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Abstract

We evaluated Federated Learning (FL) strategies for predicting COVID-19 mortal-
ity using a multicenter sample of 17,022 patients from 21 diverse Brazilian hospi-
tals. We tested horizontal FL architectures employing Logistic Regression (LR) and
a Multi-Layer Perceptron (MLP) via parameter aggregation, alongside a novel Fed-
erated Random Forest (RF) using ensemble aggregation. Performance gain (AAUC,
calculated as AUCsegerateg Minus AUC,,o) Was quantified using bootstrap analysis to
determine 95% confidence intervals. FL models demonstrated a beneficial collabo-
rative effect. The average AAUC across the network was +0.0018 for LR, +0.0599
for MLP, and +0.0528 for RF. Crucially, the gain’s magnitude and statistical signifi-
cance showed a strong inverse correlation with local patient volume (N). Substantial
and statistically significant gains concentrated in data-limited institutions (N < 500).
For example, the smallest hospital (N=86) achieved a remarkable AAUC of 0.3682
(95% CI [0.0908, 0.6307]) with the RF model. However, interpreting these bene-

fits requires caution because the 95% Cls for AAUC crossed zero for the majority of
hospitals, suggesting the collaborative model’s statistical advantage is not univer-
sally certain at every site. This trade-off was particularly evident with the MLP model
which, despite achieving the highest average AAUC, was the most volatile algorithm,
registering the maximum performance degradation in the network (AAUC = -0.0884,
95% CI [-0.1527, —0.0273]) due to its high sensitivity to local data distribution dispar-
ities (non-IID). This study validates FL as an equity-enabling mechanism that effec-
tively enhances predictive capacity where local data scarcity is highest. Our find-
ings underscore that maximizing the most statistically certain benefits of FL requires
continuous monitoring and local validation for successful clinical deployment across
diverse settings.
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Author summary

The authors, coming from diverse fields of expertise, present a comprehensive
analysis of federated learning—a decentralized machine learning approach where
multiple institutions collaboratively train a model while keeping data localized

to ensure privacy and security. This study evaluates the effectiveness of feder-
ated learning architectures that aggregate model parameters through averaging
in predicting COVID-19 mortality. By applying this methodology across 21 hos-
pitals throughout Brazil, the study investigates its utility across various patient
volume contexts and assesses its predictive performance. Additionally, the authors
explore federated models based on decision trees and propose the development
of a self-scalable random forest algorithm to enhance predictive capabilities and
adaptability. The findings suggest that federated learning holds promise as a
powerful solution for predictive challenges in healthcare settings, fostering both
innovation and data security.

Introduction

The development of predictive machine learning algorithms in healthcare presents
technical and ethical challenges. First, it must consider the heterogeneous character-
istics of the data collected from different centers. Ethically, information privacy should
also be closely considered due to the sensitivity of its content. To extract the neces-
sary information and address these issues, a machine learning technique known as
federated learning (FL) has been increasingly used. FL is a collaborative decentral-
ized learning model that aims to assign scalability to the training model by using iso-
lated local data from different sources while ensuring information privacy by execut-
ing the training model on the data-generating units [1,2]. The technique remotely exe-
cutes the training model, thereby avoiding information centralization or exchange of
patient data between organizations and, consequently, lowers the risk of information
leakage or compromise [3].

When running the collaborative training model with data from different sources, the
predictive model performance can be improved by interacting with information from
various sets of data processed in different institutions [4]. As more data is needed to
improve the training and performance of the algorithms, data from isolated sources
may be subject to the issue of information dimensionality and under-representation
of observations in the data set, creating bias in the predictive results. Thus, the use
of a decentralized collaborative learning technique allows the construction of an infor-
mation network, expanding the dimension of the databases by connecting different
repositories while keeping the data in their local sources. The FL method assigns
scalability to the training model, generating less biased parameters by using a more
complete data distribution [1].

There is a large potential gain of applying FL to predictive analysis of diseases and
clinical outcomes, by combining information extracted from patient medical records in
different repositories, hospitals, and devices [5]. Pfohl and Huang used the method to
predict mortality and length of hospital stay, considering aspects sensitive to the
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model [6,7]. Lee and colleagues sought similarities between patients to predict patterns of association between clinical
outcomes, assisting decision-making [8]. In addition, Brisimi and colleagues used a decentralized learning approach to
develop a binary predictive model that classified patients according to their probability of being hospitalized for heart dis-
ease [9].

This study aims to use federated learning techniques for health-related predictions using multicentric data from a coun-
try with large socioeconomic diversity. We tested different architectures and machine learning algorithm structures, both
with federated and standard models, and then compared their predictive performance. This work brings a novel perspec-
tive to federated learning by leveraging a large sample of Brazilian hospitals. Given Brazil’s vast ethnic and cultural diver-
sity, federated learning faces an even greater challenge of sample heterogeneity (non-IID), which is addressed here in an
unprecedented way.

Furthermore, the study introduces an original contribution by proposing a novel federated learning algorithm based on
decision trees, inspired by the scalable Random Forest approach, similar to the work presented by Hauschild and col-
leagues [10]. Additionally, the article presents a novel hyperparameter optimization strategy for the federated network,
offering a unique explanation for the choice of hyperparameter t, which determines the number of times the federated
network adjusts its parameters and interacts with each hospital.

This study distinguishes itself by tackling the unique challenges of federated learning in a socioeconomically diverse
country like Brazil, where hospital resources and patient demographics vary significantly across regions. By analyzing
the characteristics of hospitals from all Brazilian regions—including the communities they serve and the resources at their
disposal-we underscore the relevance and applicability of our approach. Our findings not only demonstrate the effective-
ness of federated learning (FL) in enhancing predictive performance but also provide novel insights into the application of
FL in heterogeneous and non-independent and identically distributed (non-IID) settings.

Materials and methods
Data base

A cohort of 17,022 patients from 21 different hospitals across all the five regions of Brazil was followed between March
and August 2020. The data comes from hospitals associated with the IACOV-BR network coordinated by the Laboratory
of Big Data and Predictive Analytics in Health (LABDAPS) of the School of Public Health, University of Sdo Paulo, Brazil.
The inclusion criterion for patient data in the study was having a RT-PCR test, regardless of the result. Data collection
refers to a 24-hour window before and after the test was performed. The study was conducted in accordance with ethi-
cal principles, including compliance with the Brazilian General Data Protection Law (LGPD), and did not involve access to
identified patient data.

A total of 22 predictors, as indicated in Table 1, were selected from the variables routinely collected across all hospital,
including age, sex, heart rate, respiratory rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure,
temperature, hemoglobin, platelets, hematocrit, red blood cell count, mean corpuscular hemoglobin (MCH), red cell distri-
bution width (RDW), mean corpuscular volume (MCV), white blood cells, neutrophils, lymphocytes, basophils, eosinophils,
monocytes, and C-reactive protein.

Statistical analysis

We used the transfer learning architecture Flower to act as a central server to build the global model by aggregating the
results of locally trained models from the hospitals [11]. Data preparation packages were created and transmitted to the
hospitals, which were then used to define the hyperparameters of the federated learning approach, that served as input
for designing strategies for aggregation and parameter connection. Finally, the hyperparameters defined the modeling

architecture (models, sampling, and evaluation). The Flower Architecture consists of a cyclical system for updating local
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Table 1. List of variables used to predict hospitalization mortality in the federated and local learning approaches.

Variables Description Unit of Measure

Age Patient age Years

Platelets Platelet count /mm3

HCM Mean corpuscular hemoglobin pg

MCV Mean corpuscular volume fL

Leukocytes Leukocyte count /mm”3

RDW Red cell distribution width %

CRP C-reactive protein mg/dL

Basophils Basophil count /mmA3

Lymphocytes Lymphocyte count /mmA”3

Eosinophils Eosinophil count /mm”3
Red_Cells_Count Red blood cell count 4.5-6.0 x 10"6/mm"3
Monocytes Monocyte count /mm3

Hemoglobin Hemoglobin level g/dL

Resp_Rate Respiratory rate Breaths per minute
Neutrophil Neutrophil-to-lymphocyte ratio Neutrophils/lymphocytes
Hematocrit Hematocrit level Percentage of red cells
Heart_Rate Heart rate Beats per minute
Sys_Press Systolic blood pressure mmHg

Dias_Press Diastolic blood pressure mmHg

Mean_Press Mean arterial pressure mmHg

Temp Body temperature Celsius degrees
Gender Gender Categorical

https://doi.org/10.1371/journal.pcbi.1013695.t001

data [11]. The server aggregates the parameters (e.g., using Federated Averaging) and returns the updated global model
to the hospitals. This process is repeated iteratively until the model converges.

Data from 21 hospitals across all five Brazilian regions were analyzed in this study, with the distribution as follows:
North (3 hospitals, n = 1,936), Northeast (4 hospitals, n = 4,325), Midwest (4 hospitals, n = 1,872), Southeast (6 hospi-
tals, n = 7,302), and South (4 hospitals, n = 1,587), as shown in Table 2. Using 22 predictors (Table 1), federated learning
approaches were developed to predict mortality among hospitalized patients with COVID-19.

We tested the use of a horizontal federated learning system architecture. In this system, the 21 hospitals collaborate
to build a final machine learning model through a central server [12]. As presented by Phong and colleagues, we accept
the recurring assumption that both the hospitals and the server are honest, disregarding the possibility of leaks from the
participant hospitals to the server [13].

Generally, the steps for building a federated model can be ordered as follows: locally, participants compute the coeffi-
cients of a machine learning model and send them to the server anonymously; the server then aggregates the parameters
received from the participants without any learning information from each part; then returns the aggregation results to the
participants; and finally the participants update their models with these results [12]. A schematization of this process can
be observed in Fig 1A.

Table 2. Hospitals by region in Brazil, with a list of hospitals.

Region Hospitals by Region

Southeast Hospital Santa Casa de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da USP, Hospital Unimed-Rio, Hospital
Universitario Clementino Fraga Filho, Hospital Sdo Francisco de Mogi Guagu, Hospital Evangélico de Vila Velha - HEVV

Northeast Hospital Portugués da Bahia, Hospital Unimed Fortaleza, Hospital Universitario HC de PE, Hospital Universitario Walter Cantidio
North Fundacgédo Santa Casa de Misericérdia Em Belém, Hospital Santa Julia, Hospital Universitario Getulio Vargas

Central-West | Hospital Estadual de Luziania - HEL, Hospital Santa Lucia, Hospital Universitario Maria Aparecida Pedrossian, Hospital Estadual de
Trindade - HETRIN

South Grupo Hospitalar Conceicao, Hospital Moinhos de Vento, Hospital Santa Catarina Blumenau, Hospital Escola da UFPel

https://doi.org/10.1371/journal.pcbi.1013695.t002
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Fig 1. Schematic visualization of the federated learning approaches. (A) Parameter averaging framework (Scenario 1): In this system, participants
(hospitals) compute model coefficients and send them anonymously to the server for aggregation. The server then returns the updated global model to
the participants in an iterative process. (B) Decision tree aggregation framework (Scenario 1l): Here, the server determines the number of decision trees
each hospital should build based on its proportional data size. These locally built trees are then sent back to the server, which aggregates them into a
single Federated Random Forest model, subsequently distributed to all participating hospitals.

https://doi.org/10.1371/journal.pcbi.1013695.9g001

We used the AUC-ROC as the metric to measure predictive performance of the federated learning system, accord-
ing to two scenarios. Scenario | consisted of developing two traditional machine learning models, a Multi Layer Percep-
tron (MLP) neural network, and Logistic Regression (LR). In this scenario, for both models, the learning process con-
sisted of aggregating the parameters of the models through the Federated Averaging method over the federated system
server [14].
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The federated learning approach used in Scenario |, as well as its aggregation method, are shown below. The problem
formulation requires partitioning the total data among the K available clients. Given n, as the count of data points at client
k (index set P,), the overarching objective function, representing the minimized aggregate loss across the federation, is
written as:

. & 1
min Fw) = 3, TFw) where  Fi(w) =7 3, f(w) (1)

iePy

Here, n is the total number of samples across all hospitals; w represents the model parameters and f; is the loss func-
tion for the i-th data sample [14].

The Federated Averaging algorithm, shown in Algorithm 1, is used in Scenario | and implements the aggregation-based
learning logic described in Equation 1. It can be summarized and schematized as follows: The K hospitals are indexed by
k; B represents the local minibatch size, E denotes the number of local epochs, and 7 is the learning rate [14].

Algorithm 1 Federated averaging algorithm. The number K of hospitals is indexed by k; B is the size of the local
data samples, E represents the number of local training steps, 7 is the learning rate, and C represents a fraction of the

K sample, which can be considered as C = 1 in the context of this work [14].
1: Server executes:

2: Initialize wp

3: for each round t=1,2,.. do

4 m < max(C-K,1)

5: S; < (random set of m hospitals)

6 for each hospitals K€ S; in parallel do
7 Wﬁﬁr1 « HospitalUpdate(k, w;)

8 end for

9 mtﬁzkeslnk

ny k
105 Wiy < X, e Wit

11: end for

HospitalUpdate called during the update of Wy ¢ in the process shown above

12: HospitalUpdate (k, w):

13: // Run on hospital k

14: B« (split P, into batches of size B)
15: for each local epoch i from 1 to E do
16: for batch beB do

17: w—w—7nVL(w,b)

18: end for

19: end for

20: return w to server

To determine the number of training epochs for both MLP and LR, we conducted an analysis using a validation dataset.
This analysis focused on monitoring the convergence of the AUC metric, which guided the selection and justification of the
hyperparameter t in Algorithm 1.

Our approach to empirically observing and adopting this hyperparameter is original and has not been previously doc-
umented in the literature. Existing studies suggest that setting this hyperparameter to t = 10 is generally sufficient for the
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convergence of federated networks [15,16]. However, other authors, such as Soltan et al., have incorporated a signifi-
cantly higher number of training epochs, using t= 150 [17]. As in our previous setup, we adopted the Flower Architec-
ture, which integrates both a secure parameter transmission strategy from participants to the server and the Federated
Averaging Aggregation method [11].

Since the objective of this work was to evaluate the predictive capacity of the models from a federated learning per-
spective, the hyperparameters of the models were not extensively explored. For the Multilayer Perceptron (MLP), Tensor-
Flow and Keras were used, and the architecture was designed with two hidden layers to balance model complexity and
computational efficiency, following best practices for neural network design. The first hidden layer consists of 20 units, and
the second hidden layer consists of 10 units, which allows the model to capture hierarchical patterns in the feature space
without overfitting, especially given the moderate dimensionality of the input data. To measure the MLP loss function, cat-
egorical cross-entropy was used and the Adam method was selected as the optimizer. For LR, Scikit-learn was used with
its standard hyperparameters, and an 12 penalty [18].

In Scenario Il, a federated model based on Random Forests was developed and evaluated. The central idea behind
this scenario is to aggregate decision trees built in each hospital during the federated learning process. Unlike Scenario
I, which explicitly uses the mathematical aggregation presented in Equation 1 and Algorithm 1, Scenario Il draws inspira-
tion from the principles of Equation 1 to proportionally incorporate decision trees based on the amount of data available at
each hospital. Instead of weighting entire random forests from each hospital, as proposed by Hauschild and colleagues,
this work introduces a novel approach where the number of trees to be built at each hospital is predefined and propor-
tional to the size of its local dataset [10]. This strategy not only reduces computational overhead in hospitals with fewer
patients but also ensures scalability in processing and computational costs.

The process begins with the initialization of the server, which identifies the number of participating hospitals, denoted
as K. Each hospital is anonymously indexed by a unique identifier k. The server then requests and receives, in an
anonymized manner, the number of patients from each hospital. Based on this information, the server calculates the num-
ber of decision trees each hospital must develop, proportional to its local dataset size. The total number of trees M is a
hyperparameter defined during server initialization and remains fixed throughout the federated learning process. In this
study, M was set to 550 to ensure consistency and computational efficiency.

Once the server determines the number of trees for each hospital, it sends this information back to the respective k.
Each hospital then processes its local data using a preprocessing script (prep_iacov.py) and develops the required num-
ber of decision trees. To enhance privacy and security, the training process incorporates bootstrapping and bagging tech-
niques, which randomly sample both features and patients. This approach not only improves the robustness of the model
but also complicates potential reverse engineering attacks aimed at reconstructing the training data.

After developing the trees, each hospital sends them back to the server, still anonymized and indexed by k. The server
aggregates these trees into a single Federated Random Forest by shuffling and combining them. This global model is
then distributed back to all participating hospitals for evaluation. The performance of the federated model is assessed in
two stages: (1) each hospital evaluates its local model before sending it to the server, and (2) each hospital evaluates the
global model using its local test data. This two-stage evaluation allows for a comprehensive comparison between local
and federated learning outcomes.

The methodology developed for Scenario Il minimizes communication overhead by reducing the number of informa-
tion exchanges between the server and participating hospitals. This addresses a common challenge in federated learning,
as highlighted by Hauschild et al [10]. Additionally, the approach enhances security by transmitting entire models (trees)
rather than raw parameters, reducing the risk of data exposure [15]. Scenario Il employs Algorithm 1 as its foundation,
adapting it for the construction of decision trees instead of updating parameters of traditional models. Initially, the server
selects all hospitals (C = 1) to participate in the training process, where each hospital k executes the HospitalUpdate pro-
cedure, building decision trees proportionally to the size of its local dataset P,.
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For this process, a Python library was developed by the authors, which includes specific modules for the server and
participants. The library simplifies the implementation of federated learning, requiring only two lines of code to initialize
the server and instantiate the participating hospitals. This user-friendly design enables research groups to simulate and
employ the methodology with minimal effort. Fig 1B presents a schematic of the federated structure.

For the evaluation of the results from the three federated machine learning models, the AUC-ROC metric was used to
measure the predictive capacity of the models and to assess the performance gain compared to the local learning con-
text within the same hyperparameter space. The data was divided into training and test sets, with 80% of the data used
for training and 20% reserved for testing. This split was chosen to ensure a robust evaluation of model performance while
maintaining sufficient data for training. Importantly, the AUC-ROC results for both local and federated learning were cal-
culated using the same test set, ensuring a fair comparison of model performance. The test set was exclusively used dur-
ing the evaluation phase and was not involved in the training process, thereby providing an unbiased assessment of the
models’ predictive capabilities.

To empirically validate and compare the performance of the local and federated models, we implemented a standard-
ized computational pipeline in Python. For each of the 21 participating hospitals, a local model was trained exclusively
on its own dataset to serve as a performance baseline. Subsequently, the corresponding pre-trained federated model,
developed under either Scenario | or Il, was loaded for direct comparison. We employed a bootstrap analysis with 1000
iterations to ensure statistical robustness and to estimate the uncertainty of the AUC-ROC.

In each iteration, a new test set was generated by sampling with replacement from the original test set. The AUC-ROC
was then calculated for both the local and federated models on this resampled data, and the difference between them
(AAUC = AUCxegerated — AUC 0ca1) Was recorded. This procedure yielded empirical distributions for the local AUC, federated
AUC, and AAUC for each hospital. From these distributions, we calculated the mean performance and 95% confidence
intervals (CI).

The performance gain of the federated model was quantified by the mean AAUC and its 95% confidence interval,
where an interval composed entirely of positive values indicates a consistent advantage over the local model. The final
results were consolidated into a summary table and visualized to explore the relationship between performance gain and
the number of patients per hospital.

All codes developed for the study, which were built for this methodology, are available in https://github.com/labdaps/federated-
learning-for-health-in-a-multicentric-sample-of-hospitals.git. The results of the AUC-ROC metric for each hospital sub-
jected to the learning process can also be found in the code repository.

Results

While the explicit tuning of communication rounds () is not extensively explored in the federated learning literature, we
performed a convergence analysis to rigorously determine this hyperparameter. This analysis, presented in Supporting
Information (S1 Fig), plots the AUC-ROC performance on a server-side validation set against each communication round.
This methodological approach enabled us to identify an optimal t that maximizes predictive performance without incurring
unnecessary computational costs, addressing a critical aspect of model efficiency.

In Scenario Il, t is inherently set to 1 by the engineering structure of the developed algorithm. For Scenario |, a rapid
convergence of the AUC-ROC metric is observed for both Logistic Regression (LR) and Multilayer Perceptron (MLP) algo-
rithms. The graph analysis reveals that, around 5 iterations, the algorithms achieve significant stability in the performance
of the global federated model. This behavior justifies the adoption of { =5 in the proposed methodology, as higher values
do not yield substantial improvements in the metric but may increase computational costs.

Furthermore, it is important to emphasize that the hyperparameter ¢ is intrinsically linked to the processing cost of
the federated network. Its careful exploration, as conducted in this study, is crucial to avoid unnecessary computational
expenses, processing overload in participating hospitals, and potential losses of connection to the federated network. The
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approach proposed here demonstrates that selecting ¢ = 5 provides an optimal balance between predictive performance
and computational efficiency, contributing to the practical feasibility of implementing FL in multicentric environments.

Fig 2 presents a comparative analysis of predictive performance, measured by the AUC-ROC metric, between the fed-
erated and local learning paradigms for the three investigated algorithmic models. The evaluation, stratified by each of
the 21 participating hospitals, elucidates a complex relationship between model performance and local dataset size (N),
presented on a logarithmic scale.

The results reveal a trend where federated models, in general, tend to exhibit superior predictive performance com-
pared to their locally trained counterparts. However, the magnitude and statistical significance of this advantage show an
inverse correlation with the dataset size of each hospital. For institutions with limited patient cohorts (e.g., N < 500), col-
laboration in the federated network frequently results in a substantial performance increment. For example, as detailed in
S2 and S3 Tables, the hospital with the smallest cohort (N=86) achieved statistically significant performance gains for the
MLP (AAUC=0.3507, 95% CI [0.0606, 0.6243]) and Random Forest (AAUC=0.3682, 95% CI [0.0908, 0.6307]) models.
Conversely, for hospitals with vast data repositories (e.g., N > 1,000), the performance differential attenuates consider-
ably. S1 and S2 Tables indicate that for the two largest centers, the local Logistic Regression and MLP models showed a
marginal, yet statistically significant, advantage over the federated models, suggesting a point of local data sufficiency at
which the benefit of federated aggregation becomes less pronounced.

The Logistic Regression model (Fig 2A and S1 Table), serving as a linear baseline, exhibited marginal and inconsis-
tent performance gains. While 9 of the 21 hospitals recorded a positive mean AAUC, the wide confidence intervals, which
frequently intersected the null threshold, suggest that simple parameter averaging of a linear model offers a limited, often
statistically insignificant, benefit. This approach establishes a performance floor but appears insufficient to fully harness
the complex patterns available in the distributed data.

In sharp contrast, the MLP (Fig 2B and S2 Table), a non-linear model, demonstrated a pronounced performance
dichotomy, underscoring both the potential and the perils of federated learning. For institutions where local data was insuf-
ficient to train a complex model effectively, the federated approach provided a pathway to high performance by leverag-
ing the collective dataset. However, this same complexity rendered the model susceptible to negative knowledge trans-
fer, yielding the most significant performance degradation in certain hospitals where the global model's parameters failed
to generalize to a unique local data distribution (e.g., Hospital Estadual de Luziania, AAUC=-0.0884, 95% CI [-0.1527,
—0.0273]). This volatility highlights the model’s acute sensitivity to non-1ID data.

Finally, the Random Forest model (Fig 2C and S3 Table), implemented via the distinct tree-aggregation architecture of
Scenario Il, offered the most consistently robust performance. By constructing a global ensemble from locally trained deci-
sion trees rather than averaging abstract parameters, this method inherently mitigates the impact of client data hetero-
geneity, as a single, divergent local dataset is less likely to corrupt the entire model. This structural resilience is evidenced
by 16 of the 21 hospitals showing a positive mean AAUC. Notably, the performance improvements were statistically sig-
nificant for a subset of these institutions, which included hospitals with varying cohort sizes. This suggests that for hetero-
geneous healthcare data, ensemble-based aggregation may provide a more stable and reliable pathway to performance
enhancement in federated networks.

Across the network, a substantial range of performance gains (AAUC) was observed, depending on the algorithm and
local data size (S1-S3 Tables). Overall, the average AAUC across all 21 hospitals was +0.0018 for Logistic Regression
(LR), +0.0599 for the Multi-Layer Perceptron (MLP), and +0.0528 for the Random Forest (RF).

In summary, the empirical findings suggest a diminishing marginal utility of federated learning as local data sufficiency
increases. The primary beneficiaries of the collaborative architecture are institutions with smaller datasets, for which fed-
erated learning allows them to transcend local statistical limitations and access a more generalizable and robust model.
The results, therefore, not only validate the potential of federated learning as a mechanism for enhancing predictive
capacity in heterogeneous healthcare networks but also underscore that its application does not guarantee universal
superiority, with its impact being contingent upon the intrinsic characteristics of each participating node.
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Fig 2. Comparison of predictive performance between federated and local learning models. The figure illustrates the performance results for three
machine learning models: (A) Logistic Regression, (B) Multi-Layer Perceptron (MLP), and (C) Random Forest. For each model, the left panel compares
the mean Area Under the Curve (AUC) of the federated model (red dashed line) against the locally trained model (blue solid line), with shaded areas
representing the 95% confidence intervals derived from bootstrap analysis. The right panel displays the performance gain, quantified as the Delta AUC
(AAUC = AUCeqerated - AUCiocal), Where the error bars indicate the 95% CI. The horizontal dotted line represents a performance gain of zero. The x-axis
for all plots is on a logarithmic scale and corresponds to the number of patients at each hospital. A consistent trend is observed across all models where
federated learning generally outperforms local learning, an advantage that is particularly evident for hospitals with smaller datasets.

https://doi.org/10.1371/journal.pcbi.1013695.9002
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To systematically investigate the relationship between the socioeconomic context and the performance of federated
learning, an aggregated analysis at the regional level was performed, with the results consolidated in S4 Table. The com-
parison of the rank order of regional per capita income with that of the average hospital sample size in our study reveals a
partial correlation. While the Southeast region shows high values in both indicators, the South (high income, low average
sample size in the study) and Northeast (low income, high average sample size in the study) regions demonstrate that
intra-regional heterogeneities and the specific profile of the participating hospitals influence this relationship.

The main finding of this analysis is a strong inverse correlation between the average hospital sample size per region
and the mean performance gain (AAUC) obtained with the non-linear federated learning models (MLP and Random For-
est). The Central-West and South regions, which featured the smallest average number of patients per hospital in our
sample (468 and 397, respectively), correspondingly exhibited the highest average performance gains with the robust
Random Forest model (+0.1309 and +0.0950). In contrast, the Southeast region, with the largest average cohort (1,217),
registered the most modest gain (+0.0245). Notably, the Logistic Regression model did not show the same pattern, with
marginal performance gains across the regions, indicating that model complexity is a key factor for leveraging the benefits
of federated aggregation.

It is important to contextualize that these regional averages are derived from the study’s specific sample and, there-
fore, may not fully represent the overall distribution of hospital sizes in each region. Nevertheless, the consistency of the
observed pattern suggests that the performance gain with federated learning is more strongly associated with an institu-
tion’s local data scarcity than with regional socioeconomic factors in isolation. This finding highlights the potential of the
approach to benefit institutions with smaller data cohorts, regardless of their geographical location.

Discussion

This study provides an empirical evaluation of federated learning (FL) for clinical prediction within a large-scale, multicen-
tric healthcare network, uniquely characterized by the profound socioeconomic and data heterogeneity that mirrors global
health challenges. Our findings demonstrate that while FL offers a promising paradigm to overcome the limitations of data
silos, its efficacy is critically modulated by institutional data volume, algorithmic architecture, and the inherent statistical
uncertainty of collaborative modeling. This discussion offers a critical interpretation of these findings, their practical and
theoretical implications, and their contribution to the advancement of equitable artificial intelligence in real-world clinical
settings.

Although the average performance gains observed with federated learning (FL) are notable, a careful interpretation
of the 95% Cls reveals an important limitation. As illustrated in Fig 2, the Cls for most hospitals frequently intersect the
null threshold (AAUC = 0), indicating that improvements at the individual institution level were often not statistically signif-
icant. This observation does not invalidate the approach but rather contextualizes it: federated learning provides a global
model that, on average, tends to outperform local models, yet the certainty of this advantage varies across institutions.
From a clinical and operational standpoint, this suggests that the federated model should be regarded as an enhanced
baseline—one that generally offers better overall performance but may still require local validation before being adopted as
a definitive predictive solution.

Across the three algorithms evaluated, this nuanced pattern was consistently observed. Federated models achieved
higher mean AUCs compared to locally trained models, particularly in smaller hospitals (N < 500). For instance, institu-
tions with limited data demonstrated statistically significant performance gains, such as the smallest hospital (N = 86),
which achieved AAUC = 0.3507 (95% CI [0.0606, 0.6243]) with the MLP and AAUC = 0.3682 (95% CI [0.0908, 0.6307])
with the Random Forest. Conversely, in larger centers, these differences diminished and, in some cases, even favored
local models, reflecting a saturation effect related to data sufficiency. Thus, while FL effectively mitigates data scarcity, its
marginal benefit decreases as local datasets become sufficiently large and diverse to train competitive models indepen-
dently.
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For the Logistic Regression model (Fig 2A), performance gains were modest and statistically inconsistent, as most
95% Cls crossed the null line. This behavior aligns with expectations for linear models, where simple parameter averag-
ing across heterogeneous sites provides limited representational benefit. In contrast, the MLP model (Fig 2B) exhibited
greater variability, in which some hospitals achieved substantial and statistically significant improvements, whereas oth-
ers experienced minor yet significant performance declines. These findings illustrate both the potential and the fragility of
federated deep learning-highly effective when data heterogeneity is moderate, but susceptible to negative transfer when
data distributions differ sharply across sites.

The Random Forest model (Fig 2C) demonstrated the most stable and statistically reliable results, with 16 out of 21
hospitals showing positive mean AAUCs and several with 95% Cls entirely above zero. The tree-based aggregation
mechanism likely contributes to this robustness, as the ensemble structure mitigates the propagation of bias from indi-
vidual nodes. These characteristics make Random Forest-based federated strategies particularly appealing in healthcare
applications, where institutional data heterogeneity is the norm rather than the exception.

Overall, these results call for cautious optimism regarding the use of federated learning in multicentric healthcare envi-
ronments. While the aggregate evidence supports its ability to improve predictive performance without centralizing sen-
sitive data, the wide and frequently overlapping confidence intervals emphasize that such improvements are probabilistic
rather than absolute. In practical terms, federated models can serve as strong, privacy-preserving baselines that enhance
overall performance across institutions; however, their superiority at the individual hospital level is not universally guar-
anteed. Continuous monitoring, local calibration, and adaptive aggregation strategies remain essential to ensure that the
global benefits of FL effectively translate into consistent clinical improvements across diverse healthcare settings.

The regional analysis (Table S4) revealed that performance gains from federated learning (FL) varied substantially
across Brazil's macro-regions. A clear inverse relationship was observed between the average hospital sample size
and the mean performance gain of the non-linear models. The Central-West and South regions, with the smallest aver-
age hospital cohorts (468 and 397 patients, respectively), achieved the largest gains with the Random Forest model
(+0.1309 and +0.0950), while the Southeast—home to the largest cohorts (1,217 patients per hospital)-showed only mod-
est improvements (+0.0245). This pattern indicates that FL particularly benefits institutions with limited local data, enhanc-
ing model generalization when local training data are scarce.

Regarding the socioeconomic context, no consistent relationship emerged between regional wealth or healthcare
infrastructure and FL performance. For instance, the Southeast and South—regions with the highest per capita income (R$
2,127 and R$ 2,018), HDI (0.803 and 0.811), and physician density (3.73 and 3.23 per 1,000 inhabitants)—did not con-
sistently outperform less affluent regions. Conversely, regions with fewer resources but smaller hospital datasets (e.g.,
Central-West) achieved the largest performance gains. These findings suggest that data quantity and representativeness,
rather than socioeconomic context alone, are the main drivers of FL benefits.

A key limitation of this analysis lies in the representativeness of the study sample. The number and size of hospitals per
region do not reflect Brazil’s national hospital distribution, and local differences in data quality and case mix likely influ-
enced the observed outcomes. Additionally, the regional socioeconomic indicators used here (e.g., income, HDI, physi-
cian density) are aggregated measures that may obscure within-region inequalities. Therefore, while the regional patterns
are informative, they should be interpreted as exploratory rather than conclusive evidence of socioeconomic influence on
FL performance.

This study differentiates itself from similar work, such as the analysis by Pfohl and colleagues, through its unique focus
on real-world heterogeneity and socioeconomic context within a large-scale Brazilian public health network. While both
studies applied FL to mortality prediction, our work across 21 Brazilian hospitals using varied architectures and highly
heterogeneous data provides distinct insights. Pfohl et al. found that FL models performed comparably to centralized
learning but encountered challenges integrating differential privacy, resulting in performance reduction. Conversely, our
findings focus on the critical role of data volume and demonstrate FL’s ability to significantly outperform local training,
especially in data-limited settings. This contrast highlights our study’s unique contribution: demonstrating the practical
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benefits and algorithmic trade-offs of FL as a lever for health equity in resource-constrained environments, while under-
scoring the universal challenge of balancing robust model performance with strict privacy guarantees.

Limitations of the study

Although we included hospitals from all regions of Brazil, our results were limited by the uneven distribution of patients
across the different regions. This limitation may have impacted the representativeness of some regions of the country,
and therefore our results should be interpreted with caution, considering the non-IID nature of the data. Another impor-
tant limitation is that the selected hospitals were disconnected and independent, which may have led to differences in
local medical procedures and data collection protocols, potentially introducing biases in the data. While federated learning
helps mitigate these biases by aggregating models without centralizing data, variations in data quality and missing data
across hospitals remain a challenge. Additionally, the computational and communication overhead of federated learning,
particularly in hospitals with limited resources, posed a significant constraint. To address this, we optimized hyperparame-
ters and reduced the number of iterations to balance performance and efficiency.

Regarding data privacy and security, while the study does not explicitly use encryption, the federated learning
approach inherently minimizes the need for this by sharing only model parameters rather than raw data. However, secure
communication protocols are likely needed in real-world settings to protect the transmission of these parameters. The
decentralized nature of federated learning aligns with ethical considerations, as it preserves patient privacy and com-
plies with the Brazilian General Data Protection Law (LGPD). Nonetheless, further exploration of the ethical implications,
including the potential for re-identification attacks and the robustness of privacy-preserving mechanisms, is warranted.
These limitations highlight the need for continued research to refine federated learning approaches in healthcare, ensur-
ing both predictive accuracy and ethical compliance.

Conclusion

This study provided a robust, multicentric empirical evaluation of Federated Learning (FL) applied to hospital mortality pre-
diction within a context defined by profound data and socioeconomic heterogeneity, characteristic of the Brazilian pub-

lic health network. Our methodology successfully leveraged a horizontal FL architecture across 21 hospitals and 17,022
patients, comparing the performance of three distinct algorithms—Logistic Regression, MLP, and Random Forest—under
parameter and model-based aggregation strategies. The results consistently demonstrated that the marginal benefit of FL
is inversely correlated with local data sufficiency. While the mean performance gain (AAUC) was positive across the net-
work, the statistically significant advantages were predominantly concentrated in data-limited hospitals (N < 500), estab-
lishing FL as an effective mechanism for mitigating data scarcity. This finding underscores FL's potential as a tool for
health equity, allowing institutions with limited local cohorts to access more generalizable and robust predictive models.
The comparative analysis of algorithmic stability highlighted the Random Forest model (utilizing a tree-based aggrega-
tion strategy) as the most reliable architecture for this non-IID setting, demonstrating superior resilience to heterogene-

ity compared to the volatile MLP and the statistically inconsistent Logistic Regression. Furthermore, our regional analy-
sis found that institutional data quantity, rather than regional socioeconomic wealth or infrastructure, was the dominant
driver of performance gains. This work’s primary contribution lies in validating the algorithmic trade-offs and practical via-
bility of FL within a highly heterogeneous real-world health network, offering a critical foundation for the ethical deploy-
ment of privacy-preserving Al. Future research must build upon this foundation by exploring personalized FL strategies

to ensure that the aggregate network benefits translate into guaranteed, consistent performance improvements at every
participating institution.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1013695 November 24, 2025 13/ 16


https://doi.org/10.1371/journal.pcbi.1013695

N\ Computational
PLOR’ Biology

Supporting information

S$1 Fig. Evolution of the hyperparameter t in relation to the LR and MLP models. This figure illustrates the conver-
gence of the AUC-ROC metric across iterations of the hyperparameter t for the Logistic Regression (LR) and Multilayer
Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance
stabilizes as t increases, with significant convergence observed around 5 iterations. This analysis highlights the impor-
tance of hyperparameter tuning to balance model performance and computational efficiency in federated learning. This
figure was developed by the authors.

(TIFF)

S$1 Table. Raw performance metrics for the Logistic Regression (LR) model. The table presents the raw output from
the bootstrap analysis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and feder-
ated models, and the performance gain (AAUC). For each of the 21 participating hospitals, the table lists the mean Area
Under the Curve (AUC) and its 95% confidence interval (Cl) for both the locally trained and the federated models. The
final columns quantify the performance gain via the mean Delta AUC (AAUC) and its 95% CI, providing a direct, hospital-
by-hospital comparison between the two learning approaches for this linear model.

(XLSX)

S2 Table. Raw performance metrics for the MLP model. The table presents the raw output from the bootstrap analy-
sis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and federated models, and the
performance gain (AAUC). It provides a hospital-level breakdown of the mean AUC and 95% CI for the local and feder-
ated MLP models. The table also includes the mean AAUC and its confidence interval, allowing for an assessment of the
performance gain achieved by the federated neural network.

(XLSX)

83 Table. Raw performance metrics for the Random Forest (RF) model. The table presents the raw output from the
bootstrap analysis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and federated

models, and the performance gain (AAUC). Similar to the preceding tables, it presents the mean AUC and 95% Cls for
the local and federated models at each hospital. The performance gain, measured by the AAUC and its 95% Cl, is also
shown, offering a detailed comparison for this ensemble-based learning method.

(XLSX)

S4 Table. Regional analysis of socioeconomic indicators and federated learning performance gain. The table
presents a systematic comparison across Brazil’s five macro-regions, linking key socioeconomic and health indicators with
the study’s sample characteristics (hnumber of hospitals and average patient cohort size per hospital). The primary out-
come, the mean performance gain from federated learning (AAUC = AUCqggerated - AUCiocal), iS presented for each of the
three models: Logistic Regression (LR), Multilayer Perceptron (MLP), and Random Forest (RF). The mean AAUC values
for each region were calculated by averaging the hospital-specific mean AAUCs reported in S1 Table (for Logistic Regres-
sion), S2 Table (for MLP), and S3 Table (for Random Forest) across all hospitals within that geographical region. This
allows for a higher-level investigation of the relationship between regional characteristics and the benefits of the federated
approach.

(XLSX)

Acknowledgments

We would like to thank the IACOV-BR Network, in alphabetic order: Ana Claudia Martins Ciconelle ( Institute of Mathemat-
ics and Statistics, University of Sdo Paulo); Ana Maria Espirito Santo de Brito ( Instituto de Medicina, Estudos e Desen-
volvimento - IMED, Sao Paulo, Sao Paulo); Bruno Pereira Nunes (Universidade Federal de Pelotas - UFPel); Darcia Lima

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1013695 November 24, 2025 14/ 16



https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013695.s001
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013695.s002
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013695.s003
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013695.s004
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013695.s005
https://doi.org/10.1371/journal.pcbi.1013695

N\ Computational
PLO}' Biology

e Silva ( Hospital Santa Lucia); Fernando Anschau ( Setor de Pesquisa da Geréncia de Ensino e Pesquisa do Grupo Hos-
pitalar Conceicéo, RS — Brasil; Programa de P6s-Graduagdo em Neurociéncias da Universidade Federal do Rio Grande
do Sul); Henrique de Castro Rodrigues ( Servigo de Epidemiologia e Avaliagdo/Diregdo Geral do HUCFF/UFRJ); Her-
mano Alexandre Lima Rocha (Unimed Fortaleza. Fortaleza, Ceara, Brasil; Departamento de Saude Comunitaria. Univer-
sidade Federal do Ceara. Fortaleza, Ceara, Brasil); Jodo Conrado Bueno dos Reis (Hospital Sdo Francisco); Liane de
Oliveira Cavalcante (Hospital Santa Julia de Manaus); Liszt Palmeira de Oliveira (Instituto Unimed-Rio; Universidade do
Estado do Rio de Janeiro); Lorena Sofia dos Santos Andrade (Universidade de Pernambuco - UPE/UEPB); Luiz Antonio
Nasi (Hospital Moinhos de Vento); Marcelo de Maria Felix (InRad - Institute of Radiology, School of Medicine, University
of Sdo Paulo); Marcelo Jenne Mimica (Departamento de Ciéncias Patoldgicas Faculdade de Ciéncias Médicas da Santa
Casa de Sao Paulo); Maria Elizete de Almeida Araujo (Federal University of Amazonas, University Hospital Getulio Var-
gas, Manaus, AM, Brazil); Mariana Volpe Arnoni (Servigo de Controle de Infec¢do Hospitalar Santa Casa de Sdo Paulo);
Rebeca Baiocchi Vianna (Hospital Santa Lucia); Renan Magalhaes Montenegro Junior (Complexo Hospitalar da Uni-
versidade Federal do Ceard — EBSERH); Renata Vicente da Penha ( Hospital Evangélico de Vila Velha); Rogério Nadin
Vicente (Hospital Santa Catarina de Blumenau); Ruchelli Frangca de Lima (Hospital Moinhos de Vento); Sandro Rodrigues
Batista (Faculdade de Medicina, Universidade Federal de Goias, Goiania, Goias; Secretaria de Estado da Saude de
Goias, Goiania, Goias); Silvia Ferreira Nunes (Fundacao Santa Casa de Misericérdia do Para - FSCMP; Mestrado Profis-
sional em Gestao e Saude na Amazdnia); Tassia Teles Santana de Macedo ( Escola Bahiana de Medicina e Saude
Publica); Valesca Lobo e Sant’ana Nuno (Hospital Portugués da Bahia).

Author contributions

Conceptualization: Alexandre Dias Porto Chiavegatto Filho.

Data curation: Roberta Moreira Wichmann.

Formal analysis: Murilo Alfonso Robiati Bigoto.

Funding acquisition: Roberta Moreira Wichmann, Alexandre Dias Porto Chiavegatto Filho.

Investigation: Roberta Moreira Wichmann, Murilo Alfonso Robiati Bigoto, Alexandre Dias Porto Chiavegatto Filho.
Methodology: Roberta Moreira Wichmann, Murilo Alfonso Robiati Bigoto, Alexandre Dias Porto Chiavegatto Filho.
Project administration: Alexandre Dias Porto Chiavegatto Filho.

Resources: Alexandre Dias Porto Chiavegatto Filho.

Software: Roberta Moreira Wichmann, Murilo Alfonso Robiati Bigoto.

Supervision: Alexandre Dias Porto Chiavegatto Filho.

Writing — original draft: Roberta Moreira Wichmann, Murilo Alfonso Robiati Bigoto, Alexandre Dias Porto Chiavegatto
Filho.

Writing — review & editing: Roberta Moreira Wichmann, Murilo Alfonso Robiati Bigoto, Alexandre Dias Porto Chiaveg-
atto Filho.

References

1. Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albargouni S, et al. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119.
https://doi.org/10.1038/s41746-020-00323-1 PMID: 33015372

2. LiT, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated optimization in heterogeneous networks. Proc Mach Learn Syst.
2020;2:429-50.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1013695 November 24, 2025 15/ 16



https://doi.org/10.1038/s41746-020-00323-1
http://www.ncbi.nlm.nih.gov/pubmed/33015372
https://doi.org/10.1371/journal.pcbi.1013695

PLO%- Computational

10.

1.

12.
13.

14.

15.

16.

17.

18.

Biology

Antunes RS, André da Costa C, Kiiderle A, Yari IA, Eskofier B. Federated learning for healthcare: Systematic review and architecture proposal.
ACM Trans Intell Syst Technol. 2022;13(4):1-23. https://doi.org/10.1145/3501813

LiL, Fan, Tse M, Lin KY. A review of applications in federated learning. Comput Ind Eng. 2020;149:106854.

Kim Y, Sun J, Yu H, Jiang X. Federated tensor factorization for computational phenotyping. KDD. 2017;2017:887-95.
https://doi.org/10.1145/3097983.3098118 PMID: 29071165

Pfohl SR, Dai AM, Heller K. Federated and differentially private learning for electronic health records. arXiv preprint. 2019.
https://doi.org/10.48550/arXiv.1911.05861

Huang L, Shea AL, Qian H, Masurkar A, Deng H, Liu D. Patient clustering improves efficiency of federated machine learning to predict mortality
and hospital stay time using distributed electronic medical records. J Biomed Inform. 2019;99:103291. https://doi.org/10.1016/j.ibi.2019.103291
PMID: 31560949

Lee J, Sun J, Wang F, Wang S, Jun C-H, Jiang X. Privacy-preserving patient similarity learning in a federated environment: Development and
analysis. JMIR Med Inform. 2018;6(2):€20. https://doi.org/10.2196/medinform.7744 PMID: 29653917

Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated electronic health records.
Int J Med Inform. 2018.

Hauschild A-C, Lemanczyk M, Matschinske J, Frisch T, Zolotareva O, Holzinger A, et al. Federated random forests can improve local performance
of predictive models for various healthcare applications. Bioinformatics. 2022;38(8):2278-86. https://doi.org/10.1093/bioinformatics/btac065 PMID:
35139148

Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, Gao Y. Flower: A friendly federated learning research framework. 2020.
https://arxiv.org/abs/2007.14390

Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning. ACM Trans Intell Syst Technol. 2019;10(2):1-19. https://doi.org/10.1145/3298981

Phong LT, Aono Y, Hayashi T, Wang L, Moriai S. Privacy-preserving deep learning via additively homomorphic encryption. IEEE
TransInformForensic Secur. 2018;13(5):1333—45. https://doi.org/10.1109/tifs.2017.2787987

McMahan B, Moore E, Ramage D, Hampson S, Arcas BA. Communication-efficient learning of deep networks from decentralized data. In: Artif
Intell Stat; 2017. p. 1273-82.

Asad M, Moustafa A, Ito T. Federated learning versus classical machine learning: A convergence comparison. arXiv preprint. 2021.
https://doi.org/10.48550/arXiv.2107.10976

Ma C, Qiu X, Beutel DJ, Lane ND. Gradient-less federated gradient boosting trees with learnable learning rates. arXiv preprint. 2023.
https://doi.org/10.48550/arXiv.230407537

Soltan AAS, Thakur A, Yang J, Chauhan A, D’Cruz LG, Dickson P, et al. A scalable federated learning solution for secondary care using low-cost
microcomputing: privacy-preserving development and evaluation of a COVID-19 screening test in UK hospitals. Lancet Digit Health.
2024;6(2):€93-104. https://doi.org/10.1016/S2589-7500(23)00226-1 PMID: 38278619

scikit-learn developers. sklearn.linear_model.LogisticRegression — scikit-learn 0.21.2 documentation [Internet]; 2014. Available from:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013695 November 24, 2025 16/ 16



https://doi.org/10.1145/3501813
https://doi.org/10.1145/3097983.3098118
http://www.ncbi.nlm.nih.gov/pubmed/29071165
https://doi.org/10.48550/arXiv.1911.05861
https://doi.org/10.1016/j.jbi.2019.103291
http://www.ncbi.nlm.nih.gov/pubmed/31560949
https://doi.org/10.2196/medinform.7744
http://www.ncbi.nlm.nih.gov/pubmed/29653917
https://doi.org/10.1093/bioinformatics/btac065
http://www.ncbi.nlm.nih.gov/pubmed/35139148
https://arxiv.org/abs/2007.14390
https://doi.org/10.1145/3298981
https://doi.org/10.1109/tifs.2017.2787987
https://doi.org/10.48550/arXiv.2107.10976
https://doi.org/10.48550/arXiv.230407537
https://doi.org/10.1016/S2589-7500(23)00226-1
http://www.ncbi.nlm.nih.gov/pubmed/38278619
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://doi.org/10.1371/journal.pcbi.1013695

	Federated learning for COVID-19 mortality prediction in a multicentric sample of 21 hospitals
	References


