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Abstract

The Cellular-Potts model is a powerful and ubiquitous framework for developing
computational models for simulating complex multicellular biological systems.
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Author summary

The Cellular-Potts model is a powerful and ubiquitous framework for developing
computational models for simulating complex multicellular biological systems.
Cellular-Potts models (CPMs) are often computationally expensive due to the
explicit modeling of interactions among large numbers of model agents as well

as diffusive fields described by partial differential equations (PDEs). In this work,
we develop a convolutional neural network (CNN) surrogate model using a U-Net
architecture that accounts for periodic boundary conditions. We use this surrogate
to accelerate the evaluation of a mechanistic CPM previously used to investigate
in vitro vasculogenesis by a factor of 562 times compared to single-core CPM
code execution on CPU. For up to three recursive evaluations, or 300MCS, our
model captures the emergent behaviors demonstrated by the original mecha-
nistic Cellular-Potts model of vessel sprouting, extension and anastomosis, and
contraction of vascular lacunae. Our approach demonstrates a step towards the
development of surrogate models for CPM simulations using deep neural net-
works, enabling faster evaluation of computationally expensive CPM simulations of
biological processes.

Introduction

Multicellular agent-based models are commonly used in systems biology to investi-
gate complex biological phenomena. These models often require calculating behav-
iors of many model objects or agents at once. Each agent often represents individ-
ual cells, where each cell responds to other cells in its environment. Simulating large
and complex biological phenomena with many cells at once results in models that are
computationally expensive. Significant computational expense results in models that
are more difficult for a user to investigate or continue to develop upon.

The Cellular-Potts method is one such computational modeling method that has
allowed for the agent-based simulation and in silico investigation of complex biolog-
ical processes. Recent works with the Cellular-Potts modeling method has allowed
for the in silico study of the mechanisms behind many complex biological processes
such as the growth of blood vessels [1], the regeneration of injured muscle [2], and
the development of the embryo [3-5]. In many of these works, in silico cell agents
respond to each other as well as to diffusive fields described by systems of partial
differential equations (PDEs), which further increases computational demand. The
Cellular-Potts method models cell motility using a stochastic modified metropolis
monte-carlo algorithm. This algorithm has been cited to be computationally expen-
sive to perform for biological simulations involving many cells at large spatial scales
[6-8]. Coupling PDEs for modeling biological systems additionally adds to the
computational complexity of these in silico models. While effective at representing
complex biological systems, the capabilities of the Cellular-Potts modeling method
have also resulted in slow to evaluate mechanistic computational models. Efficient
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surrogate models to approximate and accelerate such modeling methods would facilitate the accurate simulation of these
biological systems at larger spatial scales or longer time scales.

Deep neural-network based surrogate models may provide an effective approach to accelerating computational model
evaluation of Cellular-Potts models. Deep learning models have already demonstrated potential as effective surrogates to
solve systems of PDEs for physical systems such as heat transfer and molecular and subatomic particle dynamics [9-13].
Additionally, previous work by the authors demonstrated the potential for deep convolutional neural networks to effectively
solve for the steady state diffusion governed by a system of PDEs [14,15]. However, the development of neural network
surrogates for Cellular-Potts agent-based models have not yet been thoroughly investigated.

Developing a neural network surrogate for the Cellular-Potts method has not yet been accomplished. The Cellular-Potts
method results in stochastic agent-based models, whereas previous neural-network based surrogates, such as those
mentioned for solving PDEs, use deterministic methods. Additionally, agent-based models are often used to investigate
emergent behaviors which are not explicitly described or encoded in the model. In this work, we build upon our former
efforts to apply convolutional neural networks as model surrogates for a steady state diffusion solver. Here, we apply our
U-Net to predict the agent-based mechanistic model configuration 100 computational timesteps ahead of a stochastic
CPM model formerly used to investigate vasculogenesis, where the behaviors of the CPM model agents react to diffus-
ing cytokines described by systems of PDEs [1]. Our work demonstrates the efficacy of predicting the time-evolution of a
stochastic agent-based model using a deterministic neural network architecture.

Results
Problem definition and approach

The selected Cellular-Potts model representing vasculogenesis demonstrates consistent patterns over the course of the
simulation. These patterns are 1) sprouting of new vessel growths, 2) extension of vessel sprouts into large lacunae that
anastamose with other sprouts, resulting in subdivision of large lacunae into smaller lacunae, and 3) shrinking of smaller
lacunae as previously described in Merks et al. [1]. At short timescales, on the order of single computational timesteps
(Monte Carlo Steps, MCS), these patterns are obscured by stochastic noise inherent to the Potts algorithm, making it
challenging for a surrogate model to predict. However, at long timescales, the initial or reference configuration may be lost
due to large positional changes in the vascular network during simulation. This similarly yields a challenging problem for a
surrogate model to predict.

We instead attempt to capture these three model behaviors by learning an intermediate timescale with our model sur-
rogate. We found that at 100 MCS increments, the vascular network deviated by approximately one Cellular-Potts agent
length. This intermediate timescale presents a feasible problem for the surrogate model to learn. In the intermediate con-
figuration, the system has not deviated so much from the reference configuration that the reference position is no longer
apparent. The intermediate timescale also captures the three behaviors of sprouting of new vessel branches, extending
and merging of existing vessel branches, and closing of smaller vascular lacunae described by the Cellular-Potts model
as demonstrated in Fig 1. These three behaviors occur consistently and predictably at the 100 MCS timescale and are
therefore predictable enough that we may expect our model to be successful at learning these patterns. Furthermore,
deterministic PDE models [25—-27] have previously been used to model this biological system, thus we would expect our
U-Net model to be able to learn these behaviors.

We framed the prediction of a future Cellular Potts model state as a segmentation problem, treating the reference
configuration and future simulation state similarly to predicting a labeled mask from a natural image. Convolutional neu-
ral networks, and especially the U-Net architecture, have been demonstrated to be well suited to these segmentation
tasks [16,17].
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Fig 1. Problem definition for the model surrogate. Cell positions (top row) and diffusive field concentrations (bottom row) from an example refer-
ence configuration (ty, left) and its corresponding configuration 100 MCS ahead (t; + 100 MCS, middle). The difference between the two configurations
is shown (right) demonstrating a positional movement of approximately Cellular-Potts model cell length of the vascular network. This representative
example demonstrates three main behaviors of the Cellular-Potts model of 1) sprouting new vessel branches, 2) extension and anastomosis of vessel
sprouts, and 3) closing of small lacunae.

https://doi.org/10.1371/journal.pcbi.1013626.g001

Surrogate predictive performance evaluation

A given Cellular-Potts model simulation state consists of both a layer containing information about the position of the ves-
sel network and a layer containing information about diffusive field concentrations that the vessel network responds to.
After U-Net specification and training as described in Methods, we applied the U-Net recursively for multiple iterations

to evaluate surrogate model performance visually. A representative diagram of recursive evaluation of a given simula-
tion state is displayed in Fig 2. Movies 1 and 2 demonstrate extending this recursive evaluation for 98 iterations to predict
simulation states in increments of 100 up to MCS 11800 using a reference configuration of MCS 2000 from a simulation
not included in the training data. S1 Movie displays the results of the surrogate model prediction of the vessel network
configuration, and S2 Movie displays the prediction of the chemical field concentration.

To quantitatively evaluate the surrogate predictions of the position of the vascular network for multiple simulations, we
used the Sorenson-Dice coefficient (Dice score) which is a metric commonly used for evaluating the accuracy of segmen-
tation tasks [18—21]. We used mean square error (MSE) to evaluate the accuracy of the predictions of the diffusive field
component. Additionally, we calculated differences in the distributions of lacunae area of the model prediction and the
reference configuration using Wasserstein’s distance, also known as Earth Mover’s Distance, EMD. The Earth Mover’s
Distance is a common metric used to quantify the distance between distributions of data, such as similarity of images,
for machine learning and computer vision applications [22—-24]. Metrics calculated from the surrogate model predictions
versus the ground truth simulation state at the predicted MCS were compared with the same metrics comparing the ref-
erence configuration to the ground truth simulation state at that MCS. We use this comparison to determine whether the
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Fig 2. Recursive evaluation of a trained surrogate model. The trained surrogate model was applied iteratively to predict hundreds of MCS ahead of
a reference configuration can capture underlying Cellular-Potts model dynamics. Reference input configuration {; is from a reference simulation state at
MCS 2000 from a representative Cellular-Potts model simulation generated separately from the data used for training the surrogate.

https://doi.org/10.1371/journal.pcbi.1013626.9g002

surrogate outperforms the unchanged reference configuration based on quantitative metrics. If the surrogate model out-
performs the unchanged reference, it would suggest that the surrogate has learned patterns that are at least minimally
predictive towards the Cellular-Potts model’s true future state.

To evaluate the performance of the surrogate model, we provided an initial configuration at MCS 2000 to the surrogate
model to predict forward from and performed recursive predictions for 100 iterations. This resulted in predictions for up to
10000 MCS ahead at increments of 100 MCS. Metrics of comparison to quantify the ability for the surrogate to predict the
Cellular-Potts model configuration are shown in Fig 3. Data was generated using MCS 2000 from 25 unique simulations
generated for surrogate evaluation. Mean and standard deviation for the data are displayed in Fig 3.

When evaluated recursively on the evaluation dataset, the surrogate model predictions resulted in a mean Dice score
of 0.82, (s.d. 4.496 x 103, n=25) versus 0.77 (s.d. 5.83 x 1073, n=25) of the input reference configuration as compared to
ground truth for a single prediction step of 100 MCS. For this single prediction step, diffusive field MSE were 0.021 (s.d.
1.6 x 1073, n=25) compared to a MSE of of 0.038 (s.d. 4.22 x 10~3, n=25). Quantified distances in the distribution of the
lacunae areas for predicted, reference, and ground truth simulation configurations resulted in mean EMD values of 20.41
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Fig 3. Quantitative evaluation of the surrogate model. The surrogate model was applied recursively given a single reference simulation configuration
from MCS 2000 for 100 recursive evaluations. (A) Dice score of the surrogate prediction and initial configuration compared with the simulation state

at a given timestep is shown for 100 surrogate model evaluations. The first 10 evaluations of the same data are plotted as picture in picture for clarity.
(B) Mean square error (MSE) of the diffusive field concentration plotted for 100 evaluations, the first 10 evaluations of the same data is also plotted as
picture-in-picture for clarity. (C) Earth Mover’s Distance (EMD) of the distribution of lacunae area for the model prediction and reference configuration
are shown for 100 recursive iterations, the first 10 of which are shown as picture-in-picture. Data for all subplots represent mean +/- s.d. of metrics of
comparison for predictions and initial reference compared to the true simulation configuration at the stated timestep. Data represents comparison from
25 unique Cellular-Potts model simulations generated for performance evaluation.

https://doi.org/10.1371/journal.pcbi.1013626.9g003

(s.d. 9.72, n=25) for the surrogate prediction compared with ground truth, and 21.09 (s.d. 7.77, n=25) for the reference
configuration compared with ground truth. These values are plotted as the initial value in the subplots displayed in Fig 3.
The surrogate model demonstrated the greatest Dice score on a single iteration of evaluation. Subsequent prediction
steps dramatically decrease in Dice score, increase in MSE of the predicted diffusive field, and increase in EMD of the
lacunae areas of the predicted configuration. Together, these represent increasingly poor prediction at subsequent simu-
lation steps and divergence in predicted simulation configuration as compared to the Cellular-Potts model configuration.
However, the surrogate model maintains greater Dice scores than the reference configuration for 10 recursive iterations,
predicting up to 1000 MCS ahead of the given input (Fig 3A), and similar EMD values as the reference configuration for
3 recursive evaluation steps (Fig 3C) demonstrating predictive ability with recursive evaluation for short timescales up to
300 MCS ahead of reference, or 3 recursive iterations. The surrogate model maintains a lower diffusive field MSE than
the reference configuration throughout the course of the simulation.

Upon visual inspection of a representative time series of the simulated vessel network configuration (S1 Movie), the
surrogate produced fewer sprouts than it should, and the sprouts did not extend as quickly compared to ground truth. Our
loss function of combined Dice + MSE (see Methods) is not sensitive to these details. Thus, failing to accurately repro-
duce these specific behaviors was not heavily penalized during training, making it difficult for the surrogate model to learn
these dynamics. Observing chemical field values over a representative simulation time course (S1 Movie), the surrogate
appears to predict lower diffusive field concentrations overall.

To further investigate how the surrogate model was failing to reproduce simulation configurations at long timescales, we
quantified the number of Cellular-Potts lattice sites corresponding to the vessel network as well as the sum of all diffusive
field values at all lattice sites. The surrogate model was unable to maintain both vessel area (Fig 4A) and diffusive field
values (Fig 4B) over recurrent evaluations. This represents the mechanism by which the surrogate model diverges from
the ground truth and results in poor performance over multiple evaluations.
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Model computational time comparison

The surrogate model is most accurate at a single predictive evaluation step to predict 100 MCS ahead of an input config-
uration. To investigate the potential for the surrogate to accelerate evaluation of the Cellular-Potts model, we compared
the time required to calculate 100 MCS ahead of a given reference configuration using the trained surrogate versus the
native CompuCell3D (CC3D) code. We generated 100 unique model configurations and calculated the amount of time
required for the CC3D code to calculate 100 MCS for each configuration. We compared the time required for native CC3D
code execution with the time required to evaluate 100 MCS with the model surrogate. The results of this experiment are
displayed in Fig 5. CPU/GPU CPU/CPU comparisons are demonstrated.

The trained surrogate model significantly accelerates the evaluation of 100 MCS of the Cellular-Potts model when com-
pared to native CompuCell3D code execution. Median and standard deviations for all configurations are listed in Table 1.

0
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0 —-——
(]
£
~ 1 Bl
c _
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=
©
=
©
>
w 2
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Surrogate CC3D Surrogate CC3D
GPU CPU 1 core CPU 32 cores CPU 32 cores

Fig 5. Surrogate model evaluates faster than the original Cellular-Potts model in both CPU/CPU and CPU/GPU comparisons. Evaluation meth-
ods were performed for n=100 independent simulation configurations each. Median surrogate model evaluation on GPU were 0.0041s (s.d. 0.0088)
compared with 2.35s (s.d. 0.20) resulting in a speed increase by up to a factor of 562x when comparing median evaluation time. Surrogate model
evaluations were performed on an NVIDIA RTX 3090 GPU, CC3D simulation execution was performed on an AMD Ryzen 9 5950X processor.

https://doi.org/10.1371/journal.pcbi.1013626.g005
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Table 1. Time comparison of surrogate model evaluation compared with native CC3D code

execution.

Evaluation Median time (s) Std. time (s)
Surrogate GPU 0.004171 0.000877
CC3D 1 core 2.345840 0.203766
Surrogate 32 CPU cores 0.169648 0.004992
CC3D 32 CPU cores 0.607681 0.021977

https://doi.org/10.1371/journal.pcbi.1013626.t001

Evaluations comparing the surrogate on a GPU with native CC3D code execution utilizing 1 core resulted in an increase
in 100 MCS calculation speed by up to a factor of 562. All evaluation runs were performed on the same consumer-grade
workstation computer. The surrogate model evaluations were performed on an NVIDIA RTX 3090 GPU, whereas the
CC3D code was executed on an AMD Ryzen 9 5950X processor. 1-core and 32-core runs are included as single-core
configurations are often advantageous for parallelization on HPC systems when performing parameter studies during
Cellular-Potts model development. 32-core runs represent full utilization of the 5950x 16-core, 32-thread processor. Sig-
nificant differences in the mean of these groups were confirmed by one-way ANOVA (p<107%). All pairwise comparisons
were also significant following Tukey’s HSD post-hoc analysis (p<10-6)

Discussion

In this work, we approach the prediction of a future simulation state of a Cellular-Potts agent-based model as a segmen-
tation task and apply a configuration of the U-Net neural network architecture to successfully predict Cellular-Potts model
configurations 100 MCS in advance of a given input configuration. This demonstrates the potential for convolutional neu-
ral networks to perform as a surrogate model for Cellular-Potts models. The surrogate replicates Cellular-Potts model
behaviors that are not explicitly encoded in the original model and arise as a result of the interaction of model agents and
a PDE-based diffusive field.

The CPM dynamics of vessel sprouting, branch extension and anastamosis, and lacunae contraction occur consistently
enough at the 100 MCS timescale that they may be considered quasi-deterministic. Our work demonstrates that these
consistent, quasi-deterministic patterns are feasible for a deterministic U-Net architecture to learn when structured as a
segmentation task, even when applied to a stochastic biological system. We would therefore expect this segmentation
model approach to a CPM surrogate to yield similar success for classes of models of systems that may also be studied
using other deterministic mathematical methods. For example, multiple notable PDE-based models have been developed
to study in vitro vessel patterning such as the seminal work by Gamba and Serini [25-27]. The investigation of this same
stochastic biological process lead to the development of the CPM studied in this work.

In addition to replicating Cellular-Potts model dynamics, the surrogate allows for an accelerated time to generate the
future simulation state 100 MCS ahead by a factor of 562 when comparing GPU surrogate evaluation with single-core
CC3D code execution. This speed advantage is possible because the surrogate model can leverage graphics processing
unit (GPU) hardware on a workstation computer to calculate future simulation states and is trained to calculate the future
configuration in one evaluation step. The Cellular-Potts models as implemented in the widely used open-source frame-
works CompuCell3D [28], Morpheus [29], Chaste [30], and Artistoo [31] to name a few, perform evaluation of the algo-
rithm on the central processing unit (CPU) and explicitly evaluates each MCS, thus resulting in a greater computational
requirement and a greater evaluation time. Recently, GPU-accelerated implementations of the Cellular-Potts method have
been developed allowing for significant decreases in the computational time required for model evaluation [32,33]. How-
ever, this appears to be an area of active research, and the GPU-accelerated Cellular-Potts algorithm implementations
are not compatible with the existing widely accessible frameworks that allow for multi-method or multi-scale simulation
features such as specifying agent behaviors in response to secreted diffusive chemical fields.
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Our surrogate model demonstrated the greatest prediction accuracy during a single prediction step of 100 MCS and
exhibited consistently reduced prediction accuracy over multiple evaluations. We demonstrated that this behavior is due
to failure to maintain vessel network area and diffusive field concentrations in the simulation space over multiple timesteps
as compared to ground truth. Our loss function did not penalize this behavior and future work to define a more optimal
training strategy may yield a surrogate model that is more accurate over additional recursive evaluations. Several addi-
tional factors likely contribute to the surrogate model’s poor performance when applied recursively. The Cellular Potts
Model is inherently stochastic, and these stochastic fluctuations affect model configuration during the simulation, causing
the model configuration to diverge from the reference configuration in ways that are difficult for the U-Net to predict at long
time scales. Convolutional neural networks such as the U-Net presented here are deterministic models and therefore lack
the ability to replicate the stochastic nature of the CPM simulation. Additionally, the mathematical convolution and pool-
ing operations that make up the neural network model create a smoothing effect and filter out the noisy cell boundaries
present in the original simulation. This may be problematic because the irregular cell shapes and stochastic cell move-
ments in the CPM contribute to the emergent behavior of the model system. Smoothing an image results in prediction
error, and when that smoothed image is used as the reference for subsequent prediction steps, the compounded error
results in further deviation from the ground truth, resulting in the observed decrease in prediction performance at multiple
prediction steps. Deep generative modeling approaches such as variational autoencoders, normalizing flows, or gener-
ative denoising diffusion models may be better suited to capture the stochastic behaviors of the CPM methodology [34].
Future efforts may explore these approaches in the context of developing a CPM model surrogate. In ongoing work, our
group has demonstrated success at leveraging denoising diffusion models as surrogates for the ABM used here at long
timescales of 20,000 MCS for multiple parameter sets [35]. However, our denoising diffusion models demonstrate speed
increases that are far less dramatic than those demonstrated by the model described in this work.

The surrogate model is therefore best suited for making single prediction steps but retains predictive ability up to 3 pre-
dictive steps (300 MCS) when applied recursively. Considering this, as well as the significant increase in evaluation speed
compared to native model execution per evaluation step suggests that the surrogate could be valuable if used along-
side the mechanistic CPM model. Future work could explore hybrid approaches, such as alternating between the surro-
gate and the mechanistic model. The surrogate could be applied for a single prediction step and passed back and forth
to a Cellular-Potts solver to incorporate the Potts model stochasticity and reset the reference configuration for the sur-
rogate configuration. While passing data between CPU and GPU could be explored to integrate the surrogate with the
CPM, our approach requires converting Potts model data into two-channel images, which may introduce computational
overhead.

Our current work currently demonstrates the feasibility of the U-Net as a CPM surrogate for 2-dimensional CPM simula-
tions. 3D simulations using the CPM are also common but are cited as computationally expensive [32]. 3D convolutional
neural networks and U-Nets have been documented as successful approaches to 3D segmentation tasks [36] and thus
may be extended to serve as surrogates for 3D CPM simulations in future work.

Conclusion

In summary, we demonstrate the applicability of convolutional neural networks classically applied to segmentation tasks
to perform as surrogates of Cellular-Potts agent-based models inclusive of PDE-based diffusive fields. Our surrogate
predicts the simulation configuration significantly faster than native Cellular-Potts algorithm execution and can replicate
several multicellular emergent tissue-scale behaviors not explicitly encoded in the behaviors of individual CPM agents.
While the model is effective at shorter timescales (up to 3 recurrent evaluations), its predictions diverge from the mech-
anistic CPM simulation over longer timescales. Overall, this work highlights the potential of deep learning approaches to
accelerate the evaluation of Cellular-Potts models, offering a promising direction for improving computational efficiency for
complex biological simulations.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1013626 November 3, 2025 9/ 15



https://doi.org/10.1371/journal.pcbi.1013626

N\ Computational
PLO}' Biology

Methods
Cellular-Potts agent-based mechanistic model

We selected the previously published model of vasculogenesis by Merks et al. [1] because it was an adequate exam-

ple of an agent-based model replicating a biological system implemented using the Cellular-Potts modeling method. The
Cellular-Potts (Glazier-Graner-Hogeweg) agent-based model was re-implemented in the CompuCell3D (CC3D) [28] open-
source simulation environment version 4.6.0. In the CPM method, individual cells are represented as a collection of pixels
on a square, two-dimensional lattice 256x256 pixels in dimension. Cells are given properties of predefined volume, con-
tact energy with surrounding cells and medium, and a tendency to chemotax toward a diffusive cytokine gradient. These
properties are defined mathematically using an effective energy functional H shown in Eq 1 below. This effective energy
functional is evaluated on a cell-by-cell basis each computational timestep, denoted Monte-Carlo step (MCS) in the CPM
method.

H= 3 Jiopeep(1 = 8c.q)

i,j,neighbors
2
+ Avolume(vcell - Vtarget)
2
+ Asun‘ace(scell - Starget)

+ Z 2 [ C(xdestination) C(xsource)
~“chemotaxis - .
i SC(Xdestination) +1 Sc(xsource) +1

(1)

Where the first term describes cell contact energy for neighboring cells with a contact coefficient J where i,j, describe
neighboring lattice sites, o; and o; describe individual model agents occupying site i and j respectively, and 7(o) denotes
the type of cell o in the model. The second term defines a volume constraint 4,,,me applied to each cell where V rep-
resents the current volume of a cell at a given point in the simulation, and Vi, is the volume assigned to that cell with
stiffness Ayoume- Similarly, the third term applies a surface area constraint, where A4 .cc determines the influence of
assigned circumference Si,qet- The fourth term defines chemotactic agent motility in response to a diffusive gradient
where Aghemotaxis 1S @ constraint or influence of the differences in chemical concentration ¢(Xgestination) @Nd ¢(Xsource) Of Pixel-
copy-destination and pixel-copy-source locations of a cell agent each MCS, and s denotes a saturation constant.

At each MCS or computational timestep, the CPM model creates cell movement by selecting random pairs of neigh-
boring voxels (y, ¥’) and evaluating whether one voxel located at y may copy itself to its neighboring pair at y'. This voxel
copy attempt, denoted o(y, f) — o(y’, f), occurs with the probability defined by a Boltzmann acceptance function Eq 2 of the
change in the effective energy of the system AH previously defined in Eq 1.

Pr(a(y, ) — oty 1) = 6~ ">(O5) 2

Diffusive chemical concentration values c at each lattice site are described by Eq 3 below:

Z—i = DV?¢ — kc + secretion (3)
where k is the decay constant of the diffusive field concentration ¢, and D is the diffusion constant. The secretion term
accounts for diffusive field concentration added at lattice sites associated with the location of a CC3D model agent to
model secretion of a cytokine by biological cells. Periodic boundary conditions were applied to the simulation domain for
both cell positions subject to the Potts algorithm and diffusive field concentrations described by Eq 3.
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CPM model parameters were defined to produce visually apparent extension of branches, sprouting of new branches,
and shrinking of circular lacunae within the parameter space explored previously by Merks et al. [1]. CPM model parame-
ters values are displayed in Table 2.

Cellular-Potts model simulation and training data generation

Approximately 1000 CPM cell agents were placed randomly throughout the 256x256 simulation domain at the beginning
of the simulation and settled into vascular-like structures over the first 200 Monte-Carlo steps (MCS) of a simulation.
Training data for the surrogate model was created by saving model configurations from each MCS of a simulation
between 200 and 20,000 MCS. A total of 20 unique simulations were generated to produce training data for the surro-
gate model. Input and ground-truth pairs for training were created by pairing model configurations of a saved MCS as
input with the corresponding configuration 100 MCS ahead in the same simulation. Model configurations consisted of a
2-channel 256x256 input image. The first channel consisted of a binary segmentation of the cell positions of the Cellular-
Potts simulation, and the second channel consisted of chemical field concentrations of simulation domain lattice sites.
Thus, each simulation yielded 19,700 input, ground-truth pairs consisting of a given simulation state and its corresponding
state 100 timesteps ahead in the same simulation.

Surrogate model architecture, training, and performance evaluation

A U-Net architecture was specified with circular padding in convolutional blocks to account for the periodic boundary
conditions present in the Cellular-Potts model, and parametric rectified linear unit (PReLU) activations. A demonstrative
schematic of the model architecture is displayed in Fig 6. We organized our generated training data into an 80%-20%
train-test split for U-Net surrogate model training. We trained the U-Net architecture on the generated input, ground-truth
pairs for 100 epochs using a combined loss of binary cross-entropy for the cell-segmentation layer and mean-squared-
error (MSE) for the chemical field layer. The influence of the prediction of the two image layers on the loss function was
balanced by multiplying the MSE loss by 10.

Surrogate model performance was evaluated on a separate dataset consisting of input, ground-truth pairs from 20 new
simulations not included in the set used for training. Model performance was evaluated using dice score as a metric for
the cell-segmentation layer, and MSE as a metric for the chemical field layer. The distance in the distribution of lacunae
areas between simulated configuration and ground truth as quantified by Earth Mover’s Distance (EMD) was also used as
a metric to evaluate trained model performance (See Results).

We defined a process to calculate distributions of lacunae areas for a given simulation so that the distributions could
be compared. We first augmented the image by patterning it above, below, to the left, and to the right of the original con-
figuration to account for the periodic boundary conditions present in the original Cellular-Potts model. We then labeled all

Table 2. CPM parameter table.

Parameter Parameter Description Parameter Value
Avolume Influence of volume constraint 5
Viarget Number of voxels per cell 50
Asurface Influence of surface constraint 1
Starget Number of voxels in cell circumference 16.8
Jeell,medium Contact energy between cell-medium interface 8.2
Jeell,cell Contact energy between cell-cell interface 6
Achemotaxis Influence of chemotaxis 2000
s Saturation constant for chemotaxis 0.5
k Decay constant for chemical field 0.6
H Temperature for the Cellular-Potts algorithm 8

https://doi.org/10.1371/journal.pcbi.1013626.t002
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Fig 6. Surrogate model architecture. U-Net Neural Network model configuration is illustrated. Neural network layers and activations are described to
allow for prediction of a mechanistic model simulation configuration 100 MCS in advance of an input configuration.

https://doi.org/10.1371/journal.pcbi.1013626.g006

connected lacunae regions and dropped all duplicate lacunae areas. Duplicate lacunae areas were removed by calcu-
lating image inertia tensor eigenvalues for the list of all identified lacunae. This operation defines a mathematical repre-
sentation of lacunae shape from which we use to ignore duplicate regions. Isolated image regions representing lacunae
were labeled and inertia tensors for these regions were calculated using the open-source image processing library scikit-
image [37]. We further filtered the set of unique domains by removing all regions with an area less than 3 lattice sites,

as vascular lacunae in the simulation are generally large and 1-3 lattice regions rarely appeared due to the stochastic
lattice-site exchanges during the Cellular-Potts algorithm. This yielded a list of areas of non-duplicate lacunae for a given
simulation state that accounts for the periodic boundary conditions of the Cellular-Potts model. The distribution of areas
contained in this list was used to calculate and compare distribution distances between predicted and ground-truth simu-
lation states.

Supporting information

S1 Movie. Surrogate model vascular network configuration prediction with recurrent evaluation. Ground truth (left)
from the Cellular-Potts model is compared with the surrogate model prediction (right) given the same initial configuration.
(MP4)

S2 Movie. Surrogate model diffusive field prediction with recurrent evaluation. Ground truth (left) from the Cellular-
Potts model is compared with the surrogate model prediction (right) given the same initial configuration.
(MP4)

Data availability

Code to generate data and specify models used in this work is publicly available at https://github.com/tc2fh/CPM_UNet_
Surrogate. This code is also published on Zenodo at https://zenodo.org/records/15399533 [38] with a Creative Commons
Attribution 4.0 International license.
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