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Abstract 

Mathematical and computational models are often used to forecast respiratory infec-

tious disease burden, including to inform healthcare capacity. We aimed to charac-

terize pathways of clinical progression associated with SARS-CoV-2, influenza, and 

respiratory syncytial virus (RSV) infections using data from patients aged 0 to >90 

years in an integrated healthcare system, whose encounters were monitored across 

all levels of acuity spanning virtual, ambulatory, and inpatient care settings. Using 

parametric survival models, we estimated probabilities of progression and distribu-

tions of time to progression from each setting to all higher-acuity settings on a cas-

cade encompassing the following classes of events or encounters: symptoms onset; 

diagnostic testing; telehealth or other virtual care appointment; outpatient physician 

office visit; urgent care presentation; emergency department presentation; hospi-

tal admission; mechanical ventilation; and death. Our analyses included data from 

59,668, 22,705, and 1,668 episodes associated with positive SARS-CoV-2, influenza, 

and RSV tests, respectively, between 1 April 2023 and 31 March 2024. First clinical 

encounters occurred in inpatient settings for only 4.7%, 3.4%, and 18.7% of SARS-

CoV-2, influenza, and RSV episodes, respectively, with median times (interquartile 

range) of 6.8 (3.6-13.2), 6.6 (3.5-12.1), and 6.4 (3.8-10.6) days from symptoms onset 

to admission. Overall, 7.9% of SARS-CoV-2 episodes, 5.8% of influenza episodes, 

and 33.8% of RSV episodes resulted in inpatient admission, ventilation, or death. 
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Between 40.4-62.1%, 71.6-87.3%, and 47.9-58.7% of SARS-CoV-2, influenza, and 

RSV infections, respectively, had encounters in lower-acuity virtual care, outpatient, 

or urgent care settings. For all three viruses, the proportions of cases receiving care 

at each level of acuity increased with older age and greater numbers of comorbid 

conditions. Median durations of hospital stay were 4.2 (2.6, 7.3), 4.0 (2.3, 6.8), and 

4.3 (2.5, 7.4) days for SARS-CoV-2, influenza, and RSV episodes resulting in admis-

sion. These estimates provide a basis for modeling real-world clinical care require-

ments and the progression of respiratory viral infections.

Author summary

Models of respiratory infections such as SARS-CoV-2, influenza, and RSV are 
used to forecast disease burden and plan the allocation of healthcare resources. 
However, limited data are available addressing patterns of healthcare utilization 
among patients with these infections. Using electronic healthcare records from 
an integrated healthcare system, we estimated probabilities and rates of pro-
gression from lower-acuity states, such as virtual or outpatient visits, to increas-
ingly higher-acuity states including inpatient admission, ventilation, and death. 
We quantified associations of demographic and clinical risk factors with pro-
gression probabilities for each infection. We provide a databank containing fitted 
distributions for progression to inform infectious disease modeling.

Introduction

Acute respiratory illnesses (ARIs) caused by SARS-CoV-2, influenza, and respira-
tory syncytial virus (RSV) are important contributors to morbidity and mortality in the 
United States and globally [1–3]. Anticipating healthcare utilization associated with 
ARIs is an objective of both public health agencies and healthcare delivery organiza-
tions. Mathematical and computational models used to forecast ARI burden are often 
trained using data from either syndromic surveillance or reported cases, hospital 
admissions, and deaths associated with each infection [4]. Such models employ 
diverse frameworks, often including mechanistic approaches simulating the natural 
history and transmission dynamics of infection [5], multiplier approaches anticipating 
care utilization needs at differing levels of acuity [6], and forecasting or nowcasting 
approaches based on time series [7–9]. To inform capacity planning—including deci-
sions around the allocation of personnel, space, medications, laboratory infrastruc-
ture, and other resources—such models require realistic parameters concerning the 
likelihood and time course of cases’ healthcare utilization [10].

Despite this need, few real-world data sources address clinical care trajectories 
associated with ARIs due to SARS-CoV-2, influenza, and RSV. While parameters 
such as the proportion of SARS-CoV-2 infections resulting in hospital admission 
or death [11,12] and durations of hospital stay [13,14] were estimated in numerous 
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settings during the early phases of the COVID-19 pandemic, fewer studies have addressed utilization patterns in  
lower-acuity healthcare settings such as ambulatory clinics and emergency departments, where the greatest numbers 
of all medically-attended cases receive care. Moreover, updated epidemiological parameter estimates for recent SARS-
CoV-2 variants and in populations with widespread immunity are not widely available. These challenges are equally 
pronounced in efforts to model seasonal influenza and RSV. Although some studies have aimed to characterize reporting 
pyramids addressing symptomatic or medically attended, hospitalized, and fatal influenza cases for contexts of seasonal 
[15] and pandemic influenza [6,16], these studies have drawn on data from disparate sources and settings, and do not 
address time-to-event parameters that are likewise critical to forecasting.

We aimed to characterize pathways of clinical progression during ARIs associated with SARS-CoV-2, influenza, and 
RSV. We analyzed data from patients enrolled in capitated, managed care plans within an integrated healthcare system 
in southern California. This rich data source allowed us to monitor patient encounters across all levels of acuity spanning 
virtual, ambulatory, and inpatient care settings. We quantified how patients progress through the different settings of care 
using parametric survival models among all ascertained infections. The outputs of this analysis provide a basis for model-
ing clinical burden and healthcare system impacts of SARS-CoV-2, influenza, and RSV infections.

Methods

Ethics statement

This study was reviewed and approved by the Kaiser Permanente Southern California institutional review board, which 
granted a waiver of informed consent for retrospective analysis of EHR data.

Overview of the modeling approach

We defined a cascade of clinical progression wherein we aimed to estimate (a) the probability that an individual 
observed at any state along this cascade would progress to a higher-acuity state, and (b) the distributions of times to 
progression from lower-acuity to higher-acuity states (Figs 1; S1 File). States were characterized as the highest- 
acuity settings where individuals had received care for ARI at a given point during their infection. We defined the states 
in order of increasing acuity as: any infection or symptomatic infection without associated healthcare utilization (besides 
testing); telehealth or other virtual care appointment; outpatient physician office visit; urgent care presentation; emer-
gency department presentation; hospital admission; mechanical ventilation; and death. Our analyses account for the 
fact that individuals may progress from lower- to higher-acuity states without being intercepted via healthcare encoun-
ters at intermediate levels between these origin and destination states. As ongoing receipt of care in lower-acuity set-
tings does not provide a basis for inferring recovery, our analysis considers “forward” transitions to care in higher-acuity 
settings only.

We fit parametric survival models to jointly estimate the probabilities of progression and the distributions of time to 
progression from each state to all higher-acuity states on the cascade. We modeled three classes of transitions aiming to 
inform distinct forecasting applications. First, we modeled an individual’s most proximal progression event from each orig-
inating state on the cascade, aiming to characterize typical pathways of care utilization (e.g., the probability and time-to-
event for the first hospital admission following emergency department presentation). Secondly, we modeled an individual’s 
total probability of progression to each state or more severe states from all lower-acuity originating states on the cascade, 
aiming to inform projections of total demand at each level of acuity within a patient cohort observed at any point in time 
(e.g., the probability and time-to-event for care receipt at an urgent care facility following a virtual care appointment). 
Lastly, we aimed to estimate durations of hospital stay following inpatient admission. We explored the association of pro-
gression risk and progression rates with individual epidemiologic and demographic characteristics by including covariates 
in survival models.
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We share parameters of all fitted models for re-use within the supplementary materials and via an online repository 
(https://github.com/ntparker3/Resp_params).

Setting

We used data from healthcare encounters among members of Kaiser Permanente Southern California (KPSC), an integrated 
healthcare system providing care across virtual, outpatient, and inpatient settings to roughly 4.7 million individuals throughout 
southern California during the study period. Members of KPSC enroll through a combination of employer-sponsored, pre-
paid, and government-subsidized insurance plans, and broadly reflect the socioeconomic and racial and ethnic diversity of the 
area’s population [17,18]. Electronic health records (EHRs) capture clinical notes, diagnoses, laboratory results, and  
prescriptions for care received at KPSC facilities, while insurance claims capture out-of-network care, enabling near-complete 
ascertainment of healthcare delivery for members. Testing for the studied viral pathogens is conducted by in-house clinical 
laboratories, with results linked to patient EHR data via unique patient identification numbers. Medically-supervised deaths are 
tracked via EHR, while medically-unsupervised deaths are reconciled with health plan administrative and clinical databases, 
member proxy reporting, Social Security Administration vital status data, and California death certificates.

Fig 1.  Clinical care cascade for acute respiratory illnesses associated with SARS-CoV-2, influenza, and RSV infections. We illustrate cumulative 
distribution functions from best-fitting models (defined by Akaike information criterion values) for times from symptom onset to progression to (or beyond) 
each acuity threshold. Plus signs (+) next to states indicate receiving care at the indicated level or a higher-acuity level of care. Right-hand panels illus-
trate cumulative distribution functions for rare outcomes (mechanical ventilation and death).

https://doi.org/10.1371/journal.pcbi.1013723.g001

https://github.com/ntparker3/Resp_params
https://doi.org/10.1371/journal.pcbi.1013723.g001
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Study population and episode definition

We conducted event-level analyses of ARIs associated with SARS-CoV-2, influenza, and RSV among individuals of any 
age who tested positive for each pathogen by molecular or antigen-based assays in any clinical setting between 1 April 
2023 and 31 March 2024. We selected this study period to ensure results were not impacted by disruptions in routine care 
delivery associated with earlier emergency phases of the COVID-19 pandemic. Additionally, screening for SARS-CoV-2 
infection at the point of hospital admission or other healthcare encounters was no longer undertaken by KPSC during the 
study period. While co-infections were exceptionally rare, we allowed overlapping episode periods to contribute to obser-
vations for each unique virus identified. We limited the study population to individuals with ≥1 year of continuous enroll-
ment in a Kaiser health plan before their index test (allowing for enrollment gaps up to 45 days in length, as captured from 
membership enrollment and disenrollment dates) to ensure accurate characterization of individuals’ baseline health status 
from prior-year utilization. For children aged <1 year, this requirement applied to parents.

We defined index tests for each ARI episode as the date of specimen collection associated with the first positive test for 
each pathogen during the study period. Symptoms data (presence of and onset dates for fever, cough, headache, fatigue, 
dyspnea, chills, sore throat, myalgia, anosmia, diarrhea, vomiting or nausea, and abdominal pain within 14 days before 
testing) were solicited at the point of testing for all individuals who received SARS-CoV-2 tests during the study period. 
Symptoms were recorded for most ARI episodes, as nearly all individuals who received influenza or RSV tests within 
KPSC were previously or concurrently tested for SARS-CoV-2. We supplemented structured data from symptoms ques-
tionnaires with searches of free-text EHR fields via a previously described natural language processing (NLP) algorithm 
[19] to characterize the presence and onset times of symptoms using all available information. We defined the date of 
symptoms onset as the earliest recorded date within 14 days before to 30 days after testing for each episode.

We characterized ARI episodes using data from all healthcare encounters occurring between the date of symptoms 
onset (or up to seven days before the date of testing, if symptoms were not recorded at the time of testing) and 30 days 
after the testing date. We defined dates of progression to each state as the first date at which individuals received care in 
the associated clinical setting, including at least one ARI-related diagnosis code (S1 Table in S1 File). We excluded any 
care utilization events where ARI codes were not assigned to ensure that healthcare encounters unrelated to an ongoing 
ARI episode were not interpreted as indicators of disease progression.

Statistical analysis

We fit parametric survival models using the flexsurv package [20] in R (version 4.4.2; R Foundation for Statistical 
Computing, Vienna, Austria). We estimated parameters corresponding to assumptions that times-to-event followed 
exponential, Weibull, Gompertz, Gamma, generalized Gamma, and log normal distributions for all transitions. The 
modeled distributions invoke differing assumptions about underlying rate or processes of progression across clinical 
care settings. The exponential distribution assumes events occur independently with a constant rate, an assumption 
that the Weibull and Gompertz distributions relax by allowing rates to vary over time. The Gamma distribution defines 
times to progression as the sum of exponentially-distributed event times, which in our application may correspond to 
underlying disease progression events prompting receipt of higher-acuity care, while the generalized Gamma com-
bines the refinements of both the Weibull and Gamma distributions. The log normal distribution, in contrast, lacks a 
similar mechanistic interpretation but may provide a good approximation to observed event time distributions. For 
brevity, we describe results for models with the lowest Akaike information criterion (AIC) values for each transition in 
this manuscript, and present parameter estimates for all distributions evaluated within the accompanying code base 
(https://github.com/ntparker3/Resp_params). Practitioners, however, should consider the mechanistic assumptions 
underlying differing time-to-event distributions alongside or in lieu of model selection criteria when choosing among 
the differing parameterizations generated.

https://github.com/ntparker3/Resp_params
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For models of the most proximal transition from each state, we followed for progression events within 20 days after 
dates of entry into each originating state. We considered observations to be censored if no progression event occurred 
within 20 days. As a sensitivity analysis, we also present estimates for models including follow-up through 60 days for 
these transitions. We used mixture models to estimate probabilities of and times to the most proximal progression event 
from each originating state. These models defined distinct rates for progression between each originating state and all 
higher-acuity states, and handled progression to each state as a competing risk. This framework corresponded to the 
interpretation that progression to a higher-acuity state of illness could precede progression to intermediate states along 
the same cascade.

For models of individuals’ total risk of progression to each acuity state (or higher-acuity states), we followed for pro-
gression events within 60 days after dates of entry into each originating state. When individuals experienced care corre-
sponding to multiple states on the same day (e.g., an emergency presentation leading to hospital admission), we defined 
the highest-acuity state observed as the outcome. In contrast to analyses for individuals’ most proximal transition, models 
for individuals’ risk of progression to each state—cumulatively across all intermediate pathways of care—did not require 
a competing-risks framework. For these analyses, we instead recorded progression as occurring when individuals experi-
enced the outcome of interest or one signifying receipt of higher-acuity care.

To estimate hospital lengths of stay, we fit parametric survival models defining admission dates as originating events 
and dates of discharge with any disposition or in-hospital mortality as the outcome; we modeled consecutive admissions 
with same-day readmissions as continuous hospitalization events. We also used mixture models defining competing risks 
for death and discharge to separately estimate durations of hospitalization according to individuals’ clinical outcome.

Differences in rates across patient subgroups could impact the validity of population-wide estimates. We therefore 
repeated the analyses described above to estimate subgroup-specific risks and rates of progression based on age, sex, 
race/ethnicity, vaccination status, Charlson comorbidity index (a weighted index of 19 different comorbidities where a 
higher score indicates a greater risk of mortality [21]; S2 Table in S1 File), and community-level socioeconomic status, as 
measured by census tract-level neighborhood deprivation index values derived from the 2017–2021 5-year estimates of 
the American Community Survey [22,23]. We categorized continuous covariates according to the distributions presented 
in Table 1. We fit parametric survival models allowing variation across covariate strata in both the probability of progres-
sion and the location parameter for times-to-event for each modeled distribution. As for our primary analyses, we describe 
results for models yielding the lowest AIC value for each transition in this manuscript, and present parameter estimates for 
all distributions in the accompanying repository. We evaluated 95% confidence intervals around estimated probabilities of 
progression and median times-to-events to assess whether differences across groups were statistically or epidemiologi-
cally meaningful.

Results

Descriptive characteristics

Our analyses included data from 348,958 unique KPSC members who received tests for SARS-CoV-2, influenza, or RSV 
between 1 April, 2023 and 31 March, 2024, among whom we identified 59,670 episodes associated with positive SARS-
CoV-2 test results, 23,375 episodes associated with positive influenza test results, and 1,668 episodes associated with 
positive RSV test results (Table 1). Among these episodes, 602 were associated with coinfections (579 SARS-CoV-2 and 
influenza coinfections, 11 SARS-CoV-2 and RSV coinfections, and 12 influenza and RSV coinfections). In total, 2,737 
ARI episodes occurred without associated testing for SARS-CoV-2, influenza, or RSV over the study period, and were not 
eligible for inclusion in our analyses (S2 Fig in S1 File). The greatest numbers of SARS-CoV-2 and influenza infections 
occurred among individuals aged 18–49 years (n = 23,033 [38.6%] and n = 8,475 [36.3%], respectively). For influenza 
and RSV, a considerable number of episodes also occurred among children aged ≤17 years (n = 7,348 [31.4%] and 920 
[55.2%], respectively), while 10.7-26.7% of infections with each pathogen occurred among individuals aged ≥70 years 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013723  November 19, 2025 7 / 24

Table 1.  Individual characteristics by infecting virus.

Characteristic Cases, by infecting virus, n (%)

SARS-CoV-2 Influenza RSV

N = 59,670 N = 23,375 N = 1,668

Age, years

  0-17 4,489 (7.5) 7,348 (31.4) 920 (55.2)

  18-49 23,033 (38.6) 8,475 (36.3) 71 (4.3)

  50-59 9,307 (15.6) 2,708 (11.6) 87 (5.2)

  60-69 8,930 (15.0) 2,283 (9.8) 146 (8.8)

  70-79 8,089 (13.6) 1,708 (7.3) 176 (10.6)

  80-89 4,639 (7.8) 701 (3.0) 193 (11.6)

  ≥90 1,183 (2.0) 152 (0.7) 75 (4.5)

Sex

  Male 24,195 (40.5) 10,541 (45.1) 775 (46.5)

  Female 35,475 (59.5) 12,834 (54.9) 893 (53.5)

Race/ethnicity

  White, non-Hispanic 14,557 (24.4) 5,237 (22.4) 482 (28.9)

  Asian, non-Hispanic 7,033 (11.8) 2,351 (10.1) 201 (12.1)

  Black, non-Hispanic 6,767 (11.3) 2,177 (9.3) 166 (10.0)

  Hispanic (any race) 28,114 (47.1) 12,228 (52.3) 764 (45.8)

  Pacific Islander 484 (0.8) 165 (0.7) – –

  Native American/Alaska native 115 (0.2) 33 (0.1) 3 (0.2)

  Other 859 (1.4) 409 (1.7) 14 (0.8)

  Multiple 214 (0.4) 126 (0.5) 8 (0.5)

  Unknown 1,527 (2.6) 649 (2.8) 17 (1.0)

Insurance source

  Commercial 30,861 (51.7) 13,073 (55.9) 688 (41.2)

  Medicaid 6,201 (10.4) 3,258 (13.9) 299 (17.9)

  Medicare 13,358 (22.4) 2,574 (11.0) 400 (24.0)

  Pre-paid plans 1,444 (2.4) 718 (3.1) 33 (2.0)

  Other 653 (1.1) 190 (0.8) 14 (0.8)

  Unknown 7,153 (12.0) 3,562 (15.2) 234 (14.0)

Vaccinations

  0 COVID-19 vaccie doses 6,944 (11.6) 6,751 (28.8) 788 (47.2)

  1-2 COVID-19 vaccine doses 11,272 (18.9) 5,459 (23.4) 156 (9.4)

  3 + COVID-19 vaccine doses 41,454 (69.5) 11,165 (47.8) 724 (43.4)

  Seasonal influenza vaccine received 40,565 (68.0) 12,269 (52.5) 1,287 (77.2)

  RSV vaccine received 443 (0.7) 225 (1.0) 27 (1.6)

Neighborhood deprivation index

  NDI < –1 2,565 (4.3) 1,027 (4.5) 78 (4.7)

  –1 ≤ NDI < 0 19,632 (32.9) 7,247 (31.0) 535 (32.1)

  0 ≤ NDI < 1 20,701 (34.7) 8,112 (34.7) 576 (34.5)

  NDI > 1 11,097 (18.6) 4,637 (19.8) 279 (16.7)

  Unknown 5,675 (9.5) 2,352 (10.1) 200 (12.0)

Charlson comorbidity index

  0 32,336 (54.2) 15,324 (65.6) 834 (50.0)

  1-2 16,321 (27.4) 5,748 (24.6) 379 (22.7)

(Continued)
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(n = 13,911 with SARS-CoV-2, n = 2,561 with influenza, and n = 444 with RSV). Most episodes involving each pathogen 
occurred among Hispanic individuals of any race or White, non-Hispanic individuals without comorbid conditions (S2 Table 
in S1 File). Across all three pathogens, roughly half (41.2-55.6%) of all infections occurred among individuals enrolled in 
commercial insurance plans, and a plurality (10.4-17.9%) occurred among individuals enrolled in Medicaid-sponsored 
plans. Among SARS-CoV-2 infections, 6,944 (11.6%), 11,271 (18.9%), and 41,454 (69.5%) occurred among individuals 
who had received 0, 1–2, and ≥3 COVID-19 vaccine doses, cumulatively; 12,269 influenza infections (52.5%) occurred 
among individuals who had received seasonal influenza vaccination, and few RSV infections (n = 27; 1.6%) occurred 
among individuals who were previously vaccinated against RSV. Characteristics receiving ARI diagnoses in any setting 
differed from those receiving care in inpatient settings (S3 Table in S1 File).

Care pathways for SARS-CoV-2

For ARIs associated with SARS-CoV-2 infection, the first clinical encounter following symptoms onset most often occurred 
in urgent care (18.6%) or emergency department (17.9%) settings, followed by virtual care appointments (10.7%), outpa-
tient office visits (7.2%), and inpatient settings (4.7%; Table 2; S4 Table; S5 Table in S1 File). Median time from symptoms 
onset to testing was 3.2 days (Fig 2). Among individuals who received virtual care, 21.1% subsequently received care in 
higher-acuity clinical settings in the following 20 days, with 7.2%, 5.0%, and 7.1%, presenting to outpatient office visits, 
urgent care facilities, and emergency departments as their next clinical encounter, respectively; 1.9% were admitted to 
hospital at their next clinical encounter (Table 2). For individuals who were admitted at their next clinical encounter after 
a virtual care appointment, median time to admission was 2.0 days (interquartile range [IQR]: 0.6-5.2). Among individuals 
who received care at outpatient and urgent care facilities, 4.0% and 1.7%, respectively, were admitted to the hospital at 
their next clinical encounter after a median of 0.9 and 0.4 days, respectively. We obtained similar estimates in analyses 
accommodating follow-up through 60 days (S6 Table; S7 Table in S1 File).

Median duration of inpatient stay for SARS-CoV-2 infections was 4.2 days (IQR: 2.6-7.3); median time to discharge 
was 4.1 days (IQR: 2.6-6.9) for patients who were discharged alive (Fig 3; S8 Table in S1 File). In the 20 days following 
inpatient admission for SARS-CoV-2 infections, 5.1% of patients required mechanical ventilation after a median 2.6 days 
(IQR: 0.8-6.5; Table 2). Median time to in-hospital death was 7.3 days (IQR: 3.7-13.3). Accounting for both in-hospital and 
out-of-hospital mortality, the 60-day risk of death after inpatient admission was 14.1%, with 11.3% of admitted patients 
dying without proceeding to mechanical ventilation, and 50.2% dying after initiating mechanical ventilation (Table 3; S6 
Table in S1 File).

Care pathways for influenza and RSV

Median times from symptoms onset to testing were 3.4 and 5.6 days for influenza and RSV, respectively, corresponding to 
differences in the clinical care settings at which testing most frequently occurred for each pathogen (Fig 2). The first clin-
ical encounter occurred in urgent care for 36.7% of influenza cases, in emergency departments for 28.8% of cases, and 

Characteristic Cases, by infecting virus, n (%)

SARS-CoV-2 Influenza RSV

N = 59,670 N = 23,375 N = 1,668

  3-5 7,180 (12.0) 1,513 (6.5) 253 (15.2)

  6+ 3,833 (6.4) 790 (3.3) 202 (12.1)

We enumerate the same characteristics of infections that resulted in an ARI diagnosis in any setting, and infections that reached the threshold of inpa-
tient admission or higher acuity, in S3 Table in S1 File.

https://doi.org/10.1371/journal.pcbi.1013723.t001

Table 1.  (Continued)

https://doi.org/10.1371/journal.pcbi.1013723.t001
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Table 2.  Care utilization pathways associated with each infecting virus using a follow-up period of 20 days.

Originat-
ing state

Next outcome Number 
of events

Probability of pro-
gression, % (95% CI)

Time to progression along indicated transition pathway, days 
(95% CI)

Median 25%ile 75%ile

SARS-CoV-2 infections

Symptoms onset

Virtual care 5,796 10.7 (10.5, 10.9) 3.03 (2.96, 3.09) 1.78 (1.74, 1.83) 5.14 (5.03, 5.37)

Outpatient office visit 3,938 7.2 (7.1, 7.4) 3.64 (3.56, 3.72) 2.13 (2.08, 2.18) 6.21 (6.07, 6.37)

Urgent care 10,089 18.6 (18.3, 18.9) 3.06 (3.00, 3.12) 1.85 (1.81, 1.89) 5.06 (4.94, 5.18)

Emergency department 9,723 17.9 (17.6, 18.2) 3.52 (3.44, 3.60) 2.02 (1.97, 2.06) 6.13 (5.99, 6.28)

Inpatient admission 2,532 4.7 (4.6, 4.8) 5.39 (5.26, 5.51) 2.98 (2.90, 3.05) 8.59 (8.41, 8.78)

Recovered 22,284 41.0 (40.7, 41.2) – – – – – –

Receipt of test

Virtual care 8,206 13.8 (13.6, 13.9) 0.50 (0.49, 0.50) <0.2 1.52 (1.49, 1.55)

Outpatient office visit 4,260 7.2 (7.1, 7.2) <0.2 <0.2 0.53 (0.52, 0.54)

Urgent care 10,656 17.9 (17.7, 18.1) <0.2 <0.2 <0.2

Emergency department 11,690 19.6 (19.4, 19.8) <0.2 <0.2 <0.2

Inpatient admission 2,765 4.6 (4.6, 4.7) <0.2 <0.2 <0.2

Recovered 21,993 36.9 (36.8, 37.1) – – – – – –

Virtual care

Outpatient office visit 1,056 7.2 (7.0, 7.3) 2.83 (2.69, 2.96) 0.76 (0.70, 0.82) 7.40 (7.12, 7.68)

Urgent care 731 5.0 (4.8, 5.1) 0.92 (0.90, 0.94) 0.26 (0.25, 0.27) 3.28 (3.15, 3.40)

Emergency department 1,045 7.1 (6.9, 7.3) 0.76 (0.74, 0.77) 0.24 (0.23, 0.24) 2.43 (2.34, 2.52)

Inpatient admission 285 1.9 (1.9, 2.0) 2.02 (1.93, 2.12) 0.56 (0.52, 0.60) 5.22 (5.02, 5.40)

Recovered 11,628 78.9 (78.6, 79.1) – – – – – –

Outpatient office visit

Urgent care 801 9.6 (9.5, 9.8) <0.2 <0.2 0.38 (0.36, 0.39)

Emergency department 606 7.3 (7.2, 7.4) 0.89 (0.77, 1.03) 0.25 (0.21, 0.29) 3.23 (2.80, 3.82)

Inpatient admission 335 4.0 (4.0, 4.1) 0.86 (0.71, 1.08) 0.23 (0.18, 0.28) 3.27 (2.62, 4.01)

Recovered 6,573 79.0 (78.9, 79.2) – – – – – –

Urgent care

Emergency department 856 6.7 (6.6, 6.8) 0.76 (0.75, 0.78) 0.23 (0.22, 0.23) 2.55 (2.48, 2.62)

Inpatient admission 217 1.7 (1.7, 1.7) 0.42 (0.34, 0.54) <0.2 1.42 (1.12, 1.82)

Recovered 11,767 91.6 (91.5, 91.7) – – – – – –

Emergency department

Inpatient admission 1,055 7.5 (7.4, 7.6) 0.69 (0.68, 0.70) <0.2 2.37 (2.31, 2.44)

Mechanical ventilation 8 0.1 (0.0, 0.1) 1.32 (0.55, 1.76) 0.80 (0.24, 1.31) 1.81 (1.08, 2.39)

Death 69 0.5 (0.4, 0.6) 3.99 (2.88, 5.44) 1.29 (0.70, 2.02) 9.33 (7.09, 12.07)

Recovered 12,984 91.9 (91.7, 92.1) – – – – – –

Inpatient admission

Mechanical ventilation 232 5.1 (5.0, 5.2) 2.64 (2.51, 2.77) 0.79 (0.68, 0.89) 6.50 (5.94, 7.09)

Death 293 6.5 (6.3, 6.6) 10.03 (9.85, 13.10) 5.26 (5.13, 8.80) 14.64 (14.37, 16.75)

Recovered 4004 88.4 (88.2, 88.6) – – – – – –

Mechanical ventilation

Death 112 40.7 (40.1, 41.4) 2.89 (2.73, 3.02) 0.80 (0.64, 0.94) 7.44 (6.55, 8.37)

Recovered 163 59.3 (58.6, 59.9) – – – – – –

(Continued)
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Originat-
ing state

Next outcome Number 
of events

Probability of pro-
gression, % (95% CI)

Time to progression along indicated transition pathway, days 
(95% CI)

Median 25%ile 75%ile

Influenza infections

Symptoms onset

Virtual care 1,545 8.1 (7.9, 8.2) 3.05 (3.00, 3.11) 1.81 (1.77, 1.86) 5.14 (5.03, 5.26)

Outpatient office visit 2,415 12.6 (12.4, 12.9) 3.53 (3.46, 3.60) 2.12 (2.08, 2.17) 5.87 (5.74, 6.01)

Urgent care 7,060 36.9 (36.4, 37.4) 2.99 (2.94, 3.05) 1.83 (1.79, 1.87) 4.90 (4.79, 5.01)

Emergency department 5,468 28.6 (28.1, 29.0) 3.40 (3.34, 3.47) 2.04 (2.00, 2.09) 5.68 (5.55, 5.81)

Inpatient admission 640 3.3 (3.3, 3.4) 4.61 (4.52, 4.70) 2.70 (2.64, 2.76) 7.86 (7.69, 8.04)

Recovered 1,996 10.4 (10.3, 10.5) – – – – – –

Receipt of test

Virtual care 1,396 6.8 (6.6, 6.9) <0.2 <0.2 0.48 (0.47, 0.50)

Outpatient office visit 2,400 11.6 (11.4, 11.8) <0.2 <0.2 0.23 (0.23, 0.24)

Urgent care 8,012 38.8 (38.3, 39.3) <0.2 <0.2 <0.2

Emergency department 6,436 31.2 (30.7, 31.7) <0.2 <0.2 <0.2

Inpatient admission 640 3.1 (3.0, 3.2) <0.2 <0.2 <0.2

Recovered 1,759 8.5 (8.4, 8.6) – – – – – –

Virtual care

Outpatient office visit 456 12.4 (12.3, 12.6) 2.43 (2.35, 2.50) 0.72 (0.65, 0.78) 5.99 (5.64, 6.35)

Urgent care 416 11.2 (11.1, 11.4) 0.70 (0.69, 0.71) 0.23 (0.23, 0.24) 2.12 (2.06, 2.16)

Emergency department 426 11.7 (11.5, 11.9) 0.85 (0.74, 0.98) 0.27 (0.24, 0.29) 2.32 (2.18, 2.57)

Inpatient admission 48 1.3 (1.0, 1.7) 1.79 (1.37, 2.38) 0.74 (0.56, 0.97) 3.58 (2.70, 4.69)

Recovered 2,322 63.3 (62.8, 63.6) – – – – – –

Outpatient office visit

Urgent care 647 14.0 (13.8, 14.2) 0.31 (0.30, 0.31) <0.2 0.98 (0.95, 1.01)

Emergency department 357 7.7 (7.6, 7.8) 1.17 (1.14, 1.19) 0.32 (0.31, 0.33) 3.23 (3.17, 3.29)

Inpatient admission 102 2.2 (1.9, 2.7) 0.82 (0.55, 120) <0.2 2.73 (2.07, 3.74)

Recovered 3,522 76.1 (75.6, 76.6) – – – – – –

Urgent care

Emergency department 674 7.3 (7.2, 7.4) 0.67 (0.65, 0.68) <0.2 2.10 (2.04, 2.17)

Inpatient admission 118 1.3 (1.3, 1.4) 0.52 (0.38, 0.73) <0.2 1.82 (1.30, 2.46)

Recovered 8,421 91.4 (91.3, 91.5) – – – – – –

Emergency department

Inpatient admission 261 3.5 (3.5, 3.6) 0.67 (0.55, 0.83) 0.21 (0.17, 0.26) 2.15 (1.75, 2.68)

Mechanical ventilation 8 0.1 (0.1, 0.2) 0.73 (0.24, 2.31) 0.24 (0.07, 0.77) 2.28 (0.67, 8.38)

Death 9 0.1 (0.1, 0.2) 10.66 (5.07, 13.52) 6.16 (2.21, 10.12) 15.08 (9.61, 16.85)

Recovered 7,146 96.3 (96.1, 96.4) – – – – – –

Inpatient admission

Mechanical ventilation 70 6.3 (4.9, 7.9) 0.83 (0.54, 1.26) 0.25 (0.17, 0.38) 2.73 (1.82, 4.14)

Death 36 3.2 (2.3, 4.3) 8.61 (6.08, 10.50) 4.84 (3.12, 6.70) 12.40 (10.38, 13.97)

Recovered 1006 90.5 (88.6, 92.1) – – – – – –

Mechanical ventilation

Death 23 27.4 (19.2, 38.3) 2.97 (1.40, 5.32) 0.81 (0.22, 1.88) 7.73 (4.53, 13.11)

Recovered 61 72.6 (61.7, 80.8) – – – – – –

Table 2.  (Continued)
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Originat-
ing state

Next outcome Number 
of events

Probability of pro-
gression, % (95% CI)

Time to progression along indicated transition pathway, days 
(95% CI)

Median 25%ile 75%ile

RSV infections

Symptoms onset

Virtual care 97 6.1 (5.6, 6.6) 5.39 (5.19, 5.58) 3.14 (2.80, 3.42) 8.55 (8.01, 9.11)

Outpatient office visit 203 12.7 (12.2, 13.1) 4.58 (4.40, 4.74) 2.68 (2.46, 2.88) 7.24 (6.85, 7.61)

Urgent care 170 10.6 (10.2, 11.0) 4.07 (3.98, 4.18) 2.45 (2.39, 2.52) 6.76 (6.59, 6.95)

Emergency department 606 37.8 (37.2, 38.4) 4.18 (4.08, 4.28) 2.60 (2.53, 2.68) 6.72 (6.54, 6.91)

Inpatient admission 299 18.7 (18.1, 19.2) 4.74 (4.63, 4.85) 3.00 (2.92, 3.09) 7.48 (7.29, 7.69)

Recovered 227 14.2 (12.6, 15.9) – – – – – –

Receipt of test

Virtual care 98 5.9 (4.9, 7.1) 2.13 (2.04, 2.21) 0.52 (0.41, 0.61) 5.93 (5.13, 6.73)

Outpatient office visit 300 18.1 (17.6, 18.6) 0.28 (0.23, 0.34) <0.2 0.90 (0.74, 1.09)

Urgent care 153 9.3 (8.5, 10.0) <0.2 <0.2 <0.2

Emergency department 238 36.2 (35.7, 36.7) <0.2 <0.2 <0.2

Inpatient admission 599 14.4 (13.9, 14.9) <0.2 <0.2 <0.2

Recovered 265 16.0 (14.4, 17.8) – – – – – –

Virtual care

Outpatient office visit 70 18.0 (14.6, 22.6) 3.00 (2.85, 3.10) 0.91 (0.68, 1.10) 7.27 (6.22, 8.28)

Urgent care 20 5.1 (3.3, 7.7) 0.45 (0.20, 0.91) 0.14 (0.06, 0.33) 1.47 (0.64, 3.56)

Emergency department 59 15.2 (11.9, 19.1) 1.19 (0.78, 1.80) 0.35 (0.21, 0.57) 3.15 (2.29, 4.33)

Inpatient admission 17 4.4 (2.7, 7.1) 1.28 (0.80, 2.01) 0.53 (0.33, 0.89) 2.57 (1.61, 4.29)

Recovered 223 57.3 (52.2, 61.6) – – – – – –

Outpatient office visit

Urgent care 48 7.1 (5.3, 9.4) 1.76 (0.99, 2.74) 0.37 (0.15, 0.79) 5.27 (3.40, 8.11)

Emergency department 112 16.6 (14.0, 19.5) 0.78 (0.57, 1.07) 0.24 (0.17, 0.34) 2.52 (1.80, 3.53)

Inpatient admission 76 11.3 (9.1, 13.9) 0.48 (0.32, 0.74) <0.2 1.72 (1.15, 2.59)

Recovered 438 65.0 (61.5, 68.4) – – – – – –

Urgent care

Emergency department 101 29.4 (24.8, 34.6) 0.55 (0.41, 0.74) 0.19 (0.14, 0.26) 1.58 (1.16, 2.12)

Inpatient admission 60 17.5 (13.8, 21.8) 0.36 (0.25, 0.53) <0.2 0.99 (0.69, 1.43)

Recovered 182 53.1 (47.7, 58.4) – – – – – –

Emergency department

Inpatient admission 141 16.2 (15.9, 16.4) 0.62 (0.48, 0.82) 0.22 (0.17, 0.28) 1.80 (1.37, 2.35)

Mechanical ventilation 1 0.1 (0.0, 0.8) 0.09 (0.00, 0.15) <0.2 0.11 (0.00, 0.20)

Death 4 0.5 (0.2, 1.2) 5.72 (2.10, 15.00) 2.37 (0.88, 7.35) 11.44 (4.24, 35.41)

Recovered 725 83.2 (82.3, 83.7) – – – – – –

Inpatient admission

Mechanical ventilation 35 6.5 (4.6, 8.9) 2.07 (1.23, 3.09) 0.66 (0.29, 1.26) 4.84 (3.23, 7.12)

Death 9 1.7 (0.8, 3.2) 8.51 (4.81, 10.14) 5.48 (1.99, 7.97) 11.20 (7.92, 12.05)

Recovered 496 91.9 (89.1, 93.9) – – – – – –

Mechanical ventilation

Death 5 12.8 (5.3, 27.7) 6.07 (2.24, 7.10) 4.17 (0.99, 5.91) 7.68 (4.42, 8.14)

Recovered 34 87.2 (72.3, 94.7) – – – – – –

We indicate values as <0.2 where maximum likelihood estimates and accompanying confidence limits fell below 0.2 days, which arose in scenarios 
where a vast majority of transitions along the indicated path were observed occurring on the same day. We report estimates from best-fitting distri-
butions, based on models yielding the minimum AIC score; we indicate these distributions and their parameter estimates in S4 Table. Estimates and 
parameters of the same progressions using a longer follow-up period of 60 days are available in S6 Table and S7 Table in S1 File.

https://doi.org/10.1371/journal.pcbi.1013723.t002
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Fig 2.  Time-to-event distributions of reaching acuity thresholds from symptom onset for illnesses associated with SARS-CoV-2, influenza, 
and RSV. For healthcare utilization states with two panels, the top panel illustrates the time from symptom onset to ever seeking care at that specific 
state, while the bottom panel shows the time from symptom onset to reaching that acuity threshold (seeking care at the state or a state more severe). 
Panels for positive test and death show the time from symptom onset to reaching that exact state. Black lines represent the density of the best-fitting 
distribution, selected by AIC.

https://doi.org/10.1371/journal.pcbi.1013723.g002

https://doi.org/10.1371/journal.pcbi.1013723.g002
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in hospital settings for 3.4%; a greater proportion of confirmed RSV infections (18.7%) were first intercepted in hospital 
settings (Table 2).

Median durations of hospital stay for influenza cases and RSV cases were 4.0 days (IQR: 2.3-6.8) and 4.3 days (IQR: 
2.5-7.4), respectively (S8 Table in S1 File). The 60-day risk of death after hospital admission was 7.9% among influenza 
cases and 5.0% among RSV cases (Table 3). Median time to in-hospital death following admission was 5.2 days (IQR: 
2.6-10.5) among influenza cases and 11.3 days (IQR: 5.8-17.6) among RSV cases. In the 60 days following an inpatient 
admission, median times from admission to death were 17.5 days (IQR: 4.1-31.4) and 18.7 days (9.2-30.0) for influenza 
and RSV cases, respectively, who did not require mechanical ventilation, while median times from initiation of mechanical 
ventilation to death were 5.5 days (1.4-15.3) and 12.0 days (5.0-23.9) for influenza and RSV cases, respectively (S6 Table 
in S1 File).

Care requirements for all observed infections

For SARS-CoV-2 infections, median times from symptoms onset to receipt of care at or above the virtual care, outpatient 
physician office, urgent care, or emergency department thresholds were in the range of 3.9-4.5 days (Table 4). Overall, 
7.9% of all observed SARS-CoV-2 infections resulted in inpatient admission or death, occurring a median 6.8 days (IQR: 
3.6-13.2) after symptoms onset. Progression to illness necessitating mechanical ventilation and death occurred markedly 

Fig 3.  Durations of hospital stay. (Top row) We plot distributions from best-fitting models for durations of hospital stay, overall and stratified according 
to clinical outcome. (Bottom row) We plot distributions of time from inpatient admission to initiation of mechanical ventilation.

https://doi.org/10.1371/journal.pcbi.1013723.g003

https://doi.org/10.1371/journal.pcbi.1013723.g003
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Table 3.  Care utilization pathways at each acuity threshold for each infecting virus.

Originat-
ing state

Highest-acuity outcome Probability of 
progression

Time to progression along indicated transition pathway, days 
(95% CI)

Proportion, % (95% 
confidence interval)

Median 25%ile 75%ile

SARS-CoV-2 infections

Symptoms onset

Virtual care (or higher) 70.0 (69.6, 70.4) 3.90 (3.86, 3.94) 2.14 (2.13, 2.16) 7.11 (7.04, 7.18)

Outpatient office visit (or higher) 56.3 (55.9, 56.7) 4.17 (4.09, 4.24) 2.22 (2.18, 2.24) 7.82 (7.65, 7.99)

Urgent care (or higher) 48.3 (47.9, 48.7) 4.04 (3.99, 4.08) 2.18 (2.16, 2.20) 7.47 (7.38, 7.56)

Emergency department (or higher) 27.9 (27.5, 28.3) 4.49 (4.42, 4.57) 2.42 (2.37, 2.43) 8.51 (8.37, 8.65)

Inpatient admission (or higher) 7.9 (7.7, 8.1) 6.83 (6.64, 7.04) 3.55 (3.45, 3.67) 13.17 (12.70, 13.57)

Mechanical ventilation (or higher) 1.7 (1.6, 1.8) 22.82 (21.67, 23.99) 11.95 (11.30, 12.73) 34.78 (33.40, 36.02)

Death 1.5 (1.0, 1.8) 26.48 (22.10, 32.96) 15.16 (14.00, 15.81) 37.67 (30.50, 50.98)

Receipt of test

Virtual care (or higher) 65.3 (65.0, 65.6) 0.21 (0.20, 0.21) <0.2 0.59 (0.58, 0.60)

Outpatient office visit (or higher) 54.0 (53.4, 54.7) 0.17 (0.17, 0.18) <0.2 0.49 (0.47, 0.50)

Urgent care (or higher) 46.9 (46.3, 47.4) 0.15 (0.15, 0.16) <0.2 0.37 (0.36, 0.38)

Emergency department (or higher) 28.0 (27.7, 28.4) 0.16 (0.16, 0.16) <0.2 0.40 (0.39, 0.41)

Inpatient admission (or higher) 7.3 (7.1, 7.4) 0.36 (0.35, 0.37) <0.2 1.52 (1.47, 1.58)

Mechanical ventilation (or higher) 1.6 (1.0, 1.7) 12.92 (12.50, 13.33) 5.01 (4.85, 5.25) 27.02 (26.30, 27.74)

Death 1.4 (1.0, 1.4) 19.48 (16.80, 23.40) 9.36 (8.88, 9.64) 32.17 (26.20, 41.62)

Virtual care

Outpatient office visit (or higher) 27.1 (26.0, 27.5) 4.28 (4.05, 4.50) 0.78 (0.70, 0.83) 13.94 (13.40, 14.45)

Urgent care (or higher) 18.2 (17.0, 18.5) 1.96 (1.89, 2.02) 0.45 (0.43, 0.46) 7.78 (7.44, 8.14)

Emergency department (or higher) 12.2 (12.0, 12.3) 1.91 (1.75, 2.09) 0.45 (0.44, 0.47) 7.38 (6.93, 7.91)

Inpatient admission (or higher) 4.3 (4.0, 4.4) 6.26 (5.97, 6.56) 1.54 (1.51, 1.59) 17.19 (16.60, 17.78)

Mechanical ventilation (or higher) 1.1 (1.0, 1.1) 21.58 (17.50, 26.38) 10.72 (8.80, 12.39) 34.46 (27.8, 63.00)

Death 0.9 (0.0, 0.9) 23.67 (19.00, 30.08) 12.48 (12.10, 14.19) 35.86 (29.20, 80.40)

Outpatient office visit

Urgent care (or higher) 26.0 (20.0, 26.4) 1.10 (1.09, 1.12) 0.23 (0.21, 0.23) 5.42 (5.28, 5.55)

Emergency department (or higher) 16.6 (16.0, 16.8) 2.41 (2.11, 2.76) 0.49 (0.45, 0.52) 9.35 (8.74, 10.31)

Inpatient admission (or higher) 8.8 (8.0, 9.0) 4.88 (4.67, 5.10) 0.97 (0.90, 0.97) 15.15 (14.6, 15.66)

Mechanical ventilation (or higher) 3.5 (3.0, 3.5) 11.69 (11.30, 11.97) 4.26 (4.13, 4.72) 25.43 (23.8, 27)

Death 2.9 (2.0, 3.0) 18.50 (15.40, 22.05) 8.68 (7.61, 10.15) 31.32 (26, 38.78)

Urgent care

Emergency department (or higher) 9.4 (9.2, 9.5) 1.03 (1.01, 1.05) 0.25 (0.25, 0.25) 4.24 (4.12, 4.38)

Inpatient admission (or higher) 2.7 (2.0, 2.7) 1.13 (0.90, 1.44) 0.24 (0.20, 0.30) 5.28 (4.21, 6.74)

Mechanical ventilation (or higher) 0.5 (0.0, 0.7) 20.08 (14.80, 25.82) 9.75 (7.14, 13.52) 32.79 (26.10, 39.37)

Death 0.4 (0.0, 0.5) 24.35 (17.50, 30.59) 13.36 (10.80, 17.87) 35.73 (28.50, 43.37)

Emergency department

Inpatient admission (or higher) 9.5 (9.0, 9.7) 1.39 (1.36, 1.41) 0.31 (0.30, 0.32) 6.16 (5.96, 6.35)

Mechanical ventilation (or higher) 2.8 (2.0, 2.9) 17.48 (15.20, 20.35) 8.04 (7.63, 9.20) 30.28 (26.10, 36.73)

Death 2.5 (2.0, 2.5) 19.40 (16.50, 22.48) 9.31 (8.15, 10.82) 32.09 (27.20, 38.70)

Inpatient admission

Mechanical ventilation (or higher) 17.2 (17.0, 17.4) 12.40 (11.80, 13.11) 4.06 (4.00, 4.18) 25.24 (24.20, 26.81)

Death 14.1 (13.0, 14.2) 15.70 (15.30, 16.11) 8.03 (7.85, 8.18) 27.31 (26.70, 27.88)

(Continued)
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(Continued)

Originat-
ing state

Highest-acuity outcome Probability of 
progression

Time to progression along indicated transition pathway, days 
(95% CI)

Proportion, % (95% 
confidence interval)

Median 25%ile 75%ile

Mechanical ventilation

Death 50.2 (44.3, 55.6) 5.24 (4.95, 5.48) 1.25 (1.00, 1.47) 14.66 (12.86, 21.64)

Influenza infections

Symptoms onset

Virtual care (or higher) 93.1 (92.7, 93.4) 3.39 (3.30, 3.47) 1.98 (1.94, 2.03) 5.78 (5.61, 5.95)

Outpatient office visit (or higher) 87.7 (87.2, 88.2) 3.52 (3.43, 3.61) 2.05 (2.00, 2.07) 6.05 (5.89, 6.23)

Urgent care (or higher) 77.4 (76.8, 77.9) 3.55 (3.50, 3.60) 2.05 (2.04, 2.08) 6.14 (6.05, 6.22)

Emergency department (or higher) 38.5 (38.0, 39.0) 4.00 (3.92, 4.08) 2.30 (2.29, 2.34) 7.12 (6.96, 7.28)

Inpatient admission (or higher) 5.8 (5.7, 5.9) 6.60 (6.49, 6.73) 3.52 (3.45, 3.56) 12.14 (11.88, 12.40)

Mechanical ventilation (or higher) 0.9 (0.8, 0.9) 15.35 (15.05, 15.68) 7.69 (7.55, 7.87) 26.29 (25.80, 26.88)

Death 0.5 (0.5, 0.6) 22.64 (22.10, 23.21) 13.92 (13.74, 14.10) 33.33 (32.54, 34.17)

Receipt of test

Virtual care (or higher) 92.1 (91.9, 92.2) <0.2 <0.2 0.21 (0.20, 0.21)

Outpatient office visit (or higher) 87.9 (87.7, 88.1) <0.2 <0.2 0.20 (0.20, 0.21)

Urgent care (or higher) 78.5 (78.2, 78.8) <0.2 <0.2 0.20 (0.20, 0.20)

Emergency department (or higher) 39.0 (38.6, 39.4) <0.2 <0.2 0.25 (0.24, 0.25)

Inpatient admission (or higher) 5.3 (5.2, 5.3) 0.31 (0.30, 0.32) <0.2 1.18 (1.14, 1.21)

Mechanical ventilation (or higher) 0.9 (0.8, 0.9) 7.68 (7.35, 7.95) 2.03 (1.78, 2.20) 20.26 (18.40, 22.38)

Death 0.6 (0.6 0.6) 14.06 (13.70, 14.39) 5.84 (5.72, 5.90) 28.13 (27.50, 28.77)

Virtual care

Outpatient office visit (or higher) 42.6 (42.2, 43.0) 1.62 (1.59, 1.65) 0.42 (0.41, 0.43) 6.26 (6.09, 6.42)

Urgent care (or higher) 29.6 (29.3, 30.0) 1.23 (1.21, 1.26) 0.33 (0.32, 0.34) 4.63 (4.51, 4.77)

Emergency department (or higher) 16.9 (16.6, 17.2) 1.40 (1.36, 1.43) 0.38 (0.38, 0.39) 5.13 (4.94, 5.33)

Inpatient admission (or higher) 3.2 (3.2, 3.3) 6.58 (6.26, 6.88) 1.73 (1.39, 2.07) 17.47 (15.40, 19.65)

Mechanical ventilation (or higher) 0.8 (0.6, 1.1) 13.53 (9.78, 18.79) 5.62 (3.38, 7.34) 27.06 (18.81, 39.06)

Death 0.6 (0.4, 0.9) 16.75 (15.74, 17.34) 8.99 (6.95, 10.40) 28.15 (24.41, 31.63)

Outpatient office visit

Urgent care (or higher) 27.8 (27.5, 28.1) 0.81 (0.80, 0.83) 0.18 (0.18, 0.19) 3.66 (3.56, 3.77)

Emergency department (or higher) 14.3 (14.0, 14.6) 1.30 (1.27, 1.33) 0.32 (0.31, 0.32) 5.31 (511, 5.51)

Inpatient admission (or higher) 5.0 (5.0, 5.1) 3.36 (3.20, 3.50) 0.53 (0.44, 0.65) 11.84 (10.50, 13.33)

Mechanical ventilation (or higher) 1.2 (0.9, 1.5) 7.54 (4.71, 11.64) 1.77 (1.02, 4.25) 21.29 (14.60, 29.94)

Death 0.8 (0.5, 1.1) 16.07 (9.40, 28.44) 6.32 (5.47, 6.98) 32.17 (17.27, 58.71)

Urgent care

Emergency department (or higher) 9.2 (9.0, 9.3) 0.82 (0.81, 0.84) 0.22 (0.21, 0.22) 3.04 (2.93, 3.14)

Inpatient admission (or higher) 1.9 (1.9, 1.9) 1.47 (1.06, 2.04) 0.25 (0.19, 0.30) 5.79 (4.40, 7.67)

Mechanical ventilation (or higher) 0.2 (0.2, 0.4) 12.22 (8.00, 18.27) 5.07 (4.07, 7.87) 24.44 (15.90,36.21)

Death 0.1 (0.1, 0.2) 16.08 (8.70, 28.85) 6.67 (3.62, 9.82) 32.16 (17.00, 51.19)

Emergency department

Inpatient admission (or higher) 4.5 (4.5, 4.6) 1.43 (1.13, 1.79) 0.33 (0.25, 0.41) 6.24 (5.02, 7.83)

Mechanical ventilation (or higher) 1.0 (0.8, 1.3) 12.84 (9.30, 17.10) 4.61 (2.50, 5.05) 28.17 (21.80, 36.37)

Death 0.7 (0.5, 0.9) 22.95 (16.50, 29.65) 11.73 (10.20, 15.45) 35.71 (28.40, 43.84)

Inpatient admission

Mechanical ventilation (or higher) 12.3 (12.0, 12.6) 5.56 (5.22, 5.89) 1.22 (1.01, 1.39) 16.31 (14.10, 18.68)

Table 3.  (Continued)
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(Continued)

Originat-
ing state

Highest-acuity outcome Probability of 
progression

Time to progression along indicated transition pathway, days 
(95% CI)

Proportion, % (95% 
confidence interval)

Median 25%ile 75%ile

Death 7.9 (6.5, 9.7) 13.47 (10.90, 16.40) 5.59 (5.22, 6.51) 26.95 (21.60, 33.06)

Mechanical ventilation

Death 34.5 (25.4, 45.7) 5.52 (2.87, 9.58) 1.35 (0.40, 3.19) 15.28 (9.02, 24.68)

RSV infections

Symptoms onset

Virtual care (or higher) 92.5 (91.1, 93.6) 4.69 (4.51, 4.87) 2.78 (2.72, 2.86) 7.93 (7.59, 8.28)

Outpatient office visit (or higher) 90.3 (88.6, 91.7) 4.79 (4.60, 5.00) 2.83 (2.75, 2.86) 8.10 (7.77, 8.49)

Urgent care (or higher) 81.7 (79.6, 83.4) 5.00 (4.78, 5.23) 2.97 (2.89, 3.02) 8.42 (8.05, 8.82)

Emergency department (or higher) 74.1 (72.0, 76.1) 5.23 (5.02, 5.46) 3.12 (3.06, 3.28) 8.76 (8.36, 9.21)

Inpatient admission (or higher) 33.8 (31.8, 36.2) 6.36 (5.95, 6.79) 3.80 (3.61, 4.11) 10.63 (9.91, 11.46)

Mechanical ventilation (or higher) 4.2 (3.3, 5.3) 13.39 (11.06, 16.20) 7.74 (6.17, 8.10) 23.15 (18.40, 28.62)

Death 2.1 (1.5, 2.9) 23.73 (19.52, 29.63) 14.91 (13.20, 6.67) 34.22 (28.70, 40.63)

Receipt of test

Virtual care (or higher) 90.7 (89.3, 92.0) <0.2 <0.2 0.33 (0.32, 0.34)

Outpatient office visit (or higher) 89.2 (89.1, 89.4) <0.2 <0.2 0.31 (0.30, 0.31)

Urgent care (or higher) 79.4 (79.1, 79.6) <0.2 <0.2 0.25 (0.24, 0.25)

Emergency department (or higher) 71.9 (71.5, 72.2) <0.2 <0.2 0.27 (0.26, 0.28)

Inpatient admission (or higher) 31.5 (31.0, 32.0) 0.24 (0.23, 0.24) <0.2 0.71 (0.69, 0.74)

Mechanical ventilation (or higher) 4.2 (3.4, 5.3) 6.4 (4.29, 9.1) 1.75 (1.01, 2.27) 16.56 (12.10, 22.24)

Death 2.2 (1.6, 2.9) 13.52 (9.7, 18.73) 5.62 (4.64, 7.11) 27.05 (19.00, 37.36)

Virtual care

Outpatient office visit (or higher) 54.6 (49.5, 59.5) 3.64 (2.77, 4.86) 0.74 (0.54, 0.96) 12.73 (10.10, 16.22)

Urgent care (or higher) 35.4 (34.9, 35.9) 1.71 (1.22, 2.45) 0.44 (0.43, 0.60) 6.66 (4.73, 9.26)

Emergency department (or higher) 30.0 (29.5, 30.5) 1.8 (1.28, 2.59) 0.49 (0.39, 0.56) 6.67 (4.64, 9.35)

Inpatient admission (or higher) 13.6 (10.5, 17.3) 3.3 (1.97, 5.15) 0.95 (0.55, 1.34) 11.50 (6.67, 20.69)

Mechanical ventilation (or higher) 1.8 (0.9, 3.7) 16.04 (7.00, 23.32) 6.66 (4.45, 10.19) 32.08 (15.10, 47.16)

Death 1.0 (0.4, 2.7) 17.34 (6.10, 25.69) 7.20 (4.24, 10.22) 34.69 (13.20, 56.05)

Outpatient office visit

Urgent care (or higher) 40.2 (39.9, 40.6) 1.08 (0.85, 1.39) 0.26 (0.21, 0.33) 4.50 (3.46, 5.79)

Emergency department (or higher) 35.0 (34.6, 35.4) 1.03 (0.79, 1.32) 0.25 (0.20, 0.30) 4.28 (3.26, 5.67)

Inpatient admission (or higher) 16.8 (16.0, 17.5) 1.24 (0.84, 1.81) 0.27 (0.21, 0.32) 5.64 (3.84, 8.34)

Mechanical ventilation (or higher) 4.7 (3.3, 6.6) 8.48 (4.99, 13.55) 2.47 (1.86, 3.47) 21.09 (13.90, 32.42)

Death 2.9 (1.9, 4.4) 17.12 (11.10, 25.90) 7.11 (5.74, 8.70) 34.24 (22.60, 41.47)

Urgent care

Emergency department (or higher) 48.3 (47.7, 48.8) 0.53 (0.42, 0.71) <0.2 1.68 (1.30, 2.12)

Inpatient admission (or higher) 22.4 (18.1, 27.1) 0.52 (0.36, 0.76) <0.2 1.62 (1.08, 2.45)

Mechanical ventilation (or higher) 1.5 (0.6, 3.4) 9.15 (3.61, 22.13) 3.80 (1.99, 6.12) 18.29 (7.71, 33.37)

Death

Emergency department

Inpatient admission (or higher) 18.4 (15.9, 21.1) 0.95 (0.70, 1.29) 0.26 (0.21, 0.26) 3.49 (2.63, 4.61)

Mechanical ventilation (or higher) 2.2 (1.4, 3.4) 10.65 (6.60, 16.67) 4.42 (3.61, 5.03) 21.31 (13.70, 34.45)

Death 1.3 (0.7, 2.3) 11.21 (6.20, 19.98) 4.66 (2.54, 8.24) 22.43 (12.40, 38.45)

Table 3.  (Continued)
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later in the course of illness (median 22.8 days [IQR: 12.0-34.8] and 26.2 days [IQR: 15.2-37.7] after symptoms onset, 
respectively) than initial inpatient admission.

Nearly all influenza and RSV infections were linked to ARI diagnoses resulting from care appointments in any setting 
around the time of individuals’ first eligible positive test (93.1% and 92.5%, respectively; Table 4). Median times from 
symptoms onset to receipt of care at virtual, outpatient, urgent care, and emergency department or higher-acuity settings 
were 3.2, 3.5, 3.6, and 4.0 days, respectively, for influenza, and 4.7, 4.8, 5.0, and 5.2 days, respectively, for RSV (Fig 2). 
Median times from symptoms onset to inpatient admission, mechanical ventilation, and death were 6.4-6.6 days, 13.4-
15.3 days, and 22.6-23.7 days, respectively.

Associations of care trajectories with individual characteristics

The proportion of cases receiving care at each acuity level increased with older age for all infections; age differences 
were most pronounced for high-acuity outcomes (e.g., inpatient admission, mechanical ventilation, and mortality; Fig 4; 
S9 Table in S1 File). Median times from symptoms onset to receipt of care at or above the level of outpatient office visits 
increased with older age, spanning a difference of ~1 day between the ≤ 17 year and ≥90 year age groups for all three 
viral infections (3.3 vs. 4.7 days for SARS-CoV-2 infections, 3.2 vs. 4.4 days for influenza infections, and 4.0 vs. 4.8 days 
for RSV infections), although these differences across ages in times to event were attenuated for higher-acuity outcomes. 
Individuals with greater numbers of comorbid conditions also had higher chances of receiving care at each level of acuity 
and longer median times to presentation, for each virus (S10 Table)in S1 File).

Whereas a greater proportion of males than females with SARS-CoV-2 infection experienced high-acuity outcomes 
(e.g., 9.9% vs. 6.7% with inpatient admission or higher-acuity outcomes, 2.1% vs. 1.1% mortality; S11 Tablein S1 File), 
this pattern was less clearly apparent for influenza cases and was reversed for RSV. Times to each outcome were similar 
for male and female cases with each infection. With regard to individuals’ vaccination status and neighborhood deprivation 
index values, we did not identify patterns across pathogens or across outcomes with respect to any subgroup experienc-
ing consistently higher or lower likelihood of progression, or consistently longer or shorter times to progression (S12 Table; 
S13 Table in S1 File).

The probability of in-hospital mortality for SARS-CoV-2 infections was higher among older adults compared to younger 
adults (11.0% at ages ≥90 years versus 2.1% in 18–49 year age group; S14 Table in S1 File). There were also significant 
differences across Charlson comorbidity subgroups, with 9.0% of cases with a score ≥6 experiencing in-hospital mortality 

Table 3.  (Continued)

Originat-
ing state

Highest-acuity outcome Probability of 
progression

Time to progression along indicated transition pathway, days 
(95% CI)

Proportion, % (95% 
confidence interval)

Median 25%ile 75%ile

Inpatient admission

Mechanical ventilation (or higher) 10.9 (8.5, 13.8) 5.90 (3.91, 8.46) 1.64 (0.58, 2.75) 15.07 (10.60, 20.68)

Death 5.0 (3.5, 7.2) 17.77 (16.80, 28.52) 9.69 (8.93, 11.33) 29.55 (26.30, 32.96)

Mechanical ventilation

Death 20.5 (10.2, 37.1) 11.96 (5.77, 22.86) 4.96 (2.43, 10.48) 23.91 (11.71, 50.51)

We indicate values as <0.2 where maximum likelihood estimates and accompanying confidence limits fell below 0.2 days, which arose in scenarios 
where a vast majority of transitions along the indicated path were observed occurring on the same day. We report estimates from best-fitting distribu-
tions, based on models yielding the minimum AIC score; we indicate these distributions and their parameters parameter in S5 Table in S1 File.

https://doi.org/10.1371/journal.pcbi.1013723.t003

https://doi.org/10.1371/journal.pcbi.1013723.t003
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associated with SARS-CoV-2 infection in comparison to 3.9% mortality among cases with a score of 0. This trend was 
also apparent in influenza infections (7.2% vs. 1.7%), although not in RSV infections.

Median durations of hospital stay were similar across groups for each infection. Males had a longer median time to 
in-hospital mortality than females for SARS-CoV-2 infections (8.5 vs. 6.8 days), but shorter times to mortality for influ-
enza and RSV infections (4.9 vs. 5.7 days and 8.1 vs. 16.1 days, respectively; S14 Table in S1 File). We did not observe 
differences across subgroups with respect to vaccination status, race or ethnicity, or neighborhood deprivation index in the 
probability of in-hospital mortality or length of hospital stays.

Github repository

In addition to the descriptive supplementary materials associated with this manuscript, we have created a Github reposi-
tory containing parameter estimates for all analyses described (https://github.com/ntparker3/Resp_params). The reposi-
tory includes four files for each pathogen (SARS-CoV-2, influenza, and RSV), contents of which are listed below:

Table 4.  Observed proportions of cases attaining or exceeding each acuity threshold.

Infecting 
virus

Acuity threshold Probability of 
progression

Time to progression, days (95% CI)

Proportion, % (95% 
confidence interval)

Median 25%ile 75%ile

SARS-CoV-2

Virtual care (or higher) 70.0 (69.6, 70.4) 3.90 (3.86, 3.94) 2.14 (2.13, 2.16) 7.11 (7.04, 7.18)

Outpatient office visit (or higher) 56.3 (55.9, 56.7) 4.17 (4.09, 4.24) 2.22 (2.18, 2.24) 7.82 (7.65, 7.99)

Urgent care (or higher) 48.3 (47.9, 48.7) 4.04 (3.99, 4.08) 2.18 (2.16, 2.20) 7.47 (7.38, 7.56)

Emergency department (or higher) 27.9 (27.5, 28.3) 4.49 (4.42, 4.57) 2.42 (2.37, 2.43) 8.51 (8.37, 8.65)

Inpatient admission (or higher) 7.9 (7.7, 8.1) 6.83 (6.64, 7.04) 3.55 (3.45, 3.67) 13.17 (12.70, 13.57)

Mechanical ventilation (or higher) 1.7 (1.6, 1.8) 22.82 (21.67, 23.99) 11.95 (11.30, 12.73) 34.78 (33.40, 36.02)

Death 1.3 (1.3, 1.4) 26.20 (24.93, 27.56) 15.16 (14.00, 15.81) 37.67 (30.50, 50.98)

Influenza

Virtual care (or higher) 93.1 (92.7, 93.4) 3.39 (3.30, 3.47) 1.98 (1.94, 2.03) 5.78 (5.61, 5.95)

Outpatient office visit (or higher) 87.7 (87.2, 88.2) 3.52 (3.43, 3.61) 2.05 (2.00, 2.07) 6.05 (5.89, 6.23)

Urgent care (or higher) 77.4 (76.8, 77.9) 3.55 (3.50, 3.60) 2.05 (2.04, 2.08) 6.14 (6.05, 6.22)

Emergency department (or higher) 38.5 (38.0, 39.0) 4.00 (3.92, 4.08) 2.30 (2.29, 2.34) 7.12 (6.96, 7.28)

Inpatient admission (or higher) 5.8 (5.7, 5.9) 6.60 (6.49, 6.73) 3.52 (3.45, 3.56) 12.14 (11.88, 12.40)

Mechanical ventilation (or higher) 0.9 (0.8, 0.9) 15.35 (15.05, 15.68) 7.69 (7.55, 7.87) 26.29 (25.80, 26.88)

Death 0.5 (0.5, 0.6) 22.64 (22.10, 23.21) 13.92 (13.74, 14.10) 33.33 (32.54, 34.17)

lRSV

Virtual care (or higher) 92.5 (91.1, 93.6) 4.69 (4.51, 4.87) 2.78 (2.72, 2.86) 7.93 (7.59, 8.28)

Outpatient office visit (or higher) 90.3 (88.6, 91.7) 4.79 (4.60, 5.00) 2.83 (2.75, 2.86) 8.10 (7.77, 8.49)

Urgent care (or higher) 81.7 (79.6, 83.4) 5.00 (4.78, 5.23) 2.97 (2.89, 3.02) 8.42 (8.05, 8.82)

Emergency department (or higher) 74.1 (72.0, 76.1) 5.23 (5.02, 5.46) 3.12 (3.06, 3.28) 8.76 (8.36, 9.21)

Inpatient admission (or higher) 33.8 (31.8, 36.2) 6.36 (5.95, 6.79) 3.80 (3.61, 4.11) 10.63 (9.91, 11.46)

Mechanical ventilation (or higher) 4.2 (3.3, 5.3) 13.39 (11.06, 16.20) 7.74 (6.17, 8.10) 23.15 (18.40, 28.62)

Death 2.1 (1.5, 2.9) 23.73 (19.52, 29.63) 14.91 (13.20, 16.67) 34.22 (28.70, 40.63)

We report estimates from best-fitting distributions, based on models yielding the minimum AIC score; we indicate these distributions and their parame-
ter estimates in S4 Table in S1 File. Estimates and parameters of the same progressions using a longer follow-up period of 60 days are available in S6 
Table and S7 Table in S1 File.

https://doi.org/10.1371/journal.pcbi.1013723.t004

https://github.com/ntparker3/Resp_params
https://doi.org/10.1371/journal.pcbi.1013723.t004
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Fig 4.  Probabilities and time-to-event distributions of reaching outpatient and inpatient acuity thresholds from symptom onset for illness 
associated with a SARS-CoV-2 infection across demographic subgroups. The best-fitting distributions for the symptom onset to outpatient/inpa-
tient acuity threshold were used across covariates, but the corresponding location parameter was allowed to vary by subgroup. Probabilities of reaching 
acuity thresholds are available in S9–S13 Tables in S1 File.

https://doi.org/10.1371/journal.pcbi.1013723.g004

https://doi.org/10.1371/journal.pcbi.1013723.g004
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1.	Parameterized distributions and summary statistics of the proximal progression event occurring from each originating 
state (“first event”);

2.	Parameterized distributions and summary statistics for individuals’ to risk of progression to or above each acuity thresh-
old, from each originating state (“event or worse”);

3.	Probabilities of progression to or above each acuity threshold, from each originating state, across subgroups of the 
specified individual-level covariates (“event or worse covariates”); and

4.	Location parameters and median times to event for progression to outpatient (or higher-acuity) and inpatient (or  
higher-acuity) thresholds, from each originating state, across subgroups of the specified individual-level covariates 
(“covariate rates”).

Discussion

Our analysis provides estimates of transition rates and probabilities for healthcare utilization due to the progression of 
ARIs associated with SARS-CoV-2, influenza, and RSV infections. These outputs aim to inform models anticipating 
resource needs for healthcare systems and public health stakeholders, drawing on real-world observations within a US 
managed care setting. In addition to presenting aggregated results for all cases infected with SARS-CoV-2, influenza, 
and RSV, we present stratified results for differing subgroups for which models may aim to generate predictions; these 
encompassed patient demographics (age, sex, race/ethnicity), comorbidity burden, prior vaccination, and community-level 
socioeconomic disadvantage. Among these characteristics, we identified the strongest evidence of differences in progres-
sion risk and times-to-event across age groups and comorbidity profiles. Our outputs fill frequently-described gaps in the 
data needed for application of viral respiratory infection models [24–26] and may inform future forecasting efforts tailored 
to US healthcare contexts, particularly those aiming to inform healthcare resource allocation [10,27,28].

Previous studies have reported widely varying estimates of times from symptoms onset to hospital admission for 
COVID-19 [29–32] and the duration of hospital stay among COVID-19 patients [13,14,33], with both parameters differing 
across settings and over time within settings in association with evolving clinical practices. Whereas numerous studies 
have monitored patients hospitalized with each virus [34,35], fewer have tracked outcomes longitudinally from early points 
in the disease course such as symptoms onset or receipt of care in virtual or ambulatory facilities. Within our study, only 
4.7% of COVID-19 cases (7.9% of all COVID-19 cases who received care in any setting) were first intercepted at the point 
of hospital admission, while among influenza and RSV cases, 3.4% and 18.7%, respectively, were first seen in inpatient 
settings. These circumstances suggest that projecting outcomes among individuals receiving care in lower-acuity settings 
may help to refine forecasts of higher-acuity clinical care needs.

Application of our estimates to forecasting models requires several assumptions or considerations. First, we frame con-
secutive transitions between states as memoryless, consistent with modeling approaches where estimates from these anal-
yses may be applied (e.g., Markov chain next-state transitions as well as cumulative probabilities of attaining each state 
overall and from preceding states). Second, our analyses are subset to individuals who ultimately received care including 
diagnostic testing: events preceding testing among individuals included in these analyses, particularly in low-acuity care 
settings, may not represent care utilization pathways among individuals who were ultimately never tested—a problem 
related to previously described biases affecting interval distribution estimation [8,36,37]. Furthermore, testing for influenza 
and RSV was more strictly limited to individuals who received care in outpatient or inpatient facilities, whereas SARS-CoV-2 
tests were widely available across all care settings. In particular, RSV testing in adults is restricted to inpatient settings, with 
the majority of testing, and subsequent recorded cases, being conducted in children. Thus, differences in the overall pro-
portions of SARS-CoV-2 infections, influenza infections, and RSV infections attaining each acuity threshold should not be 
interpreted as differences in the severity of disease caused by each infection. The clinical threshold associated with testing 
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in our study population may also differ from that in other healthcare systems, geographic regions, or countries. Increased 
testing among individuals with less-severe disease would be expected to lower the proportion of episodes expected to 
progress to hospital admission or other high-acuity outcomes. As this circumstance could also occur through testing at ear-
lier stages in individuals’ illness, such increases in testing for less-severe disease could lead to longer estimated times to 
progression. Last, associations of the studied covariates with the proportions of cases experiencing each outcome and with 
times-to-event should not be interpreted as causal. In some instances, observed patterns reflect previously reported inde-
pendent associations, such as associations of older age and the presence of comorbidities with severe disease outcomes 
[38]. However, other findings, such as the lack of association of prior vaccination with protection against severe outcomes, 
echo previous evidence of higher uptake of vaccines against COVID-19, seasonal influenza, and RSV among individuals at 
greatest risk [39–41]. These analyses aim to inform prediction even if they lack direct causal interpretation.

Our analysis has at least 7 limitations. First, KPSC represents a single healthcare system. While strengths include the 
integration of care delivery and data capture across outpatient and inpatient settings, the large enrollee population, and its 
racial/ethnic and socioeconomic diversity (13), it remains important to note that care utilization and delivery pathways may 
not be generalizable to all settings. Estimation of similar parameters in other US populations remains an important objec-
tive. Second, aiming to enable the broad application of our estimates, we fit parametric distributions to times-to-event that 
may not perfectly represent underlying processes. For this reason, we supply best-fitting parameter estimates for 6 differ-
ent distributions for all times-to-event. As AIC may not adequately penalize overfitting, or multiple distributions may provide 
similar fit to observed data, practitioners should consider mechanistic interpretations as well as underlying assumptions of 
differing distribution in choosing which may be the most appropriate to modeling applications. Third, major SARS-CoV-2 
variants (e.g., XBB, BA.2.86/JN.1, and KP.2) and seasonal influenza lineages (e.g., A(H1N1)pdm09, A(H3N2), B(Victoria)) 
circulating during the study period may not generalize to lineages circulating during future years. Fourth, the reliability of 
self-reported and physician-recorded symptoms onset dates may be imperfect, as signified by patterns such as heaping of 
times from symptoms onset around 7 days and 14 days before testing and other healthcare encounters [42]. Fifth, recov-
ery was not explicitly recorded as a clinical outcome, necessitating censoring of observation periods without future health-
care encounters. Sixth, while restricting progression events to healthcare encounters where ARI diagnoses were assigned 
was anticipated to reduce misclassification, coding practices (e.g., carry-forward of diagnosis codes) may lead to misclas-
sification of some encounters. Cessation of healthcare facility-based SARS-CoV-2 screening by the time of our study was 
further anticipated to mitigate risks of misclassifying healthcare encounters “with” or “for” COVID-19. Last, our analyses 
preceded the widespread implementation of RSV vaccines among pregnant mothers and older adults, which may alter 
RSV-related healthcare utilization in future seasons for population groups at the highest risk of severe disease.

These limitations notwithstanding, our analyses provide a useful entry point for modeling real-world trajectories of 
healthcare needs associated with SARS-CoV-2, influenza, and RSV infections. Extensive ARI-associated healthcare 
utilization in virtual, outpatient, and urgent care settings among persons ultimately hospitalized suggests monitoring of 
lower-acuity healthcare utilization may help to inform near-term hospital capacity requirements. Incorporating data on  
lower-acuity care delivery settings into public health surveillance and reporting thus merits consideration. Similar analyses 
in other geographic settings or other healthcare systems, and continued updating of parameters we report to accommo-
date changes in viral epidemiology or healthcare delivery practices, may improve the reliability of forecasting models for 
SARS-CoV-2, influenza, and RSV.
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