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Abstract 

Introduction

Influenza continuously evolves to escape population immunity, which makes for-

mulating a vaccine challenging. Antigenic differences between vaccine strains and 

circulating strains can affect vaccine effectiveness (VE). Quantifying the antigenic dif-

ference between vaccine strains and circulating strains can aid interpretation of VE, 

and several antigenic distance metrics have been discussed in the literature. Here, 

we compare how the predicted breadth of vaccine-induced antibody response varies 

when different metrics are used to calculate antigenic distance.

Methods

We analyzed data from a seasonal influenza vaccine cohort that collected serum 

samples from 2013/14 – 2017/18 at three study sites. The data include pre- and post-

vaccination HAI titers to the vaccine strains and a panel of heterologous strains. We used 

that data to calculate four different antigenic distance measures between assay strains 

and vaccine strains: difference in year of isolation (temporal), p-Epitope (sequence), 

Grantham’s distance (biophysical), and antigenic cartography distance (serological). 

We analyzed agreement between the four metrics using Spearman’s correlation and 

intraclass correlation. We then fit Bayesian generalized additive mixed-effects models to 

predict the effect of antigenic distance on post-vaccination titer after controlling for con-

founders and analyzed the pairwise difference in predictions between metrics.
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Results

The four antigenic distance metrics had low or moderate correlation for influenza 

subtypes A(H1N1), B/Victoria, and B/Yamagata. A(H3N2) distances were highly 

correlated. We found that after accounting for pre-vaccination titer, study site, and 

repeated measurements across individuals, the predicted post-vaccination titers 

conditional on antigenic distance and subtype were nearly identical across antigenic 

distance metrics, with A(H3N2) showing the only notable deviation between metrics, 

despite higher agreement for that subtype.

Discussion

Despite moderate correlation among metrics, we found that different antigenic 

distance metrics generated similar predictions about breadth of vaccine response. 

Costly titer assays for antigenic cartography may not be needed when simpler 

sequence-based metrics suffice for quantifying vaccine breadth.

Author summary

Influenza viruses change rapidly, so designing vaccines that remain effective is 
difficult. Small differences between the strains in the vaccine and strains in circu-
lation can reduce protection. We can use a variety of methods to measure how 
“different” two strains are, but these methods can disagree.

We compared four ways of measuring these differences (genetic, biochemical, 
antigenic cartography, and time-based). Using immunological data from sever-
al flu seasons, we measured strain differences four ways. Then, we compared 
the relationship between immunogenicity and distance for each method. Our 
comparisons used a causal framework so we can identify valid conclusions from 
observational data.

We found that the four measures did not always agree with each other. 
But, the metrics produced similar predictions about the breadth of immune 
response to vaccination. Thus, complex and expensive laboratory tests may 
not always be necessary. Many studies could use simpler methods to save 
time and money. These results may aid in evaluation of future influenza 
vaccines

Introduction

Influenza viruses constantly evolve over time. As host immunity induces selective 
pressure, new influenza strains accumulate mutations, a phenomenon called antigenic 
drift [1–6]. As mutations accumulate, antigenic drift leads to vaccine escape [7–9]. 
Seasonal influenza vaccines are formulated based on the strains that are expected to 
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circulate, but imperfect matches occur between selected vaccine strains and circulating strains in some years, and 
 vaccine effectiveness (VE) varies annually [10]. A major determinant of VE is the similarity between vaccine strains and 
circulating influenza strains [11–20]. While previous studies have analyzed how mismatch between a circulating strain  
and the vaccine reduces VE, a full understanding of how viral changes affect vaccine response requires quantitative anti-
genic distance calculations [21–25]. If our goal is the development of a broadly-protective (or even “universal”) influenza 
vaccine, which induces a robust immune response to both historical and future influenza strains, defining a broad response 
is a crucial first step. Defining a broad response relies on accurate measurements of antigenic distance.

The most common method for quantifying antigenic distance between influenza strains is antigenic cartography, which 
relies on extensive serological data generated against a wide panel of strains [26]. Briefly, statistical dimension reduction 
techniques are used to reduce large panels of serological data to fewer dimensions, and pairwise distances are calculated 
between strains in the reduced space. Serum samples from many individuals with wide assay panels are necessary to create 
stable cartographic maps. Cartographic distance has proven useful in understanding influenza evolution, but validating the 
ability of cartography to estimate population-level protection is difficult because of the required data [27–29]. Sequence-
based methods can accurately predict cartographic distance based on genetic sequences of influenza strains, but still rely on 
accurate serological data for calibration [30–38]. Furthermore, multiple cartography methods yield different maps on the same 
data [26,27,39–41]. Maps based on HAI titers also incorporate bias from HAI assays, which are often not replicable between 
labs [42,43] and do not always accurately reflect differences in common antigenic phenotypes, also called antigenic clusters 
[21–25,35,39,44–46]. While cartographies can be generated from alternative assays [47–49], HAI is still the most common 
immunological assay used for influenza and the majority of highly-cited cartographies in use are based on HAI [26–28,50,51].

We can also compute antigenic distance without serological data. Simpler antigenic distance metrics calculated from genetic 
or amino acid sequences correlate with vaccine effectiveness at a population level [52–54], even though they only weakly 
correlate with antigenic distances derived from serological data [27,32,55]. Influenza strains that evolve to escape prior immune 
response typically have mutations at the same important genetic sites [56–58], and advanced predictive models consistently 
identify properties of the amino acid sequence of the major antigens as important predictors of vaccine escape  
[59–62]. Analyses of vaccine response or immunogenicity based on temporal [63–68] or sequence-based distances can provide 
information about the breadth of the vaccine response [30,44,52–55,69–71]. Taken together, these results imply that genetic 
analyses should provide important information about antigenic evolution without the need for serology. A direct comparison of 
antigenic distance methods is necessary to determine whether serological and sequence-based antigenic distance calculations 
can provide the same information in a practical setting. Specifically, we compare temporal distance (difference in the years of 
strain isolation), p-Epitope sequence distance [52], Grantham’s sequence distance [72], and cartographic distance.

To compare the implications of multiple antigenic distance metrics on practical outcomes, we perform a secondary data 
analysis of an influenza vaccine cohort with a panel of HAI measurements to historical strains for each individual. We aim 
to assess whether low-cost measurements of antigenic distance between the vaccine strain and circulating strain may be 
similarly informative of the post-vaccination immune response. We find that, despite the modest correlation in antigenic 
distance metrics, these different metrics lead to similar conclusions about vaccine response to antigenically distant strains. 
Our results suggest that implementing costly antigenic analyses may not be necessary, as simple sequence-based mea-
sures lead to similar predictions about vaccine response as antigenic distance varies.

Methods

Study ethics

Study participants in the UGAFluVac study were enrolled into the study with written informed consent at their respective 
study site. The study procedures, informed consent, and data collection documents were previously reviewed by the Uni-
versity of Georgia Institutional Review Board (IRB), and by WCG IRB. We only used deidentified data from UGAFluVac, 
and our study was determined to be not human research and exempt from review by the University of Georgia IRB.
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Data source

Immunological data.  The data for our study are from a human vaccination cohort study that has been described in 
detail previously [73–75]. Briefly, the study recruited participants at three study sites. The first two sites were Pittsburgh, 
PA, USA (PA site), and Port St. Lucie, FL, USA (FL site), beginning in the 2013/14 influenza season (approximately 
September through March [76]) and continuing through the 2016/17 influenza season. In January 2017, the study moved 
to Athens, GA, USA (UGA site). Participants visited the study site at least two times. At the first visit, patients completed 
a demographic questionnaire, gave a pre-vaccination serum sample, and received a Fluzone (Sanofi-Pasteur) seasonal 
influenza vaccine. At a follow-up visit approximately 21 days after the first visit, individuals returned and donated a 
post-vaccination serum sample. Individuals under 65 years of age received a standard dose Fluzone vaccination, and 
individuals aged 65 and older were given the choice between standard dose (SD) and high dose (HD) Fluzone vaccines. 
The study was a prospective, open cohort design where individuals could enroll in multiple years in the study, but were not 
required to re-enroll in every consecutive year.

Researchers tested the pre- and post-vaccination serum samples with a panel of hemagglutination inhibition (HAI) 
assays to the homologous strains (the strains included in the seasonal vaccine formulation), and a panel of historical, 
heterologous influenza virus strains. HAI assays are a common measurement for the strength of the antibody response, 
and correlate with the amount of antibodies in a serum sample that bind to the receptor-binding domain of the influenza 
hemagglutinin protein [77,78]. Strains included in the historical panel represented major lineages of circulating influenza 
viruses. See the Supplement for details on the Fluzone vaccine formulation and for a list of strains used in each season.

Each HAI assay in our dataset can be defined by its (1) subtype, (2) vaccine strain, and (3) assay strain. The broadest 
grouping is “subtype”, which we use to describe both influenza A subtypes (H1N1 and H3N2) and influenza B lineages 
(Pre-divergence or Pre-split, Victoria-like and Yamagata-like). The vaccine strains associated with an HAI assay are the 
strains used in the Fluzone vaccine formulation in the season when the serum sample was collected. Each assay has 
three or four associated vaccine strains, depending on whether the individual who gave the serum sample received a 
trivalent or quadrivalent vaccine (see Supplement for details on the vaccine formulations). Finally, the assay strain for a 
given HAI assay is the strain of the actual virus added to the serum sample during the assay. We only compared vaccine 
strains and assay strains of the same subtype in our analysis.

For our secondary data analysis, we extracted previously deidentified records from the 2013/14–2017/18 influenza 
seasons. The study is ongoing and more assays are available, but the size of the historical panel was reduced after the 
2017/18 season, and there would not be enough heterologous strains to estimate stable cartographic maps, so we limit our 
analysis to these seasons of data. Since examining the effect of vaccine dose was not our main focus here, and we previ-
ously observed dose-dependent differences in the heterologous response [79], we only included individuals who received 
SD vaccines in our study. We included all participants from the specified seasons who received SD vaccine and had records 
for both pre-vaccination and post-vaccination serum samples in our analysis. Our primary outcome of interest was the post-
vaccination HAI titer (the reciprocal of the highest serum dilution that shows agglutination), which we log transformed:

	
transformed titer = log2

(
HAI titer

5

)
.
	

Our final dataset for analysis contained one pair of transformed titers (pre- and post- vaccination) per person-year per 
assay strain in the historical panel, along with corresponding covariate measurements.

We divided the titer by 5 before taking the log because the HAI assay had a lower limit of detection (LoD) of 10, and an 
upper LoD of 20,480. Values below the LoD were coded as titers of 5 in the dataset, corresponding to a transformed titer 
of 0. All observed values in our dataset were below the upper LoD. We used the same outcome definitions defined in our 
previous work on this dataset [79].
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Sequence data.  We computed the pairwise antigenic distance for all strains used in the dataset (see the Supplement 
for a complete list). We used four different methods to compute the antigenic distance: temporal distance, dominant p-
Epitope distance [52], Grantham’s distance [72], and cartographic distance [26]. We calculated the temporal difference 
as the difference in the year of isolation between two strains (we had no assay strains with years of isolation subsequent 
to the vaccine strain, so all distances are positive). The dominant p-Epitope distance is the maximum of the Hamming 
distances [80] calculated for each of the five major epitope sites on the hemagglutinin head. Grantham’s distance is 
similar to the Hamming distance on the entire HA sequence, but weights each substitution between strains by a score 
that is larger for amino acids with very different biochemical or biophysical properties. Finally, we conducted antigenic 
cartography using Racmacs [81] and reduced all of our cartographic maps to two dimensions. For complete details on 
antigenic distance calculation, see the Supplement.

To calculate the sequence-based, distances, we obtained sequences for the HA amino acid sequences for each of the 
strains used in the UGAFluVac data from either the U.S. National Center for Biotechnology Information (NCBI)’s GenBank 
database [82,83], the UniProt dataset [84], or GISAID’s EpiFlu database [85,86]. Accession numbers and sources for the 
sequence for each strain are shown in the supplement.

Statistical analyses

We first summarized demographic information about the cohort in a descriptive analysis, stratifying by measurements, 
individuals, and person-years to demonstrate the multilevel structure of our data.

We calculated reliability statistics between the different antigenic distance metrics, using antigenic distances for all pairs of 
vaccine strains and assay strains that were present in the study design (instead of examining the reliability between all strains 
pairwise). As an omnibus test of measurement reliability, we calculated the intraclass correlation (ICC) using a Bayesian two-
way mixed effects model for consistency and a single score, i.e., ICC(3,1) in the Shrout-Fleiss taxonomy [87–89]. The Sup-
plement shows the exact model we fit and formula for calculating the ICC. To analyze which metrics drove disagreement or 
agreement, we also calculated the Spearman rank correlation coefficient [90] between each pair of antigenic distance metrics. 
We show credible intervals for the Spearman correlations in the Supplement, calculated with the Bayesian bootstrap [91].

We built generalized additive mixed-effects models (GAMMs) and linear mixed-effects models (LMMs) with the trans-
formed post-vaccination titers as the outcome, [92,93] and adjusted for interval censoring [94] (see Supplement for 
details). To answer our primary question, we modeled antigenic distance in two ways. For the LMM, we included a linear 
effect of antigenic distance that was allowed to vary by subtype. For the GAMM, we modeled antigenic distance using 
a flexible semi-parametric spline that allows the relationship to be nonlinear, but constrained. We adjusted for effects of 
birth year, age, sex, race/ethnicity, effects of the vaccine and assay strain, differences between study sites, and repeated 
measurements from the same individual.

We fit the models in a Bayesian framework using weakly informative priors chosen by a prior predictive simulation 
[92,95]. We obtained posterior samples of the model parameters using the No U-Turn Sampler (NUTS) algorithm imple-
mented by Stan [96,97], via the brms [98–100] and cmdstanr [101] packages for R [102]. After obtaining the posterior 
samples, we calculated marginal posterior predictions for interpolated values of the normalized antigenic distance [103]. 
We summarized the posterior prediction samples with a mean point estimate and 95% highest density continuous inter-
val (HDCI). We compared the GAMM and LMM for each antigenic distance metric using the leave-one-out expected log 
pointwise predictive density (LOO-ELPD) that is conceptually similar to model selection using cross-validation in a fre-
quentist scenario [104,105,106]. See the Supplement for extensive details on our models.

To examine the differences in predictions across each of the antigenic distance metrics, we compared the slope and 
intercept for LMMs and the fold change in predicted post-vaccination HAI titer for the LMM and GAMM since the GAMM 
has no equivalent simple parametrization (fold change comparisons are shown in the Supplement). We extracted the fixed 
effects coefficients from the models, along with the random effects and residual variance components. We computed the 
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variance contribution of the fixed effects [107] and calculated the proportion of variance explained by each of the variance 
components, defining the total variance as the sum of the residual variance parameter, the fixed effects variance contribu-
tion, and all random effects variance components.

Implementation

We conducted our analysis with R version 4.4.1 (2024-06-14 ucrt) [102] in RStudio version 2024.09.0 + 375 [108]. Our 
analysis pipeline was implemented in targets [109]. We used the packages here [110], renv [111], and the tidyverse [112] 
suite for data curation and project management and the packages marginaleffects [103], tidybayes [113], ggdist [114,115], 
bayesboot [116], and loo [104,105,116] for formal analysis. We used the packages ggplot2 [117] and GGally [118] for 
generating figures; and the packages gtsummary [119] and flextable [120] for generating tables. We generated the manu-
script using Quarto version 1.6.40 [121] along with the R packages knitr [122–124] and softbib [125]. We implemented our 
Bayesian models with the brms package [98–100] using the cmdstanr backend and cmdstan version 2.34.1 [101] as the 
interface to the Stan programming language for Bayesian modeling. The Supplement contains more exhaustive details on 
our methodology, including instructions for reproducing our results. Our dataset and code are archived on GitHub (https://
github.com/ahgroup/billings-comp-agdist-public) and Zenodo (DOI: 10.5281/zenodo.15522148).

Results

Data description

Our dataset included 54,101 pairs of pre-vaccination and post-vaccination HAI titer measurements drawn from 677 
individuals who contributed 1,163 person-years to the study across three different study sites. The contributions of paired 
measurements, person-years, and unique participants from each study site are shown in Table 1. In a given year, each 
individual contributed three (trivalent vaccine in 2013/14 and 14/15) or four (quadrivalent vaccine from 2015/16 onward) 
homologous HAI assay pairs, along with a number of heterologous assay pairs, which varied by season due to the change 

Table 1.  Counts of HAI assay pairs, person-years, and new participants who enrolled for the first time that season contributed by each study 
site for the duration of the study. The PA and FL study sites operated from September 2013 to December 2016 and the GA study site began 
operating in January 2017 (during the 2016/17 influenza season).

Season

2013/14 2014/15 2015/16 2016/17 2017/18 Total

Paired HAI assays, n

  FL 2459 6597 6656 6188 0 21900

  PA 2163 3716 4131 3136 0 13146

  UGA 0 0 0 6815 12240 19055

  Overall 4622 10313 10787 16139 12240 54101

Person years, n

  FL 60 150 128 119 0 457

  PA 73 88 81 64 0 306

  UGA 0 0 0 145 255 400

  Overall 133 238 209 328 255 1163

New participants, n

  FL 60 113 37 31 0 241

  PA 73 46 2 12 0 133

  UGA 0 0 0 145 158 303

  Overall 133 159 39 188 158 677

https://doi.org/10.1371/journal.pcbi.1013720.t001

https://github.com/ahgroup/billings-comp-agdist-public
https://github.com/ahgroup/billings-comp-agdist-public
https://doi.org/10.1371/journal.pcbi.1013720.t001
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in historical panels each year, and by individual due to random lab and assay issues. Each person-year represented in 
the data contributed a median of 48 HAI assay pairs (range: 8–52 pairs). Additional demographic information about our 
cohort is provided in the Supplement (summaries of race/ethnicity, sex assigned at birth, contributed person-years, age at 
enrollment, and pre-vaccination titer).

Antigenic distance metrics have low or moderate correlation for all subtypes except A(H3N2)

First, we examined the overall agreement between the different distance metrics. We analyzed agreement using the intra-
class correlation (ICC), shown in Table 2. ICC was low for all subtypes except A(H3N2), and the credible interval included 
zero for all subtypes except A(H3N2), so despite the moderate point estimate for B/Yamagata with a high upper limit, there 
was low consistency in antigenic distance measurements across methods. For A(H3N2), we observed moderate agree-
ment across methods. Our ICC results indicate for each subtype except A(H3N2), at least one of the antigenic distance 
metrics systematically disagrees from the other.

To better understand the lack of overall agreement, we computed the Spearman rank correlation between each pair of 
metrics (again, separately for each subtype). Fig 1 shows the pairwise scatterplots and correlation coefficients. The pair-
wise correlations between distance measurements varied widely across subtypes and combinations, indicating that low 
agreement was not driven by a specific metric or subtype. All distance metrics tended to correlate well for H3N2. Distance 
metrics correlated highly for both influenza B lineages with the exception of the cartographic distance, which had a mod-
erately high correlation with the other three distances for B/Yamagata and a low correlation with the other three distances 
for B/Victoria. The only high correlation for A(H1N1) was between Grantham and p-Epitope distance, with small correla-
tions between the other distance metrics. Grantham and p-Epitope distances correlated well for all strains (although it was 
notably lower for A(H1N1)), which we expected given the similarity between the measures. The Supplement contains a 
table with credible intervals for each correlation.

Predicted vaccine response breadth is similar across antigenic distance metrics, despite the low between-metric 
correlation

Examining the agreement and pairwise correlations between the different distance metrics is useful for understanding 
which metrics disagree most, but these disagreements do not necessarily translate into different predictions about vac-
cine response. We built LMMs and GAMMs to model the effect of antigenic distance after controlling for multiple host and 
assay features.

To quantify whether the effect of antigenic distance deviated strongly from a linear effect, we calculated the LOO-ELPD 
for the GAMM and LMM models fit with each antigenic distance metric, shown in Table 3. LOO-ELPD is comparable to 
frequentist information metrics such as the Akaike Information Criterion (AIC), and differences in ELPD strongly supported 
the linear model for every antigenic distance metric. The ratio of the difference in ELPD was always much greater than its 

Table 2.  Intraclass correlation (ICC) across all antigenic distance measurements, calculated sepa-
rately for each subtype or lineage (strain type). The posterior distribution for each ICC was calcu-
lated as the ratio of variance components for vaccine strain and assay strain divided by the sum of 
all variance components, estimated with a Bayesian model. Numbers shown are the mean and 95% 
highest density credible interval (HDCI) of the posterior distribution of ICCs.

Strain Type ICC

H1N1 0.09 (0.00, 0.24)

H3N2 0.35 (0.20, 0.53)

B-Yam 0.21 (0.00, 0.42)

B-Vic 0.03 (0.00, 0.12)

https://doi.org/10.1371/journal.pcbi.1013720.t002

https://doi.org/10.1371/journal.pcbi.1013720.t002
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standard error, so the difference between models can be trusted for model selection. Including spline terms to account for 
nonlinearity did not improve the model fit.

Fig 2 shows how the average post-vaccination titer predicted by the model changes along with antigenic distance 
for each subtype. For both influenza B lineages, the data were sparsely measured across the span of any of the anti-
genic distance metrics, making the GAMM predictions difficult to distinguish from the LMMs. Both influenza A subtypes 
showed a larger difference in predictions made by the GAMMs vs. the LMMs where the GAMMs predicted non-monotone 

Fig 1.  Distribution and correlation plots for each of the antigenic distance metrics. For each HAI assay in the dataset, we calculated the antigenic 
distance between the vaccine and assay strains with four different methods. We examined the distribution (shown along the diagonal) and the correlation 
between the different metrics for the same pairwise comparisons (we show pairwise scatterplots in the plots below the diagonal, and overall Spearman’s 
correlation values in the plots above the diagonal). We include each unique combination as only one point in this plot. We calculated correlation coeffi-
cients separately for each subtype – colors in the plot indicate subtype.

https://doi.org/10.1371/journal.pcbi.1013720.g001

https://doi.org/10.1371/journal.pcbi.1013720.g001
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relationships between post-vaccination titer and antigenic distance. The LMM and GAMM were most similar for carto-
graphic distance for both A(H1N1) and A(H3N2), perhaps suggesting that cartographic distance partially accounts for 
nonlinear effects of antigenic distance. There were some interesting trends in the shape of the spline curves, but the 
nonlinear effects for the p-epitope and Grantham distance did not appear to match the data well. Combined with the lack 
of ELPD support (Table 3), the spline models are likely picking up random fluctuations that may be partially driven by gaps 
in antigenic distance space rather than by true non-monotone signals (see the Supplement for an analysis of the gaps in 
antigenic distance space).

Since the linear model had better ELPD support for all metrics (Table 3), we focused on attempting to understand the 
effects in the linear model. Other than the normalized antigenic distance effect, the other effects were similar across the 
four models (what we expect). Table 4 shows the estimated fixed effects coefficients from our models. The effects of sex 
and race/ethnicity were negligible, and the effects of age and birth year appear to be highly negative because they are not 
identifiable in our dataset, but together they provide a non-negligible contribution for each individual. Log pre-vaccination 
titer had a strong positive effect on post-vaccination titer as expected. We did not interpret those effects further, since we 
did not control for potential confounders of relationships other than the effect of antigenic distance on the outcome. The 
effect of antigenic distance was negative for all four models, as we would expect, but the magnitude of the effect varied. 
While the point estimates were similar, the effect size for p-epitope was the smallest and the effect size for cartographic 
distance was the largest. The effect size for the cartographic distance also had the most density away from zero. Only the 
temporal distance model had an HDCI for the distance effect that included zero.

We also attempted to understand the variance contributions in the model by decomposing the variance (Table 5). 
The fixed effects explained the most variance of the three model components in all four models. The contribution of the 
residual variance was nearly identical in all four models, suggesting that the random effects are more important in some 
models than others, without explaining any additional variance. The variance explained by the assay strain, vaccine strain, 
study site, and subject variance components was similar across the four models, with the most noticeably different con-
tribution being the effect of the subtype. The subtype apparently explained more variance in the temporal and Grantham 
distance models than in the cartographic and p-Epitope distance models, suggesting that those metrics might be more 
affected by differences in subtypes. Overall, the fixed effects were typically slightly more important than the random 
effects, but the variance explained by the random effects was still large for each model.

Predictions made by different antigenic distance metrics are similar after accounting for host factors

Finally, we directly compared estimates from the models across normalized antigenic distance metrics for each sub-
type (Fig 3). Since the LMM is easier to interpret and was supported by our ELPD analysis, we examined the slope 
and intercept for each subtype across the four antigenic distance metrics. The intercepts (representing the predicted 

Table 3.  Differences in expected log pointwise predictive density (ELPD) from the best-fitting 
model, estimated by the leave-one-out (LOO) method for all models and all antigenic distance met-
rics. We fit the models separately for each antigenic distance metric, so comparisons are shown 
separately. The ΔELPD is the difference in ELPD between the LMM and the GAMM, so a positive 
number indicates the LMM performed better than the GAMM, and a larger number means the LMM 
outperforms the GAMM more. We show the ΔELPD ± its standard error, along with the ratio of the 
estimate to its standard error.

Metric ΔELPD (LMM - GAMM) ΔELPD/ SE

Cartographic 108.14 (±19.96) 5.4

Grantham 203.64 (±24.23) 8.4

Temporal 47.16 (±11.17) 4.2

p-Epitope 290.25 (±35.48) 8.2

https://doi.org/10.1371/journal.pcbi.1013720.t003

https://doi.org/10.1371/journal.pcbi.1013720.t003
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Fig 2.  Model predictions for both the GAMM and LMM. Solid green lines and green ribbons show the mean and 95% highest density continuous 
interval (HDCI) for GAMM predictions. Dashed orange lines and orange ribbons show the mean and 95% HDCI for LMM predictions. Circular points 
show the data values. Each subplot shows the model predictions for a particular subtype (changes by row) and distance metric (changes by column). 
Outcomes shown on the plot are predicted post-vaccination titers for an average individual to an average strain (see Supplement for computational 
details).

https://doi.org/10.1371/journal.pcbi.1013720.g002

https://doi.org/10.1371/journal.pcbi.1013720.g002
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post-vaccination titer to the homologous strain of the specified subtype for an individual with no pre-vaccination anti-
bodies) were similar across all metrics regardless of the subtype. The slopes varied more, indicating that the antigenic 
distance had a stronger effect on predicted titer for some metrics and subtypes. For both B lineages, estimates of the 
slope were nearly identical across antigenic distance metrics. For A(H1N1), the cartographic distance model had a lower 
slope than the other three antigenic distance metrics, but the credible interval still overlapped with the credible interval 
for the temporal distance. For A(H3N2), the slope for the p-Epitope distance was much smaller than the other slopes 
(reflecting our results in Fig 2), despite the high correlation between the antigenic distances for A(H3N2) (Fig 1). We can 
only perform a visual inspection of these overlaps, because there is no existing approach to combine posterior distribu-
tions across the four models.

Furthermore, these estimates do not take variance from the random effects in our model into account. To analyze pre-
dictions for both the LMM and GAMM, with the random effects variances included in uncertainty calculations, we directly 
compared predictions from the models and saw much higher overlap (shown in the Supplement), as we would expect 
when we include all of the variance in the data.

We compare the relative LOO-ELPD for each model in Table 6. The models are fit to the same set of predic-
tors and data points and the antigenic distances are normalized, so the ELPDs are on the same scale and we can 
directly compare them. We found that all of the models had very similar performances – while the ELPDs were 
different between the four models, each contrast was smaller than the SE for either ELPD. For example, while the 
cartographic model had an ELPD around 150 points lower than the p-Epitope model, the SE for both estimates was 
around 470, so we cannot assume that these contrasts are meaningful differences. All of the models appeared to fit 
the data equally well.

Table 4.  Coefficients for all of the fixed effects included in our primary models. The model coefficients for scaled birth year, scaled age, sex 
(effect of being male relative to being female), race/ethnicity (effect of being non-Hispanic white or Caucasian vs. any other self-reported 
identity), log pre-vaccination titer, and normalized antigenic distance. We fit a separate model for each of the metrics, but the variables are 
standardized the same way across all four models so the coefficients are on the same scale across all models.

Metric Birth Year Age Sex1 Race/Ethnicity2 Log pre-vaccination 
HAI titer

Normalized anti-
genic distance

Cartographic -3.14 (-4.08,-2.20) -3.46 (-4.37,-2.55) 0.01 (-0.05, 0.06) 0.03 (-0.02, 0.08) 0.78 (0.77, 0.79) -1.61 (-2.42,-0.58)

Grantham -3.19 (-4.12,-2.26) -3.50 (-4.41,-2.60) 0.01 (-0.05, 0.07) 0.03 (-0.02, 0.09) 0.78 (0.78, 0.79) -1.14 (-2.03,-0.02)

p-Epitope -3.13 (-4.08,-2.19) -3.45 (-4.36,-2.53) 0.01 (-0.05, 0.06) 0.03 (-0.02, 0.08) 0.78 (0.78, 0.79) -1.33 (-2.12,-0.50)

Temporal -3.17 (-4.11,-2.24) -3.48 (-4.41,-2.58) 0.01 (-0.05, 0.06) 0.03 (-0.02, 0.08) 0.78 (0.78, 0.79) -1.24 (-2.38, 0.16)

1 Reference: Male (vs. female)

2 Reference: Non-Hispanic white (vs. other)

https://doi.org/10.1371/journal.pcbi.1013720.t004

Table 5.  Variance contributions to the total variance estimated in the model. To estimate the fixed effects variance contribution as the vari-
ance of the estimated linear predictor, while the residual variance and random effects variance contributions (all variance contributions other 
than the fixed effects and residual variance) are estimated as model parameters. All contributions are rounded to the nearest percent and may 
not sum (rowwise) to 100 due to rounding error.

Metric Residual variance Fixed effects Total random effects Specific random effects

Subtype Assay strain Vaccine strain Study site Subject

Cartographic 12% (9, 15) 50% (38, 62) 36% (22, 52) 13% (4, 26) 1% (1, 2) 3% (1, 5) 11% (0, 31) 6% (4, 7)

p-Epitope 12% (9, 15) 50% (38, 60) 36% (24, 51) 11% (3, 24) 5% (3, 6) 3% (1, 5) 10% (0, 28) 6% (4, 7)

Grantham 11% (9, 14) 48% (37, 58) 40% (27, 53) 17% (5, 33) 4% (2, 5) 3% (1, 7) 8% (0, 25) 6% (4, 7)

Temporal 11% (8, 13) 44% (33, 54) 44% (32, 57) 23% (9, 40) 4% (2, 5) 3% (1, 7) 7% (0, 23) 5% (4, 6)

https://doi.org/10.1371/journal.pcbi.1013720.t005

https://doi.org/10.1371/journal.pcbi.1013720.t004
https://doi.org/10.1371/journal.pcbi.1013720.t005
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Discussion

We computed multiple antigenic distance metrics on the same set of influenza strains. Using immunogenicity data from 
a human cohort, we were able to compare cartographic data to sequence-based, biophysical, and temporal antigenic 
distance measures that have been used before for analyzing vaccine breadth. We then fit linear mixed-effects models 
(LMMs) and generalized additive mixed models (GAMMs) to the immunological data separately for each cohort, con-
trolling for subtype, pre-vaccination titer, and multiple sources of random variation. By comparing the predictions and 
parameters from the estimated models across the four antigenic distance metrics, we were able to assess the similarity of 
the metrics in a more practical context.

We observed moderate correlations between the four antigenic distance measures for all subtypes except 
A(H3N2). Low ICC for influenza B could be due to the relative sparsity of the heterologous panel compared to the 
influenza A strains, but the four metrics clearly behave differently for A(H1N1) and A(H3N2) strains. Notably, the 
strains of A(H1N1) that have emerged since 1918 can be divided into two major groups — the group that is more 
similar to the 2009 or 1918 pandemic lineage, and the group that is more similar to the pre-2009 seasonal A(H1N1) 

Fig 3.  Intercept and slope estimates stratified by subtype for each LMM (one for each distance metric). Points and intervals show the mean and 
95% HDCI of posterior samples of the indicated parameter. The top row of plots shows the mean and CI for estimates of the intercept, and the bottom 
row of plots shows the mean and CI for estimates of the slope. Columns of plots indicate which subtype the slope and intercept are for.

https://doi.org/10.1371/journal.pcbi.1013720.g003

Table 6.  Expected log pointwise predictive density (ELPD) calculated for each of the linear 
mixed-effects models (LMMs) using the leave-one-out (LOO) method. For each metric, we show the 
estimated ELPD ± its standard error. The differences between the model ELPDs were negligible.

Metric LMM LOO-IC

Cartographic 151131.5 ± 471.6

p-Epitope 151188.6 ± 471.7

Grantham 151250.6 ± 472.1

Temporal 151188.4 ± 472.2

https://doi.org/10.1371/journal.pcbi.1013720.t006

https://doi.org/10.1371/journal.pcbi.1013720.g003
https://doi.org/10.1371/journal.pcbi.1013720.t006
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lineage. The temporal separation between the similar strains distorts the temporal distance considerably, and tem-
poral distance cannot be used in a fair comparison due to this difference. While the low reliability observed between 
antigenic cartography and the sequence-based distances is harder to explain, we postulate that currently used 
genetic differences fail to adequately consider the indel mutation that differentiates the 2009 pandemic-like strains 
from the pre-2009 seasonal strains. Indel mutations are also important for distinguishing influenza B lineages, so 
incorporating a better gap penalty into genetic or biophysical distances may provide insight into the low reliability 
between metrics.

Despite the moderate correlations between metrics, we found that all four antigenic distance measures produced 
similar predictions about the heterologous vaccine response, regardless of subtype. Unexpectedly, the subtype gener-
ating the most different predictions was A(H3N2), which had the highest correlation between metrics. After we account 
for important confounders and other sources of variation, the differences between metrics seemed to disappear, with 
the exception of the unusually small slope for p-Epitope distance for influenza A(H3N2). Along with our pointwise 
prediction comparisons (shown in the supplement), these results suggest a systematic disagreement on the vaccine 
outcome scale between p-Epitope distance and other metrics for A(H3N2), which contrasts with the high pairwise cor-
relations between p-Epitope and other metrics for this subtype. Perhaps important antigenic changes for H3N2 have 
occurred outside of the immunodominant epitopes, or features like glycosylation that might be more easily captured 
by Grantham or cartographic distance are important, but we were unable to identify specific strains driving this effect. 
Alternatively, the difference could be due to some form of noise or sampling error in our study — we have no data 
from equivalent human cohort studies with wide heterologous panels to compare our results to, so we do not know if 
this result is consistent.

Our overall results could imply that the differences between antigenic distance metrics can appear large but are 
small compared to between-subject and between-study variability in real life, or that accounting for interindividual 
differences or pre-vaccination titer helps to explain the differences between metrics. We also found that a linear 
model was sufficient for explaining the relationship between post-vaccination titer and antigenic distance, rather 
than a nonlinear model. For example, we might expect a tapering effect or a sharp drop-off, which could both be 
produced by the GAMMs. Notably, we even found that temporal distance tends to produce similar predictions to 
cartographic distance in this setting, despite the evidence for epochal antigenic evolution and emergence or circu-
lation of multiple clusters in a single year [3,9,59,126]. Combining our the antigenic distance metrics we considered 
(and potentially other epidemiological or virological data) could produce a better with less nuisance variation across 
experimental units.

While we used data from a multicenter study with tens of thousands of measurements and over one thousand contributed 
person-years, our study still has some weaknesses. First, as a secondary data analysis, none of the data were designed with 
our questions in mind. While we have attempted to control for as much confounding as possible, we lack data on the expo-
sure histories, including infections and prior vaccinations outside of the study, of individuals in our cohort that could confound 
our results [9,127]. While exposure history does not statistically confound the effect of antigenic distance in our study, expo-
sure history could be a major source of between-subject variability. Controlling for exposure history would provide interesting 
conclusions in its own right but could help us resolve the effect of antigenic distance on immunogenicity.

Our results also only apply to the split-inactivated Fluzone standard dose vaccine. Higher doses can either help or 
hinder heterologous responses [128–130], and in a previous study we found that the heterologous antibody response 
varied by Fluzone vaccine dose [79], so our results might change for other vaccine doses or formulations. A balanced 
design with randomized vaccine design would be preferable for understanding the impact of vaccine design on agreement 
between antigenic distance metrics.

We also used cartographies based on our pre-immune human data, which were generated on the same data we 
analyzed. With access to multiple cartographies on the same data set or imputation techniques [131,132] we could treat 
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different cartographies as different antigenic distance metrics and compare cartographic distances in the same way. Our 
metrics also did not all cover antigenic distance space evenly as the strains in the historical panel were selected to cover 
a wide variety of years. However, there were several “gaps” between discrete antigenic distance values for A(H1N1) and 
the two B lineages, which could impact our estimates (see Supplement for details), and a broader panel with more evenly 
spaced strains would make our effect estimates more precise. Finally, we have no real proxy for the response to “future” 
strains. We could get a better predictive understanding of how the vaccine generates immune responses to future strains 
by testing serum samples from, say, 2016, to novel vaccine strains that have emerged since the samples were collected. 
Such measurements would allow us to validate the use of the historical panel as a proxy for future vaccine response. Lon-
gitudinal studies designed with long-term collection and multiplex assays in mind would be beneficial for answering similar 
questions about antigenic distance and vaccine breadth.

Overall, we found that simple antigenic distance metrics like Grantham’s distance generated very similar predictions 
about vaccine breadth to distances based on antigenic cartography in our study. While some distance metrics potentially 
deviated, the effect was subtype specific (p-Epitope for A(H3N2) strains). While cartography is important for understand-
ing the antigenic diversity and evolution of influenza, researchers analyzing vaccine breadth should not be afraid to use 
easier, potentially less biased metrics of antigenic distance.
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S3 Table.  Heterologous strain panel used during each influenza season. 
(XLSX)

S4 Table.  Full strain names and associated abbreviations for each strain used in the study. 
(XLSX)

S5 Table.  Demographic characteristics of the study participants. Summary statistics shown are count and column 
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S7 Table.  Spearman correlation coefficients and 95% HDCIs estimated by Bayesian bootstrap for each influenza 
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model, we show the minimum ESS across all parameters, the minimum E-BFMI across chains, and the maximum R hat 
across all parameters.
(XLSX)

S9 Table.  Model diagnostics for samples from the prior distributions for our GAMMs and LMMs. These samples 
are drawn only from the prior distributions and do not see the data. For each model, we show the minimum ESS across all 
parameters, the minimum E-BFMI across chains, and the maximum R hat across all parameters.
(XLSX)

S10 Table.  Diagnostics for the LOO-IC ELPD approximation. Pareto k is the primary diagnostic indicating whether the 
approximation is trustworthy and all Pareto k values should be below 0.7. The Neff  is the effective sample size and Reff  
is the ratio of the effective sample size to the true sample size – if there are too few effective samples relative to actual 
samples, we can get an optimistic evaluation of the approximation quality, but in general this matters less if the ESS is 
sufficiently high.
(XLSX)

S11 Table.  Pairwise Spearman rank correlations between antigenic distance values using the Grantham, FLU 
Substitution, and Hamming distance metrics. We calculated correlations between two distances using the normalized 
distance values between every vaccine/assay strain pair for the given subtype. Numbers shown are the mean and 95% 
highest density continuous interval (HDCI) calculated by Bayesian bootstrapping.
(XLSX)

S12 Table.  Pairwise Spearman rank correlations between antigenic distance values using the Grantham, FLU 
Substitution, and Hamming distance metrics. We calculated correlations between two distances using the normalized 
distance values between every vaccine/assay strain pair for the given subtype. Numbers shown are the mean and 95% 
highest density continuous interval (HDCI) calculated by Bayesian bootstrapping.
(XLSX)

S1 Fig.  The graphical causal model for our research question represented as a DAG. 
(PNG)

S2 Fig.  Pre-vaccination titers in our study to each of the assay strains. The point shows the median and the line 
shows the IQR.
(TIF)

S3 Fig.  Post-vaccination titers in our study to each of the assay strains. The point shows the median and the line 
shows the IQR.
(TIF)

S4 Fig.  Dispersion metrics for antigenic distance metrics. A) Parallel coordinates plot showing how the estimated 
pairwise antigenic distances change for each of the antigenic distance metrics. Each line in the plot represents one vac-
cine strain and assay strain pair, and the connected points are the pairwise distance measured under each metric shown 
on the x-axis. When two lines cross, this indicates that two metrics assigned a different relative order to the pairwise com-
bination. Note that Grantham and especially p-Epitope distances are integer-valued and concentrate measurements to 
specific points which potentially overlap (temporal distance is also integer valued but has enough spread to avoid a similar 
issue). B) The gap standard deviation (gap SD) for each subtype and antigenic distance metric. The posterior distribution 
of gap SDs was calculated using the bayesian bootstrap with reweighting. The red horizontal bar shows the mean of the 
bootstrap posterior and the error bars show the 95% highest density credible interval (HDCI).
(TIF)
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S5 Fig.  Pairwise comparisons of predictions (from the LMMs) between each unique set of two metrics. 
The y-axis shows the fold change in predictive titers between metrics, and the two metrics being compared in 
each subplot are shown as the subplot labels. Each line represents the predictions for the first metric in the pair 
at a given antigenic distance value divided by the predictions for the second metric in the pair. Color and line-
type correspond to different strain types. The solid black lines on the plot are reference lines at a value of 1 for 
no effect, and at 4 and 1/4, effect values which would represent a clinically notable deviation in HAI predictions 
beyond what is expected from measurement error. Lines represent the mean of the posterior distribution of the 
contrast and the colored ribbons represent the 95% highest density credible interval (HDCI) for each strain type 
in each subplot.
(TIF)

S6 Fig.  Pairwise comparisons of predictions (from the GAMMs) between each unique set of two metrics. 
The y-axis shows the fold change in predictive titers between metrics, and the two metrics being compared in 
each subplot are shown as the subplot labels. Each line represents the predictions for the first metric in the pair 
at a given antigenic distance value divided by the predictions for the second metric in the pair. Color and line-
type correspond to different strain types. The solid black lines on the plot are reference lines at a value of 1 for 
no effect, and at 4 and 1/4, effect values which would represent a clinically notable deviation in HAI predictions 
beyond what is expected from measurement error. Lines represent the mean of the posterior distribution of the 
contrast and the colored ribbons represent the 95% highest density credible interval (HDCI) for each strain type 
in each subplot.
(TIF)

S7 Fig.  Model predictions for both the GAMM and LMM, conditional on the vaccine strain rather than only on the 
subtype (shown in the main text). Solid green lines and green ribbons show the mean and 95% highest density contin-
uous interval (HDCI) for GAMM predictions. Dashed orange lines and orange ribbons show the mean and 95% HDCI for 
LMM predictions. Circular points show the data values. Each subplot shows the model predictions for a particular subtype 
(changes by row) and distance metric (changes by column). Outcomes shown on the plot are predicted post-vaccination 
titers for an average individual to an average strain.
(TIF)

S1 Text.  Expanded methods and details on sensitivity analyses. 
(DOCX)
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