order of cell ci and cell cj in the ordered path 𝜋 matches the external order label. POS is
defined as the sum of all cell pairs. It ranges from –1 to 1. POS = 1 indicates algorithm perfect reconstruction trajectories;
POS = 0 indicates pseudotime independent of true stages; POS = −1 indicates inverse ordering.

Kendall’s rank correlation (Kendall) [43]: Assesses the rank concordance of cells along the pseudo-time axis against
their true developmental order.

Kendall = 2(J −W)
n(n − 1) , (20)

where J andW denote the number of concordant and discordant cell pairs, respectively. Two pairs of observations are
said to be concordant when their magnitude relationship agrees with the reference relationship. It ranges from –1 to
1; Kendall = 1 indicates perfect agreement in rankings; Kendall = 0 indicates random ordering; Kendall = −1 indicates
perfect inverse ranking.

Receiver operating characteristic (ROC) curve: Evaluates the performance by comparing imputed/observed
data-derived differentially expressed genes (DEGs) with a reference set at varying statistical thresholds.

TPR = TP
TP + FN

,

FPR = FP
FP + PN

, (21)

where TPR means true positive rate and FPR means false positive rate. ROC curve plots TPR (y-axis) against FPR
(x-axis). The Area Under the ROC Curve is the metric AUC.

Parameter settings

D3Impute incorporates five key parameters that require careful calibration, including the sparseness constraint coeffi-
cient 𝛽, graph regularization coefficients 𝜆c and 𝜆g for cells and genes, respectively, latent subspace dimensionality p, and
neighborhood size k. To ensure the robustness and generalization capability of D3Impute across diverse datasets, we
systematically analyzed the influence of its five key parameters and implemented a multi-stage grid search strategy for
parameter optimization.

The sparsity constraint coefficient 𝛽 regulates the Frobenius norm regularization terms ‖U‖2F +‖V‖2F applied to the latent
feature matrices, serving as a mechanism to control model complexity and mitigate overfitting. Lower values (e.g., 0.0001)
permit greater flexibility in reconstructing the input matrix I0 but may capture noise, whereas higher values (e.g., 0.1)
enforce stronger regularization, enhancing numerical stability at the potential expense of expression recovery fidelity. We
search from 0.0001 to 0.1 with a step size of 0.0005.

The graph regularization parameters 𝜆c and 𝜆g modulate the influence of cellular and genomic topological structures
through the Laplacian regularization terms Tr(ULcUT) and Tr(VLgVT), respectively. These terms enforce smoothness
constraints on the latent embeddings U and V relative to the constructed cell and gene graphs. Diminished values may
lead to insufficient preservation of manifold structures, while elevated values could overly constrain the solution space,
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potentially obscuring biologically relevant expression patterns. We set 𝜆c = 𝜆g and searched from 0.0001 to 0.1 with a step
size of 0.0005 as well.

The neighborhood parameter k determines the sparsity of the k-nearest neighbor graphs underlying the affinity matri-
ces Rc* and Rg*, which subsequently define the graph Laplacians Lc and Lg. Reduced k values yield sparser graphs that
emphasize local connectivity, suitable for capturing fine-grained cellular and genomic heterogeneity, whereas increased
k values produce denser graphs that promote global consistency but may introduce spurious connections. Based on the
sample size n, we searched from logn2 to √n with a step size of 2.

The subspace dimension p controls the expressiveness of the embedding space. Smaller values (e.g., 10) aid in
denoising and enhance cluster clarity but may lose biological details, while larger values (e.g., 100) improve expressive-
ness but increase the risk of overfitting. We searched from 10 to 100 with a step size of 5.

We employed a three-stage grid search approach for parameter optimization:

• Stage I: Jointly search 𝛽 and 𝜆 (𝜆 = 𝜆c = 𝜆g) to determine the optimal regularization parameter combination, aiming to
maximize clustering performance (Adjusted Rand Index, ARI) and visualization separation (Silhouette coefficient, SC).

• Stage II: With 𝛽 and 𝜆 fixed, search for the neighbor number k to optimize the locality of graph structutre construction.
• Stage III: With the first three parameters fixed, search for subspace dimension p to balance expressiveness and model
stability.

The parameter optimization process for the Siletti dataset, as illustrated in Fig 2, revealed that optimal regularization
was achieved at 𝛽 = 0.001 and 𝜆 = 0.1 (with 𝜆c = 𝜆g = 𝜆). Model performance showed a clear inverse relationship with
subspace dimensionality p, with optimal results consistently obtained at p = 10 across all datasets. Subsequent optimiza-
tion yielded k = 23 as the ideal value for the Siletti dataset. The complete parameter configurations across five datasets
are presented in Table 4, demonstrating several important patterns in parameter selection. The subspace dimensional-
ity p remained consistently at 10 for all datasets, while regularization parameters showed greater variability that reflected
dataset-specific characteristics. Neighborhood size k exhibited substantial variation (range: 6-23), correlating with
dataset complexity. Additional parameter optimization results for other datasets are presented in Supporting information
S1 Fig–S5 Fig.

Evaluation on simulated masking experiments

To quantitatively evaluate the imputation accuracy and robustness of D3Impute, where the ground truth is known, we con-
ducted masking experiments on simulated data. Following the masking strategy of CMFImpute [16], we randomly masked
non-zero values and assessed the accuracy of the imputed values against the original values using Pearson Correlation
Coefficient (PCC) and Root Mean Square Error (RMSE), as implemented in scMOO [44].

We generated simulated datasets using Splatter, each comprising 2000 genes and 500 cells across three cell types,
with a baseline zero rate of 26.83%. To mimic the dropout effects typical of real data scRNA-seq data, we applied three
different dropout rates (60%, 70%, and 80%). For each dropout rate, we conducted five independent random masking tri-
als using random seeds 44, 55, 66, 77, and 88, resulting in a total of 15 perturbed datasets. The actual zero proportions
and skewness coefficients of the expression distribution for each dataset are provided in Table 5. Given the consistent
skewness and expression distribution patterns observed across all datasets, we employed the same algorithm parame-
ters (𝛽 = 𝜆 = 0.01, k = 21, and p = 10) and transformation method (Log10) in all experiments to ensure comparability and
stability of the evaluation.

The imputation results under the three dropout scenarios are presented in Fig 3, Supporting information S6 Fig and S7
Fig. Specifically, subfigures (A) in each of these figures display 2D visualizations of the data before and after imputation,
where a gradual degradation in image quality is observed as the dropout rate increases. The four quantitative accuracy
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Fig 2. Parameter optimization analysis for D3Impute on the Siletti dataset. (A) A waterfall plot evaluates sixteen parameter combinations of 𝛽 and 𝜆
(where 𝜆 = 𝜆c = 𝜆g), revealing optimal model performance at 𝛽 = 0.001 and 𝜆 = 0.1. (B) Further refinement yielded the best-performing hyperparameter
at k= 23. (C) Further refinement yielded the best-performing hyperparameter at p= 10.

https://doi.org/10.1371/journal.pcbi.1013744.g002

Table 4. Parameter setting for six datasets.

Parameter Siletti Guo2 Pollen iPSC Petropoulos CellType
𝛽 0.001 0.0001 0.1 0.1 0.01 0.01
𝜆c 0.1 0.0001 0.1 0.1 0.01 0.01
𝜆g 0.1 0.0001 0.1 0.1 0.01 0.01
k 23 16 7 7 10 6
p 10 10 10 10 10 10

https://doi.org/10.1371/journal.pcbi.1013744.t004

Table 5. Summary of zero rate and skewness across five random seeds under varying dropout rates.

Dropout Rate Zero Rate Skewness
Seed 44 Seed 55 Seed 66 Seed 77 Seed 88 Seed 44 Seed 55 Seed 66 Seed 77 Seed 88

60% 70.66% 70.74% 70.70% 70.75% 70.67% 0.5013 0.5741 0.6952 0.7459 1.0367
70% 78.01% 78.03% 78.01% 78.05% 77.99% 0.5636 0.4935 0.6709 0.8148 0.9688
80% 85.33% 85.35% 85.34% 85.35% 85.32% 0.8653 0.6474 0.6027 0.8812 1.2519

https://doi.org/10.1371/journal.pcbi.1013744.t005
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Fig 3. Benchmarking results under a 60% dropout rate. (A) 2D visualization of the masked dataset (seed = 55) before and after imputation, illus-
trating the restoration of data structure. (B) Circular quadrant plot summarizing the performance of multiple imputation algorithms across five random
masking trials (seeds = 44, 55, 66, 77, 88). The circle is divided into four quadrants, each representing one evaluation metric: Pearson correlation coef-
ficient (PCC), root mean square error (RMSE), proportion of correctly recovered non-biological zeros, and proportion of falsely imputed biological zeros.
Within each quadrant, the bars show the mean performance of each algorithm over five random seeds, and the error bars indicate the corresponding
standard deviation (mean ± SD).

https://doi.org/10.1371/journal.pcbi.1013744.g003
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metrics—PCC, RMSE, proportion of correctly identified non-biological zeros, and proportion of falsely imputed biologi-
cal zeros—are jointly visualized in the circular plot of Fig 3B for the 60% dropout rate. Corresponding metrics for dropout
rates of 70% and 80% are shown in Supporting information S6 FigB–D and S7 FigB–D, respectively.

A comprehensive comparison demonstrates that the imputed results from D3Impute exhibit excellent agreement
with the complete (Raw) data, reflected by higher PCC and lower RMSE values. Moreover, D3Impute performs well in
zero-value identification: it accurately recognizes non-biological zeros (high identification rate) while effectively avoiding
false imputation of biological zeros (low false positive rate). These outcomes underscore the methods’ ability to balance
biological plausibility with technical accuracy.

Module-wise effectiveness analysis

The D3Impute framework comprises three core computational modules: (i) a distribution-aware preprocessing denoiser,
(ii) a dropout-aware discriminator, and (iii) a density-guided imputation engine. In this section, we present detailed archi-
tectural designs for each module and systematically evaluate their effectiveness through comprehensive comparative
studies and ablation experiments.

Performance evaluation of distribution-aware denoiser. To establish an optimal preprocessing strategy, we
systematically evaluated seven distinct transformation methods across six scRNA-seq datasets. Our analysis, as sum-
marized in Table 6, first reveals that the choice of data transformation profoundly influences downstream clustering out-
comes. This finding underscores the limitation of a one-size-fits-all approach and highlights the necessity of a distribution-
aware preprocessing step.

This observation forms the foundation of our distribution-aware denoiser module. The module implements a tailored
strategy by selecting, for each dataset, the transformation that maximizes the Silhouette Coefficient (SC). The compre-
hensive SC metrics for all transformation-dataset combinations are detailed in Table 7, which explicitly highlights the
module’s optimal choice for each dataset. The effectiveness of this data-specific denoising step is quantitatively demon-
strated in the final column of Table 8, showing consistent and significant enhancement in clustering performance across
all datasets, with a mean SC improvement of 9.18% (ranging from 1.18% to 28.70%). Notably, the substantial variation in
optimal transformations across datasets indicates that data with different underlying distributions respond disparately to
preprocessing methods, further validating the need for a customized denoising strategy.

Performance evaluation of dropout-aware discriminator. Our proposed D3Impute framework follows a hybrid,
two-stage imputation strategy. This process involves: first, leveraging gene co-expression networks and cell interaction
networks to project the data into a shared low-dimensional embedding space, within which we predict whether a zero
count represents a true biological signal or a technical artifact. It is critical to clarify that the zeros in scRNA-seq data are
a mixture of two distinct types: true biological zeros, which indicate the genuine absence of gene expression, and non-
biological zeros, which are primarily caused by technical artifacts. Seminal work in the field has established that a domi-
nant fraction of these non-biological zeros is attributable to dropout events, arising from the stochastic failure in capturing
or amplifying low-abundance mRNA transcripts [45,46]. Given that dropout constitutes the major source of non-biological

Table 6. Adjusted rand index (ARI) comparisons for seven transformation methods on six scRNA-seq datasets after D3Impute interpolation.

Method Siletti Guo2 Pollen iPSC Petropoulos CellType
Value-to-rank 0.7593 0.9500 0.7917 0.5611 0.3052 0.587
Unit-vector 0.6627 0.8844 0.9454 0.6324 0.5399 0.5807
Log-normalization 0.6684 0.9680 0.6716 0.6306 0.2967 0.3697
Log2 0.9085 0.9980 0.4963 0.6301 0.3120 0.5287
Log10 0.9627 0.9980 0.5347 0.6635 0.3608 0.7839
Loge 0.9485 0.9980 0.4649 0.6068 0.3222 0.6147
Box-Cox 0.9848 0.5903 0.5885 0.4063 0.2907 0.4132

https://doi.org/10.1371/journal.pcbi.1013744.t006
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Table 7. Silhouette coefficient (SC) comparisons for seven transformation methods on six scRNA-seq datasets.

Method Siletti Guo2 Pollen iPSC Petropoulos CellType
Raw 0.5249 0.2322 0.0150 0.0954 0.3233 0.2109
Value-to-rank 0.0313 0.3038 0.1671 0.0141 0.1266 0.0825
Unit-vector 0.4152 0.3352 0.3020 0.1163 0.3523 0.1786
Log-normalization 0.2577 0.2847 0.2346 0.0226 0.1605 0.1021
Log2 0.4775 0.3020 0.1913 0.1577 0.2300 0.1395
Log10 0.5138 0.3430 0.1739 0.1577 0.1137 0.2608
Loge 0.5138 0.3430 0.1739 0.1577 0.1137 0.1198
Box-Cox 0.5367 0.3024 0.0872 0.0413 0.1834 0.1102

https://doi.org/10.1371/journal.pcbi.1013744.t007

Table 8. Distributional statistics on six scRNA-seq datasets.

Dataset Distribution type Skewness Transformation Rationale
Siletti Bimodal distribution 1.1→ 0.4 Box-Cox SC ↑ 1.18%
Guo2 Mild skewness 2.3→ 0.4 Log10 SC ↑ 11.08%
iPSC Mild skewness 1.5→ 0.2 Log10 SC ↑ 6.23%
CellType Mild skewness 0.6→ 0.1 Log10 SC ↑ 4.99%
Pollen Severe skewness 2.5→ 0.4 Unit-vector SC ↑ 28.70%
Petropoulos Severe skewness 4.4→ 0.4 Unit-vector SC ↑ 2.90%
https://doi.org/10.1371/journal.pcbi.1013744.t008

zeros, the terms “dropout” and “non-biological zero” are often used interchangeably in computational literature [9], a con-
vention we adopt hereafter for simplicity. Therefore, our method is specifically designed to first identify the positions of
these non-biological zeros/dropouts computationally, and then perform targeted imputation. In this section, we validate
the effectiveness of this dropout-aware discriminator module through comparative experiments and biological significance
analysis. Our designed imputation method belongs to a hybrid, two-stage data integration approach. The two-stage pro-
cess is primarily reflected in: first, we model gene co-expression networks and cell interaction networks using two distinct
types of data, using a shared low-dimensional embedding space as the medium to predict whether genes are expressed
in cells. Therefore, our method is a missing-value identification approach that first predicts the positions requiring impu-
tation through computational methods, then determines which values to impute to fill missing data. In this section, we
will validate the effectiveness of the dropout-aware discriminator module through multiple comparative experiments and
biological significance analyses.

We began the evaluation by comparing our discriminator against several indirect two-stage methods to assess its
standalone performance. We then conducted systematic benchmarking with representative direct imputation approaches
to assess the overall methodological advantage. Finally, we explored the biological relevance of the low-dimensional
embedding space through functional enrichment analysis.

(1) Comparative benchmarking against indirect two-stage imputation methods
To validate the performance of our dropout-aware discriminator module, we conducted comparative analyses with sev-

eral two-stage methods (including scImpute, SDImpute, ALIRA, DrImpute, CMFImpute, AGImpute, and TsImpute) that
employ a similar architectural design framework. While preserving their respective zero-discrimination procedures, we
replaced their subsequent imputation steps with our density-guided imputation engine. The clustering performance of the
resulting imputed data was quantitatively evaluated using the Adjusted Rand Index (ARI) and Normalized Mutual Informa-
tion (NMI) metrics, as shown in Fig 4.

As illustrated in Fig 4, D3Impute’s dropout discriminator demonstrated superior performance compared to conven-
tional indirect approaches in all benchmark datasets. This performance advantage stems from the framework’s innova-
tive incorporation of cross-platform topological constraints, which effectively integrates complementary information from
both single-cell (scRNA-seq) and bulk RNA-seq data. The consistent outperformance across diverse datasets provides
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Fig 4. Clustering performance of imputed data using eight discrimination modules. A uniform imputation engine was applied across eight two-
stage methods to assess clustering accuracy. The bar plots display (A) Adjusted Rand Index (ARI) and (B) Normalized Mutual Information (NMI) scores
achieved across six datasets by integrating each method’s dropout-discrimination component (scImpute, SDImpute, ALRA, DrImpute, CMFImpute,
AGImpute, TsImpute) with our density-guided imputation module.

https://doi.org/10.1371/journal.pcbi.1013744.g004

compelling validation of our core hypothesis that gene co-expression networks derived from bulk RNA-seq offer essential
contextual information for distinguishing technical artifacts from true biological signals in single-cell data.

(2) Comparative benchmarking against direct imputation methods
To further assess the utility of our dropout-aware discriminator, we constructed hybrid pipelines by integrating it with

several established direct imputation methods (scAMF, G2S3, and scGNN). In this integrated workflow, our discrimina-
tor was first applied to predict dropout events, after which the respective direct imputation method was used to fill only
the predicted non-biological zeros. Comparative experiments demonstrated that this integrated strategy substantially
enhanced clustering performance across all six benchmark datasets, as measured by ARI and NMI, while also better pre-
serving biological variance. The consistent improvements observed confirm that our discriminator effectively complements
direct imputation methods by providing a more accurate targeting of technical zeros prior to imputation. These results are
summarized in Fig 5.

Performance evaluation of density-guided imputation engine. We conducted a comparative evaluation between
two imputation paradigms: (i) direct mean smoothing within neighborhoods and (ii) our proposed density-guided local
projection.

The two methods exhibited comparable performance in regions of uniform cell distribution. However, pronounced
differences emerged under suboptimal conditions, particularly during cell position updates guided by domain infor-
mation. In these updates, cells typically migrate toward their respective cluster centroids along directional vectors
(Fig 15E). While both methods performed similarly in standard scenarios, critical limitations of mean smoothing were
exposed when a query cell cq was erroneously assigned to the domain of cell cz. In such cases of misclassification, mean
smoothing introduced substantial error, pulling cz along an incorrect trajectory (Fig 15F, red arrows). In contrast, the
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Fig 5. Performance enhancement of direct imputation methods by integrating the dropout-aware discriminator. The bar graphs compare the
clustering performance, measured by (A) Adjusted Rand Index (ARI) and (B) Normalized Mutual Information (NMI), of standalone direct imputation
methods (scAMF, G2S3, scGNN) against their versions integrated with our discriminator. Results are aggregated across six datasets, with detailed
numerical results for each dataset available in Supporting information S1 Table and S2 Table.

https://doi.org/10.1371/journal.pcbi.1013744.g005

density-guided approach effectively mitigated this artifact by identifying local maxima in data density through weighted
projections, thereby correctly recentering cz.

To further validate the general utility of our method, we implemented both imputation strategies—mean smoothing
versus density-guided projection—within several leading frameworks, including D3Impute, scImpute, SDImpute, ALRA,
DrImpute, CMFImpute, AGImpute, and TsImpute. As summarized in Fig 6, the density-guided imputation engine consis-
tently achieved superior performance across evaluated metrics. Notably, while TsImpute was reported to perform well
on the Pollen and CellType datasets in its original publication, we observed non-convergence issues when applying our

Fig 6. Comparison of two imputation paradigms on non-biological zeros. Density-guided and mean-smoothing strategies were applied to dropout
values identified by different indirect algorithms. Radar plots illustrate the average performance of each imputation method across six benchmark
scRNA-seq datasets. (A) Performance comparison of mean ARI across six datasets after applying each imputation method for non-biological zero cor-
rection. (B) Performance comparison of mean NMI across six datasets after applying each imputation method for non-biological zero correction. Detailed
numerical results for all six datasets are provided in Supporting information S3 Table and S4 Table.

https://doi.org/10.1371/journal.pcbi.1013744.g006
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standardized preprocessing pipeline, which incorporates rigorous quality control and filtering steps. Consequently, TsIm-
pute was excluded from subsequent comparative analyses on these datasets.

Ablation studies. To systematically evaluate the contribution of each component in D3Impute, we conducted a series
of ablation experiments. The framework integrates three core modules: a distribution-aware data Transformation module
(T), a dropout-aware Discrimination module (D), and a density-guided Imputation module (I). We compared four configura-
tions: T only, T+I, D+I, and the complete T+D+I pipeline.

Clustering performance was evaluated on six real scRNA-seq datasets, with results expressed as the mean ± standard
deviation of the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) over ten independent runs (Fig 7A:
ARI, Fig 7B: NMI). The complete T+D+I configuration consistently achieved the best performance across all datasets,
demonstrating a strong synergistic effect among the three modules. In contrast, the D+I combination performed the worst,
indicating that the discrimination module is highly sensitive to technical noise in the raw data and prone to misclassifi-
cation in the absence of appropriate transformation. This underscores the critical role of the transformation module in
mitigating technical artifacts and enhancing discrimination accuracy.

Collectively, these ablation results validate the functional design and interdependence of the individual modules in
D3Impute and substantiate the rationale for employing the integrated three-module pipeline.

Downstream analysis

In this section, we performed a comprehensive evaluation of our method against 12 state-of-the-art approaches through
three fundamental single-cell RNA sequencing (scRNA-seq) analytical tasks: (1) cell clustering, (2) pseudotemporal tra-
jectory inference, and (3) differential gene expression analysis.

Fig 7. Ablation study evaluating the contribution of D3Impute modules. Bar plots display the clustering performance, measured by (A) Adjusted
Rand Index (ARI) and (B) Normalized Mutual Information (NMI), of four different pipeline configurations across six scRNA-seq datasets. The evaluated
configurations include: transformation only (T), transformation with imputation (T+I), discrimination with imputation (D+I), and the complete framework
(T+D+I). The superior performance of the complete T+D+I pipeline underscores the necessity and synergistic interaction of all three modules.

https://doi.org/10.1371/journal.pcbi.1013744.g007
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Comparative evaluation of cell clustering performance. We conducted systematic benchmarking of D3Impute
against 12 leading scRNA-seq imputation methods using six well-annotated datasets with established biological ground
truth: Siletti (human brain), Guo2 (human primordial germ cells), Pollen (human cerebral cortex), iPSC (human induced
pluripotent stem cells), Petropoulos (human preimplantation embryonic), and CellType (human embryonic stem cell-
derived progenitors). Cluster quality was quantitatively assessed using two established metrics, ARI and NMI.

As demonstrated in Table 9 and Table 10, D3Impute achieved superior clustering performance on four datasets:
Siletti (ARI: 0.9822±0.0024, NMI: 0.9590±0.0030), Guo2 (ARI: 0.9992±0.0024, NMI: 0.9963±0.0050), Pollen (ARI:
0.8761±0.0656, NMI: 0.8933±0.0458), and Petropoulos (ARI: 0.5399±0.0001, NMI: 0.6554±0.0001). Notably, ALRA
showed optimal performance on iPSC (ARI: 0.8420±0.0225, NMI: 0.8317±0.0169) and CellType (ARI: 8672±0.1004,
NMI: 0.8916±0.0410). The aggregated analysis reveals that D3Impute maintains significantly better mean perfor-
mance with lower variance compared to all alternatives, including its closest competitor, ALRA. t-SNE projections (Fig 8)
confirmed that D3Impute preserves original biological distributions while generating more distinct cell-type clusters
in the Siletti dataset. This pattern was consistently observed across all evaluated datasets (Supporting information
S10 Fig–S14 Fig).

Table 9. Clustering performance (ARI mean ± standard deviation) over ten runs for imputation methods across six datasets.

Method Siletti Guo2 Pollen iPSC Petropoulos CellType
Raw 0.7869±0.1805 0.8096±0.4258 0.2257±0.1501 0.2406±0.2096 0.3626±0.0453 0.4766±0.0755
D3Impute 0.9822±0.0024 0.9992±0.0011 0.8761±0.0656 0.6657±0.1167 0.5399±0.0001 0.7931±0.0291
scAMF 0.9615±0.0000 0.7421±0.0000 0.4358±0.1262 0.6082±0.1029 0.4363±0.0194 0.7526±0.0000
DrImpute 0.8485±0.1369 0.8096±0.4258 0.4109±0.1267 0.6169±0.1289 0.3721±0.0263 0.5962±0.1789
scImpute 0.8805±0.1595 0.2837±0.2277 0.1605±0.0370 0.1767±0.1343 0.0649±0.0266 0.2252±0.0941
scRMD 0.7530±0.1970 0.8048±0.4366 0.4885±0.1257 0.3464±0.2448 0.3587±0.0825 0.6299±0.1781
SDImpute 0.5691±0.0908 0.7398±0.4285 0.6043±0.1472 0.5703±0.0682 0.3646±0.0332 0.5304±0.1691
MAGIC 0.2978±0.1973 0.1644±0.2464 0.0904±0.0244 0.0321±0.0270 0.0619±0.0236 0.1531±0.1006
GEImpute 0.6840±0.1543 0.1575±0.2514 0.2093±0.0762 0.2588±0.1603 0.0911±0.0255 0.2258±0.0986
scRNMF 0.5434±0.0400 0.2562±0.1426 0.1132±0.0172 0.2620±0.1147 0.0556±0.0353 0.3111±0.0479
CMFImpute 0.7659±0.1980 0.3188±0.2558 0.1932±0.0857 0.2761±0.1422 0.0747±0.0564 0.2264±0.1167
ALRA 0.6763±0.1482 0.9499±0.0001 0.8740±0.1189 0.8420±0.0225 0.3895±0.0161 0.8672±0.1004
AGImpute 0.6769±0.2625 0.9833±0.0001 0.8346±0.0236 0.3851±0.1082 0.4062±0.0107 0.7194±0.0767
TsImpute 0.9002±0.0712 0.7421±0.0219 - 0.1551±0.0840 0.1244±0.0259 -

https://doi.org/10.1371/journal.pcbi.1013744.t009

Table 10. Clustering performance (NMI mean ± standard deviation) over ten runs for imputation methods across six datasets.

Method Siletti Guo2 Pollen iPSC Petropoulos CellType
Raw 0.7796±0.1595 0.8068±0.4319 0.4171±0.1951 0.2735±0.1765 0.4722±0.0355 0.6878±0.0416
D3Impute 0.9590±0.0030 0.9963±0.0050 0.8933±0.0458 0.6839±0.0983 0.6554±0.0001 0.8446±0.0362
scAMF 0.9240±0.0001 0.6280±0.0001 0.6712±0.1093 0.6795±0.0589 0.5411±0.0238 0.8423±0.0000
DrImpute 0.7406±0.2353 0.8068±0.4319 0.6729±0.0981 0.6554±0.0876 0.4920±0.0365 0.7490±0.0923
scImpute 0.8537±0.1163 0.1997±0.1665 0.3719±0.0569 0.2135±0.1078 0.2089±0.1703 0.4970±0.0637
scRMD 0.7511±0.2163 0.8034±0.4396 0.7302±0.0774 0.4297±0.2103 0.3849±0.1305 0.7786±0.0722
SDImpute 0.6751±0.0559 0.7173±0.4302 0.7759±0.0856 0.5918±0.0792 0.4827±0.0337 0.6756±0.1089
MAGIC 0.3241±0.1833 0.1286±0.1993 0.2281±0.0377 0.0554±0.0396 0.1665±0.1399 0.2768±0.1324
GEImpute 0.6784±0.1179 0.1229±0.2057 0.4111±0.0734 0.2824±0.1320 0.1703±0.0521 0.4594±0.1671
scRNMF 0.5652±0.0533 0.1926±0.1080 0.2549±0.0204 0.3093±0.0843 0.0844±0.0314 0.5072±0.0549
CMFImpute 0.7467±0.1821 0.2481±0.2046 0.3694±0.0758 0.2971±0.1211 0.1383±0.0369 0.5317±0.0121
ALRA 0.7645±0.0988 0.8970±0.0000 0.9207±0.0527 0.8317±0.0169 0.4962±0.0104 0.8916±0.0410
AGImpute 0.7243±0.1789 0.9585±0.0002 0.8875±0.0409 0.4985±0.0964 0.5036±0.0065 0.7908±0.0454
TsImpute 0.8448±0.0500 0.6284±0.0239 - 0.2194±0.0659 0.2237±0.0225 -

https://doi.org/10.1371/journal.pcbi.1013744.t010
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Fig 8. Cell clustering in Siletti dataset before and after imputation. Two-dimensional visualization using multiple algorithms highlights structural
changes in cell populations. t-SNE projections were generated from raw and imputed expression matrices. Each point represents a single cell, colored
by its annotated cell type. The pie chart in the lower right corner summarizes the cell-type composition of the Siletti dataset, which comprises five distinct
neural subtypes.

https://doi.org/10.1371/journal.pcbi.1013744.g008

Comparative evaluation of pseudotemporal trajectory reconstruction. Beyond characterizing cellular heterogene-
ity through clustering, trajectory inference enables the investigation of dynamic biological processes, including develop-
ment, differentiation, and cellular responses. This approach reconstructs continuous paths through transcriptional space
by minimizing gene expression variations between adjacent cells, representing cellular transitions through pseudotem-
poral ordering. Following established benchmarking protocols from scMOO [44], we evaluated D3Impute and other 12
advanced imputation algorithms using the iPSC dataset with experimentally validated temporal labels as ground truth. Our
assessment framework incorporates topological accuracy and POS and Kendall’s rank correlations (Kendall).

As demonstrated in Fig 9B and 9C, D3Impute achieved superior performance (POS ∶ 0.9985,Kendall ∶ 0.8392) com-
pared to scAMF (POS ∶ 0.9980,Kendall ∶ 0.8152) and DrImpute (POS ∶ 0.9963,Kendall ∶ 0.8364). Notably, while all three
methods show high concordance with the experimental timeline (> 99.6% position accuracy), D3Impute maintains the
strongest correlation with the gold-standard temporal ordering. These results position D3Impute as particularly suitable for
developmental studies requiring precise trajectory inference.

Comparative performance in differential gene expression analysis. The identification of differentially expressed
genes (DEGs) represents a fundamental analytical task in scRNA-seq studies, enabling the characterization of molecular
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Fig 9. Evaluation of imputation methods through pseudotime analysis by Monocle 2 on the iPSC dataset. (A) Visualization of lineages recon-
structed from the observed and imputed data. Cells are embedded into a 2D space using reversed graph embedding. Different colors correspond to
different cell stages. (B) The POS of different methods. (C) Kendall’s rank correlation scores of different methods. Different colors correspond to different
imputation methods.

https://doi.org/10.1371/journal.pcbi.1013744.g009

mechanisms driving cellular heterogeneity and state transitions. Our evaluation framework employs bulk RNA-seq data as
the gold standard reference, given its inherent robustness against dropout artifacts [40].

When the top 200, 400, and 600 genes are chosen, Fig 10C demonstrates that D3Impute performs worse than the
Raw dataset regarding the AUC scores. As soon as the top 800 and top 1000 are chosen, D3Impute begins to overcome
the raw dataset. Notably, the performance of AGImpute, scRMD, ALRA, and D3Impute consistently ranks in the top three
in most situations. Both AGImpute, ALRA, and D3Impute use zero inference. This indicates that the identification of zero
values via filling is an effective strategy for enhancing performance, particularly in DE analysis.

Fig 10A is a volcano graphic that displays the raw and imputed data. Compared to the Raw dataset, the imputed data
utilizing D3Impute can more accurately identify highly expressed genes. Research conducted by Chen and Zhou [40] indi-
cates that DEG cells are abundant in genes including CER1 (raw data’s –log(p-value): 13.6676, imputed data’s –log(p-
value): 21.1864), CXCR4 (raw data’s –log(p-value): 10.6459, imputed data’s –log(p-value): 10.3288), LEFTY1 (raw data’s
–log(p-value): 8.3635, imputed data’s –log(p-value): 10.0325), GATA6 (raw data’s –log(p-value): 8.2027, imputed data’s
–log(p-value): 7.6635), and DNMT3A (raw data’s –log(p-value): 1.3018, imputed data’s –log(p-value): 2.50724). Our tech-
nique exhibits superior –log(p-value) values for CER1 and DNMT3A in comparison to the raw data.
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Fig 10. Evaluation of imputation methods through differential expression analysis on CellType dataset (H1-DEC). (A) Volcano plots comparing
DEGs identified from raw and D3Impute-imputed data. Black circles indicate biologically validated enriched genes (CER1, CXCR4, LEFTY1, GATA6,
DNMT3B), used to assess consistency of imputation-enhanced differential expression. (B) ROC curves illustrating the ability of different imputation
methods to recover DEGs, using bulk RNA-seq as reference. Curves are generated by ranking genes from imputed data and comparing them against
the top 1000 bulk-derived DEGs (based on adjusted p-values). (C) AUC scores comparing the DEG detection performance of different imputation
methods. Scores are calculated using bulk-derived reference sets of the top 200, 400, 600, 800, and 1000 DEGs, enabling evaluation across varying
detection thresholds.

https://doi.org/10.1371/journal.pcbi.1013744.g010

Computational resource analysis

To systematically evaluate the computational efficiency and resource consumption of various imputation algorithms across
different data scales and biological contexts, we conducted a complementary two-pronged experimental analysis. This
analysis encompasses cross-dataset benchmarking and a scalability assessment under controlled conditions.

We first compared the runtime performance of 13 leading imputation algorithms on six representative scRNA-seq
datasets (Siletti, Guo2, Pollen, iPSC, Petropoulos, and CellType) from diverse tissues. This experiment aimed to
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benchmark their general efficiency and sensitivity to data heterogeneity and sparsity. As detailed in Fig 11 and Support-
ing information S5 Table, significant disparities in runtime were observed. AGImpute consistently required over 300 sec-
onds across all six datasets, a duration substantially longer than other methods, and thus its results are omitted from the

Fig 11. Computational efficiency benchmarking of imputation algorithms. Main thread runtime of 12 imputation methods was evaluated across
six scRNA-seq datasets with diverse biological contexts: (A) Siletti, (B) Guo2, (C) Pollen, (D) iPSC, (E) Petropoulos, and (F) CellType. Each subplot
illustrates the computational time required by each method on the corresponding dataset, providing a systematic assessment of their efficiency and
scalability.

https://doi.org/10.1371/journal.pcbi.1013744.g011
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figures for clarity. Overall, D3Impute, scRMD, MAGIC, GEImpute, and ALRA demonstrated stable and efficient perfor-
mance across all datasets, indicating robust generalizability in diverse biological environments. Peak memory usage for
each algorithm on the six datasets is profiled in Supporting information S15 Fig and S6 Table. The results reveal distinct
memory consumption patterns. MAGIC, GEImpute, and scRNMF exhibited significantly higher memory footprints com-
pared to other algorithms. In contrast, D3Impute, scRMD, ALRA, and most other methods maintained low memory usage
across all datasets, showcasing superior resource efficiency for standard analytical workloads.

To quantitatively assess the scalability of each algorithm with increasing data size, we adopted a strategy inspired
by the scalability evaluation in scRNMF. We generated six subsets of varying scales from the large-scale dataset
GSM4505405 (containing 110828 cells and 22966 genes). After preprocessing and selecting 2000 highly variable genes,
we randomly sampled 2000, 4000, 6000, 8000, 10000, and 20000 cells to create the subsets. The runtime and peak
memory usage for all 13 algorithms on these subsets are documented in Supporting information S16 Fig, S7 Table,
and S8 Table. AGImpute exceeded 6 hours of runtime on all subset sizes and is excluded from the figures. The results
indicate that the runtime of D3Impute, DrImpute, scImpute, SDImpute, and TsImpute increased exponentially with data
size, suggesting potential efficiency bottlenecks when processing ultra-large-scale data. In contrast, the runtime of
CMFImpute and scAMF scaled linearly, demonstrating more favorable scalability. Furthermore, the memory usage of
all algorithms increased linearly with data size, aligning with expected resource consumption patterns for in-memory
computations.

Discussion

D3Impute establishes a robust computational framework for addressing the pervasive challenge of dropout events
in single-cell RNA sequencing (scRNA-seq) data. Through comprehensive evaluation across six biologically diverse
datasets, we demonstrate its consistent superiority over existing methods in three key analytical tasks: differential gene
expression analysis, cell type clustering, and pseudotemporal trajectory reconstruction. Quantitative assessments con-
firm that D3Impute enhances clustering accuracy, improves trajectory inference reliability, and increases sensitivity in
detecting differentially expressed genes.

(1) Necessity of data-specific transformations.
The substantial variation in initial skewness coefficients (SK =0.6–4.4) across datasets underscores the necessity for

data-specific preprocessing strategies. Our transformation framework successfully normalized all distributions to SK ≤
0.4, approximating Gaussian characteristics and significantly improving cluster separability (Table 8 and Fig 12). Distinct
transformation rules emerged based on distribution patterns: Box-Cox transformation optimally handled bimodal distribu-
tions (e.g., Siletti, initial SK = 1.1); Log10 transformation effectively normalized moderately skewed unimodal distributions
(|SK| < 2.5); and Unit-vector transformation was essential for severely skewed distributions (|SK| ≥ 2.5) to reduce skew-
ness while preserving biological relevance. These findings provide a quantitative, data-driven protocol for preprocessing
strategy selection, demonstrating broad applicability across diverse single-cell genomics contexts.

To further evaluate imputation effects on expression distributions, we performed comparative visualization of gene
expression histograms before and after imputation (S17 Fig–S2 Fig). These analyses revealed that D3Impute success-
fully recovers dropout events while maintaining original distribution shapes without introducing artificial distortion. The
preserved distributional integrity underscores D3Impute’s capacity to balance accurate imputation with biological fidelity.

(2) Biological significance of the joint low-dimensional embedding space
The biological relevance of our joint low-dimensional embedding is demonstrated by its capacity to capture coherent

gene–cell co-expression patterns. By comparing the original indicator matrix I0 and the reconstructed matrix I*, we iden-
tified positions where I0ij = 0 and I∗ij ≠ 0 as high-confidence, biologically expressed genes that were obscured by dropout
events. Comprehensive evaluation across six datasets (Fig 13) revealed extremely low frequencies (<0.0343) of potential
false negatives (I0ij = 1 and I∗ij = 0), underscoring the robustness of our approach.
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Fig 12. Comparative visualization of per-cell expression distributions before and after optimal transformation across six datasets. Histograms
show the frequency distribution of total transcript counts per cell, binned along the x-axis. The y-axis indicates the number of cells falling within each
expression bin. Each panel illustrates the effect of a dataset-specific transformation in reducing skewness and improving distribution symmetry. (A)
Box-Cox transformation for the Siletti dataset. (B) Log10 transformation for the Guo2 dataset. (C) Log10 transformation for the iPSC dataset. (D) Log10
transformation for the CellType dataset. (E) Unit-vector transformation for the Pollen dataset. (F) Unit-vector transformation for the Petropoulos dataset.

https://doi.org/10.1371/journal.pcbi.1013744.g012

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013744 December 1, 2025 28/ 38

https://doi.org/10.1371/journal.pcbi.1013744.g012
https://doi.org/10.1371/journal.pcbi.1013744


i
i

“pcbi.1013744” — 2025/11/27 — 15:07 — page 29 — #29 i
i

i
i

i
i

Fig 13. Stacked bar chart showing the proportional distribution of zero-type predictions across six benchmark datasets. Each bar represents
the composition of four prediction categories derived from an element-wise comparison between the observed indicator matrix I0 and the reconstructed
matrix I*, across all gene-cell positions. The stacked segments correspond to: (i) I10 (False negatives): observed expression misclassified as zero
(I0ij = 1 and I∗ij = 0); (ii) I11 (True positives): observed expression correctly retained (I0ij = 1 and I∗ij ≠ 0 ); (iii) I01 (Non-biological zeros): unobserved
expression predicted as present (I0ij = 0 and I∗ij ≠ 0), requiring imputation; (iv) I00 (Biological zeros): unobserved expression correctly predicted as absent
(I0ij = 0 and I∗ij = 0).

https://doi.org/10.1371/journal.pcbi.1013744.g013

To further interpret the latent space, we analyzed differentiation-related cell types (DEC, EC, NPC, H1, TB) from
the CellType dataset. Using WGCNA, we identified co-expression modules and performed GO enrichment analysis.
Notably, Module 2 (158 genes) exhibited strong functional concordance with TB cell marker genes (Fig 14), enriching for
angiogenesis (GO:0001525, p-value: 1.15×10−4) and positive regulation of RNA polymerase II (GO:0045944, p-value:
1.32×10−3)—processes consistent with known TB markers EPAS1 and HAND1. These results confirm that the embed-
ding space captures biologically meaningful regulatory architecture, aligning gene modules with established cell-type
signatures.

(3) Enhanced robustness through shared nearest neighbor analysis
We further validated the geometric fidelity of our approach by analyzing three canonical topological scenarios using

shared nearest neighbor (SNN) relationships. Scenario I captures homogeneous cell neighborhoods with high SNN sim-
ilarity, Scenario II identifies transitional states within continuous biological processes, and Scenario III maintains strict
segregation between discrete cell types. While Euclidean distance performed adequately in conventional clustering tasks
(Fig 15A–C), critical divergences emerged at cluster boundaries (Fig 15D). In heterogeneous populations with density
variations, Euclidean metrics misassigned boundary cell cq based on absolute proximity, whereas SNN preserved cor-
rect cell affiliations through relative neighborhood overlap. This highlights SNN’s superior robustness in handling local
density fluctuations and boundary ambiguity—an essential attribute for analyzing developmental trajectories or rare cell
subpopulations.

(4) Downstream analytical gains: task-specific utility of imputation
The impact of imputation on scRNA-seq data analysis is highly dependent on the specific analytical task. Using a

systematic benchmarking framework, we evaluated 12 imputation methods across three core tasks—cell clustering, pseu-
dotime inference, and differential expression analysis—on six representative datasets.
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Fig 14. Biological validation of latent space representations in the CellType dataset. This figure illustrates the biological relevance of the unified
low-dimensional embedding space constructed by jointly mapping gene–gene and cell–cell networks. The left panel shows gene co-expression modules
(Module 1, Module 2,⋯, Module p) identified from the embedded gene network. The right panel displays marker genes for five differentiation-related
cell types (DEC, EC, TB, NPC, H1). The center panel presents results from gene ontology (GO) enrichment analysis, performed separately on gene
modules and cell-type marker genes, enabling functional comparison between network-derived modules and known cell-type signatures.

https://doi.org/10.1371/journal.pcbi.1013744.g014

For cell clustering, performance gains were closely tied to the intrinsic structural clarity of the data, as quantified by the
silhouette coefficient (SC) of the raw data. In datasets with well-defined separation (e.g., Guo2, SC = 0.8879; Siletti, SC
=0.2346), imputation provided minimal improvement in the Adjusted Rand Index (ARI). In contrast, for datasets with over-
lapping or poorly separated clusters (e.g., Pollen, iPSC, Petropoulos, and CellType), imputation consistently enhanced
cluster discrimination by recovering expression signals essential for distinguishing cell types (Fig 16A).

In pseudotime inference, a global structure task, imputation proved particularly beneficial. On the structurally complex
iPSC dataset, most methods significantly improved the Pseudo-temporal Ordering Score (POS), underscoring the role of
imputation in reconstructing biological continua from data with ambiguous cellular relationships (S23 Fig).

In differential expression analysis, a nuanced profile emerged. When evaluated against a bulk RNA-seq gold standard
(CellType dataset), imputation yielded only marginal gains for the most pronounced differentially expressed genes (Top
200–400; Fig 16B). However, for broader gene sets (Top 600–1000), it significantly improved AUC, highlighting its role in
enhancing statistical power to detect genes with modest fold-changes that are otherwise obscured by data sparsity.

In summary, these findings support a pragmatic framework for imputation use: strongly recommended for global struc-
ture recovery, context-dependent for clustering, and most valuable for improving sensitivity in differential expression
beyond the most extreme markers.

(5) Practical guidelines for bulk RNA-seq reference selection
We recognize that obtaining perfectly matched bulk RNA-seq data—sharing the same tissue, developmental stage, and

experimental conditions—is often challenging. Moreover, the absence of a universal “gold standard” for assessing bulk
data quality complicates the prediction of how reference variations influence D3Impute’s performance.

To provide actionable guidance, we systematically evaluated the method across 48 scRNA-seq–bulk combinations,
comprising six scRNA-seq datasets and eight bulk references (six real, two pseudo-bulk). Using ARI and NMI as metrics
(Fig 17), we derived the following operational guidelines:
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Fig 15. Efficacy of density-guided imputation engine. (A) Scenario I: Red/blue dashed circles denote neighborhoods of cj/ci, respectively, with over-
lap indicating their SNNs. (B) Scenario II: Orange circles highlight the transitional neighborhood co, and the SNN overlaps with ci. (C) Scenario III: Green
circles demarcate discrete cell state cz neighborhoods. (D) Comparative spatial configuration of boundary cell cq (aqua circle). (E) Centroid-directed
migration vectors for cz and cq. (F) Misclassification-induced deviation (red arrow) when cq is erroneously assigned to cz’s neighborhood.

https://doi.org/10.1371/journal.pcbi.1013744.g015

• Optimal performance: Using bulk RNA-seq from the same species and tissue source (e.g., Siletti-Booth) yields the
highest ARI and NMI, significantly outperforming other combinations.

• Reliable alternative: When matched data are unavailable, bulk data from pluripotent stem cells (e.g., Niwa) provide
stable, high-quality imputation.

• Practical fallback: In the absence of external bulk data, constructing pseudo-bulk references (e.g., bulk-mean or
bulk-sum) from the scRNA-seq data itself still substantially improves clustering performance.

A key contribution of D3Impute is its dual-network embedding strategy, which synergistically leverages bulk and single-
cell RNA-seq data to distinguish biological from non-biological zeros. Unlike methods that rely solely on scRNA-seq data
(e.g., scImpute, scRMD, ALRA), our cross-technique framework preserves inter-gene relationships observed in bulk data,
enabling more accurate identification of dropout events. This biologically informed design addresses the critical challenge
of maintaining genuine expression relationships obscured by technical zeros.

Furthermore, the proposed dropout-aware discriminator is modular and flexible, allowing for integration with various
imputation algorithms to enhance their performance. These features ensure that D3Impute remains widely applicable
across diverse research scenarios, even when ideal reference data are unavailable.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013744 December 1, 2025 31/ 38

https://doi.org/10.1371/journal.pcbi.1013744.g015
https://doi.org/10.1371/journal.pcbi.1013744


i
i

“pcbi.1013744” — 2025/11/27 — 15:07 — page 32 — #32 i
i

i
i

i
i

Fig 16. Impact of imputation on the performance of downstream analytical tasks. (A) Heatmap showing the performance changes in cell clustering
before and after imputation. (B) Heatmap showing the AUC gains on the CellType dataset (H1-DEC) before and after imputation.

https://doi.org/10.1371/journal.pcbi.1013744.g016

Fig 17. Clustering performance of D3Impute across 48 scRNA-seq–bulk reference combinations for practical reference selection. (A) Impact of
bulk RNA-seq selection on D3Impute’s post-imputation clustering accuracy (ARI). (B) Impact of bulk RNA-seq selection on D3Impute’s post-imputation
clustering accuracy (NMI).

https://doi.org/10.1371/journal.pcbi.1013744.g017
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Conclusion

D3Impute establishes a biologically grounded framework for addressing the critical challenge of dropout events in scRNA-
seq data analysis. Through systematic evaluation across six biologically diverse datasets, we demonstrate that our
method consistently outperforms existing approaches in three fundamental analytical tasks: differential expression analy-
sis, cell type clustering, and pseudotemporal trajectory reconstruction. The key innovation lies in our dual-network embed-
ding strategy that synergistically leverages bulk RNA-seq and scRNA-seq data to accurately distinguish biological zeros
from technical artifacts—a capability that directly translates to enhanced performance in downstream analyses.

Our investigation reveals several important practical insights. First, the effectiveness of imputation is highly dependent
on the specific analytical task and dataset characteristics. While D3Impute significantly improves clustering resolution for
datasets with poorly defined structures, it proves particularly valuable for reconstructing biological continua in pseudotem-
poral ordering. Second, our systematic evaluation of reference selection strategies provides clear guidelines for real-world
applications, demonstrating that robust performance can be achieved even without perfectly matched bulk data through
the use of pluripotent stem cell references or pseudo-bulk alternatives.

Beyond technical performance, the biological relevance of our approach is evidenced by its ability to maintain func-
tional coherence in gene co-expression modules while accurately recovering dropout events. The shared nearest neigh-
bor analysis further confirms the method’s robustness in handling complex cellular neighborhoods and boundary cases.
As single-cell technologies continue to evolve, we believe that biologically informed frameworks like D3Impute will play
an increasingly crucial role in unlocking the full potential of scRNA-seq data for deciphering cellular heterogeneity across
diverse research and clinical applications.
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S6 Fig. Benchmarking results under a 70% dropout rate. (A) 2D visualization of the masked dataset (seed = 88)
before and after imputation, illustrating the restoration of data structure. (B) Pearson correlation coefficient (PCC) between
the imputed and ground truth expression. (C) Root mean square error (RMSE) of imputed values. (D) Proportion of cor-
rectly recovered non-biological zeros. (E) Proportion of falsely imputed biological zeros.
(TIFF)

S7 Fig. Benchmarking results under a 80% dropout rate. (A) 2D visualization of the masked dataset (seed = 55)
before and after imputation. (B) Pearson correlation coefficient (PCC) between the imputed and ground truth expression.
(C) Root mean square error (RMSE) of imputed values. (D) Proportion of correctly recovered non-biological zeros. (E)
Proportion of falsely imputed biological zeros.
(TIFF)

S8 Fig. ARI-based clustering performance across six scRNA-seq datasets. (A) Siletti, (B) Guo2, (C) Pollen, (D)
iPSC, (E) Petropoulos, and (F) CellType.
(TIFF)

S9 Fig. NMI-based clustering performance across six scRNA-seq datasets. (A) Siletti, (B) Guo2, (C) Pollen, (D)
iPSC, (E) Petropoulos, and (F) CellType.
(TIFF)

S10 Fig. Two-dimensional visualization of cell clustering in the Guo2 dataset before and after imputation using
multiple algorithms. t-SNE projections were generated from raw and imputed expression matrices. Each point repre-
sents a single cell, colored by its annotated cell type. The pie chart in the lower right corner summarizes the cell-type
composition of the Guo2 dataset, which comprises two distinct subtypes.
(TIFF)

S11 Fig. Two-dimensional visualization of cell clustering in the Pollen dataset before and after imputation using
multiple algorithms. t-SNE projections were generated from raw and imputed expression matrices. Each point repre-
sents a single cell, colored by its annotated cell type. The pie chart in the lower right corner summarizes the cell-type
composition of the Pollen dataset, which comprises eight distinct subtypes.
(TIFF)

S12 Fig. Two-dimensional visualization of cell clustering in the iPSC dataset before and after imputation using
multiple algorithms. t-SNE projections were generated from raw and imputed expression matrices. Each point repre-
sents a single cell, colored by its annotated cell type. The pie chart in the lower right corner summarizes the cell-type
composition of the iPSC dataset, which comprises four distinct subtypes.
(TIFF)

S13 Fig. Two-dimensional visualization of cell clustering in the Petropoulos dataset before and after imputation
using multiple algorithms. t-SNE projections were generated from raw and imputed expression matrices. Each point
represents a single cell, colored by its annotated cell type. The pie chart in the lower right corner summarizes the cell-type
composition of the Petropoulos dataset, which comprises five distinct subtypes.
(TIFF)

S14 Fig. Two-dimensional visualization of cell clustering in the CellType dataset before and after imputation using
multiple algorithms. t-SNE projections were generated from raw and imputed expression matrices. Each point repre-
sents a single cell, colored by its annotated cell type. The pie chart in the lower right corner summarizes the cell-type
composition of the CellType dataset, which comprises seven distinct neural subtypes.
(TIFF)
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S15 Fig. Computational efficiency benchmarking of imputation algorithms. Peak memory usage comparison of
imputation algorithms across six scRNA-seq datasets with diverse biological contexts: (A) Siletti dataset; (B) Guo2
dataset; (C) Pollen dataset; (D) Petropoulos dataset; (E) iPSC dataset; (F) CellType dataset. Each subplot shows the
peak memory usage of 12 imputation algorithms on the corresponding dataset, evaluating the resource consumption
characteristics of the algorithms under different biological backgrounds.
(TIFF)

S16 Fig. Scalability assessment: Runtime performance analysis of imputation algorithms under different data
scales. (A) Runtime comparison plot, showing the main thread runtime of each algorithm for cell sizes of 2000, 4000,
6000, 8000, 10000, and 20000, displaying data within 1000 seconds only; (B) Memory usage comparison plot, showing
the peak memory usage of each algorithm under different data scales, displaying data below 2000 MB only.
(TIFF)

S17 Fig. Gene expression distribution before and after imputation on the Siletti dataset.
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S18 Fig. Gene expression distribution before and after imputation on the Guo2 dataset.
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S19 Fig. Gene expression distribution before and after imputation on the Pollen dataset.
(TIFF)

S20 Fig. Gene expression distribution before and after imputation on the iPSC dataset.
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S21 Fig. Gene expression distribution before and after imputation on the Petropoulos dataset.
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S22 Fig. Gene expression distribution before and after imputation on the CellType dataset.
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S23 Fig. Bar plot showing the performance changes in pseudotemporal Ordering Score (POS) on the iPSC
dataset before and after imputation.
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S1 Table. ARI comparison of direct imputation methods with and without dropout-aware discriminator across six
datasets.
(XLSX)

S2 Table. NMI comparison of direct imputation methods with and without dropout-aware discriminator across six
datasets.
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S3 Table. ARI comparison of the filling effects of two imputation paradigms across six datasets.
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S4 Table. NMI comparison of the filling effects of two imputation paradigms across six datasets.
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S5 Table. Runtime (s) of 12 algorithms across six datasets.
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S6 Table. Peak memory usage (MB) of 12 algorithms across six datasets.
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S7 Table. Runtime (s) of 12 algorithms across datasets of varying sizes.
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S8 Table. Peak memory usage (MB) of 12 algorithms across datasets of varying sizes.
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S9 Table. Skewness coefficients of total expression distributions across six datasets before imputation, after
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