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Abstract 

How animals process information, compute, and execute behaviors is a central ques-

tion in neuroscience and computational biology. Predators attack prey by chasing or 

ambushing them, while prey respond with escaping or freezing. These behaviors are 

fundamental for survival. Uncovering functions of such behaviors requires an under-

standing not only of the implementation of neuronal circuits but also of the underlying 

algorithms and computation. However, how animals respond to predators or prey 

depending on whether they can detect them from a distance remains unclear. Here, 

we modeled and analyzed attack and defense behaviors with game theory. Using 

encounter probabilities to construct payoff matrices under a sensory–motor algo-

rithm that lacked directional information, we identified the corresponding equilibrium 

behaviors for the agents (predators and prey). Different detection distances yielded 

distinct Nash equilibrium behaviors, representing a computational mechanism that 

can account for diverse attack and defense behaviors. The games based on inter-

actions among multiple predators and prey were, in most cases, non-constant-sum 

and positive-sum games. Measured payoffs of Nash equilibrium behaviors indicated 

that the predators were able to increase their payoffs by attacking, and the prey were 

also able to increase their payoffs even in the presence of predators. These results 

suggest that each of the agents initiates attack and defense behaviors. Moreover, 

Nash equilibrium behaviors were also identified under a simpler non-sensory motor 

algorithm. Despite the similarity, the non-sensory motor algorithm and the sensory–

motor algorithm had distinct adaptive significance. The sensory–motor algorithm pro-

duced substantially greater prey payoffs. By implementing these algorithms, agents 

interact in ways that give rise to payoff matrices from which various Nash equilibrium 

behaviors can be mathematically derived under different conditions. Furthermore, 

this approach offers an experimental framework for understanding behavioral evo-

lution and suggests a possible difference in evolutionary mechanisms of attack and 

defense behaviors.
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Author summary

Predators attack prey by chasing or ambushing, while prey respond to predator 
threats with defense behaviors such as escaping or freezing. These behaviors 
are fundamental survival strategies for predators and prey (agents). However, 
how animals respond to predators or prey depending on whether they can detect 
them from a distance remains unclear. Using individual-based models, we simu-
lated and analyzed predator–prey interactions and computed the Nash equilibria 
of the resulting payoff matrices; at these equilibria, no agent can increase its 
payoff by a unilateral deviation. Different detection distances resulted in distinct 
Nash equilibrium behaviors, including chasing and ambushing by predators, 
escaping and freezing by prey, and their combinations. Furthermore, predators 
can increase their payoffs by attacking, and prey can also increase their payoffs 
even in the presence of predators, suggesting that attack and defense may be 
initiated automatically. The results indicate a computational mechanism that gen-
erates various attack and defense behaviors. Finally, we suggest that attack and 
defense behaviors may follow different evolutionary mechanisms. This is due to 
asymmetries in predator–prey interactions because predators can learn through 
trial and error, whereas prey cannot learn from fatal defense failures.

Introduction

Attacking prey and defending against predators are basic survival behaviors. Attack 
and defense behaviors are traits in which predators capture prey animals, and prey 
animals evade predators, respectively. Predators find and attack their prey by chas-
ing (i.e., actively increasing their speed) or ambushing (i.e., stopping their movement, 
passively waiting, and making a surprise attack) [1,2]. On the other hand, threat stim-
uli such as predator smells, looming shadows, and warning sounds, automatically 
evoke defense behaviors in prey animals, including escaping (i.e., actively increasing 
their speed) and freezing (i.e., stopping their movement and passively waiting for the 
threat to pass) [3–15]. It has been argued that predator and prey behaviors influence 
the spatial arrangement between them, resulting in differences in interaction probabil-
ity—here defined as the encounter probability—and directly impacting predation [16].

How predators capture prey and how prey evade predators are challenges in 
information processing that are likely to recur frequently in predator–prey interactions. 
Neuronal circuits implementing attack and defense behaviors physically embody 
programs at the algorithmic level, allowing for the efficient computation of solutions to 
these information-processing problems at the computational level, as described in the 
three levels postulated by Marr: implementation, algorithm, and computation [8,17]. 
Recent studies have demonstrated that the fundamental mechanisms of defense 
behaviors in mice are innate and executed by genetically hard-wired neuronal circuits 
[3,18–21], elucidating the level of implementation of these defense behaviors. How-
ever, algorithms and computations underlying attack and defense behaviors have 
been overlooked.
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Therefore, numerically evaluating the modifications in the encounter probabilities caused by the agents’ behaviors aids 
in understanding the algorithms and computations of the behaviors. As proposed by Lima [22], this requires modeling 
the strategic behaviors of both predator and prey, allowing the mutual influence of attack and defense behaviors on their 
payoffs, based on the encounter probabilities, to be analyzed using game theory [22–28]. In line with this approach, pre-
vious studies have described predator–prey interactions as a two-player, noncooperative zero-sum game and analytically 
elucidated the outcomes [29–31]. Chen et al. (2005) modeled the predator’s attack (pursuit, ambush) and prey’s defense 
behaviors (escape, hide) [29]. Zoroa et al. (2011) formulated sit-and-wait and active predation behaviors for predators to 
search for food [30]. Alpern et al. (2019) focused on the search-pursuit interaction as a stochastic iterative game in which 
both agents move [31]. The solution to the game is defined by the Nash equilibrium [32]. The Nash equilibrium behaviors 
illustrate how agents engage in specific behavioral patterns and achieve stable payoffs, where neither the predators nor 
the prey increase their payoffs by changing their behaviors [22,31,33,34]; however, previous studies have not determined 
the Nash equilibrium. Determining the Nash equilibrium presents challenges due to the complexity of the involved compo-
nents. For example, multiple defense behavioral processes occur when a prey animal encounters a predator. Individual 
prey animals sense multiple stimuli, pay attention to the spatial locations of each stimulus source, select salient stimuli, 
compare the competing events in the situation, make a decision, drive their motor systems under temporal and spatial 
regulation, evade danger, and survive [15]. This study addresses this challenge and identifies Nash equilibria for attack–
defense interactions using numerical simulations.

To understand the algorithms and computations underlying attack and defense behaviors, this study does not repro-
duce the complexity of the behaviors but idealizes the behaviors and presents them as interactions between a single 
predator and a single prey animal, or between multiple predators and prey animals in an individual-based model (IBM). An 
IBM has been previously used to study how the behaviors of predators (learning, attack timing, and movement) and prey 
(random movement, vigilance, and preferred area) affect each other’s habitat spatial distribution, thereby altering encoun-
ter probabilities [35]. In this study, we modeled attack and defense behaviors using an algorithm of sensory and motor 
abilities, where the agents move at a constant speed by default, use the distance from the opponent as the sensory input 
[36], and change the speed as the motor output, although the agents have no directionality regarding which direction the 
opponent is or in which direction they move. Based on this framework, we computed Nash equilibria in attack and defense 
behaviors between the predator and prey [37]. A variety of Nash equilibrium behaviors were observed depending on the 
sensory abilities, including chasing and ambushing in predators, escaping and freezing in prey, and behavioral switching 
in both agents. Moreover, Nash equilibria were also identified in a simple algorithm without sensory input (non-sensory 
motor algorithm). Furthermore, the non-sensory motor and sensory–motor algorithms differed in adaptive significance, 
resulting in distinct outcomes for the agents. Finally, we discuss possible differences in the evolutionary mechanisms of 
attack and defense behaviors.

Results

Nash equilibria for attack and defense in a single predator and a single prey game

We first examined attack and defense behaviors between a single predator and a single prey species in a grid environ-
ment (Figs 1A, S1A). Grid worlds, commonly used in artificial intelligence and reinforcement learning, are abstract envi-
ronments composed of lattice-like arrangements of squares [38], and are also referred to as lattice models in the field of 
ecology [39]. In this setting, agents moved between adjacent squares at a constant speed (default speed = 1), sensed 
the opponent within a certain range, and changed their speed accordingly. The available behaviors were decreasing 
the speed to 0, maintaining it at 1, or increasing it to 2, corresponding to ambush, no change, and chase behaviors for 
predators, and freeze, no change, and escape behaviors for prey. The predators and prey were nicknamed “wolves” 
(w) and “sheep” (s), respectively. The variables and measurements used in the simulations are listed in Tables 1 and 2, 
respectively.
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Each agent was characterized by its sensory ability (detection distance, Di) (i = w and s) and motor ability (magnitude of 
speed change, Si) upon detecting an opponent. However, agents had no information regarding their own heading or the rel-
ative position of the opponent, thus operating without directional information. Different combinations of Di and Si determined 

Fig 1.  Attack and defense behaviors with the sensory–motor algorithm between a single predator and a single prey. A illustrates attack and 
defense behaviors between a single predator and a single prey (agents) in the grid world. Three time steps are shown (t1, t2, t3). The dotted lines illus-
trate their sensory abilities of detection ranges (Dw = 2 for the predator [wolf] and Ds = 2 for the prey [sheep]). At t1, when both agents detect no opponent, 
they move 1 grid per time step. The shaded grids represent possible positions they could move to at the next time step. If they detect the other at t2, 
they adjust their speeds by Si (i = w for wolf and s for sheep), changing their speed to 1 + Si. Aa shows a case where Sw = Ss = 1. The wolf chases the 
sheep (1 + Sw = 2), and the sheep escapes (1 + Ss = 2). If both occupy the same grid cell, as shown by the arrows in Aa-t2, the wolf eats the sheep at t3. 
For the illustrations of the wolf and sheep, we used open-source images from Openclipart (https://openclipart.org/detail/254708/wolf-silhouette-2; https://
openclipart.org/detail/174830/sheep). B illustrates landscape diagrams that depict encounter probabilities based on combinations of detection distance 
(Di). The diagrams show nine combinations, ranging from Ds = 0 and Dw = 2 (a) to Ds = 2 and Dw = 0 (i). In each landscape, the x-axis represents the 
sheep’s speed change (Ss), while the y-axis represents the wolf’s speed change (Sw). Encounter probabilities (p) associated with different combinations 
of Di and Si are color-coded within each landscape. High and low probabilities are indicated in dark brown and dark blue, respectively. C presents the 
Nash equilibrium behaviors on the same coordinates as the landscape diagrams. The positions of circles in each diagram indicate the prey’s and the 
predator’s Nash equilibrium speed changes (S̅s and S̅w) on the x and y axes, respectively (a–i). The diameter of each circle reflects the occurrence prob-
ability of the behaviors (o̅i). Blue circles represent cases where Nash equilibrium behavior is uniquely determined (diameter of 1), while orange circles 
indicate cases where behaviors are performed probabilistically.

https://doi.org/10.1371/journal.pcbi.1013730.g001

https://openclipart.org/detail/254708/wolf-silhouette-2
https://openclipart.org/detail/174830/sheep
https://openclipart.org/detail/174830/sheep
https://doi.org/10.1371/journal.pcbi.1013730.g001
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Table 1.  Variables of simulations.

Variables The sensory–motor algorithm

d Sensory trait

dw d of predators (wolves)

ds d of prey (sheep)

D Distance to detect the opponent*

Dw D of predators (wolves)

Ds D of prey (sheep)

The non-sensory motor algorithm

K Probability of a speed change

Kw K of predators (wolves)

Ks K of prey (sheep)

Common in both algorithms

S Motor trait for the magnitude of speed change†

Sw S of predators (wolves)

Ss S of prey (sheep)

cb Behavioral cost coefficient in the NetLogo world

r Reproduction coefficient of predators in the NetLogo world

* The distance to detect an opponent (Di) (i = w, s) is di multiplied by the sensitivity factor f (Di = di × f, where 
f = 10). †Motor traits are represented by the magnitude of speed change (Si). When agents detect an oppo-
nent within radius Di, they change their speed to 1 + Si in the sensory–motor algorithm. The agents change 
their speed to 1 + Si with a probability of Ki in the non-sensory motor algorithm.

https://doi.org/10.1371/journal.pcbi.1013730.t001

Table 2.  Measurements of simulations.

Measurements

p Encounter probability in the grid world

E Encounter frequency in the NetLogo world

Nw Number of predators (wolves) in the NetLogo world

Ns Number of prey (sheep) in the NetLogo world

pw Encounter probability of predators (pw = E/Nw)

ps Encounter probability of prey (ps = E/(E + Ns))

Pw Payoff of the predator in the NetLogo world (Pw = pw)

Ps Payoff of the prey in the NetLogo world (Ps = 1 − ps)

Pdiff Difference between the prey and predator payoffs (Pdiff = Ps − Pw)

S Nash equilibrium magnitude of speed change

S
w

S of predators (wolves)

S
s

S of prey (sheep)

P Nash equilibrium payoff

Pw P of predators (wolves)

Ps P of prey (sheep)

o Occurrence probability of a Nash equilibrium behavior

o
w

oof predators (wolves)

o
s

oof prey (sheep)

https://doi.org/10.1371/journal.pcbi.1013730.t002

https://doi.org/10.1371/journal.pcbi.1013730.t001
https://doi.org/10.1371/journal.pcbi.1013730.t002


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013730  November 21, 2025 6 / 30

the behavioral responses of the agents. Fig 1A illustrates a representative example in which the predator chases and the 
prey escapes (Ds = Dw = 2 and Ss = Sw = 1). Initially (t1), neither agent detects the opponent, as they are outside each other’s 
detection range (indicated by the dotted lines), and they move to adjacent shaded grids, which represent their possible next 
positions. At the next time step (t2), both agents detect each other, increase their speed to 2, and move to new shaded grids. 
If both agents are located at the same grid at the final time step (a-t2), they encounter and predation occurs (t3). To simplify 
the analysis, we defined “encounter” as synonymous with predation. Other scenarios, including ambush-escape (Sw = −1, 
Ss = 1), ambush-freeze (Sw = −1, Ss = −1), and chase-freeze (Sw = 1, Ss = −1) combinations, are also illustrated (S1A Fig).

Rather than simulating agent movements over multiple time steps in a finite grid, we calculated encounter probabilities 
(p) based on a single-step forward transition from initial positions where interactions could occur, under different combi-
nations of Di and Si. p was calculated as (number of encounters)/(total number of cases), enumerating all initial preda-
tor–prey positions and both agents’ post-first-step headings under detection-informed and uninformed behavior (S1 File). 
When Di = 2, agents could detect each other at the outer edge of the detection range, and combinations in which they 
were adjacent were excluded. In our setting, because encountering a predator leads directly to predation, p was equiv-
alent to the probability of predation, and 1 − p to the probability of evading predation. Landscape diagrams illustrating p 
values for nine combinations of Di are shown in Fig 1B. These diagrams show that, under the sensory–motor algorithm 
without directionality, combinations of behaviors produce diverse encounter probabilities. Comparing the colors across 
small squares showed that p depended not only on the agent’s own Si but also on the opponent’s Si and both Di values.

We then regarded p and 1 − p as the predator’s and prey’s payoffs, respectively, and constructed 2-player payoff 
matrices (S1 Data, S11 Data). Because the sum of payoffs was constant (p + (1 − p) = 1), the games were noncooperative 
constant-sum games. To determine game-theoretic solutions, we calculated the Nash equilibria from these payoff matri-
ces for each Di combination. The Nash equilibrium values of Si are denoted as S i for each agent. The S i values for all Di 
combinations were plotted at corresponding coordinates on the payoff landscapes (Fig 1C, S2 Data).

We identified a single different Nash equilibrium behavior as a pure strategy, depending on the combination of the 
agents’ sensory abilities. In particular, the prey’s sensory ability (Ds) had a substantial effect on the Nash equilibrium 
behaviors of both agents. For the predator, Sw tended to depend on the prey’s Ds. When Dw = 1, predators adopted 
ambush (Sw = −1) if Ds = 0 (Fig 1Cd), and no change (Sw = 0) if Ds = 1 (Fig 1Ce). When Ds = 2, predators showed no pref-
erence, with all Sw value providing equivalent payoff (Fig 1Cf and 1 Ci). For the prey, Ss tended to depend on its own Ds. 
When Ds = 1, prey adopted escape (Ss = 1) (Fig 1Ce and 1Ch). When Ds = 2, prey adopted freeze (Ss = −1) (Fig 1Cf and 
1 Ci). Because freezing at long range is counterintuitive when prey have a detection-range advantage, we recomputed 
p including adjacent configurations at Di = 2, which is equivalent to permitting a two-step interaction (S2 File). Under this 
setting, the prey’s Nash equilibrium became escape when the prey’s detection range exceeded the predator’s (S1Cf and 
S1Ci Fig), indicating that the previous freeze was due to the single-step assumption, and that the more realistic escape 
equilibrium was identified once two-step interactions were allowed, consistent with the NetLogo model described in the 
next section. Similar to predators, when Dw = 2, prey showed no clear preference across Ss values (Fig 1Ca and 1Cb).

When both agents detected each other two grids apart (Dw = Ds = 2), they adopted mixed strategies, changing their 
speeds probabilistically rather than deterministically (Fig 1Cc). The occurrence probabilities (o i) for each behavioral choice 
were indicated by the diameters of the orange circles. Specifically, prey escaped (Ss,1 = 1) with a probability of 0.363, 
maintained speed (Ss,2 = 0) with 0.499, and froze (Ss,3 = −1) with 0.139. Similarly, predators chased (Sw,1 = 1) with 0.363, 
maintained speed (Sw,2 = 0) with 0.499, and ambushed (Sw,3 = −1) with 0.139. In contrast, when neither agent detected the 
opponent (Dw = Ds = 0), no meaningful behavior change occurred and S i could take any value (Fig 1Cg).

Nash equilibria for attack and defense based on multiple predators and prey interactions

The game in the grid world did not incorporate agent densities, costs dependent on sensory and motor traits, or costs 
dependent on the resulting speed. Therefore, drawing on concepts from evolutionary game theory [40–42], we developed 
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an IBM that considers the effects in which multiple agents move, eat food, reproduce, pay costs, and die [35]. Using a 
programming language and an integrated development environment called NetLogo [43], we created a simulator to empir-
ically solve the game (Fig 2A and 2B, S1 Movie, S3 File). This approach is called empirical game-theoretic analysis [44].

In the IBM, the agents had a sensory trait (di) and a motor trait (Si), both defined without directional information. The 
sensory ability (detection distance Di) was determined as Di = di × f, where f is a constant coefficient representing the sen-
sory sensitivity (factor sensitivity, f = 10), and Di took values of 0, 1, 2, and 3. We introduced the coefficient f to normalize 
trait values to a common range (0–0.3) between the sensory–motor (di) and non-sensory motor algorithms (Ki, where Ki 
represents the probability of speed change), enabling direct comparison. The motor traits, representing changes in speed, 
Si, took values from −1–1 in increments of 0.2 (−1, −0.8, −0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8, 1). The cost dependent 
on the sensory and motor traits was the sum of the sensory trait (di) and the absolute value (abs) of the Si multiplied by 
the behavioral cost coefficient (cb); that is, (di + abs(Si)) × cb, which corresponds to the cost associated with implementing 
neuronal circuit mechanisms for the behaviors. The cost dependent on the resulting speed was (1 or 1 + Si) multiplied by 
a constant, that is, the movement cost coefficient (cm). Therefore, different values were subtracted from the energy of the 
agent at each time point when the agent changed or did not change its speed.

Combinations of Di and Si determined the agents’ behaviors. By design, predator and prey agents were homogeneous 
and shared identical sensory and motor traits. These behavioral combinations influenced the population-level number of 
predator–prey encounter events per time step (encounter frequency, E), which in turn affected the numbers of agents (Ni). 
We assumed interactions occurred in a homogeneous, well-mixed population. Under this assumption, we approximated 
per-agent encounter number by the population-level E as an intermediate variable and applied E uniformly when evaluat-
ing payoffs. Using E and Ni, we then computed the encounter probability at each time step.

In the NetLogo program, E and Ni were recorded after agent interactions. The number of predators (Nw) included both 
encountered and unencountered predators, whereas the number of prey (Ns) excluded prey that were removed due to 
predation. Thus, predator and prey encounter probabilities (pw and ps) were calculated as E/Nw and E/(E + Ns), respectively.

In general, predation consists of both pre- and post-encounter processes [35], but in the IBM, these processes were 
simplified by treating the encounter itself as predation. In this framework, predators gain energy by eating prey, and prey 
gain energy by eating grass after evading the encounter in the IBM (S1 Table). Under the assumption of uniform inter-
actions in a well-mixed environment, we approximated per-agent payoffs by the population-level payoffs based on the 
encounter probabilities. Accordingly, we defined agents’ payoffs (Pi) as follows: predator payoffs (Pw = pw), and prey payoffs 
(Ps = 1 − ps). Because Pi fluctuated over time, we averaged Pi to obtain statistically stationary values after the transient in 
the simulation had settled. These calculations mapped behavioral combinations (Di and Si) to the outcomes (Pi).

Fig 2C depicts the landscapes of E with the values of cb (= 0.02) and the reproduction coefficient of the predators 
(r = 3.6). When Ds = 0 or 1, the E landscape shifted smoothly with changes in Si (Fig 2Ca, 2Cb, 2Ce, 2Cf, 2 Ci, 2Cj, 2 Cm, 
and 2Cn). However, when Ds = 2 or 3, E showed discontinuous drops at Ss = 0 (Fig 2Cc, 2 Cd, 2 Cg, 2Ch, 2Ck, 2Cl, 2Co, 
and 2Cp), indicating a marked decrease in E when prey changed speed. The Ps landscape was similar to the pattern of 
E with inverted colors (Fig 2D); prey obtained greater payoffs when they modified their speeds (Fig 2Dc, 2Dd, 2Dg, 2Dh, 
2Dk, 2Dl, 2Do, and 2Dp). By contrast, the Pw landscapes shifted smoothly and continuously without discontinuous transi-
tions (Fig 2E).

Although the IBM included many agents, we treated the entire population as a pool of potential players engaging in 
pairwise contests in a two-player game [45], rather than assuming that every individual was a player. Under a homo-
geneous, well-mixed, statistically stationary population, we used the population-level per-step encounter probability to 
define per-agent normalized payoffs Pi. Unlike the standard construction that builds a payoff matrix from an isolated single 
pairwise interaction, this pool-of-players approach aggregated simultaneous multi-agent interactions, thereby capturing 
density-dependent (population-mediated) effects in predator–prey games that the single-pair method did not reveal. The 
resulting bimatrix of Pi was constructed as the payoff matrix of a game in which each agent selected one of 11 motor 
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Fig 2.  Attack and defense behaviors with the sensory–motor algorithm between multiple predators and prey. A illustrates the agents’ behav-
iors—predators (wolves, w) and prey (sheep, s)—in the NetLogo world. Both agents move at a default speed of 1 per time step. When they detect the 
opponent within a detection distance (Di) (i = w or s), they change their speed in a new speed of 1 + Si. Dw and Ds are shown as red and blue circles, 
respectively. In this illustration (Sw > 0 and Ss > 0), they increase their speeds, corresponding to chase in predator and escape in prey, respectively. For 
the illustrations of the wolf and sheep, we used open-source images from Openclipart (https://openclipart.org/detail/254708/wolf-silhouette-2; https://
openclipart.org/detail/174830/sheep). B shows the NetLogo world, where green grass grows on brown soil. Wolves (in black) move, lose energy, gain 
energy by eating prey, reproduce, and die if their energy reaches zero. Sheep (in white) move, eat grass to gain energy, reproduce, and die either 
from predation or when their energy reaches zero. C represents landscape diagrams showing encounter frequency (E) between predators and prey 
with the values of the behavioral cost coefficient (cb = 0.02) and reproduction coefficient of the predators (r = 3.6). Sixteen landscapes depict different 

https://openclipart.org/detail/254708/wolf-silhouette-2
https://openclipart.org/detail/174830/sheep
https://openclipart.org/detail/174830/sheep
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strategies (Si), conditioned on its specific sensory ability (Di) (S3 Data). Then, we computed Nash equilibrium speed 
change S i values (S4 Data).

This analysis confirmed that Nash equilibrium behaviors depended on combinations of agents’ sensory abilities, par-
ticularly the prey’s. We plotted S i values on the payoff landscape (Fig 2F). Blue circles represent pure strategies with a 
probability of 1 (o i = 1). For the predator, Sw tended to depend on the opponent Ds. When Ds = 0, Sw > 0 (chase) was preferred 
(Fig 2Fa, 2Fe, and 2Fi). When Ds ≠ 0, Sw < 0 (ambush) was preferred (Fig 2Fb, 2Fc, 2Fd, and 2Ff). For the prey, Ss  
tended to depend on Ds. When D

s
 ≠ 0, Ss > 0 (escape) was adopted (Fig 2Fb, 2Fc, 2Fd, 2Ff, 2Fh, 2Fj, 2Fk, 2Fl, 2Fn, 2Fo, 

and 2Fp). When the predator did not detect prey or detected prey only at close ranges, or the prey detected predators from 
afar (Dw = 0, 1, 2, and Ds = 3, or Dw = 0, 1, and Ds = 1, 2), the predator was extinct; therefore, the Sw was not determined and 
assumed any value (Fig 2Fh, 2Fj, 2Fk, 2Fl, 2Fn, 2Fo, and 2Fp). When the prey did not detect the predator or change its 
speed (Dw = 1, 2, 3, and Ds = 0), the prey adopted Ss = −1, −0.8, 0.8, or 1, where high costs were required for the motor traits 
(Fig 2Fa, 2Fe, and 2Fi). Therefore, depending on Di, the S i value was determined; the effect of Ds on S i is noticeable.

When both agents detected each other from afar (Dw = Ds = 2), sets of probabilistic behavior switching constituted Nash 
equilibria located at the diagram corners (Fig 2Fg, orange circles). Four types of behavioral pairs identified probabilisti-
cally: chase×escape, ambush×escape, ambush×freeze, and chase×freeze. The predators chased (Sw,1

 = 1) with a proba-
bility of 0.462 and ambushed (Sw,2

 = −1) with 0.538. The prey escaped (Ss,1
 = 1) with 0.605 and froze (Ss,2

 = −1) with 0.395 
(Table 3). The effects of Nash equilibrium behavioral switching were further examined in a subsequent section.

When both agents failed to detect opponents and did not change their speeds (Dw = Ds = 0), S i values were located at 
diagram corners with large absolute values of motor traits (Fig 2Fm). This was likely because the high cost of the motor 
traits reduced E (Fig 2Cm), indirectly increasing Ps (Fig 2Dm). Furthermore, Nash equilibrium results for all cb (0, 0.001, 
0.02, 0.04) and r (3.2, 3.6, 4.0) are shown in S2–S5 Figs, demonstrating that distinct Nash equilibrium combinations were 
identified under varying conditions.

The Nash equilibrium behavioral payoffs in attack and defense.
To examine effects of the Nash equilibrium behaviors on agents, we assigned each agent sets of detection distance 

Di and Nash equilibrium speed change S i (S5 Data) to perform the Nash equilibrium behaviors in the IBM (S4 File) and 
measured encounter frequency (E), numbers of agents (Ni), and the Nash equilibrium payoffs (P i) (S6 Data).

Table 3.  Occurrence probabilities of behavioral switching in multi-agent predator–prey interactions 
when both Dw and Ds are 2.

Agent Behaviors

Predator S
w,1

 = 1 (chase) S
w,2

 = −1 (ambush)

Probability 0.462 0.538

Prey S
s,1

 = 1 (escape) S
s,2

 = −1 (freeze)

Probability 0.605 0.395

The Nash equilibrium is a mixed strategy when both Dw and Ds are 2; agents switch their behaviors ran-
domly with the indicated occurrence probabilities.

https://doi.org/10.1371/journal.pcbi.1013730.t003

combinations of agents’ detection distance, Di (= 0, 1, 2, 3). In each landscape, the x-axis represents the prey’s speed change (Ss) and the y-axis rep-
resents the predator’s speed change (Sw). E is color-coded. Darker brown represents higher frequencies and darker blue indicates lower frequencies. 
D and E show landscape diagrams for prey and predator payoffs (Ps and Pw), respectively, following the same Di and Si combinations, and color codes 
as in C. F depicts Nash equilibrium behaviors. The circle positions represent the Nash equilibrium speed change of prey (S̅s) and predators (S̅w) on the 
x and y axes, respectively, in each diagram. Circle diameters reflect the occurrence probabilities (o̅i) of these behaviors. Blue circles indicate uniquely 
determined behaviors (o̅i = 1). Orange circles represent probabilistic behaviors (0 < o̅i < 1) which result in four behavioral pairs located at the corners of the 
landscape: chase and escape (1), ambush and escape (2), ambush and freeze (3), and chase and freeze (4) in Fg.

https://doi.org/10.1371/journal.pcbi.1013730.g002

https://doi.org/10.1371/journal.pcbi.1013730.t003
https://doi.org/10.1371/journal.pcbi.1013730.g002
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In this framework, the game based on the multiple predators–prey interactions is constant-sum only under specific con-
ditions: when the agents do not encounter each other (E = 0) or when the numbers of agents before interaction are equal 
(Nw = E + Ns). Under these conditions, the sum of payoffs is exactly one (Ps + Pw = 1 − E/(E + Ns) + E/Nw = 1). However, in 
general, when encounters occur (E ≠ 0) and Nw ≠ E + Ns, the sum deviates from one (Ps + Pw ≠ 1). Moreover, when the total 
number of prey and encounters (E + Ns) is greater than the number of predators (Nw), the sum of payoffs becomes greater 
than one (Ps + Pw > 1). This positive-sum condition arises because E/Nw − E/(E + Ns) > 0.

Actual measurements confirmed that the game is non-constant and positive-sum in most cases. Fig 3Aa presents a 
scatter plot showing Ns on the x-axis and Nw on the y-axis, with a reference line indicating Ns = Nw. Most data points were 
located below the line, indicating that prey generally outnumber predators (Ns > Nw). Fig 3Ab, 3Ac, 3Ad, and 3Ae present 
scatter plots with E on the x-axis and, respectively, Ns, Ps, Nw, and Pw on the y-axis. As E increased, Ns and Ps decrease 
(Fig 3Ab and 3Ac). However, because Nw was proportional to E (Fig 3Ad), Pw did not change markedly as E increased 
(Fig 3Ae). We scatter-plotted all the data of P i for all cb and r values for Ps and Pw on the x and y axes, respectively, with a 
reference line at Ps + Pw = 1 (Fig 3Af). Most of the points were located in the upper-right area, indicating that the sum of P i 
is greater than 1 (Ps + Pw > 1), as predicted.

The finding that the game is positive-sum in most cases suggests the possibility of conditions under which both agents 
can obtain greater payoffs together. To explore this possibility further, we investigated the effects of detection distance 
Di on Nash equilibrium payoffs P i. To examine the effects of Ds, we compared P i between different values of Ds, with a 
constant value for Dw. As Ds increased, E decreased (the dark blue points shifted to the left side of Fig 3B), resulting in 
increasing Ps (the dark blue points shifted to the upper side of Fig 3B). These results indicated that the prey’s Nash equi-
librium defense reduced encounters and increased prey payoffs.

To examine the effects of Dw, we next compared the P i between different Dw, holding Ds constant. The effects of Dw 
were dependent on Ds. When Ds = 0, as Dw increased, E did not change markedly; however, Nw decreased (the dark brown 
points shifted to the lower side of Fig 3Ca), resulting in increasing Pw (Pw = E/Nw) (the dark brown points shifted to the 
upper side of Fig 3Cb). Additionally, the decrease in Nw led to an increase in Ns (the dark brown points shifted to the right 
side of Fig 3Cc), which further increased Ps (Ps = 1 − E/(E + Ns)) (the dark brown points shifted to the right side of Fig 3Cd). 
Consequently, as Dw increased, both Pw and Ps increased simultaneously (the dark brown points shifted to the upper right 
in Fig 3Cd).

These results suggest that when predators detect prey from a greater distance and attack according to the Nash equi-
librium under conditions without prey defense, both predators’ and prey’s payoffs can increase. This outcome is due to 
a decrease in the number of surviving predators and an increase in prey numbers. These results suggest that prey may 
indirectly gain higher payoffs in the presence of predators, due to increased competition among the predators. Importantly, 
these findings were independent of cb and r. Plots of the E-Ni, E-P i, Ni, and P i for different Di values are shown in S6 and 
S7 Figs. For comparison, all plots of the Nash equilibrium payoffs in the grid world are shown in S8 Fig, which illustrates a 
noncooperative, constant-sum game.

Effects of Nash equilibrium behavioral switching

The Nash equilibrium behaviors exhibited either pure or mixed strategies, depending on the combinations of detection 
distances (Ds, Dw). Mixed strategies were observed for the combinations (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), 
and (3, 3) for all cb and r conditions. These mixed strategies resulted in probabilistic switching between behaviors; preda-
tors switched between chasing and ambushing, and prey switched between escaping and freezing (Fig 2Fg; S2Df, S2Ff, 
S2Fg, S3Bg, S3Dg, S3Ff, S3Fg, S3Fj, S3Fl, S4Dg, and S4Fg Figs).

To explore the functional consequences of behavioral switching, we analyzed the actual measurements of P i. Accord-
ingly, we compared encounter frequency (E) with and without switching specifically for the detection distances combi-
nations (Ds, Dw) that exhibited mixed strategies across all cb and r values. Within the same (Ds, Dw) condition, runs that 
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Fig 3.  Effects of Nash equilibrium attack and defense behaviors with the sensory–motor algorithm on encounters, agent numbers, and pay-
offs. A shows scatter plots of all data for the behavioral cost coefficients (cb) and the reproduction coefficients of predators (r), illustrating the relation-
ships among the number of agents (Ni), encounter frequency (E), and payoff (P̅i) (where i = w for wolf and s for sheep), based on actual measurements 
obtained by assigning Nash equilibrium behaviors. Aa shows a scatter plot of Ns on the x-axis and Nw on the y-axis, along the line Ns = Nw. Ab, Ac, Ad, 
and Ae show scatter plots of E on the x-axis against Ns, P

̅
s, Nw, and P̅w on the y-axis, respectively. Af shows a scatter plot of P̅s on the x-axis and P̅w on 
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exhibited behavioral switching showed higher encounter frequencies (E > 4) than runs without switching (Fig 3Da). This 
increase in E was particularly observed when the prey’s detection distance (Ds) was small (Ds = 1) (Fig 3Db), whereas it 
was largely independent of the predators’ detection distance (Dw) (Fig 3Dc).

Next, we classified behaviors into three groups: behavioral switching with E > 4 (dark orange), behavioral switching 
with E ≤ 4 (orange), and no switching (blue), and then compared the occurrence probabilities (o i), agent numbers (Ni), 
and Nash equilibrium payoffs (P i) across these groups. In the scatter plots of o i (Fig 3Dd), all switching behaviors were 
broadly distributed whereas those with E > 4, in particular, were centered. This indicates that the switching probabilities 
between the two behaviors were near 0.5, suggesting a near-random choice between the two behaviors, with no clear 
preference. Such near-random switching likely contributed to the unpredictability of agent behaviors.

Behavioral switching with E > 4 led to increased predator numbers (Nw) and decreased prey numbers (Ns) (Fig 3De). As a 
consequence, prey payoffs (Ps) decreased, whereas predator payoffs (Pw) remained relatively stable (Fig 3Df). Thus, behav-
ioral switching increased encounter frequency and benefited predators, suggesting an adaptive strategy favoring predators.

Finally, we examined the conditions promoting switching. Increased Di tended to systematically promote mixed strat-
egies (Figs 1Cc and 2Fg, and S2–4 and S9 Figs). Moreover, Nash equilibrium behavior switching frequently occurred at 
small values of cb (Fig 3Dg). In addition, we observed that only one of the agents exhibited probabilistic switching while 
the other did not, that is, partial behavioral switching (S9 Fig).

Nash equilibrium speed changes in the non-sensory motor algorithm

To investigate how sensory input influences equilibrium strategies and payoffs, we tested a simple non-sensory motor 
algorithm. In this algorithm, agents change their speed stochastically without sensory information. This stochastic behav-
ior was defined by two parameters: Ki, the probability of speed change, and Si, the magnitude of speed change (Fig 4A). 
Using a NetLogo program (S5 File), we identified Nash equilibria under this algorithm. Across parameter combinations, 
Ki and Si produced diverse encounter frequencies (Fig 4B), determined agent payoffs (Fig 4C and 4D), and led to Nash 
equilibrium speed changes (S i) (Fig 4E) (cb = 0.02 and r = 3.6) (S7 and S8 Datas).

Analysis indicated that S i values depended on combinations of agents’ speed change probabilities Ki; particularly those 
of the prey (K

s
). For predators, positive or negative Sw settled irrespective of Kw but depended on Ks. When Ks = 0, 0.1, or 

the y-axis, along the line P̅s + P̅w = 1. B and C show the effects of detection distances Di on E, Ni, and P̅i. B shows a scatter plot of E versus P̅s, with light 
blue, blue, and dark blue points indicating Ds = 1, 2, and 3, respectively. Beige points represent Ds = Dw = 0, where neither predators nor prey attack or 
defend. B indicates that E decreases and Ps

 increases as Ds increases, regardless of Dw (the dark blue points shift to the upper-left side). Ca and Cb 
show scatter plots of E on the x-axis and Nw in Ca or Pw in Cb on the y-axis. Cc and Cd show scatter plots of Ns versus Nw and Ps versus Pw,  
respectively. In Ca–d, orange, brown, and dark brown points represent Dw = 1, 2, and 3, respectively, where Ds = 0. Ca indicates that Nw decreases as 
Dw increases (the dark brown points shift to the lower side). Cb indicates that Pw increases as Dw increases (the dark brown points shift to the upper 
side). Cc indicates that Ns increases and Nw decreases as Dw increases (the dark brown points shift to the lower-right side). Cd indicates that Ps and Pw 
increase as Dw increases (the dark brown points shift to the upper-right side). D shows the effects of behavioral switching. Da shows that within the same 
(Ds, Dw) conditions, runs that exhibited behavioral switching showed higher encounter frequencies (E > 4) than runs without switching. Db and Dc show 
that the large E values depend on Ds, with E > 4 when Ds = 1 (Db), but not on Dw (Dc). Dd, De, and Df show scatter plots of behavioral switching in which 
point colors indicate behavioral switching with E > 4 in dark orange, behavioral switching with E ≤ 4 in orange, no behavioral switching in blue within the 
same (Ds, Dw) conditions, and other conditions without behavioral switching in gray. Dd shows a scatter plot of occurrence probabilities o̅s versus o̅w in 
which o ̅s located on the right side of the x-axis indicate a higher probability of escape and a lower probability of freeze in the prey’s behavioral switching. 
Similarly, o̅w located on the upper side of the y-axis indicate a higher probability of chase and a lower probability of ambush in the predators’ behavioral 
switching. o i of behavioral switching with E > 4 are distributed near the center (dark orange), suggesting that the choice between the two behaviors is 
nearly random. The agents exhibit no clear preference. Regardless of the behavioral types, the blue point representing a pure strategy (i.e., no behav-
ioral switching) is located in the upper right of the diagram, indicating a probability of 1. De and Df show scatter plots of Ns versus Nw and P̅s versus P̅w, 
respectively. Dark brown points shift to the upper-left side of De, indicating that behavioral switching with E > 4 led to increased Nw and decreased Ns. 
Dark brown points shift to the left side of Df, indicating that behavioral switching with E > 4 decreased Ps. Dg shows a bar plot illustrating the effect of cb 
on switching behavior, with percentages of switching for different values of cb and r. Nash equilibrium behavior switching frequently occurs when cb is 
small.

https://doi.org/10.1371/journal.pcbi.1013730.g003

https://doi.org/10.1371/journal.pcbi.1013730.g003
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Fig 4.  Effects of Nash equilibrium speed changes with the non-sensory motor algorithm on encounters, agent numbers, and payoffs. A 
illustrates that stochastic speed changes are defined by the probabilities (Ki) and magnitudes (Si) of speed change (i = w for wolf and s for sheep). The 
agent’s life history in this model is the same as the sensory–motor algorithm model, including movement, feeding, energy gain/loss, reproduction, and 
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0.2, predators increased speed (such as chasing) (Fig 4Ea, 4Eb, 4Ec, 4Ee, 4Ef, 4Eg, 4Ei, 4Ej, and 4Ek). When Ks = 0.3, 
predators decreased speed (such as ambushing) (Fig 4Ed and 4Eh). For prey, positive Ss settled irrespective of Ki, 
increasing the speed (such as escaping) (Fig 4Eb, 4Ec, 4Ed, 4Ef, 4Eg, 4Eh, 4Ej, 4Ek, 4En, and 4Eo). When Kw = 0, 0.1, 
and Ks = 0.3, predators went extinct; therefore, Sw was not determined and did not have a single value (Fig 4El and 4Ep). 
When Kw = Ks = 0, S i had large absolute values of motor traits, as in the sensory–motor algorithm (Fig 4Em). Thus, the 
prey’s Ks had a substantial effect on the determination of Nash equilibrium strategies. All landscapes of the payoff differ-
ence between the prey and the predator and the Nash equilibria with the non-sensory motor algorithm for all cb and r are 
presented in S10–S13 Figs, showing that distinct Nash equilibrium combinations are identified under varying conditions.

Next, we assigned agent sets of Ki and S i (S9 Data) to perform the Nash equilibrium speed changes (S6 File), and 
measured encounter frequency E, number of agents Ni, and Nash equilibrium payoff P i (S10 Data). Actual measure-
ments showed outcomes similar to those in the sensory–motor algorithm. The game was typically a non-constant and 
positive-sum game. Prey’s Nash equilibrium speed changes increased their payoffs by reducing encounters. Predators’ 
Nash equilibrium speed changes also increased payoffs for both predators and prey when the prey did not change speed. 
As shown in Fig 4Fa, prey number (Ns) was usually larger than predator number (Nw). As E increased, Ns remained 
constant (Fig 4Fb), while Ps decreased (Fig 4Fc). However, as Nw was proportional to E (Fig 4Fd), Pw remained  
relatively constant (Fig 4Fe). The scatter-plot of Ps and Pw indicated that most points were located in the upper-right area 
(Ps + Pw > 1), confirming a positive-sum tendency (Fig 4Ff).

To further examine the effects of Ki, we compared P i between different Ki conditions. First, holding Kw constant, we 
varied Ks. As Ks increased, E decreased, increasing Ps (the dark blue points shifted to the upper-left side of Fig 4G). 
Next, holding Ks constant, we varied Kw. The effect of Kw depended on Ks. When Ks = 0, as Kw increased, E did not change 
considerably but Nw decreased (the dark brown points shifted to the lower side of Fig 4Ha), increasing Pw (the dark brown 
points shifted to the upper side of Fig 4Hb). By reducing Nw, Ns increased (the dark brown points shifted to the right side 
of Fig 4Hc), increasing Ps (the dark brown points shifted to the right side of Fig 4Hd). Consequently, both Pw and Ps 
increased as Kw increased (the dark brown points shifted to the upper-right side of Fig 4Hd). The results indicate that the 
prey may increase their payoff in the presence of predators. These findings were independent of cb and r. All plots of the 
E-Ni, E-P i, Ni, and P i for different Ki are shown in S14 and S15 Figs.

Despite the similarities, we found substantial differences between the non-sensory motor and sensory–motor algo-
rithms. Compared with the non-sensory motor algorithm, the sensory–motor algorithm decreased encounter frequency 
(E) and predator number (Nw) (Fig 5A and 5B), while increasing prey number (Ns) and prey payoffs (Ps) (Fig 5C and 5E). 

death. For the illustrations of the wolf and sheep, we used open-source images from Openclipart (https://openclipart.org/detail/254708/wolf-silhouette-2; 
https://openclipart.org/detail/174830/sheep). B depicts landscape diagrams of encounter frequency (E) in the non-sensory motor algorithm. The land-
scapes represent combinations of Ki (= 0, 0.1, 0.2, and 0.3). For example, a shows K(0, 0.3), indicating Ks = 0 and Kw = 0.3, while b to p represents differ-
ent combinations of Ki values. E is color-coded. Darker brown represents higher frequencies and darker blue indicates lower frequencies. C and D show 
the landscape diagrams of the prey’s and the predator’s payoffs (Ps and Pw), respectively, following the same Ki and Si combinations as in B. Pi values 
are color-coded. E displays Nash equilibrium speed change (S i), with circles on the x and y axes indicating Ss and Sw at the same coordinates as the 
payoff landscape. F shows scatter plots of all data for the behavioral cost coefficients (cb) and the reproduction coefficients of predators (r), illustrating 
the relationships among the number of agents (Ni), encounter frequency (E), and Nash equilibrium payoff (P i), based on actual measurements obtained 
by assigning Nash equilibrium speed changes. Fa shows Ns on the x-axis and Nw on the y-axis along the line Ns = Nw. Fb, Fc, Fd, and Fe plot E on the 
x-axis against Ns, Ps, Nw, and Pw on the y-axis, respectively. Ff plots Ps on the x-axis and Pw on the y-axis along the line Ps + Pw = 1. G and H represent 
the effects of Ki on E, Ni, and P i. G shows a scatter plot of E on the x-axis and Ps on the y-axis, with light blue, blue, and dark blue points representing 
Ks = 0.1, 0.2, and 0.3, respectively. Beige points indicate Ks = Kw = 0. G indicates that E decreases and Ps increases as Ks increases (the dark blue points 
shift to the upper-left side). Ha represents a scatter plot of E on the x-axis and Nw on the y-axis, with orange, brown, and dark brown points representing 
Kw = 0.1, 0.2, and 0.3, respectively, where Ks = 0. Ha indicates that Nw decreases as Kw increases (the dark brown points shift to the lower side). Hb, Hc, 
and Hd represent scatter plots of E versus Pw, Ns versus Nw, and Ps versus Pw, where Ks = 0. Hb indicates that Pw increases as Kw increases (the dark 
brown points shift to the upper side). Hc indicates that Ns increases and Nw decreases as Kw increases (the dark brown points shift to the lower-right 
side). Hd indicates that Ps and Pw increase as Kw increases (the dark brown points shift to the upper-right side).

https://doi.org/10.1371/journal.pcbi.1013730.g004

https://openclipart.org/detail/254708/wolf-silhouette-2
https://openclipart.org/detail/174830/sheep
https://doi.org/10.1371/journal.pcbi.1013730.g004
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Fig 5.  Comparison between the non-sensory motor and sensory–motor algorithms. Outcomes of the non-sensory motor algorithm and sensory–
motor algorithm are compared using histograms. A, B, C, D, and E display the proportion of instances in histograms of encounter frequency (E), the 
number of wolves (Nw), the number of sheep (Ns), the predator Nash equilibrium payoff (Pw), and the prey Nash equilibrium payoff (Ps), respectively. 
The values for the non-sensory motor algorithm are depicted in gray, whereas those for the sensory–motor algorithm are in green. Compared to the 
non-sensory motor algorithm, the sensory–motor algorithm decreases E (A) and Nw (B) while increasing Ns (C). The sensory–motor algorithm leads to a 
larger proportion of cases with Pw = 0, indicating predator extinctions (D), and an increase in Ps (E).

https://doi.org/10.1371/journal.pcbi.1013730.g005

Additionally, the sensory–motor algorithm resulted in numerous instances of Pw = 0, indicating predator extinctions (Fig 
5D). These results indicate that the sensory–motor algorithm results in asymmetrical effects between agents, leading to an 
advantage for the prey. This suggests that the sensory–motor algorithm may represent an adaptive advantage for the prey.

Discussion

We developed a game-theoretic framework to analyze predator–prey interactions and identified Nash equilibria in payoff 
matrices derived from encounter probabilities in both the sensory–motor and non-sensory motor algorithms. First, we 
showed that, in the sensory–motor algorithm without considering directionality between a single predator and a single 
prey, the Nash equilibrium behaviors depended on combinations of the agents’ sensory abilities, particularly those of the 
prey, and that the games were constant-sum and noncooperative (S8 Fig), consistent with previous studies [30,31,46].

Next, we extended this framework to multi-agent interactions. We adopted a “pool-of-players” representation: the many-
agent IBM was treated as a population from which pairwise contests were drawn, and per-agent payoffs were defined 
from the stationary population-level encounter probability [45]. This approach differs from the conventional single-pair 
construction by design. It clearly mapped IBM outcomes to a two-player game and also revealed density-dependent 
effects that arose from simultaneous interactions. The results demonstrated a variety of Nash equilibrium behaviors, 
including chasing, ambushing, escaping, and freezing (Fig 2), depending on the detection distances (Di),

 behavioral cost 
coefficients (cb), and the reproduction coefficients of predators (r). In contrast to the games between a single predator and 
a single prey, the games in the multi-agent environment were non-constant-sum and positive-sum in most cases (Fig 3Af). 
When predators detected prey from a greater distance and attacked according to the Nash equilibrium, both predator 
and prey payoffs increased (Fig 3Cd). This outcome occurred under conditions without prey defense and was attributed 
to increased competition among predators (Fig 3B and 3C, S6 and S7 Figs). These results suggest that prey may obtain 
higher payoffs even in the presence of predators. In behavioral combinations where both agents’ payoffs increase 
together, the predator has an incentive to attack. When the prey defends against a predator’s attack, the prey’s payoff 
increases; thus, the prey has an incentive to defend itself. These findings suggest that each of the agents initiates attack 
and defense behaviors.

In the sensory–motor algorithm, when detection distance was long (large Di) or behavioral costs were small (cb = 0.001), 
we observed frequent behavioral switching (Figs 1Cc, 2Fg, and 3Dg; S2–S5 and S9). Mechanistically, large Di provided 
both agents with earlier detection and more available headings before encounter, and the small cb reduced the weight of 

https://doi.org/10.1371/journal.pcbi.1013730.g005
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the cost term. Both factors increased the influence of behavior on whether attack or defense succeeds and increased the 
structural complexity of the payoff landscape. The indifference condition means that a player’s expected payoffs from its 
two behaviors are equal (given the opponent’s mixture). Greater structural complexity increases the number of Si pairs 
that satisfy this condition. When both players satisfy the indifference condition, the best-response curves—the relationship 
between the opponent’s behavior and the player’s payoff-maximizing behavior probability—meet at probabilities strictly 
between 0 and 1 for both players. In that case, no pure behavior is a mutual best response, so both players must ran-
domize between the two behaviors, yielding a mixed Nash equilibrium [47]. Consistent with this mechanism, the payoff 
landscapes exhibited greater structural complexity (additional bends and local extrema; Figs 1Bc and 2D–E, S1Bc and 
S2–S5). Together, these yielded more mixed equilibria and more frequent switching (Figs 1Cc and 2Fg, S2–S5 and S9). 
Importantly, the overall payoff space, that is, the spread of (Ps, Pw) pairs, was not substantially wider even in conditions 
where behavioral switching occurs (S16 Fig).

Behavioral switching by predators between chasing and ambushing, and by prey between escaping and freezing, 
resulted in stable equilibria at different combinations of the occurrence probabilities (o i values) (Fig 3Dd). This switching 
increased encounter frequencies and predator number while reducing the prey payoff, providing an adaptive advantage 
for the predator (Fig 3D). These results suggest that implementing algorithms controlling the occurrence probability of 
behavioral switching in neuronal mechanisms is reasonable [48,49].

The observed changes in agent payoffs—both agents’ payoffs increase through attacks without defense, and the prey 
payoff decreases through behavioral switching—do not appear in a single predator–prey setting (S8 Fig), indicating that 
they arise from density-dependent, population-mediated feedbacks specific to the multi-agent setting (i.e., multiple-agent 
effects).

Furthermore, we identified Nash equilibria under a non-sensory motor algorithm driven solely by movement variability 
(Fig 4). Games under this algorithm were typically non-constant-sum and positive-sum, similar to those using the sen-
sory–motor algorithm. Any variation in the agent’s movement mechanism, such as in neuronal circuitry [50–52] or even 
in simpler devices, can introduce stochastic speed fluctuations, thus generating movement variability that can be repre-
sented within a non-sensory motor algorithm. This suggests that movement variability could be an inherent mechanism 
contributing to equilibrium in predator–prey interactions.

We further examined how the presence of sensory input influences outcomes. Compared to the non-sensory motor 
algorithm, the sensory–motor algorithm was more adaptive for prey. The prey’s Nash equilibrium payoffs were greater 
under the sensory–motor algorithm than under the non-sensory motor algorithm (Fig 5C and 5E), whereas predators’ pay-
offs showed no such advantage (Fig 5B and 5D). This pattern reflects a structural asymmetry inherent in the IBM. Under 
the sensory–motor algorithm, both the predator and the prey adjust their movement timing and heading based on sensory 
information. The prey gains a marked advantage because any heading other than toward the predator promotes escape, 
whereas the predator’s viable headings are mostly constrained to moving toward the target. Therefore, at the Nash 
equilibrium, the prey’s encounter probability, ps, is reduced, resulting in a higher prey payoff, 1 − ps, with no corresponding 
increase in the predator’s payoff (Fig 5C and 5E vs. 5B and 5D). By contrast, under the non-sensory motor algorithm, the 
two agents move without cues, so encounters are governed by chance. The prey cannot detect the predator in advance 
and avert encounters, and thus cannot fully exploit the wider range of available headings. Therefore, the sensory–motor 
algorithm was more beneficial to prey than the non-sensory motor algorithm. Furthermore, among the behaviors gener-
ated by the sensory–motor algorithm, behavioral switching particularly benefited predators (Fig 3D), potentially allowing 
them to counter prey strategies. These functional and adaptive differences raise questions regarding their phylogenetic 
relationships.

We now turn to the evolutionary implications of attack and defense behaviors, which are directly subject to selection 
through predation [53]. We used Nash equilibria as short-term reference points for the game; agents were not presumed 
to know or compute the full payoff matrix. In real predator–prey settings, predators can learn from experience (successful 
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and failed attacks) and thereby estimate local expected payoffs using sensory–motor algorithms implemented by neural 
circuits, without access to all payoffs. Such learning can adjust behavior toward the short-term equilibrium predictions 
under stationary conditions, yielding flexibility on short time scales. We suggest that predators with neuronal mechanisms 
for learning, rather than directly executing innate attack behaviors, may be favored by natural selection [54–59].

In contrast, individual prey cannot reliably learn from fatal defensive failures; hence, defense is best analyzed within 
an evolutionary framework. The evolutionary status of these behaviors depends on whether the resident strategy resists 
invasion by rare mutants. In evolutionary game theory, an evolutionarily stable strategy (ESS) is a resident strategy that 
cannot be invaded by any sufficiently similar rare mutant under fitness-proportionate reproduction [40,60]. Because our 
Nash equilibrium results were derived from single interactions, this analysis did not test rare-mutant invasion; therefore, 
a Nash equilibrium may or may not coincide with an ESS. A formal assessment would require an Adaptive Dynamics 
analysis [61] by assuming a homogeneous, well-mixed, statistically stationary resident prey population playing the Nash 
equilibrium strategy, introducing a rare mutant, and evaluating whether it increases or declines when introduced at very 
low frequency. If every sufficiently similar rare mutant fails to increase, the Nash equilibrium is an ESS; otherwise, it is not.

Although it remains unknown whether the Nash equilibrium defense strategies identified here are evolutionarily stable, 
the corresponding behaviors—such as escaping and freezing—are often innate or developmentally specified. In mice, for 
example, escaping and freezing can be elicited by genetically hard-wired circuits with minimal learning [4,6–9,11,12,14,15]. 
The asymmetry—predators can adjust their attack behavior through experience, whereas prey cannot learn from fatal 
defense failures—suggests that the mechanisms differ: predators rely on strategy learning, whereas prey defenses are 
largely innate and genetically specified, implying distinct evolutionary bases for attack and defense [62].

A theorem by Nash (1950) guarantees the mathematical existence of Nash equilibria in any finite game [32]. This study 
identified the specific Nash equilibrium strategies underlying attack–defense behaviors in predator–prey interactions and 
clarified their behavioral significance and evolutionary implications. However, several limitations remain. First, the algo-
rithmic effects of sensory–motor integration remain unclear and require further numerical evaluation. Second, it remains 
unknown how different Nash equilibrium behaviors are determined by the underlying structure of the sensory–motor algo-
rithm, with or without directionality. Third, population dynamics were not incorporated, as Nash equilibria were computed 
based on average payoffs; further research may require ecological approaches and methodologies. Fourth, although our 
results demonstrate that movement variability alone is sufficient for Nash equilibria to exist, it remains an open question 
whether stochastic speed changes themselves have evolved as prototypical mechanisms that incidentally alter payoffs. 
Fifth, future studies could explore whether neuronal circuits mediate probabilistic switching between behaviors. Investigat-
ing this question may provide further insights into the evolution of behavioral flexibility. Finally, experimental elucidation of 
the evolutionary mechanisms underlying attack and defense behaviors remains a fundamental challenge. We acknowl-
edge the absence of an ESS analysis as a significant limitation of this study. An Adaptive Dynamics analysis (e.g., via 
pairwise invasibility plots) would clarify whether the Nash equilibrium defense strategies identified here are evolutionarily 
stable. This will be a high priority for future work. Addressing these questions will help to deepen our understanding of the 
evolutionary mechanisms of attack and defense behaviors. Our game-theoretic framework, based on sensory and motor 
algorithm modeling, provides a foundation for understanding the evolution of attack and defense behaviors.

Methods

Formulation of attack and defense behaviors with a sensory–motor algorithm

In this study, we defined attack and defense behaviors as traits by which a predator captures prey and a prey individual 
evades predators, respectively. Furthermore, we defined chase–ambush as the attack behavior of predators; chase is 
used to detect prey and increase speed, whereas ambush is used to detect prey and reduce speed [63,64]. We defined 
escape–freeze as the defense behavior of the prey; escape is used to detect predators and increase speed, whereas 
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freeze is used to detect predators and reduce speed [15,19]. The models consisted of two types of agents: predators 
and prey (Figs 1A and 2A). We modeled the attack and defense behaviors with an algorithm using the distance from the 
opposing agent as sensory input [36] to change the speed as the motor output, but did not include sensory and motor 
directionalities. Agents had no directionality regarding the opponent’s position or their own movement direction. The 
formulation was based on Edelaar’s method for representing phenotypic plasticity [65]. The agents had a sensory ability, 
a distance to detect the opponent (Di) (i = w and s, as predator and prey, respectively). Di was the sensory trait (di) mul-
tiplied by a constant coefficient of the sensory trait (factor sensitivity, f), that is, Di = di × f, where f = 10. We distinguished 
between the latent trait di (dimensionless sensory investment), which entered the cost function, and its spatial realization 
Di (detection distance), which was used to compute encounter probabilities. Information-processing costs were assessed 
using di rather than Di to avoid conflating environmental units with internal investment and to maintain numerical stability 
across algorithms. The factor f ensured cost comparability across algorithms and helped maintain simulation stability. This 
scaling allowed us to apply the same cost function to the sensory–motor (di) and non-sensory motor (Ki, the probability 
of speed change) formulations, placing them on a common cost basis and enabling a fair comparison. The bound Di ≤ 3 
was a computational convenience, not a biological limit on the trait. The agents had a motor ability, a magnitude of speed 
change (Si) when they detected their opponent. The predator had the sensory ability Dw (0 ≤ Dw) and the motor ability Sw 
(−1 ≤ Sw ≤ 1) for its behavior, where w indicates the predator (wolf). The predator moved in two-dimensional space at a 
speed of 1 and changed its speed to 1 + Sw when it found prey within a radius of Dw. When Sw was greater than 0 (0 < Sw), 
the predator’s speed increased (chase). When Sw was less than 0 (Sw < 0), the predator’s speed decreased (ambush). 
Without a prey individual, it moved at a speed of 1. Similarly, the prey had Ds (0 ≤ Ds) and Ss (−1 ≤ Ss ≤ 1), where s indicates 
the prey (sheep). The prey moving at speed 1 changed its speed to 1 + Ss when it detected a predator within radius Ds. At 
0 < Ss, the prey’s speed increased (escape). At Ss < 0, the prey’s speed decreased (freeze). Without a predator, it moved at 
a speed of 1. In addition to excluding sensory and motor directionalities, we did not consider the distance in the radius (far 
or close) or the sensory modality detecting the opponent [15].

Landscape diagrams of encounter probabilities for a single predator and a single prey with the sensory–motor 
algorithm

We created a grid world model to investigate the attack and defense behaviors of a predator and prey in a discrete space 
(Fig 1A). A single predator and a single prey were located on a two-dimensional grid (Fig 1A-t1) and moved one grid 
per time step (Fig 1A-t2). An agent detected the opponent in the Di range (Moore neighborhood) and changed its speed 
to 1 + Si (Figs 1Aa-t2, S1A). Di assumed the values of 2, 1, or 0 (an agent detected the opponent two grids apart (= 2), 
detected the opponent in adjacent grids (= 1), or did not detect the opponent (= 0)). Si assumed the values 1, 0, or −1 (an 
agent changed its speed to 2 (= 1 + 1), left the speed unchanged at 1 (= 1 + 0), or changed the speed to 0 (= 1 − 1)). When 
the predator and prey occupied the same grid, the prey was eaten; thus, the prey died (Fig 1Aa-t3, S1A Fig). We exam-
ined encounters between agents within a single time step. Because the maximum value of Di was 2, we used a 5 × 5 grid 
in the x–y plane with integer coordinates, where x and y ranged from 0 to 4, inclusive. A predator was fixed at coordinate 
(2, 2), and the prey was placed at all possible other coordinates. When Di = 2, agents could detect each other at the outer 
edge, and combinations in which they were adjacent were excluded. Encounter probability (p) was calculated in R [66] (S1 
File) as (number of encounters)/(total number of cases), where “total cases” included all combinations of initial predator–
prey positions and both agents’ possible headings after the first step, for both detection-informed and uninformed behav-
iors. This procedure evaluated a single-step forward transition from all initial configurations where interaction could occur, 
given (Di, Si), rather than multi-step simulations on a finite grid. For each Di, p was plotted against Ss and Sw (Fig 1B), and 
the resulting Nash equilibrium behaviors are shown in Fig 1C.

When Ds = 2, the prey’s Nash equilibrium strategy became freeze (Ss = −1). It seemed unrealistic for the prey to freeze 
when the prey had a greater detection distance than the predator (Fig 1Cf and 1 Ci, Ds = 2 and Dw = 1 or 0). This arose 
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from a simplifying assumption. We recalculated p including combinations in which the agents were adjacent when Di = 2 
(S2 File). This program corresponds to calculating encounter probabilities for a two-step interaction. Under these condi-
tions, the prey’s Nash equilibrium strategy became “escape” when it had a greater detection distance than the predator 
(S1Cf and S1Ci Fig). These results indicated that the “freeze” strategy observed at long range arose because only a 
single-step interaction was considered. When a two-step interaction was considered, the more realistic “escape” strategy 
was the Nash equilibrium, consistent with results from the NetLogo model.

The grid world does not include the effects of agent density or the costs associated with their behavior.

Payoff landscapes derived from encounter probabilities in multi-agent predator–prey interactions using the 
sensory–motor algorithm

We constructed a model based on modifications to the Wolf Sheep Predation model from the NetLogo Model Library 
[43] (Fig 2A, S3 File). The model was composed of agents (predators and prey) and patches that represent the envi-
ronment. The agents moved and interacted in a continuous two-dimensional space. They could occupy any real-valued 
(x, y) coordinates, ensuring smooth movement. The patches served as a discrete spatial structure for managing envi-
ronmental states, such as grass regrowth, but did not constrain the agents’ movement. The agents were not restricted 
to moving from patch to patch. The agent’s movement direction changes at each time step, randomly within a forward-
facing 90-degree range (Fig 2B, and S1 Movie). These specifications are consistent with those used in the original Wolf 
Sheep Predation model provided in the NetLogo Model Library. The predators moved continuously, gained energy by 
consuming prey when they were located in the same patch, reproduced, lost energy as they paid costs, and died when 
their energy reached zero. Similarly, the prey moved continuously, gained energy by consuming grass, reproduced, lost 
energy as they paid costs, and died when their energy reached zero or when they were located in the same patch as a 
predator.

We considered three types of costs: basal metabolism, cost dependent on sensory and motor traits, and cost depen-
dent on the resulting speed. Basal metabolism remained constant (ce). The cost dependent on sensory and motor traits 
was the sum of the sensory trait (di) and the absolute value (abs) of the motor trait (Si) multiplied by the behavioral cost 
coefficient (cb); thus, it was calculated as follows.

	 (di + abs(Si)) × cb	

This corresponded to the cost associated with implementing neuronal circuit mechanisms for these behaviors. The cost 
of the resulting speed was calculated by multiplying the speed (1 or 1 + Si) by a constant, the movement cost coefficient 
(cm), as follows.

	 (1 or 1 + Si) × cm	

Thus, in the simulation, different cost values were subtracted from the energy of the agent at each time point when 
the agent changed or did not change its speed. When the speed of the agent changed to 1 + Si, the following value was 
subtracted.

	 ce + (di + abs(Si)) × cb + (1 + Si) × cm	

The following value was subtracted when the agent did not change its speed.

	 ce + (di + abs(Si)) × cb + 1 × cm	
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Predators and prey were predetermined to perform a single behavior in the IBMs. The sensory ability (detection distance 
Di) was di multiplied by a constant, the coefficient of the sensory trait (factor sensitivity, f), that is, Di = di × f, where f = 10; 
Di had 4 different values (0, 1, 2, and 3). This design made the framework readily extensible to future cross-modality 
comparisons without redefining the cost function or losing comparability. By keeping cost on di and relating spatial 
range via Di = di × f, the scale factor f can absorb modality-specific (e.g., olfaction, vision, audition, mechanosensation) 
or medium-specific transduction efficiencies (e.g., transparency of air or water). In practice, using Di directly in the cost 
over-penalized large detection radii and made some runs unstable; the di-based scaling with f avoided this while preserv-
ing the trait-to-range mapping. The value of f was determined from preliminary simulation experiments.

The motor ability was equal to speed change Si, which considered 11 different values ranging from −1–1 at intervals 
of 0.2. The combinations of Di and Si defined 44 different behaviors as their strategies of the agents. The interactions 
between these behavioral strategies resulted in 44 × 44 (= 1,936) unique strategy combinations. The following parameters 
were set as constants: energy gained by a predator eating prey, energy gained by prey from eating grass, reproduction 
coefficient of prey, time for grass to grow, ce, cm, and f. The following variables were used: di, Di, Si, cb, and r. Values of 
the constants and variables used in the simulations with the sensory–motor algorithm are listed in S1 and S2 Tables, 
respectively.

An individual agent’s behavior was defined by its detection distance (Di) and speed change (Si). For each parameter 
combination, predator and prey agents shared identical sensory and motor traits (homogeneous population) and were 
assumed to interact in a well-mixed environment (random pairing; no spatial structure). Under these assumptions, we 
treated the number of predator–prey encounter events (encounter frequency, E) and agents’ number (Ni) at each time step 
in the population-level as intermediate variables. Both E and Ni varied over time as emergent properties.

Simulations were performed for all predator–prey behavior pairs using nlrx [67], which controls NetLogo in R. When each 
simulation was run from the beginning up to 10,000 time steps and the interaction between predators and prey reached a 
steady state, the following data were collected from 10,000–11,000 time steps: time step, E, number of wolves (Nw), and 
number of sheep (Ns) at each time point. As E, Nw, and Ns were reported at the end of the “to go” procedure after the agents 
interacted in the NetLogo program, Nw included the number of wolves both with an encounter and no encounter; on the other 
hand, Ns did not include the number of sheep that died of predation with an encounter but included only with no encounter. 
Therefore, encounter probabilities of wolves (pw) and sheep (ps) were defined as E/Nw and E/(E + Ns), respectively. The for-
mula appeared asymmetrical, but the encounter itself is symmetrical, with contributions from a sheep and a wolf.

Although predation typically involves both pre-encounter and post-encounter processes, our model intentionally ide-
alized behavioral effects by focusing solely on the pre-encounter phase, and thus excluded the latter. In the IBM, energy 
was updated event-by-event: predators gained the constant wolf-gain-from-food only when they consumed a prey individ-
ual during an encounter, whereas prey gained sheep-gain-from-food from grazing in steps without a predator encounter. 
These constants were used solely for event-driven energy accounting in the IBM; their values were calibrated in prelimi-
nary simulations and are listed in S1 Table. For the payoff-matrix analysis used to identify Nash equilibria, we defined nor-
malized payoffs. Accordingly, the payoff of wolves (Pw) was defined as the probability of encountering prey (Pw = pw), and 
the payoff of sheep (Ps) as the probability of evading predators (Ps = 1 − ps). Ps, Pw, and differences in payoffs (Pdiff = Ps − Pw) 
were calculated at each time step. Under the assumption of uniform interactions in a well-mixed environment, we approx-
imated per-agent payoffs by the population-level payoffs based on the encounter probabilities. These values fluctuated 
periodically with periods shorter than 1,000 time steps. We averaged E, Pi, and Pdiff over time steps 10,000–11,000; these 
averages represented post-transient, statistically stationary values.

We examined the effects of cb (0, 0.001, 0.02, and 0.04) and r (1.4, 1.8, 2.8, 3.2, 3.6, and 4.0) on E, Pw, Ps, and Pdiff. For 
each combination of Di, 121 simulations were run, in which each engaged in 11 different behaviors (11 Sw and 11 Ss). E, 
Pw, Ps, and Pdiff were placed on the diagrams, with Ss and Sw on the x and y axes, respectively. Sixteen landscape dia-
grams were depicted for the combinations of Di. The experiments were repeated six times.
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Nash equilibrium behaviors in the sensory–motor algorithm

We studied the functions of these behaviors using game theory [31]. Attack and defense behaviors were considered as 
predator and prey strategies, respectively, and consisted of a strategic game between the two players [23]. In the grid 
world, encounter probability (p) was the payoff for the predator and 1 − p was the payoff for the prey. The bimatrices with 
p and 1 − p were the payoff matrices of constant-sum games. The S values of the Nash equilibrium (S i) were calculated 
under combinations of Di by using Game Theory Explorer (GTE) (https://cgi.csc.liv.ac.uk/~rahul/bimatrix_solver/)[32,68]. A 
script was written in Python to automate the calculations using GTE. S i were shown at the same coordinates as those in 
the payoff landscape diagrams.

The NetLogo IBM included many agents. For game-theoretic analysis, we treated the population as a pool of potential 
players engaging in pairwise contests [45]. We defined normalized per-agent payoffs as Pw and Ps. This differed from 
the conventional method of constructing payoff matrices from single isolated pairwise interactions and was intended to 
aggregate simultaneous multi-agent interactions, thus capturing density-dependent, population-mediated effects that were 
absent in single-pair settings. The resulting bimatrix of Pi, derived from these behaviors, served as the payoff matrix of the 
game, in which each agent selected one of the eleven motor strategies (Si) based on its specific sensory ability (Di). This 
framework allowed for a systematic analysis of the strategic interactions between the predator and prey within the model 
[69,70]. The calculations of S i using the GTE [68] were automated using a script written in Python. S i was shown for the 
combinations of Di at the same coordinates as the payoff landscape diagrams.

To examine effects of the Nash equilibrium behaviors on agents, we assigned agent sets of Di and S i (S5 Data) to 
perform the Nash equilibrium behaviors (S4 File) and measured E, Ni, and Nash equilibrium payoffs (P i) (S6 Data). The 
experiment was repeated ten times. We examined the effects of Nash equilibrium behaviors on E, Ni, P i, switching proba-
bility, and percentages of behavioral switching by drawing scatter, violin, and bar plots.

In this study, we did not use statistical significance tests on p-values to interpret the simulation model results. Statisti-
cal methods are considered valuable for data with limited sample sizes, but not for simulation data with virtually unlimited 
sample sizes [71].

Formulation of agents’ speed changes with a non-sensory motor algorithm and Nash equilibrium in game theory

The agents’ movements were formulated using a non-sensory motor algorithm. The agents set the probabilities (Ki) and 
magnitudes (Si) of speed change of their stochastic speed changes (Fig 4A). The predator moving with speed 1 changed 
its speed to 1 + Sw (−1 ≤ Sw ≤ 1) with the probability Kw (0 ≤ Kw ≤ 1). When Sw was greater than 0 (0 < Sw), the speed of 
the predator increased, corresponding to that of the predators’ chasing. When Sw was less than 0 (Sw < 0), the speed 
decreased, corresponding to that of the predators’ ambushing. With a probability of 1 − Kw, the predator moved at a speed 
of 1. The prey moving with speed 1 changed its speed to 1 + Ss (−1 ≤ Ss ≤ 1) with the probability Ks (0 ≤ Ks ≤ 1). When Ss was 
greater than 0 (0 < Ss), the prey’s speed increased, corresponding to that of the prey’s escaping. When Ss was less than 0 
(Ss < 0), the speed decreased, corresponding to that of the prey’s freezing. With a probability of 1 − Ks, the prey moved at a 
speed of 1.

We constructed a model with the non-sensory motor algorithm in the IBM using NetLogo (S5 File). The life history of 
the agents was the same as that in the sensory–motor algorithm model, consisting of movement, feeding, energy gain or 
loss, reproduction, and death. The “costs” comprised basal metabolism, the cost of probability and motor traits, and the 
cost of the resulting speed. Basal metabolism and the cost of the resulting speed were the same as those in the sensory–
motor algorithm model. The cost of the probability and motor traits was defined as the sum of Ki and the absolute value 
of the motor trait (abs(Si)) multiplied by cb, which corresponds to the cost associated with implementing neuronal circuit 
mechanisms for their stochastic speed change, as follows:

	 (Ki + abs(Si)) × cb	

https://cgi.csc.liv.ac.uk/~rahul/bimatrix_solver/)[32,68
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The following value was subtracted when the agent changed its speed to 1 + Si.

	 ce + (Ki + abs(Si)) × cb + (1 + Si) × cm	

Conversely, the following value was subtracted when the agent did not change its speed.

	 ce + (Ki + abs(Si)) × cb + 1 × cm	

The probability of speed change (Ki) had four values (0, 0.1, 0.2, and 0.3). Except for Ki, the other parameters (values of 
the constants and variables) were the same as those of the sensory–motor algorithm model. The values of the constants 
and variables used in the simulations with the non-sensory motor algorithm are listed in S3 and S4 Tables, respectively. 
In addition, the measurements and data collection were the same as those for the sensory–motor algorithm model. This 
experiment was repeated 6 times. The supplementary source data show the payoff matrices for all the experiments (S7 
Data).

The Nash equilibrium speed changes were computed in the same manner as those in the sensory–motor algorithm 
using the GTE with the script written in Python. The results for all the experiments are shown in the Supplementary 
Source Data (S8 Data). The results of the non-sensory motor algorithm model were depicted in the same manner as 
those of the sensory–motor algorithm model; E, Pi, and S i were shown in the landscape diagrams.

To examine the effects of the Nash equilibrium speed changes on agents, we assigned agent sets of Ki and S i (S9 
Data) to perform the Nash equilibrium speed changes (S6 File) and measured E, Ni, and P i (S10 Data). The experiment 
was repeated ten times. We examined the effects of the Nash equilibrium speed changes on E, Ni, and P i in the non-
sensory motor algorithm model by drawing scatter plots. Furthermore, we compared the effects of the non-sensory motor 
and the sensory–motor algorithms on E, Ni, and P i by drawing histograms.

Supporting information

S1 Fig. Attack and defense behaviors between a single predator and a single prey using the sensory–motor 
algorithm. A illustrates the attack and defense behaviors between a single predator and a single prey (agents) in a grid 
world. Three time steps are shown (t1, t2, t3). The dotted lines represent their detection ranges (Dw = 2 for the predator 
[wolf] and Ds = 2 for the prey [sheep]). At t1, neither agent detects the opponent and each moves one grid per time step. 
The shaded grids indicate the possible positions they may occupy at the next time step. At t2, if they detect each other, 
both adjust their speeds by Si (i = w for wolf and s for sheep), changing their speed to 1 + Si. Aa shows a case where 
Sw = Ss = 1. The wolf chases the sheep (1 + Sw = 2), and the sheep escapes (1 + Ss = 2). If both occupy the same grid cell, 
as indicated by the arrows in Aa-t2, the wolf eats the sheep at t3. Ab shows a case where Sw = −1 and Ss = 1. The wolf 
ambushes (1 + Sw = 0), and the sheep escapes (1 + Ss = 2). If both occupy the same grid cell, as shown by the arrow in 
Ab-t2, the wolf eats the sheep at t3. Ac shows a case where Sw = −1 and Ss = −1. The wolf ambushes (1 + Sw = 0), and the 
sheep freezes (1 + Ss = 0). Both remain in place and do not encounter. Ad shows a case where Sw = 1 and Ss = −1. The wolf 
chases (1 + Sw = 2), and the sheep freezes (1 + Ss = 0). If both occupy the same grid cell, as shown by the arrow in Ad-t2, 
the wolf eats the sheep at t3. For the illustrations of the wolf and sheep, we used open-source images from Openclipart 
(https://openclipart.org/detail/254708/wolf-silhouette-2; https://openclipart.org/detail/174830/sheep). B illustrates land-
scape diagrams that depict encounter probabilities based on combinations of detection distance (Di). For this S1B Fig, we 
calculated encounter probabilities including combinations in which the agents were adjacent when Di = 2 (S2 File). This 
program corresponds to calculating encounter probabilities for a two-step interaction. The diagrams show nine combina-
tions, ranging from Ds = 0 and Dw = 2 (a) to Ds = 2 and Dw = 0 (i). In each landscape, the x-axis represents the sheep’s speed 
change (Ss), while the y-axis represents the wolf’s speed change (Sw). Encounter probabilities (p) associated with different 

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013730.s001
https://openclipart.org/detail/254708/wolf-silhouette-2
https://openclipart.org/detail/174830/sheep
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combinations of Di and Si are color-coded within each landscape. High and low probabilities are indicated in dark brown 
and dark blue, respectively. C presents the Nash equilibrium behaviors under the two-step interaction. The positions of 
circles in each diagram indicate the prey’s and the predator’s Nash equilibrium speed changes (S̅s and S̅w) on the x and y 
axes, respectively (a–i), on the same coordinates as the landscape diagrams. Under the two-step interaction, the prey’s 
Nash equilibrium strategy became “escape” when the prey had a greater detection distance than the predator (f, i). Circle 
diameters reflect the occurrence probabilities (o i) of these behaviors. Blue circles indicate uniquely determined behaviors 
(o i = 1). Orange circles represent probabilistic behaviors (0 <o i < 1).
(TIF)

S2 Fig. Landscapes of payoff differences (Pdiff) and Nash equilibrium speed changes (S i) with the sensory–motor 
algorithm in the absence of the behavioral cost coefficient (cb = 0). A shows the landscapes of Pdiff under the repro-
duction coefficient of predators (r = 3.2). Sixteen landscapes depict different combinations of agents’ detection distance, Di 
(= 0, 1, 2, 3) (a–p). In each landscape, the x-axis represents the prey’s speed change (Ss) and the y-axis represents the 
predator’s speed change (Sw). Pdiff values are color-coded: darker brown indicates higher payoff differences favoring prey, 
and darker blue indicates lower payoff differences (or advantage to predators). B depicts Nash equilibrium speed changes 
in sixteen landscapes under different combinations of agents’ detection distance under r = 3.2 (a–p). Circle positions 
represent the Nash equilibrium speed changes of prey (S̅s) and predators (S̅w) on the x-axis and y-axis, respectively, at 
the same coordinates as the Pdiff landscapes. Circle diameters reflect the occurrence probabilities (o i) of these behaviors. 
Blue circles indicate uniquely determined behaviors (o i = 1). Orange circles represent probabilistic behaviors (0 <o i < 1). C 
and D show those under r = 3.6. E and F show those under r = 4.0.
(TIF)

S3 Fig. Landscapes of payoff differences (Pdiff) and Nash equilibrium speed changes (S i) with the sensory–motor 
algorithm under the small behavioral cost coefficient (cb = 0.001). A and B show the landscapes of Pdiff and Nash 
equilibrium speed changes, respectively, under the reproduction coefficient of predators (r = 3.2). C and D show those 
under r = 3.6. E and F show those under r = 4.0.
(TIF)

S4 Fig. Landscapes of payoff differences (Pdiff) and Nash equilibrium speed changes (S i) with the sensory–motor 
algorithm under the middle behavioral cost coefficient (cb = 0.02). A and B show the landscapes of Pdiff and Nash 
equilibrium speed changes, respectively, under the reproduction coefficient of predators (r = 3.2). C and D show those 
under r = 3.6. E and F show those under r = 4.0.
(TIF)

S5 Fig. Landscapes of payoff differences (Pdiff) and Nash equilibrium speed changes (S i) with the sensory–motor 
algorithm under the large behavioral cost coefficient (cb = 0.04). A and B show the landscapes of Pdiff and Nash equi-
librium speed changes, respectively, under the reproduction coefficient of predators (r = 3.2). C and D show those under 
r = 3.6. E and F show those under r = 4.0.
(TIF)

S6 Fig. Effects of prey’s detection distance (Ds) on encounter frequency (E), agent numbers (Ni), and Nash equilib-
rium payoffs (P i), with agents adopting Nash equilibrium behaviors under the sensory–motor algorithm across all 
conditions (cb = 0, 0.001, 0.02, 0.04, and r = 3.2, 3.6, 4.0). A shows scatter plots of all data across the behavioral cost coef-
ficients (cb) and the reproduction coefficients of predators (r), illustrating the relationships among the encounter frequency 
(E), number of agents (Ni), and Nash equilibrium payoff (P̅i) (where i = w for wolf and s for sheep), based on actual measure-
ments obtained by assigning Nash equilibrium behaviors. Aa shows a scatter plot of E on the x-axis against Ns on the y-axis, 
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and Ab shows a scatter plot of E on the x-axis against Ps on the y-axis. Ac shows a scatter plot of Ns versus Nw, along the 
line Ns = Nw. Ad shows a scatter plot of Ps versus Pw, along the line Ps + Pw = 1. Beige, light blue, blue, and dark blue points 
represent Ds = 0, 1, 2, and 3, respectively, across all values of Dw (0–3). Ba–Bd show the same scatter plots, with Dw = 0 
highlighted in the colors and Dw ≠ 0 in gray. Ca–Cd show the same scatter plots, with Dw ≠ 0 highlighted in the colors and 
Dw = 0 in gray. Beige points represent Ds = Dw = 0 in B and C. Regardless of Dw, increasing Ds reduces E (dark blue points shift 
to the left side in Aa, Ba, and Ca), increases Ps (dark blue points shift to the upper-left side in Ab, Bb, and Cb, and dark blue 
points shift to the right side in Ad, Bd, and Cd), and reduces Nw (dark blue points shift to the lower side in Ac, Bc, and Cc).
(TIF)

S7 Fig. Effects of predators’ detection distance (Dw) on encounter frequency (E), agent numbers (Ni), and Nash 
equilibrium payoffs (P i) with agents adopting Nash equilibrium behaviors under the sensory–motor algorithm 
across all conditions (cb = 0, 0.001, 0.02, 0.04, and r = 3.2, 3.6, 4.0). A shows scatter plots of all data across the behav-
ioral cost coefficients (cb) and the reproduction coefficients of predators (r), illustrating the relationships among the 
encounter frequency (E), number of agents (Ni), and Nash equilibrium payoff (P̅i) (where i = w for wolf and s for sheep), 
based on actual measurements obtained by assigning Nash equilibrium behaviors. Aa and Ab show scatter plots of E on 
the x-axis against Nw and P̅w on the y-axis, respectively. Ac shows a scatter plot of Ns versus Nw, along the line Ns = Nw. Ad 
shows a scatter plot of Ps versus Pw, along the line Ps + Pw = 1. Beige, orange, brown, and dark brown points represent 
Dw = 0, 1, 2, and 3, respectively, across all values of Ds (Ds = 0–3). Ba–Bd show the same scatter plots, with Ds = 0 high-
lighted in the colors and Ds ≠ 0 in gray. When Ds = 0, as Dw increases, Nw decreases (dark brown points shift to the lower 
side in Ba). Pw increases (dark brown points shift to the upper side in Bb). Ns increases and Nw decreases (dark brown 
points shift to the lower-right side in Bc). Ps and Pw increase (dark brown points shift to the upper-right side in Bd). Ca–
Cd show the same scatter plots, with Ds ≠ 0 highlighted in the colors and Ds = 0 in gray.
(TIF)

S8 Fig. Nash equilibrium payoffs (P i) with the sensory–motor algorithm between a single predator and a single 
prey. Scatter plots show Nash equilibrium payoffs (P̅i) (where i = w for wolf and s for sheep), with Ps on the x-axis  
and Pw on the y-axis. a–c show effects of predator’s detection distance (Dw) on the payoffs P i, while holding the prey’s 
detection distance (Ds) constant (Ds = 0 in a, 1 in b, and 2 in c). Gray, orange, and brown points represent Dw = 0, 1, and 2, 
respectively. d–f show the effects of Ds on P i while holding Dw constant (Dw = 0 in d, 1 in e, and 2 in f). Gray, light blue, and 
blue points represent Ds = 0, 1, and 2, respectively. g shows the combined effects of Dw and Ds on P i. Gray, light green, 
and dark green points represent Dw = Ds = 0, Dw = Ds = 1, and Dw = Ds = 2, respectively. All plots are on the diagonal line  
(Ps

 + Pw
 = 1), demonstrating that the games between a single predator and prey are constant-sum. In b, c, and f, the point 

sizes are modified to make their overlaps visible.
(TIF)

S9 Fig. Partial behavioral switching. At Nash equilibrium, we observed two forms of probabilistic speed change: partial 
behavioral switching, in which only one agent changed speed probabilistically (type 1), and behavioral switching, in which 
both predator and prey did so (type 2). A illustrates both types of switching across various behavioral cost coefficients (cb) 
and the reproduction coefficients of predators (r) under a detection distance for both agents (Dw = Ds = 2). The upper (a–d), 
middle (e–h), and lower rows (i–l) correspond to r = 4.0, 3.6, and 3.2, respectively. The left (a, e, and i), the middle-left 
(b, f, and j), the middle-right (c, g, and k), and the right columns (d, h, and l) correspond to cb = 0, 0.001, 0.02, and 0.04, 
respectively. Circle positions on the x- and y-axes indicate the Nash equilibrium speed changes of prey (Ss) and predators 
(Sw), respectively, aligned with the payoff landscape coordinates. Orange circles indicate the cases where the predator 
and prey probabilistically perform their behaviors with increasing and decreasing speeds. The diameters of the orange 
circles are proportional to the occurrence probabilities of the behaviors (o i) (0 <o i < 1). The prey increase or decrease their 
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speeds (either escape or freeze), whereas the predators do not; i.e., partial behavioral switching is observed in e. Both 
agents probabilistically increase or decrease their speeds in a, b, c, f, g, and j. Blue circles indicate the cases where S i is 
uniquely determined (o i = 1) in d, h, i, k, and l. B shows percentages of behavioral switching in one of the agents (type 1, 
partial behavioral switching) and both agents (type 2, behavioral switching) across all combinations of cb and r.
(TIF)

S10 Fig. Landscapes of payoff differences (Pdiff) and Nash equilibrium speed changes (S i) with the non-sensory 
motor algorithm in the absence of the behavioral cost coefficient (cb = 0). A and B show the landscapes of Pdiff and 
Nash equilibrium speed changes, respectively, under the reproduction coefficient of predators (r = 3.2). C and D show 
those under r = 3.6. E and F show those under r = 4.0. Each panel presents the strategic outcomes for different combina-
tions of prey and predator speed changes. Pdiff values are color-coded: darker brown indicates higher payoff differences 
favoring prey, and darker blue indicates lower payoff differences (or advantage to predators). Circle positions in B, D, and 
F correspond to the Nash equilibrium speed changes (Ss on the x-axis, Sw on the y-axis). Circle diameters reflect the 
occurrence probabilities of the behaviors (o i), with blue circles indicating unique equilibria (o i = 1).
(TIF)

S11 Fig. Landscapes of payoff differences (Pdiff) and Nash equilibrium speed changes (S i) with the non-sensory 
motor algorithm under the small behavioral cost coefficient (cb = 0.001). A and B show the landscapes of Pdiff and 
Nash equilibrium speed changes, respectively, under the reproduction coefficient of predators (r = 3.2). C and D show 
those under r = 3.6. E and F show those under r = 4.0. Circle diameters reflect the occurrence probabilities of the behaviors 
(o i), with blue circles indicating unique equilibria (o i = 1), and orange circles representing mixed strategies (0 <o i < 1).
(TIF)

S12 Fig. Landscapes of payoff differences (Pdiff) and Nash equilibrium speed changes (S i) with the non-sensory 
motor algorithm under the middle behavioral cost coefficient (cb = 0.02). A and B show the landscapes of Pdiff and 
Nash equilibrium speed changes, respectively, under the reproduction coefficient of predators (r = 3.2). C and D show 
those under r = 3.6. E and F show those under r = 4.0. Circle diameters reflect the occurrence probabilities of the behaviors 
(o i), with blue circles indicating unique equilibria (o i = 1), and orange circles representing mixed strategies (0 <o i < 1).
(TIF)

S13 Fig. Landscapes of payoff differences (Pdiff) and Nash equilibrium speed changes (S i) with the non-sensory 
motor algorithm under the large behavioral cost coefficient (cb = 0.04). A and B show the landscapes of Pdiff and Nash 
equilibrium speed changes, respectively, under the reproduction coefficient of predators (r = 3.2). C and D show those 
under r = 3.6. E and F show those under r = 4.0. Circle diameters reflect the occurrence probabilities of the behaviors (o i), 
with blue circles indicating unique equilibria (o i = 1), and orange circles representing mixed strategies (0 <o i < 1).
(TIF)

S14 Fig. Effects of prey’s speed change probability (Ks) on encounter frequency (E), agent numbers (Ni), and Nash 
equilibrium payoffs (P i) under the non-sensory motor algorithm across all conditions (cb = 0, 0.001, 0.02, 0.04, and 
r = 3.2, 3.6, 4.0). A shows scatter plots for all data of the behavioral cost coefficients (cb) and the reproduction coefficients of 
predators (r), illustrating the relationships among the encounter frequency (E), number of agents (Ni), and Nash equilibrium 
payoff (P̅i) (where i = w for wolf and s for sheep), based on actual measurements obtained by assigning Nash equilibrium 
speed changes. Aa shows a scatter plot of E on the x-axis against Ns on the y-axis, and Ab shows a scatter plot of E on 
the x-axis against Ps on the y-axis. Ac shows a scatter plot of Ns versus Nw, along the line Ns = Nw. Ad shows a scatter plot 
of Ps versus Pw, along the line Ps + Pw = 1. Beige, light blue, blue, and dark blue points represent Ks = 0, 0.1, 0.2, and 0.3, 
respectively, across all values of Kw (Kw = 0–0.3). Ba–Bd show the same scatter plots, with Kw = 0 highlighted in the colors 
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and Kw ≠ 0 in gray. Ca–Cd show the same scatter plots, with Kw ≠ 0 highlighted in the colors and Kw = 0 in gray. Beige points 
represent Ks = Kw = 0 in B and C. Regardless of Kw, increasing Ks reduces E (dark blue points shift to the left side in Aa, Ba, 
and Ca), increases Ps (dark blue points shift to the upper-left side in Ab, Bb, and Cb, and dark blue points shift to the right 
side in Ad, Bd, and Cd), and reduces Nw (dark blue points shift to the lower side in Ac, Bc, and Cc).
(TIF)

S15 Fig. Effects of predators’ speed change probability (Kw) on encounter frequency (E), agent numbers (Ni), and 
Nash equilibrium payoffs (P i) under the non-sensory motor algorithm across all conditions (cb = 0, 0.001, 0.02, 
0.04, and r = 3.2, 3.6, 4.0). A shows scatter plots for all data of the behavioral cost coefficients (cb) and the reproduction 
coefficients of predators (r), illustrating the relationships among the encounter frequency (E), number of agents (Ni), and 
Nash equilibrium payoff (P̅i) (where i = w for wolf and s for sheep), based on actual measurements obtained by assign-
ing Nash equilibrium speed changes. Aa and Ab show scatter plots of E on the x-axis against Nw and P̅w on the y-axis, 
respectively. Ac shows a scatter plot of Ns versus Nw, along the line Ns = Nw. Ad shows a scatter plot of Ps versus Pw, 
along the line Ps + Pw = 1. Beige, orange, brown, and dark brown points represent, Kw = 0, 0.1, 0.2, and 0.3, respectively, 
across all values of Ks (Ks = 0–0.3). Ba–Bd show the same scatter plots, with Ks = 0 highlighted in the colors and Ks 

≠ 0 in 
gray. When Ks = 0, as Kw increases, Nw decreases (dark brown points shift to the lower side in Ba). Pw increases (dark 
brown points shift to the upper side in Bb). Ns increases and Nw decreases (dark brown points shift to the lower-right side 
in Bc). Ps and Pw increase (dark brown points shift to the upper-right side in Bd). Ca–Cd show the same scatter plots, 
with Ks ≠ 0 highlighted in the colors and Ks = 0 in gray.
(TIF)

S16 Fig. Payoff spaces under Di combinations where behavioral switching occurred and under all other Di com-
binations of non-behavioral switching. The pooled Ps and Pw data calculated across all Si combinations under Di 
combinations where behavioral switching occurred are designated as “bs” (behavioral switching) [Ds and Dw are (1, 1), (1, 
2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), and (3, 3) for all cb and r], and those under all other Di combinations as “nbs” (non-
behavioral switching). The full range of payoffs from all behaviors is plotted on a scatter plot with Ps on the x-axis and Pw 
on the y-axis. The data corresponding to bs are shown in dark gray, and those for nbs in light gray plots. Ranges of each 
region represent the payoff spaces of bs and nbs. A shows a scatter plot with nbs on top of bs. B shows bs on top of nbs. 
No marked difference is observed between the two payoff spaces.
(TIF)
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