
i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 1 — #1 i
i

i
i

i
i

OPEN ACCESS

Citation: Gozzi N, Chinazzi M, Davis JT,
Gioannini C, Rossi L, Ajelli M, et al.
(2025) Epydemix: An open-source Python
package for epidemic modeling with
integrated approximate Bayesian
calibration. PLoS Comput Biol 21(11):
e1013735. https://doi.org/10.1371/journal.
pcbi.1013735

Editor: Eric Lofgren, Washington State
University, UNITED STATES OF
AMERICA

Received: May 14, 2025

Accepted: November 12, 2025

Published: November 19, 2025

Peer Review History: PLOS recognizes
the benefits of transparency in the peer
review process; therefore, we enable the
publication of all of the content of peer
review and author responses alongside
final, published articles. The editorial
history of this article is available here:
https://doi.org/10.1371/journal.pcbi.
1013735

SOFTWARE

Epydemix: An open-source Python package for
epidemic modeling with integrated approximate
Bayesian calibration
Nicolò Gozzi

1,2*, Matteo Chinazzi2,3, Jessica T. Davis2, Corrado Gioannini

1,
Luca Rossi1, Marco Ajelli4, Nicola Perra2,5,6, Alessandro Vespignani1,2

1 ISI Foundation, Turin, Italy, 2 Laboratory for the Modeling of Biological and Socio-technical Systems,
Northeastern University, Boston, Massachusetts, United States of America, 3 The Roux Institute,
Northeastern University, Portland, Maine, United States of America, 4 Laboratory for Computational
Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School
of Public Health, Bloomington, Indiana, United States of America, 5 School of Mathematical Sciences,
Queen Mary University of London, London, United Kingdom, 6 The Alan Turing Institute, London, United
Kingdom

* nicolo.gozzi@isi.it

Abstract

We present Epydemix, an open-source Python package for the development and cal-

ibration of stochastic compartmental epidemic models. The framework supports flex-

ible model structures that incorporate demographic information, age-stratified con-

tact matrices, and dynamic public health interventions. A key feature of Epydemix is

its integration of Approximate Bayesian Computation (ABC) techniques to perform

parameter inference and model calibration through comparison between observed

and simulated data. The package offers a range of ABC methods such as simple

rejection sampling, simulation-budget-constrained rejection, and Sequential Monte

Carlo (ABC-SMC). Epydemix is modular, and supports ABC-based calibration both

for models defined within the package and for those developed externally. To demon-

strate the computational framework capabilities, we discuss usage examples that

include (i) simulating an intervention-driven model with time-varying parameters, and

(ii) benchmarking calibration performance using synthetic epidemic data. We fur-

ther illustrate the use of the package in a retrospective case study that includes sce-

nario projections under alternative intervention assumptions. By lowering the bar-

rier for the implementation of computational and inference approaches, Epydemix

makes epidemic modeling more accessible to a wider range of users, from academic

researchers to public health professionals.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 1/ 18

https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1013735&domain=pdf&date_stamp=2025-11-26
https://doi.org/10.1371/journal.pcbi.1013735
https://doi.org/10.1371/journal.pcbi.1013735
https://doi.org/10.1371/journal.pcbi.1013735
https://doi.org/10.1371/journal.pcbi.1013735
https://orcid.org/0000-0002-9996-3194
https://orcid.org/0000-0002-4691-2377
mailto:nicolo.gozzi@isi.it
https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 2 — #2 i
i

i
i

i
i

Copyright: © 2025 Gozzi et al. This is an
open access article distributed under the
terms of the Creative Commons
Attribution License, which permits
unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: The data
and code to replicate all the presented
analyses can be found at https://github.
com/epistorm/epydemix/tree/main.

Funding: M.A., M.C., J.T.D., and A.V.
acknowledge support from the
CDC-RFA-FT-23-0069 cooperative
agreement from the CDC’s Center for
Forecasting and Outbreak Analytics. The
findings and conclusions in this study are
those of the authors and do not
necessarily represent the official position
of the funding agencies. Any use of trade,
firm, or product names is for descriptive
purposes only and does not imply
endorsement by the U.S. Government.
N.G., C.G., and L.R. acknowledge support
from the Lagrange Project of the ISI
Foundation, funded by Fondazione CRT.
The funders had no role in study design,
data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have
declared that no competing interests
exists.

1 Introduction

Over the last decade, the number of projects aiming to simplify and expand access
to epidemic models has steadily grown. The general goal of these efforts is to pro-
vide stakeholders (e.g., public health officials, scientists, concerned citizens) with rel-
atively simple and standardized tools to explore, simulate, and implement state-of-
the-art epidemic models. The type, target, scale, and flexibility of the proposed solu-
tions reflect the wide heterogeneity of modeling frameworks, diseases, end-users,
and applications.

Although a range of epidemic modeling tools exists, built-in support for models’
calibration is often missing. This step, which is one of the most critical phases of the
modeling pipeline, involves estimating unknown parameters—such as transmission
rates, seasonal forcing, or behavioral responses to interventions—by aligning mod-
els’ outputs with empirical data (e.g., case incidence, hospitalizations, or deaths).
Calibration typically requires the definition of a target variable and a corresponding
loss function (e.g., mean squared error, mean absolute percentage error), transform-
ing the task into an optimization problem. The goal is to explore the parameter space
to identify configurations that minimize the discrepancy between simulated outcomes
and observed data. Calibration is essential for fitting epidemic models to data, gain-
ing insights into outbreak dynamics, generating predictions, and evaluating plausi-
ble intervention scenarios. However, as with many optimization problems, calibra-
tion poses significant challenges. Depending on the model structure and number of
parameters to be estimated, the process can be computationally intensive. More-
over, the parameter space is often degenerate, with multiple regions yielding simi-
larly low loss values, complicating the reliable identification of representative parame-
ters. These challenges are further exacerbated by the inherent noise and uncertainty
in real-world data, which can further complicate the calibration process [1]. Despite
these challenges, calibration remains a necessary step for applying epidemic models
to real-world scenarios and informing public health decisions.

Here, we introduce Epydemix, an open-source Python package developed to sup-
port a broad range of computational tasks in epidemic modeling: from models’ spec-
ification and simulation to visualization and parameters’ calibration. Epydemix sup-
ports the incorporation of age structures, contact matrices, and a variety of public
health interventions, offering flexibility for modeling complex epidemiological dynam-
ics. A key feature of Epydemix is its built-in support for models’ calibration using
Approximate Bayesian Computation (ABC) methods [2–4]. The package includes
both basic rejection algorithms and more sophisticated approaches such as Sequen-
tial Monte Carlo (ABC-SMC) [4]. Epydemix can also be integrated with external mod-
eling efforts. In particular, its calibration routines are designed to be compatible with
models developed outside the framework, provided that they conform to the neces-
sary specifications.

In the following sections, we describe the core functionalities and design principles
of the Epydemix package. We then illustrate its capabilities through two examples
and one detailed case study. The first example demonstrates how Epydemix

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 2/ 18

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/epistorm/epydemix/tree/main
https://github.com/epistorm/epydemix/tree/main
https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 3 — #3 i
i

i
i

i
i

can be used to construct a basic epidemic model, integrate country-specific demographic and contact matrix data, and
simulate changes in epidemiological parameters and contact patterns resulting from public health interventions. In the
second example, we showcase the use of Epydemix’s calibration framework by fitting a model to synthetically generated
daily incidence data. We apply all three supported ABC algorithms and compare the resulting posterior distributions for
the model parameters. Finally, as a case study, we develop a realistic epidemic model to reproduce reported, weekly
COVID-19 deaths in Massachusetts during the early months of 2020. The calibrated model is then used to evaluate the
potential impact of various non-pharmaceutical intervention strategies by simulating changes in contact rates over the
summer of 2020 and estimating their effect on projected COVID-19 deaths under different scenarios.

Overall, this work contributes to ongoing efforts to streamline and broaden access to advanced epidemic modeling. By
lowering technical barriers, the package aims to make state-of-the-art methodologies in epidemiological modeling more
accessible to researchers, public health practitioners, and policy analysts alike.

1.1 Related work

Among the computational approaches made available to the public we find software tools that facilitate exploring and/or
running epidemic models via graphical user interfaces (GUI), applications programming interfaces (API), or Web applica-
tions [5–8]. These include open-source simulators, written in Python, Julia, R, C++, and other programming languages,
offering complete, often adaptable, implementations of different classes of epidemic models [9–24] and software libraries
(e.g., Python or R packages) that act as building blocks for abstract and personalized implementations [8,13,19,25–30]. In
terms of the analytical framework at the basis of these projects, we find compartmental [6,11], metapopulation [5], agent-
based [8,10,12,13,16,17,19,24,24,25], and network-based [9,15,18,20,21,28,29] models. We also find projects offering a
range of different models under the same umbrella [7,14,23,26,27,30]. While some tools target a specific disease such as
COVID-19 [6,8,11,16,24], HIV [20], or influenza [12], others focus on classes of infectious diseases linked to specific types
of transmission dynamics [5,9,10,13–15,19,25,27,29,30]. There is also heterogeneity in terms of the spatial scale of the
analysis that these tools allow: from close contacts within a given area [7,9,15,18,21,22,28–30] to city [16,19,24], coun-
try [6,11,12] and global scales [5]. Furthermore, some projects are flexible and allow, within given constraints, the user
to set the target scale of geographical analysis as input [8,10,12–14,17,19,20,23,25–27]. For this reason, before moving
forward, we briefly situate Epydemix within the landscape of epidemic-modeling software.

Compartmental platforms range from the COVID-focused COVID-19 Scenarios [6] (interactive exploration without
native calibration) and SimCOVID [11] (Simulink/MATLAB with calibration) to metapopulation tools such as GLEAMviz [5]
(global mobility–aware GUI). In general, these tools emphasize scenario analysis over end-to-end inference such as the
one offered in Epydemix.

Another group of tools is defined by agent-based modeling (ABM) approaches. Among those we find COVASIM [8]
(Python, intra-host features, user-driven fitting), Agents.jl [10] (Julia, grid/graph/OSM with parameter search), Sampy [25]
(Python, modular ABM for stochastic epidemic simulations with spatial structure and intervention modeling), the influenza
models FluTE [12] and FRED [13] (both working on synthetic US populations), urban SARS-CoV-2 tools such as
COMOKIT [16] and OpenABM-Covid19 [24], and behavior-centric frameworks like BESSIE [17] and Pyfectious [19] (the
latter with Reinforcement Learning for policy optimization). For this class of models calibration is generally not supported
and externalized to other packages.

Network-based tools includes CSonNet, VTES (didactic), GEMFsim (multi-language, multilayer), SimpactCyan
(dynamic networks for HIV), Epinet (supporting ERGM inference), EoN (Python package designed for studying disease
spread in static networks), and fast temporal-network SIR implementations [9,15,18,20,21,28,29]. While these tools pro-
vides a wide range of options to include network topology in the modeling they generally do not offer extensive inference
or calibration features.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 3/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 4 — #4 i
i

i
i

i
i

Finally, we find tools that allow the implementation of a range of model types such as EpiFire, MEmilio, Eir, Epilearn
(with ML/statistical forecasting), and EpiModel (including deterministic compartmental models, stochastic individual con-
tact models, and stochastic network models) [7,14,23,27,30], that prioritize breadth and the implementation of various
models rather than their calibration to real data. In the S1 Text we provide a table with the main characteristics of all soft-
ware tools reviewed here.

In this context, Epydemix deliberately centers on structured compartmental models, offering native, end-to-end cali-
bration capabilities that are uncommon across existing platforms. It offers a flexible, and modular architecture for rapid
model specification, simulation, parameter estimation, and scenario analysis geared to real-time epidemic assessment,
policy-oriented planning, and short-term forecasting, especially when data are sparse, noisy, or insufficient to parameter-
ize large-scale ABMs [31,32]. Epydemix is also designed to lower technical barriers by adopting Approximate Bayesian
Computation (ABC), a likelihood-free inference framework that enables parameter estimation based solely on model sim-
ulations and observed data. This approach has gained traction in the epidemic modeling community in recent years [2,3,
33]. Among other inference methods, ABC provides a conceptually transparent and general framework that directly links
simulations to data through summary statistics, without requiring explicit likelihood evaluation. It is particularly suitable for
stochastic or individual-based epidemic models, where the probabilistic nature of transmission and observation processes
makes likelihood derivation impractical. Furthermore this calibration is general enough to support metapopulation or net-
work models, while preserving reproducibility, interpretability, and a clear separation between model structure, data, and
inference process.

2 Design and implementation

Epydemix is implemented in the Python programming language. It can be installed from the Python Package Index (PyPI),
the standard repository for Python packages, using the command pip install epydemix in a terminal or command
prompt—ideally within a virtual environment to avoid dependency conflicts. The source code, data, and tutorials are open
source and freely available on GitHub [34,35]. The full documentation is available on Read the Docs, a commonly used
free software documentation hosting platform [36].

The typical workflow in Epydemix proceeds through several stages (see Fig 1). First, the user defines an epidemic
model by specifying the compartmental structure, transition dynamics, and associated parameters. The model can then
be linked to real-world demographic data by incorporating population pyramids and age-stratified contact matrices. Tem-
poral variations in parameters and contact patterns—such as those induced by public health interventions—can also be
specified to reflect dynamic changes in transmission conditions. Once configured with the initial conditions, the model is
simulated over a user-defined time period. Calibration on empirical data is then performed using built-in ABC algorithms,
which require observed time series and prior distributions for the parameters of interest. Calibrated models can then be
used to generate scenario projections, forecasts, or explore the posterior distributions of free parameters. At each step
of the workflow, Epydemix provides visualization tools for examining simulation outputs, demographic structures, and
calibration results, including posterior parameter distributions.

In the following sections, we explain in more detail each of these steps. Classes and functions are denoted with a
mono-spaced font (i.e., Class, function). Classes start with a capital letter, while functions with a lowercase letter.

2.1 Model definition and stochastic simulations

Epydemix supports the construction of general single-population stochastic compartmental models [37], in which individ-
uals are grouped into compartments according to their epidemiological status (e.g., susceptible, infectious, recovered).
Beyond the health status, compartments can also represent other relevant characteristics, such as vaccination status or
behavioral attributes associated with the adoption or relaxation of NPIs. The progression of individuals through the dif-
ferent model compartments is represented by stochastic transitions between compartments. These transitions can be

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 4/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 5 — #5 i
i

i
i

i
i

Fig 1.Workflow of a typical Epydemix run.

https://doi.org/10.1371/journal.pcbi.1013735.g001

broadly classified into two categories: spontaneous transitions, which occur independently of interactions with other indi-
viduals (e.g., recovery or waning of immunity), and mediated transitions, which are driven by interactions between individ-
uals in different compartments (e.g., infection due to contact between susceptible and infectious individuals).

For example, in the classic Susceptible-Infected-Recovered (SIR) model [37], susceptible individuals, in compartment
S, are susceptible to the infection. By contacting infectious individuals, susceptibles may then transition to the infectious
stage, and join compartment I. The infection process can be described using a notation borrowed from mass action reac-

tion systems: S + I
𝛽−→ 2I, where 𝛽 is the transmissibility of the pathogen. After the typical infectious period, infectious indi-

viduals spontaneously transition to the recovered compartment R. These transition can be described as I
𝜇−→ R, where 𝜇

is the recovery rate. The infection process is a classic example of a mediated transition. The recovery process instead
is an example of a spontaneous transition. The package provides full flexibility in defining both the number and type of
compartments, enabling the development of advanced models beyond classic SIR-like structures. As mentioned above,
this includes, for example, compartments for vaccinated individuals and behavioral dynamics. Individuals can be further
categorized into demographic groups, such as age brackets (see Sect 2.2 for more details). Accordingly, we denote the
number of individuals in compartment X (e.g., X ∈ {S, I,R}) and demographic group k as Xk. Moreover, we define Xtotal as
the sum of individuals in compartment X across all demographic groups (i.e., Xtotal =∑K

k=1 Xk). It follows that, for exam-
ple, Sk indicates the number of susceptible individuals in demographic group k, and Stotal the total number of susceptible
individuals across all groups.

Models are built using the EpiModel class which requires: 1) the compartments, defining the possible states of indi-
viduals, 2) the transitions among them, and 3) the parameters governing such transitions. Canonical models such as the
Susceptible-Infectious-Recovered (SIR), Susceptible-Exposed-Infectious-Recovered (SEIR), and Susceptible-Infectious-
Susceptible (SIS) are provided as predefined templates.

Simulations in Epydemix are stochastic and follow a chain binomial approach to model transitions between compart-
ments. At each time step, the number of individuals transitioning from compartment Xk to Yk is drawn from a binomial dis-
tribution, Bin(Xk,pXk→Yk), where Xk denotes the number of individuals currently in the source compartment, and pXk→Yk

represents the probability of transition within the interval 𝛿t. By default, transition probabilities are computed by converting
transition rates (i.e., rXk→Yk) into discrete-time risks using the standard exponential transformation:

pXk→Yk = 1 − e−rXk→Yk
𝛿t

When a compartment has multiple possible destination states, transitions are modeled using a multinomial extension of
the chain binomial process (see S1 Text).

By default, two types of transitions are supported: spontaneous and mediated transitions. For spontaneous transitions,
the rate rXk→Yk is directly defined by the user-specified parameter. In the case of mediated transitions, the rate additionally

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 5/ 18

https://doi.org/10.1371/journal.pcbi.1013735.g001
https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 6 — #6 i
i

i
i

i
i

incorporates an interaction term form that depends on the size of the mediating compartment (e.g., the number of infec-
tious individuals in transmission processes). For illustrative purposes, let us consider a classic SIR model. In this case,
the rate of recovery will be rIk→Rk

= 𝜇k, where 𝜇k is the inverse of the infectious period. In the simplest case, 𝜇k = 𝜇 for all

k. The rate of infection for group k will be instead rSk→Ik = 𝛽∑k′ Ckk′
Ik′

Nk′
, where 𝛽 is the transmission rate, C is the contact

matrix (see Sect 2.2 for more details), and Nk′ is the total number of individuals in group k′. We refer the reader to the S1
Text for a more detailed mathematical formulation of the SIR model.

Single stochastic realizations of the model are generated using the simulate function, which returns a Trajectory
object containing the compartment dynamics (e.g., Xk(t)), the transition counts (e.g., Xk(t) → Yk(t)), and the parameters
used in the simulations (e.g., the transition rates). The run_simulations method performs multiple realizations, return-
ing a SimulationResults object with all trajectories and summary statistics like medians and confidence intervals. In
Sect 3.1.1 of the Results, we provide a practical example illustrating model definition and simulation.

2.2 Integration of real-world population demographic and contact patterns data

By default, the EpiModel class is initialized with a population of 100,000 individuals in a single demographic group,
equivalent to a homogeneous mixing assumption [37]. However, the Population class can be used to define the essen-
tial information about the population, including the total number of individuals, their distribution across demographic
groups, and the contact rates between groups. This information serves as input for the simulations, determining the initial
conditions and the structure of interactions that drive the transmission dynamics. In particular, the demographic composi-
tion informs how individuals are allocated at initialization, while contact matrices are typically used to modulate the infec-
tion rate between groups during the stochastic simulation process. Population objects can also be instantiated using
real-world demographic data, allowing users to ground their simulations in realistic settings. Indeed, the package is com-
plemented by an external online repository (Epydemix Data), which provides access to population structures and synthetic
age-stratified contact matrices for over 400 regions worldwide. The data is hosted in a dedicated GitHub repository [38],
and include age-stratified population distributions along with contact matrices that characterize interactions across differ-
ent settings, including households, workplaces, schools, and community environments. The contact matrices are provided
in three distinct variants derived from the synthetic datasets developed by Mistry et al., 2021 [39], Prem et al., 2021 [40],
and Prem et al., 2017 [41]. The dataset covers the majority of countries worldwide, with sub-national demographic infor-
mation available for selected regions. The majority of population data comes from the United Nations World Population
Prospects [42]. A full list of supported regions, datasets, and sources is available on GitHub [38].

Users can easily import data using the load_epydemix_population function, which creates a Population object
for the desired location. Alternatively, users can define custom populations by providing their own dataset as input. The
resulting Population object can be set for simulations with the set_population method of EpiModel. Additional
functionalities simplify population customization and exploration. For example, users can define custom age groups and
pass them to load_epydemix_population to achieve the desired granularity.

2.3 Advanced modeling features

The previous subsections introduced the components required to define and simulate epidemic models. Building on this
foundation, the package also supports a range of advanced features that extend its modeling capabilities.

2.3.1 Defining transition mechanisms. As previously discussed, the package supports two primary types of tran-
sitions: spontaneous and mediated. However, our framework allows users to define custom transition types to accom-
modate specific modeling requirements. For example, users may want to introduce infection processes where the
force of infection differs from the conventional mass-action formulation, or model behavioral dynamics in which transi-
tion rates depend non-linearly on the number of individuals in specific states. This can be achieved using the regis-
ter_transition_kind method of the EpiModel class, which takes as input a user-defined name for the new transition

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 6/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 7 — #7 i
i

i
i

i
i

type and a function that specifies how to compute its transition rate. Once registered, transitions of this new type can be
incorporated into the model. This feature enables the implementation of alternative formulations broadening the range of
dynamical processes that can be represented within the framework.

2.3.2 Time-varying and group-specific parameters. In the basic model formulation, transition parameters are
assumed to be constant. However, Epydemix allows the definition of both time-dependent and group-specific parame-
ters. Specifically, the framework supports: (i) time-varying parameters, such as seasonally modulated transmission rates,
which are specified as arrays of length T, corresponding to the number of simulation steps; and (ii) group-specific param-
eters, such as age-dependent susceptibility or recovery rates, represented as arrays with shape (1,K), where K denotes
the number of population groups. These two dimensions can be combined to define parameters that vary simultaneously
across time and groups, using arrays of shape (T,K). Additionally, transition rates can be expressed symbolically to cap-
ture functional relationships between parameters. For example, the transmissibility of a second strain, 𝛽2, may be defined
as a multiple of the baseline rate, such that 𝛽2 = 𝜓 ∗ 𝛽1, where 𝜓 denotes the relative transmissibility. Additional practical
examples of parameter specification are provided in the online tutorials [35].

2.3.3 Non-pharmaceutical interventions and behavioral changes. In Epydemix, mitigation strategies, including
NPIs such as school and workplace closures, can be incorporated into models using two core functionalities of the Epi-
Model class: add_interventions and override_parameter. The add_interventions functionality allows users
to introduce time-specific modifications to selected layers of the contact matrix. Interventions can be specified either by (i)
applying a uniform reduction factor across all elements of a target contact matrix, or (ii) supplying a custom contact matrix
that adjusts both the overall intensity and the relative distribution of contacts between population groups. In both cases,
users can define the start and end date of the intervention. This flexible design enables to model targeted interventions—
for instance, simulating school or workplace closures that selectively reduce contacts in those settings over a specified
period while preserving (or increasing) interactions in others. The override_parameter functionality provides a gen-
eral mechanism for introducing time-dependent modifications to transition parameters during specific periods of the simu-
lation. This allows users to capture dynamic changes in transmission dynamics, such as the combined effects of multiple
mitigation measures represented by a temporary reduction in transmissibility. Additionally, override_parameter can
be employed to model intrinsic temporal variations of the parameters, such as seasonal fluctuations in transmissibility or
behavioral shifts over time.

In addition to externally imposed interventions, Epydemix also supports the modeling of self-initiated behavioral
changes such as the voluntary avoidance of public spaces, workplaces, or schools, and the adoption of preventive mea-
sures like mask-wearing, which have been widely documented during epidemics [43,44]. These dynamics can be repre-
sented by introducing specific compartments that capture subpopulations adopting precautionary behaviors that reduce
the risk of infection [45]. This compartment-based approach complements the use of dynamic parameters and interven-
tions.

2.4 Model calibration

Epydemix supports the full pipeline of epidemic modeling, including parameter inference through simulation-based cali-
bration. Epydemix adopts an Approximate Bayesian Computation approach, which is particularly well suited for stochas-
tic simulation settings, as it enables inference by comparing observed and simulated data without requiring explicit like-
lihood evaluation [3,4]. The core object for models’ calibration is the ABCSampler, which requires the following key
inputs: i) prior distributions 𝜋(𝜃) for free model parameters 𝜃, ii) a distance function d(⋅), iii) a simulation function, and iv)
the observed data yobs. Prior distributions represent initial beliefs about parameter values and must be specified using
scipy.stats distribution functions, which offer a wide range of options for both continuous and discrete parameters.
For instance, to reflect minimal prior knowledge, one may adopt flat or broad priors, such as a uniform distribution defined
over a plausible range or a wide normal distribution centered around an initial guess. The distance function quantifies

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 7/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 8 — #8 i
i

i
i

i
i

the discrepancy between simulated and observed data, guiding parameters’ selection. For example, one may use the
Euclidean distance between simulated and observed incidence time series, or compute the (absolute) differences on key
summary statistics such as peak incidence or epidemic duration. The simulation function is used by the calibration algo-
rithm to generate a model output yi and must conform to minimal interface requirements. At its simplest, this function
acts as a wrapper around the Epydemix simulate function which runs a single stochastic realization for a given model,
specifying the output used for distance calculations and parameters’ selection. If needed, users can extend the wrapper
to include more complex input pre-processing (e.g., custom model initialization) or output transformations (e.g., aggre-
gating compartments or computing summary statistics before distance calculation). This design allows calibration not
only of models built with Epydemix but also of external models. As long as the simulation function adheres to the minimal
required output structure, models developed outside the package can be used within an ABCSampler object. Finally, the
observed data represent the empirical measurements (e.g., observed incidence time series) against which model outputs
are compared and are required for the calculation of distances during the calibration process.

The package supports three ABC algorithms for parameter inference [2,3]. They can be executed using the cali-
brate method of an ABCSampler object, specifying the desired strategy.

The basic ABC rejection algorithm is performed by setting strategy = ”rejection” when calling the calibrate
method of ABCSampler. It requires defining a tolerance 𝜖 and a population size P. The algorithm iteratively samples the
parameters 𝜃i from the prior distributions and executes the simulation function to produce an output yi which is compared
to observed data yobs using d(yi,yobs). Parameters are accepted if d(yi,yobs) < 𝜖. This process continues until P parame-
ter sets are accepted, approximating the posterior distribution of free parameters. This approach is simple and intuitive,
but has limitations, such as determining an appropriate tolerance 𝜖. Smaller values improve accuracy but slow down the
calibration, while larger values speed up convergence at the cost of precision. Additionally, the prior distribution remains
fixed, ignoring the insights gained during the process.

To address these issues, the package offers an alternative algorithm that can be used by setting strategy =
”top_fraction”. This replaces the fixed tolerance with a total simulation budget B (i.e., total number of simulations)
and a selection percentage x. Sampling, simulations, and comparison with data continue until the budget is exhausted,
after which the top x% of parameter sets are selected based on the distance metric. Hence, 𝜖 =Qx/100(d(yi,yobs)), where
Q𝛼 is the 𝛼-th percentile. This approach is equivalent to set a tolerance implicitly defined by the largest distance for top x%
simulations given the simulation budget.

A more advanced algorithm is an ABC method based on Sequential Monte Carlo (ABC-SMC) that extends the rejec-
tion approach by using T generations with progressively smaller tolerances. This calibration method is available by setting
strategy = ”smc”. The implementation of the ABC-SMC methodology follows Ref [4]. In brief, each generation’s prior
distribution is the posterior from the previous generation, perturbed by a kernel function. This iterative process starts with
a broad prior and high tolerance, refining the parameter space with each generation. The final generation yields a refined
approximation of the posterior distribution. In the package, by default, the first generation begins with an infinite tolerance,
and subsequent values are computed as the median (or another user-specified quantile) of distances from accepted par-
ticles in the previous generation [46,47]. Alternatively, a specific tolerance schedule can be provided. A component-wise
Gaussian kernel is used for continuous parameters, while discrete parameters employ a discrete jump kernel [48]. Users
have the flexibility to define their own perturbation kernels via the Perturbation class.

The ABC-SMC algorithm offers the highest accuracy, but can be more computationally demanding. The simple rejec-
tion algorithm is a quick and easy option for exploring models or prior distributions. The modified rejection approach
ensures results within a fixed time frame, but is generally less accurate. It is particularly useful for exploratory tasks or
recurrent processes with strict runtime constraints. For all algorithms, stopping conditions such as maximum runtime, sim-
ulation budget, or minimum tolerance (ABC-SMC only) can be defined by the user. The pseudocode for the three cali-
bration algorithms is provided in the S1 Text. For all the three algorithms, the calibrate method returns a Calibra-
tionResults object, providing access to estimated posterior distributions for free parameters, selected trajectories, and

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 8/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 9 — #9 i
i

i
i

i
i

general information about the parameters used in the calibration algorithm. After the calibration step is completed, the
run_projections method of ABCSampler allows running projections by sampling from the approximated posterior
distribution. See Sect 3.1.2 of the Results for a practical example illustrating the model calibration process.

2.5 Visualization

The package provides several options to visualize models’ features and outputs. Population distributions across demo-
graphic groups and contact matrices can be visualized using the plot_population and plot_contact_matrix
functions. The plot_spectral_radius function plots the spectral radius of the contact matrix over time. This quan-
tity is proportional to the model’s reproduction number [49]. Variations to the spectral radius induced by mitigation poli-
cies can be used to quantify the potential impact of interventions on epidemic dynamics. Simulation outputs, such as the
median and confidence intervals of the number of individuals across each compartment as well as outputs from the cal-
ibration algorithms can also be explored with built-in visualizations. The plot_quantiles function displays summary
statistics of simulated trajectories, while plot_posterior_distribution_2d, plot_posterior_distribution,
and plot_distance_distribution visualize the joint posterior distribution of two parameters, the marginal posterior
distribution of a single parameter, and the distribution of distances for accepted parameters, respectively.

3 Results

In this section, we first present concrete examples that demonstrate the use of Epydemix across the key stages of epi-
demic modeling. We then illustrate the application of the package to real-world scenarios through a detailed case study.
All code and data necessary to reproduce the examples and case study are publicly available on the Epydemix GitHub
repository [35].

3.1 Example usages

3.1.1 Model definition and simulation. We begin by providing an example of how to use the package to define and
simulate epidemic models. We consider a simple SIR model, which can be created with the following code:

1 from epydemix import EpiModel
2 from epydemix.population import load_epydemix_population
3

4 # Define the SIR model
5 sir_model = EpiModel(
6 name=”SIR Model”,
7 compartments=[”S”, ”I”, ”R”],
8 parameters={”beta”: 0.045, ”mu”: 0.1},
9)

10

11 # Define the transitions
12 sir_model.add_transition(”S”, ”I”, params=(”beta”, ”I”), kind=”mediated”)
13 sir_model.add_transition(”I”, ”R”, params=”mu”, kind=”spontaneous”)
14

15 # Import and set population
16 population = load_epydemix_population(”Italy”)
17 sir_model.set_population(population)

The first block initializes the model by specifying the compartments and parameters. Both can also be added after ini-
tialization using the add_compartments and add_parameter methods, respectively. Parameters can also be passed
directly to transitions as values. The next two blocks define the model’s transitions. In both cases, we specify the source
and target compartments, the parameters for the transition, and the transition type. For the recovery process (a spon-
taneous transition), only the transition rate is required, whereas for the infection process, the name of the compartment
mediating the transition must also be provided. The final block imports population data for Italy and assigns it to the

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 9/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 10 — #10 i
i

i
i

i
i

model. After these initializations, we can run a given number of stochastic simulations over a defined time window and
visualize some outputs by using the following set of instructions:

1 # Run stochastic simulations
2 sir_results = sir_model.run_simulations(
3 start_date=”2024-01-01”,
4 end_date=”2024-08-31”,
5 Nsim=100,
6)
7

8 # Plot S, I, R evolution (median, 95% CI)
9 df_quantiles = sir_results.get_quantiles_compartments()

10 plot_quantiles(df_quantiles, columns=[”I_total”, ”S_total”, ”R_total”])

We note how the parameter Nsim can be used to set the number of simulations. Unless specified, its default value is
set to 100. The output of the code can be seen in Fig 2A, which shows the median and 90% confidence intervals of the
number of individuals in compartments S, I, and R summing them across all age-groups, i.e., Xtotal with X ∈ [S, I,R].

Next, we incorporate public health interventions to simulate a scenario in which modelers aim to quantify the potential
effects of NPIs on an outbreak. The first intervention is a partial school closure, reducing contacts in the school layer to
35% of the original value (i.e., a 65% reduction). This can be added to the model as follows:

1 # School closure
2 sir_model.add_intervention(
3 layer_name=”school”,
4 start_date=”2024-03-01”,
5 end_date=”2024-05-01”,
6 reduction_factor=0.35,
7 name=”school closure”
8)

The second intervention is a partial workplace closure, reducing contacts in the workplace layer by 70%, which can be
done similarly (code not shown). Additionally, we consider a range of other measures, such as mandatory masking and
general social distancing policies, which reduce the transmission parameter (𝛽) over a specified period from 0.045 (the
initial value) to 0.02. This measure can be introduced in the model with the following code:

1 # Mask/Social distancing
2 sir_model.override_parameter(
3 start_date=”2024-02-01”,
4 end_date=”2024-08-31”,
5 name=”beta”,
6 value=0.02
7)

We finally re-run the model with these interventions and compare the results. Fig 2B shows the output of the
plot_quantiles function providing the evolution of the total number of infected individuals over time for the SIR model
we defined above, and the analogous model without interventions, highlighting the flattening of the epidemic curve due
to interventions. Fig 2C visualizes the impact of interventions on contact patterns, plotting the percentage reduction in
the spectral radius of the overall contact matrix over time. As mentioned, the spectral radius is the largest eigenvalue of
the contact matrix and is proportional to the basic reproduction number [49]. Finally, Fig 2D demonstrates the effects of
interventions in terms of total averted infections and the percentage reduction in peak intensity, computed with minimal
additional manipulation of the SimulationResults outputs.

3.1.2 Model calibration. In this second example, we demonstrate how Epydemix can be used to calibrate epi-
demic models to observed data using ABC techniques. As target data we use synthetically generated daily new infection
counts (i.e., daily incidence) from an SIR model applied to a population representative of Indonesia. The synthetic data
is obtained by fixing the transition rates to specific values and adding noise to the resulting daily incidence to mimic the
variability typical of real data. In particular, we set the transmissibility to 0.02 and the recovery rate to 0.2 days−1. At each

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 10/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 11 — #11 i
i

i
i

i
i

Fig 2. A) Time series showing the simulated number of susceptible, infected, and recovered individuals across all age-groups (median and
90% confidence intervals). B) Time series showing the total number of infected individuals (median and 90% confidence intervals) with and without
interventions, highlighting the impact of NPIs in flattening the epidemic curve. C) Percentage change in the spectral radius of the overall contact matrix
during workplace and school closures, illustrating the reduction in contact dynamics. D) Boxplots summarizing the impact of interventions, including the
percentage of averted infections and the reduction in peak size.

https://doi.org/10.1371/journal.pcbi.1013735.g002

time step, we add random noise of up to ±20% to the simulated daily incidence, ensuring that no negative values occur by
setting any of such cases to zero.

Following a similar procedure to the one described above, we define a new SIR model which will fit to the synthetic
data. In particular, our objective is to estimate the posterior distribution of both the transmission and recovery rates based
on the observed data. As a first step, we need to define the simulation function to ensure that the calibration algorithm
correctly processes the model’s output. This can be achieved as follows:

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 11/ 18

https://doi.org/10.1371/journal.pcbi.1013735.g002
https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 12 — #12 i
i

i
i

i
i

1 from epydemix import simulate
2

3 def simulate_wrapper(parameters):
4 results = simulate(**parameters)
5 return {”data”: results.transitions[”S_to_I_total”]}

The simulation function serves as a wrapper around the simulate function, simply passing the arguments to it and
returning a dictionary containing a key named ”data”. This key stores the output quantity from the model which will be
compared to the observed data using the distance function. It is important to emphasize that the simulation function must
always return a dictionary containing the key ”data”. The value associated with this key will then be passed to the dis-
tance function for the selection of stochastic trajectories during the calibration process.

As the second step, we define the prior distributions for the free parameters using the scipy.stats distribution func-
tions:

1 from scipy.stats import uniform
2

3 priors = {
4 ”beta”: uniform(0.010, 0.020),
5 ”mu”: uniform(0.15, 0.1),
6 }

In both cases, we assume a uniform prior, with the transmissibility 𝛽 ∼ U(0.01,0.03) and the recovery rate 𝜇 ∼
U(0.15,0.25). It is important to note that in scipy.stats.uniform, the second argument does not specify the upper
bound of the uniform range but rather the range’s width.

Next, we define the ABCSampler object, which takes as inputs the simulation function, prior distributions, other param-
eters, the observed data, and the error metric (root mean squared error in this example):

1 from epydemix.calibration import ABCSampler, rmse
2

3 abc_sampler = ABCSampler(
4 simulation_function=simulate_wrapper,
5 priors=priors,
6 parameters=parameters,
7 observed_data=observed_data,
8 distance_function=rmse
9)

We are now ready to run the calibration. To do so, we simply call the calibrate method of the ABCSampler object,
specifying the calibration strategy and its specific arguments.

1 results_abc_rejection = abc_sampler.calibrate(
2 strategy=”rejection”,
3 num_particles=1000,
4 epsilon=550000
5)
6

7 results_top_perc = abc_sampler.calibrate(
8 strategy=”top_fraction”,
9 Nsim=10000,

10 top_fraction=0.1
11)
12

13 results_abc_smc = abc_sampler.calibrate(
14 strategy=”smc”,
15 num_particles=1000,
16 num_generations=5
17)

In this example, we opted to run all three calibration algorithms. In particular, we use the ”rejection” approach
with 1,000 particles accepted and a tolerance of 550,000, the ”top_fraction” approach with 10,000 total simulation

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 12/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 13 — #13 i
i

i
i

i
i

budget and top 10% selected, and finally the ”smc” approach with 5 generations and 1,000 particles accepted in each
generation.

Fig 3A compares the calibration results, plotting the observed data (black dots) alongside the median and 90% confi-
dence intervals of the simulated new infections for each strategy. All three methods produce a good fit to the observed
data, with slight differences in the confidence interval widths, reflecting variations in uncertainty across strategies. Fig 3B
shows the joint posterior distributions of the transmission and recovery rates for each strategy, with the true parameters
(red cross) used to generate the data. While all strategies converge on similar parameter regions, the density and shape
of the posterior distributions differ, with the ABC-SMC resulting in the less disperse posterior. The similarity between ABC-
SMC and ABC Rejection results is expected, as the tolerance used in ABC rejection matches the final generation’s toler-
ance in ABC-SMC.

Fig 3. A) Calibration results showing the fit of simulated new infections (medians and 90% confidence intervals) to synthetic data (black
dots) for each calibration strategy. B) Joint posterior distributions of the transmissibility and recovery rate for each strategy. The parameters used to
generate the data are denoted with a red cross.

https://doi.org/10.1371/journal.pcbi.1013735.g003

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 13/ 18

https://doi.org/10.1371/journal.pcbi.1013735.g003
https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 14 — #14 i
i

i
i

i
i

3.2 Modeling COVID-19 in Massachusetts

As detailed case study we develop a realistic epidemic model to reproduce the spread of SARS-CoV-2 in early 2020 in
Massachusetts, USA. The model accounts for contact reductions due to social distancing recommendations and lock-
downs, seasonal variation in transmissibility, and disease-related mortality. We calibrate the model’s free parameters
using real weekly reported deaths, between 2020/02/23 and 2020/06/01. The model accounts for 10 age groups (i.e., 0–
9, 10–19, 20–24, 25–29, 30–39, …, 80+) and incorporates population and contact matrices representative of the location
under investigation. The compartmental structure of the model is illustrated in Fig 4A. Briefly, the model follows a SEIR-
like structure with additional compartments to account for disease-related mortality. Specifically, multiple death-related
compartments are included to represent the delay Δ of a few days between the end of the infectious period (i.e., exiting
the I compartment) and death (i.e., the final transition to D4). This implementation allows considering Erlang distributions
of delays [50]. In particular, we considered four intermediate transitions steps. The transmissibility 𝛽 is modulated by a
seasonal factor s(t), assumed to follow a sinusoidal pattern with an annual period, peaking in mid-January in the Northern
hemisphere. The amplitude of this seasonal variation is treated as a free parameter. Additionally, the model incorporates
a time-dependent modulation of contact rates, r(t), estimated using mobility data from the COVID-19 Community Mobil-
ity Report published by Google [51]. Full details of the model, including the system of equations, are provided in the S1
Text. The code required to reproduce this analysis is more involved than the previous ones; therefore, we do not include
snippets here. However, a full tutorial on this case study is available online on the package repository [35].

We calibrate the model using the ABC-SMC algorithm, with 10 generations and 1,000 particles per generation. Free
model’s parameters include the basic reproduction number R0, the initial number of infected I0, the amplitude of sea-
sonal variation in transmissibility, and the delay Δ between the end of the infectious period and the time when deaths are
reported. As detailed in the S1 Text, for all parameters we choose uniform flat prior distributions. In Fig 4B, we present
the reported weekly COVID-19 deaths in Massachusetts alongside the median and 90% confidence intervals of simulated
weekly deaths projected by the calibrated model. The projections closely align with the reported data, with a weighted
median absolute percentage error of 18%. In the S1 Text we show the posterior distributions of free parameters. For R0,
the calibration yields a median of 2.18 with a 90% credible interval of [2.03,2.39].

After the calibration step, we perform out-of-sample scenario projections up to 2020/08/02, considering three differ-
ent scenarios: (i) no relaxation of NPIs, where intervention levels remain unchanged from the last observed value in the
calibration window, (ii) moderate relaxation, with contact rates increasing by 30%, and (iii) strong relaxation, with a 50%

Fig 4. A) Schematic representation of the extended SEIR model, incorporating additional compartments to account for disease-related mor-
tality. B) Projected weekly COVID-19 deaths in Massachusetts under different reopening scenarios. The black dots represent observed data, while the
shaded areas indicate uncertainty intervals for the calibrated model (green) as well as different reopening strategies: status quo (orange), moderate
(purple), and strong (pink).

https://doi.org/10.1371/journal.pcbi.1013735.g004

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 14/ 18

https://doi.org/10.1371/journal.pcbi.1013735.g004
https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 15 — #15 i
i

i
i

i
i

increase in contact rates, approaching pre-pandemic levels. Additional details on the NPIs assumptions are provided in
the S1 Text. In the first scenario, the downward trend in cases continues, aligning with the reported data. In the second,
the trend reverses in mid-July, leading to a mild resurgence over the summer. In contrast, strong relaxation would have
caused a significant resurgence in deaths during summer 2020.

4 Availability and future directions

In this work, we introduced Epydemix, a Python package designed to support the complete workflow of epidemic model-
ing, with particular emphasis on the often most challenging stage, namely model calibration.

Unlike many existing frameworks that provide only basic modeling components, Epydemix offers an integrated environ-
ment that spans the full modeling pipeline—from the definition of compartmental models incorporating socio-demographic
structures for over 400 countries and regions, to the calibration of parameters using multiple Approximate Bayesian Com-
putation techniques. Epydemix supports the implementation of both pharmaceutical and non-pharmaceutical public health
interventions, providing freedom to define any number of compartments, ad-hoc transition types, and changes to both
parameters and contact matrices as function of time. We developed a range of built-in methods to support the creation of
visualizations to explore both inputs (e.g., properties of the contact matrices, population distributions) and outputs (e.g.,
incidence, or any other of target epidemic variable of interest). Furthermore, the package can also be used as a stan-
dalone calibration tool, allowing users to calibrate external models (i.e., developed without the Epydemix framework)
based on data.

As with any Python package, Epydemix requires some initial familiarity with its design principles and usage patterns.
To support users through this learning curve, we provide a series of detailed use cases—beyond those discussed in this
work—available on the project’s GitHub repository [34]. These examples complement the official documentation, which
outlines the technical specifications and usage of the package’s core classes and functions.

Looking ahead, several extensions are planned to broaden the scope and capabilities of Epydemix. Currently, we sup-
port only stochastic compartmental models. This choice was favored over deterministic (e.g., ODE-based) approaches
which do not allow to capture stochastic fluctuations that are critical in small populations, near-threshold dynamics, and
early outbreak phases. Nonetheless, we recognize that deterministic approaches can be advantageous in certain con-
texts, particularly when computational efficiency is a priority. Therefore, we plan to include deterministic simulation as a
potential extension in future releases. Building on its current support for compartmental models, future releases will incor-
porate epidemic models based on explicit contact networks, followed by the integration of spatial modeling frameworks
such as metapopulation structures. Performance enhancements are also a key priority, including the implementation of
parallelization to accelerate simulation and calibration tasks. In addition, upcoming features will introduce tools and diag-
nostics to assess the practical identifiability of model parameters. These developments will further expand Epydemix’s
utility as a comprehensive and scalable platform for epidemic modeling.

Epydemix is designed to foster an active and collaborative community of users and contributors. To facilitate this, the
package is released as open-source software under the GPL-3.0 license and is actively developed on GitHub [34]. The
platform provides a space for users to report issues, engage in discussions, and contribute to the development of new
features, helping us to ensure that the tool evolves in response to the needs of its user base. With its current capabili-
ties and planned extensions, we believe that Epydemix is positioned to become a valuable resource for researchers and
public health professionals, and to contribute to the reproducibility and accessibility of computational epidemic modeling
tools.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 15/ 18

https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 16 — #16 i
i

i
i

i
i

Supporting information

S1 Text. In this supplementary material we present additional analyses and clarifications on the package imple-
mentation and usage.
(PDF)

Author contributions

Conceptualization: Nicolò Gozzi, Matteo Chinazzi, Jessica T. Davis, Corrado Gioannini, Luca Rossi, Nicola Perra,
Alessandro Vespignani.

Formal analysis: Nicolò Gozzi.

Methodology: Nicolò Gozzi, Matteo Chinazzi, Jessica T. Davis, Corrado Gioannini, Luca Rossi, Marco Ajelli, Nicola
Perra, Alessandro Vespignani.

Software: Nicolò Gozzi, Corrado Gioannini, Luca Rossi.

Writing – original draft: Nicolò Gozzi, Nicola Perra, Alessandro Vespignani.

Writing – review & editing: Nicolò Gozzi, Matteo Chinazzi, Jessica T. Davis, Corrado Gioannini, Luca Rossi, Marco
Ajelli, Nicola Perra, Alessandro Vespignani.

References
1. Chowell G, Skums P. Investigating and forecasting infectious disease dynamics using epidemiological and molecular surveillance data. Phys Life

Rev. 2024;51:294–327. https://doi.org/10.1016/j.plrev.2024.10.011 PMID: 39488136

2. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. Approximate Bayesian computation. PLoS Comput Biol.
2013;9(1):e1002803. https://doi.org/10.1371/journal.pcbi.1002803 PMID: 23341757

3. Minter A, Retkute R. Approximate Bayesian Computation for infectious disease modelling. Epidemics. 2019;29:100368.
https://doi.org/10.1016/j.epidem.2019.100368 PMID: 31563466

4. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for parameter inference and model selection in
dynamical systems. J R Soc Interface. 2009;6(31):187–202. https://doi.org/10.1098/rsif.2008.0172 PMID: 19205079

5. Van den Broeck W, Gioannini C, Gonçalves B, Quaggiotto M, Colizza V, Vespignani A. The GLEaMviz computational tool, a publicly available
software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect Dis. 2011;11:37.
https://doi.org/10.1186/1471-2334-11-37 PMID: 21288355

6. Noll NB, Aksamentov I, Druelle V, Badenhorst A, Ronzani B, Jefferies G. COVID-19 Scenarios: an interactive tool to explore the spread and
associated morbidity and mortality of SARS-CoV-2. MedRxiv. 2020:2020–05.

7. Hladish T, Melamud E, Barrera LA, Galvani A, Meyers LA. EpiFire: an open source C++ library and application for contact network epidemiology.
BMC Bioinformatics. 2012;13:76. https://doi.org/10.1186/1471-2105-13-76 PMID: 22559915

8. Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart GR, et al. Covasim: an agent-based model of COVID-19 dynamics and
interventions. PLoS Comput Biol. 2021;17(7):e1009149. https://doi.org/10.1371/journal.pcbi.1009149 PMID: 34310589

9. Priest JD, Kishore A, Machi L, Kuhlman CJ, Machi D, Ravi SS. CSonNet: an agent-based modeling software system for discrete time simulation.
In: 2021 Winter Simulation Conference (WSC). 2021. p. 1–12. https://doi.org/10.1109/wsc52266.2021.9715287

10. Datseris G, Vahdati AR, DuBois TC. Agents.jl: a performant and feature-full agent-based modeling software of minimal code complexity.
SIMULATION. 2022;100(10):1019–31. https://doi.org/10.1177/00375497211068820

11. Abdulrahman I. SimCOVID: open-source simulation programs for the COVID-19 outbreak. SN Comput Sci. 2023;4(1):20.
https://doi.org/10.1007/s42979-022-01441-1 PMID: 36274814

12. Chao DL, Halloran ME, Obenchain VJ, Longini IM Jr. FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput
Biol. 2010;6(1):e1000656. https://doi.org/10.1371/journal.pcbi.1000656 PMID: 20126529

13. Grefenstette JJ, Brown ST, Rosenfeld R, DePasse J, Stone NTB, Cooley PC, et al. FRED (a Framework for Reconstructing Epidemic Dynamics):
an open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC Public Health.
2013;13:940. https://doi.org/10.1186/1471-2458-13-940 PMID: 24103508

14. Kühn MJ, Lenz P, Schmidt A, Koslow W, Bicker J, Schmieding R. MEmilio v1. 1.0-a high performance modular epidemics simulation software.
2024.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 16/ 18

https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013735.s001
https://doi.org/10.1016/j.plrev.2024.10.011
http://www.ncbi.nlm.nih.gov/pubmed/39488136
https://doi.org/10.1371/journal.pcbi.1002803
http://www.ncbi.nlm.nih.gov/pubmed/23341757
https://doi.org/10.1016/j.epidem.2019.100368
http://www.ncbi.nlm.nih.gov/pubmed/31563466
https://doi.org/10.1098/rsif.2008.0172
http://www.ncbi.nlm.nih.gov/pubmed/19205079
https://doi.org/10.1186/1471-2334-11-37
http://www.ncbi.nlm.nih.gov/pubmed/21288355
https://doi.org/10.1186/1471-2105-13-76
http://www.ncbi.nlm.nih.gov/pubmed/22559915
https://doi.org/10.1371/journal.pcbi.1009149
http://www.ncbi.nlm.nih.gov/pubmed/34310589
https://doi.org/10.1109/wsc52266.2021.9715287
https://doi.org/10.1177/00375497211068820
https://doi.org/10.1007/s42979-022-01441-1
http://www.ncbi.nlm.nih.gov/pubmed/36274814
https://doi.org/10.1371/journal.pcbi.1000656
http://www.ncbi.nlm.nih.gov/pubmed/20126529
https://doi.org/10.1186/1471-2458-13-940
http://www.ncbi.nlm.nih.gov/pubmed/24103508
https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 17 — #17 i
i

i
i

i
i

15. Sahneh FD, Vajdi A, Shakeri H, Fan F, Scoglio C. GEMFsim: A stochastic simulator for the generalized epidemic modeling framework. Journal of
Computational Science. 2017;22:36–44. https://doi.org/10.1016/j.jocs.2017.08.014

16. Gaudou B, Huynh NQ, Philippon D, Brugière A, Chapuis K, Taillandier P, et al. COMOKIT: a modeling kit to understand, analyze, and compare the
impacts of mitigation policies against the COVID-19 epidemic at the scale of a city. Front Public Health. 2020;8:563247.
https://doi.org/10.3389/fpubh.2020.563247 PMID: 33072700

17. Mortveit HS, Adams S, Dadgostari F, Swarup S, Beling P. BESSIE: a behavior and epidemic simulator for use with synthetic populations. 2022.
https://arxiv.org/abs/2203.11414

18. Kurtin DL, Parsons DA, Stagg SM. Vtes: a stochastic python-based tool to simulate viral transmission: introducing a modular simulation to
demonstrate how a virus may spread among a population. F1000Research. 2020;9:1198.

19. Mehrjou A, Soleymani A, Abyaneh A, Bhatt S, Schölkopf B, Bauer S. Pyfectious: An individual-level simulator to discover optimal containment
policies for epidemic diseases. PLoS Comput Biol. 2023;19(1):e1010799. https://doi.org/10.1371/journal.pcbi.1010799 PMID: 36689461

20. Liesenborgs J, Hendrickx DM, Kuylen E, Niyukuri D, Hens N, Delva W. SimpactCyan 1.0: an open-source simulator for individual-based models in
HIV epidemiology with R and Python interfaces. Sci Rep. 2019;9(1):19289. https://doi.org/10.1038/s41598-019-55689-4 PMID: 31848434

21. Holme P. Fast and principled simulations of the SIR model on temporal networks. PLoS One. 2021;16(2):e0246961.
https://doi.org/10.1371/journal.pone.0246961 PMID: 33577564

22. St-Onge G, Young J-G, Hébert-Dufresne L, Dubé LJ. Efficient sampling of spreading processes on complex networks using a composition and
rejection algorithm. Comput Phys Commun. 2019;240:30–7. https://doi.org/10.1016/j.cpc.2019.02.008 PMID: 31708586

23. Jacob M. Eir: a Python Package for Epidemic Simulation. JOSS. 2021;6(62):3247. https://doi.org/10.21105/joss.03247

24. Hinch R, Probert WJM, Nurtay A, Kendall M, Wymant C, Hall M, et al. OpenABM-Covid19-an agent-based model for non-pharmaceutical
interventions against COVID-19 including contact tracing. PLoS Comput Biol. 2021;17(7):e1009146. https://doi.org/10.1371/journal.pcbi.1009146
PMID: 34252083

25. Viard F, Acheson E, Allibert A, Sauve C, Leighton P. SamPy: a new python library for stochastic spatial agent-based modeling in epidemiology of
infectious diseases. 2022.

26. Liu Z, Li Y, Wei M, Wan G, Lau MS, Jin W. Epilearn: a python library for machine learning in epidemic modeling. arXiv preprint 2024.
https://doi.org/arXiv:240606016

27. Jenness SM, Goodreau SM, Morris M. EpiModel: an R package for mathematical modeling of infectious disease over networks. J Stat Softw.
2018;84:8. https://doi.org/10.18637/jss.v084.i08 PMID: 29731699

28. Groendyke C, Welch D. epinet: an R package to analyze epidemics spread across contact networks. J Stat Soft. 2018;83(11).
https://doi.org/10.18637/jss.v083.i11

29. Miller JC, Ting T. Eon (epidemics on networks): a fast, flexible python package for simulation, analytic approximation, and analysis of epidemics on
networks. arXiv preprint 2020. arXiv:200102436

30. Kiss IZ, Miller JC, Simon PL. Mathematics of epidemics on networks. Cham: Springer; 2017.

31. Howerton E, Contamin L, Mullany LC, Qin M, Reich NG, Bents S, et al. Evaluation of the US COVID-19 Scenario Modeling Hub for informing
pandemic response under uncertainty. Nat Commun. 2023;14(1):7260. https://doi.org/10.1038/s41467-023-42680-x PMID: 37985664

32. Moran KR, Lopez T, Del Valle SY. The future of pandemic modeling in support of decision making: lessons learned from COVID-19. BMC Glob
Public Health. 2025;3(1):24. https://doi.org/10.1186/s44263-025-00143-z PMID: 40128901

33. Li X, Chadwick F, Swallow B. Advances in approximate Bayesian inference for models in epidemiology. Epidemics. 2025;53:100855.
https://doi.org/10.1016/j.epidem.2025.100855 PMID: 40992245

34. Epydemix GitHub repository. 2025. https://github.com/epistorm/epydemix/

35. Epydemix tutorials. 2025. https://github.com/epistorm/epydemix/tree/main/tutorials

36. Epydemix Documentation. 2025. https://epydemix.readthedocs.io/en/latest/

37. Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals. Princeton University Press; 2008.

38. Epydemix Data GitHub Repository. 2025. https://github.com/epistorm/epydemix-data/

39. Mistry D, Litvinova M, Pastore Y Piontti A, Chinazzi M, Fumanelli L, Gomes MFC, et al. Inferring high-resolution human mixing patterns for disease
modeling. Nat Commun. 2021;12(1):323. https://doi.org/10.1038/s41467-020-20544-y PMID: 33436609

40. Prem K, Zandvoort K van, Klepac P, Eggo RM, Davies NG, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working
Group, et al. Projecting contact matrices in 177 geographical regions: An update and comparison with empirical data for the COVID-19 era. PLoS
Comput Biol. 2021;17(7):e1009098. https://doi.org/10.1371/journal.pcbi.1009098 PMID: 34310590

41. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol.
2017;13(9):e1005697. https://doi.org/10.1371/journal.pcbi.1005697 PMID: 28898249

42. UN World Population Prospects 2024. 2024. https://population.un.org/wpp/

43. Verelst F, Willem L, Beutels P. Behavioural change models for infectious disease transmission: a systematic review (2010-2015). J R Soc
Interface. 2016;13(125):20160820. https://doi.org/10.1098/rsif.2016.0820 PMID: 28003528

44. Funk S, Salathé M, Jansen VAA. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc Interface.
2010;7(50):1247–56. https://doi.org/10.1098/rsif.2010.0142 PMID: 20504800

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 17/ 18

https://doi.org/10.1016/j.jocs.2017.08.014
https://doi.org/10.3389/fpubh.2020.563247
http://www.ncbi.nlm.nih.gov/pubmed/33072700
https://arxiv.org/abs/2203.11414
https://doi.org/10.1371/journal.pcbi.1010799
http://www.ncbi.nlm.nih.gov/pubmed/36689461
https://doi.org/10.1038/s41598-019-55689-4
http://www.ncbi.nlm.nih.gov/pubmed/31848434
https://doi.org/10.1371/journal.pone.0246961
http://www.ncbi.nlm.nih.gov/pubmed/33577564
https://doi.org/10.1016/j.cpc.2019.02.008
http://www.ncbi.nlm.nih.gov/pubmed/31708586
https://doi.org/10.21105/joss.03247
https://doi.org/10.1371/journal.pcbi.1009146
http://www.ncbi.nlm.nih.gov/pubmed/34252083
https://doi.org/arXiv:240606016
https://doi.org/10.18637/jss.v084.i08
http://www.ncbi.nlm.nih.gov/pubmed/29731699
https://doi.org/10.18637/jss.v083.i11
arXiv:200102436
https://doi.org/10.1038/s41467-023-42680-x
http://www.ncbi.nlm.nih.gov/pubmed/37985664
https://doi.org/10.1186/s44263-025-00143-z
http://www.ncbi.nlm.nih.gov/pubmed/40128901
https://doi.org/10.1016/j.epidem.2025.100855
http://www.ncbi.nlm.nih.gov/pubmed/40992245
https://github.com/epistorm/epydemix/
https://github.com/epistorm/epydemix/tree/main/tutorials
https://epydemix.readthedocs.io/en/latest/
https://github.com/epistorm/epydemix-data/
https://doi.org/10.1038/s41467-020-20544-y
http://www.ncbi.nlm.nih.gov/pubmed/33436609
https://doi.org/10.1371/journal.pcbi.1009098
http://www.ncbi.nlm.nih.gov/pubmed/34310590
https://doi.org/10.1371/journal.pcbi.1005697
http://www.ncbi.nlm.nih.gov/pubmed/28898249
https://population.un.org/wpp/
https://doi.org/10.1098/rsif.2016.0820
http://www.ncbi.nlm.nih.gov/pubmed/28003528
https://doi.org/10.1098/rsif.2010.0142
http://www.ncbi.nlm.nih.gov/pubmed/20504800
https://doi.org/10.1371/journal.pcbi.1013735

i
i

“pcbi.1013735” — 2025/11/21 — 17:47 — page 18 — #18 i
i

i
i

i
i

45. Gozzi N, Perra N, Vespignani A. Comparative evaluation of behavioral-epidemic models using COVID-19 data. medRxiv. 2024:2024–11.

46. Del Moral P, Doucet A, Jasra A. An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat Comput.
2011;22(5):1009–20. https://doi.org/10.1007/s11222-011-9271-y

47. Drovandi CC, Pettitt AN. Estimation of parameters for macroparasite population evolution using approximate bayesian computation. Biometrics.
2011;67(1):225–33. https://doi.org/10.1111/j.1541-0420.2010.01410.x PMID: 20345496

48. Filippi S, Barnes CP, Cornebise J, Stumpf MPH. On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo.
Stat Appl Genet Mol Biol. 2013;12(1):87–107. https://doi.org/10.1515/sagmb-2012-0069 PMID: 23502346

49. Blackwood J, Childs L. An introduction to compartmental modeling for the budding infectious disease modeler. LiB. 2018;5(1).
https://doi.org/10.30707/lib5.1blackwood

50. Krylova O, Earn DJD. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics. J R Soc Interface.
2013;10(84):20130098. https://doi.org/10.1098/rsif.2013.0098 PMID: 23676892

51. Google LLC. Google COVID-19 Community Mobility Reports. 2020. https://www.google.com/covid19/mobility/

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013735 November 19, 2025 18/ 18

https://doi.org/10.1007/s11222-011-9271-y
https://doi.org/10.1111/j.1541-0420.2010.01410.x
http://www.ncbi.nlm.nih.gov/pubmed/20345496
https://doi.org/10.1515/sagmb-2012-0069
http://www.ncbi.nlm.nih.gov/pubmed/23502346
https://doi.org/10.30707/lib5.1blackwood
https://doi.org/10.1098/rsif.2013.0098
http://www.ncbi.nlm.nih.gov/pubmed/23676892
https://www.google.com/covid19/mobility/
https://doi.org/10.1371/journal.pcbi.1013735

	Epydemix: An open-source Python package for epidemic modeling with integrated approximate Bayesian calibration
	Introduction
	Related work
	Design and implementation
	Model definition and stochastic simulations
	Integration of real-world population demographic and contact patterns data
	Advanced modeling features
	Defining transition mechanisms.
	Time-varying and group-specific parameters.
	Non-pharmaceutical interventions and behavioral changes.

	Model calibration
	Visualization

	Results
	Example usages
	Model definition and simulation.
	Model calibration.

	Modeling COVID-19 in Massachusetts

	Availability and future directions
	References

