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Abstract
N6-methyladenosine (m6A) can significantly affect RNA expression, gene regulation,
and determination of cell fate. As a common and abundant post-transcriptional modifi-
cation (PTM) of RNA, m6A is also closely associated with the occurrence of numerous
diseases. Thus, identifying the m6A modification site in the RNA sequence is a prerequi-
site for related research. High-throughput sequencing technology has high requirements
and low cost performance. Computational methods have made encouraging progress
in site prediction. However, most models only consider the effects of different species,
ignoring the simultaneous exploration of RNA modifications in different tissues within the
same species. We develop and validate a fuzzy system based on Block Sparse Bayesian
Learning (BSBL), named BSBL-TSK-FS, which is a powerful sequence-level m6A pre-
diction model. We introduce a Bayesian method that provides a posterior probability out-
put to produce more sparse solutions so that the model has higher accuracy. The model
classifies the m6A sites in several tissues of mouse, human, and rat. Under the five-fold
cross-validation method (5-CV), the precision of the BSBL-TSK-FS model is 0.84~0.95.
The accuracy of our model improves by 9.4% over the existing SOTA predictors. BSBL-
TSK-FS achieves superior performance over current SOTA methods. Finally, in order to
verify the generalizability of the model, we carry out cross-species tests, and the results
prove the robustness and adaptability of the model. An accurate and reliable sequence
modification prediction model is developed to better understand the complex landscape
of methylation modification.

Author summary
RNA molecules undergo a large number of PTMs that can affect their structure and
interaction properties. As the most common type of PTM, N6-methyladenosine (m6A)
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plays a crucial role in life processes such as gene silencing, cell localization, parental
imprinting, and various diseases. Therefore, accurate identification of m6A modification
sites from mRNA sequences is of great significance for basic research and drug devel-
opment. The applicability of experimental methods in large-scale studies is poor. In
response to these limitations, computational models have been developed to quickly and
economically identify m6A modification sites. In this study, we propose a fuzzy system
prediction model, called BSBL-TSK-FS, to identify m6A. We verify the performance
of the model on a baseline datasets. Our model, BSBL-TSK-FS, performs well in 11
datasets, with an average AUC value of 0.9619 and an average precision value of 0.9028.

Introduction
Post-transcriptional modifications (PTM) in RNA are common in all areas of life [1,2].
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In addition to regulating RNA life stages, modification sites affect RNA localization, ter-
tiary structure, function, and biogenesis [3,4]. As a result, the biological function of RNA
is affected. They are produced by covalent alterations or isomerization of nucleotides, usu-
ally involving the addition of chemical groups at different locations in the nitrogenous base
or ribose cycle [5–7]. More than 150 PTMs have been identified, of which m6A is the most
prevalent type of PTM in RNA [8,9]. As an important epigenetic modification, m6A plays a
crucial role in gene silencing, cell localization, parental origin imprinting, and other life pro-
cesses [10–12]. Regulates RNA localization, transcription, splicing, and stability [13–15]. In
addition, it has been linked to diseases such as stomach cancer, obesity, and breast tumors
[16–18]. In order to carry out basic research and develop new drugs, it is extremely important
to precisely identify the m6A modification sites from mRNA sequences.

Currently, most experimental methods for locating RNA post-transcriptional modifica-
tions differ in 3 ways: immunoprecipitation methods, chemical-based detection methods, and
enzyme-specific methods. RNA immunoprecipitation dependent methods include MeRIP-
Seq [19], m6A-Seq [20], miCLIP [21] and other methods. Pseudo-Seq [22] and AlkAniline-
Seq [23] utilize compounds that selectively react with modified ribonucleotides to identify
m6A. Specific enzymes are used in methods such as m6A-REF-Seq [24] or DART-Seq [25].
Although these are the current gold standards, they still have certain limitations. For exam-
ple, experiments require the development of specific protocols for each PTM, sensitivity to
cross-reactivity, antibodies, or chemical reactions, and complex protocols can cause bias. They
are limited by the availability of compounds or specific antibodies [26,27]. In addition, several
methods based on Oxford nanopore technology have been developed, such as Epinano [28],
Nanocompore [29], Tombo [30], and CHEUI [31]. These methods are time-consuming, labo-
rious, and expensive. In addition, the slow detection process further limits their applicability
to large-scale studies [32,33]. In response to these limitations, computational models have
been developed to quickly and economically identify m6A modification sites, making them
ideal for large-scale data analysis.

Computational methods have become an attractive option for researchers. iRNA-Methyl
is a pioneering predictor specifically designed to identify the m6A site in RNA, using sup-
port vector machines combined with hand-extracted features to build a model [34]. m6Apred
is a predictor specifically designed to identify m6A sites in the Saccharomyces cerevisiae
transcriptome [35]. The predictor is based on physicochemical binary coding and cumu-
lative nucleotide frequency extraction features. SRAMP can be used to predict RNA m6A
sites in mammals [36]. It extracts features based on nucleotide binary encoding, secondary
structure binary encoding, KSNPF, and KNN score, and assembles three random forests to
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predict m6A sites. WHISTLE [37] effectively captures key signals associated with m6A mod-
ifications by integrating sequence and evolutionary features, and is trained using an SVM.
deepSRAMP [38] introduces an isoform-level m6A site prediction framework that lever-
ages BiGRU networks combined with a multi-head attention mechanism to capture com-
plex sequence dependencies. By encoding RNA sequences into fixed-length embeddings, the
model effectively extracts deep contextual features and achieves promising predictive perfor-
mance across multiple tissues and species. These predictors identify m6A modification sites
based on specific tissues in a single species. Dao et al. [39] designed iRNA-m6A based on a
support vector machine (SVM). Using a one-hot encoding scheme, Liu et al. [40] developed
the im6A-TS-CNN tool that predicts using convolutional neural networks (CNNs). TS-m6A-
DL is described by Abbas et al. [41] as a method based on deep neural networks (DNNs). A
combination of four classification algorithms and three deep learning models is used in the
im6APred model presented by Luo et al. [42]. A tool called DL-m6A, which uses three dif-
ferent features encoding schemes, was proposed by Rehman et al. [43]. m6A-TSHub [44] is
a comprehensive platform for tissue-specific m6A research, integrating four key modules:
m6A-TSDB, m6A-TSFinder, m6A-TSVar, and m6A-CAVar, which support database construc-
tion, predictive modeling, and variant impact analysis. It enables systematic exploration of
tissue-specific m6A methylation from both low-resolution data and genetic variants across
23 human tissues. Most of these models use one-hot coding, k-mer coding or physicochem-
ical property coding to extract the characterization of RNA sequences. Nevertheless, these
methods usually consider only shallow RNA sequence encoding and ignore potential correla-
tions between nucleotides. These models all use tissue-specific datasets, but their accuracy and
generality need to be improved.

In this study, we propose a block-sparse Bayesian Learning (BSBL)-based Takagi-Sugeo-
Kang fuzzy system (TSK-FS), called BSBL-TSK-FS, to identify m6A. The proposed method
is more novel and effective than TSK-FS. In order to achieve complete information extrac-
tion, we use the position-specific nucleotide propensity (PSNP) to extract RNA sequence fea-
tures. Extensive benchmarking experiments were conducted on well-curated datasets, and as
a result, BSBL-TSK-FS achieves superior performance than current state-of-the-art methods.
Finally, cross-species tests were carried out, and the results obtained prove the robustness and
adaptability of the model.

The contributions of this study are summarized as follows.
(1) We improve the TSK fuzzy system on the basis of block sparse Bayesian learning by

introducing a Bayesian approach that provides the output of posterior probabilities to produce
more sparse solutions. Our model has higher accuracy.

(2) Our model does not require a setting for the penalty factor. The penalty factor in gen-
eral TSK-FS is a constant to balance the regular and error terms, and the experimental results
are very sensitive to this data, and improper settings can cause problems such as overlearning.
However, the parameter is automatically assigned in BSBL-TSK-FS.

(3) Compared to traditional task-specific computational tools, our model does not require
different coding representations of RNA sequences and can directly predict different types of
methylation.

(4) Our model can identify methylation modification sites in various tissues of different
species.

The next section displays the model framework, experimental results, sequence analysis,
and cross-species validation results, and compares them in detail with other methods. The
third part describes the experimental materials and methods, including data set introduc-
tion, TSK-FS and BSBL algorithms, feature extraction methods and performance evaluation
criteria. Finally the paper is summarized.
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Results
The BSBL-TSK-FS framework
Our framework uses a block-sparse Bayes-based fuzzy system to predict widely occurring
m6A modifications in different tissues of mouse, human, and rat. It consists of four key mod-
ules: Input and encoding module, fuzzification module, block sparse Bayes module and pre-
diction module, as shown in Fig 1. The proposed method is mapped to the high dimensional
space by fuzzy rules and fuzzy membership function in the fuzzifier [45]. Then we intro-
duce a Bayesian method that provides a posterior probability output to produce more sparse
solutions, which improves the accuracy of the model [46,47]. The idea is to find the poste-
rior probability via the Bayesian rule. Given the hyperparameters, the solution is given by the
Maximum-A-Posterior estimate [48]. The hyperparameters are estimated from data Maxi-
mum Likelihood [49]. More details can be found in the Materials and Methods Section Mate-
rials and methods. Our model does not need to set the penalty factor, which is automatically
assigned in BSBL-TSK-FS. This avoids problems such as over-learning caused by improper
parameter setting. We use 11 widely recognized datasets created by Dao et al. [39], and per-
forme 5-CV on the datasets. These datasets come from different tissues such as brain, heart,
kidney, and liver of mouse, humans, and rats. While we applied BSBL-TSK-FS to the task of
m6A modification detection, the framework can also be directly applied to other tasks, such
as detecting other types modifications.

BSBL-TSK-FS performance
Themain goal of our study was to establish a convenient and reliable predictor that can
achieve SOTA accuracy to effectively identify widely occurring m6A modifications from
RNA sequences. The Table 1 lists the results of our proposed model on the tissue-specific
datasets via five-fold cross-validation (5-CV). Our model, BSBL-TSK-FS, performs well on 11
datasets, with an average AUC value of 0.9619 and an average accuracy value of 0.9028. All
other datasets have ACC scores above 84%. On the dataset Rat Liver, this model performed
the highest quality, with ACC, MCC and AUC reaching 95.41%, 90.84% and 0.9900, respec-
tively. It also performs well in mouse hearts, with an ACC of 0.9542. Meanwhile, Human
Brain’s scores are slightly lower, with ACC, MCC and AUC reaching 84.75%, 69.63% and
0.9231, respectively. AUCs are all above 0.92, and MCCs are all above 0.6963. The mouse
brain dataset is the largest and performs poorly, indicating that our model has a slight weak-
ness in handling large data sets. The highest AUC is only 0.07 higher than the lowest AUC.
This shows that our model is very stable on the AUC criterion. The BSBL-TSK-FS model
demonstrated better performance on small-scale datasets compared to larger ones. As a tradi-
tional machine learning method, it tends to be more effective when the sample size is limited.
On larger datasets such as Mouse Brain, Human Brain, and Human Kidney, the increased
diversity and complexity of the sequences may pose challenges for the fuzzy inference sys-
tem, which is constrained by the number of fuzzy rules and thus may struggle to capture com-
plex patterns. In addition, the performance of our approach heavily relies on effective feature
extraction. The PSTNP module, in particular, has shown higher discriminative power in small
datasets, while the greater sequence diversity in large datasets may reduce the effectiveness of
the extracted features. These factors may jointly contribute to the slight performance decline
observed on large-scale datasets.

We present the intersections of modifications across tissues in Fig 2A–2C, showing both
correlations and significant differences across the tissue data. Some m6A modification sites
may occur only in specific tissues, and some may exhibit some similar tendencies in multiple
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Fig 1. Illustration of the BSBL-TSK-FS model architecture. (A) Input and encoding module. The RNA sequence with length of 41bp was encoded into a matrix via the
PSNP with 5-mer. (B) Fuzzification module. The model uses fuzzy system to process the data, then gets fuzzy feature Xg, and applies Xg to the next module. (C) Block
sparse Bayesian module. The sparse solution of the model is obtained by block sparse Bayes algorithm, and the parameter p is solved. (D) Prediction module. Identify
m6A and non-m6A by predicting results.

https://doi.org/10.1371/journal.pcbi.1013621.g001

Table 1. Results of the BSBL-TSK-FS model on m6A datasets under 5-CV.
Species Tissues SN SP MCC AUC ACC
Mouse Brain 0.8769 0.8183 0.6963 0.9231 0.8475

Heart 0.9616 0.9468 0.9075 0.9894 0.9542
Kidney 0.8989 0.8938 0.7928 0.9533 0.8963
Liver 0.9190 0.8630 0.7833 0.9582 0.8911
Testis 0.9133 0.8523 0.7669 0.9527 0.8828

Human Brain 0.8672 0.8485 0.7159 0.9345 0.8578
Kidney 0.8803 0.8650 0.7452 0.9451 0.8725
Liver 0.9240 0.9178 0.8421 0.9754 0.9211

Rat Brain 0.9483 0.9327 0.8810 0.9873 0.9404
Kidney 0.9311 0.8942 0.8260 0.9716 0.9127
Liver 0.9560 0.9529 0.9084 0.9900 0.9541

Note: MCC, Matthew’s correlation coefficient; SP, specificity; SN, sensitivity; ACC, accuracy; AUC, the area under receiver operating
characteristic curve.

https://doi.org/10.1371/journal.pcbi.1013621.t001

tissues. Therefore, we show the intersection of modifications between tissues. Specifically, we
list the exons associated with each modification and treat modifications that share the same
exon as intersecting. We find that there are overlaps between the tissues, but the overlaps are
less than 5%. Fig 2D is a Sankey chart that visually shows the flow of samples from 11 data
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Fig 2. (A–C) Venn diagram of data for different species. (D) Sankey diagram of prediction results for 11 datasets. Straight lines represent correctly classified samples,
curved lines represent incorrectly classified samples, and the stronger the lines, the larger the number of samples.

https://doi.org/10.1371/journal.pcbi.1013621.g002

sets based on the reality of the prediction label. The curved thin lines represents the misclas-
sified sample. Most of the samples are classified correctly, so they show strong straight lines.
It is clear that our method successfully classified the majority of the samples. Our proposed
model performs well overall, preliminarily proving its effectiveness in predicting the m6A
sites.

Consensus region analysis
In order to further understand the mechanism and reason of modification, we use kpLogo
[50] to study the distribution of nucleotides around the m6A site. Fig 3A–3C shows the visu-
alization of methylation sequence patterns, we can see that the methylated sequential regions
in the tissues are very similar. Fig 3D–3F shows the statistical difference in nucleotide appear-
ance between m6A and non-m6A samples. The top half represents sequences that contain
m6A sites, and the bottom half represents sequences that contain non-m6A sites. There are
significant differences in the distribution of nucleotides between positive and negative sam-
ples (T-test, p value <0.01). The flanking sequences of m6A in all tissues are biased towards
GC rich areas, while the flanking sequences of non-m6A are biased towards AU rich areas.
It also shows that the idea of constructing m6A classification model by extracting sequence
information is reasonable. We present an analysis of the probability distribution of methyla-
tion centers in 3 different human tissues. Fig 4A and 4B show the frequency distribution of
positive and negative samples of the 3 datasets, respectively. On the one hand, it can be seen
that there are significant differences in the motifs of positive and negative samples. On the
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Fig 3. Motif logo analysis on Human datasets. (A–C) Probability Logos of positive samples analysis. (D–E) Probability Logos of positive and negative samples
comparative analysis. It’s worth noting that kpLogo uses the “T” to represent the “U” in the RNA sequence.

https://doi.org/10.1371/journal.pcbi.1013621.g003

Fig 4. Motif logos in central sequential regions of Human datasets. (A) Motif logos of the positive samples.
(B) Motif logos of the negative samples. It’s worth noting that kpLogo uses the “T” to represent the “U” in the RNA
sequence.

https://doi.org/10.1371/journal.pcbi.1013621.g004

other hand, it can be seen that the positive sample shows the motif GGACA with the highest
frequency in the logos in position from 19 to 23. This is consistent with m6A modifications
occurring primarily on the consensus motif DRACH (D-A, G, or U, R-A, or G, H being A, C,
or U) [51]. Figs 3 and 4 reveal clear positional differences in nucleotide composition between
positive and negative samples, particularly around the central region. These findings support
the use of PSKNP, a position-aware encoding scheme that captures local 5-mer preferences
across aligned sequences. By leveraging such positional patterns, BSBL-TSK-FS effectively
models the sequence context relevant to m6A modifications.
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Ablation analysis
To further demonstrate the superiority of BSBL-TSK-FS, we conduct ablation studies. Exper-
iments are conduct on baseline data sets using TSK-FS and SBL-TSK-FS respectively, and the
proposed methods are compared in many ways. The comparison results highlight the contri-
bution of sparse Bayesian learning and block sparse Bayesian learning. As shown in Fig 5A,
ROC curves of the three methods show that our model has the highest AUC performance.
Three species have AUC values above 0.92, 0.93, and 0.97, respectively. In contrast, the TSK-
FS method is the worst, while SBL-TSK-FS performs slightly better. The AUC values of the
other two methods achieve 0.86-0.97 and 0.89-0.98, respectively. Our method achieves the
highest AUC across all datasets, with an average accuracy value of 0.9619, surpassing that of
TKS-FS (average AUC 0.9136) and SBL-TSK-FS (average AUC 0.9427). In order to demon-
strate the advantages of the proposed method in capturing sequence information, we perform
a visual comparison analysis with the two limit methods mentioned above (Fig 5B). We use
UMAP to visualize the output features of the three methods. Visualization results show that
our approach successfully distinguished the vast majority of negative and positive samples.

Fig 5. (A) ROC curves of TSK-FS, SBL-TSK-FS and BSBL-TSK-FS models on m6A datasets. (B) Visualization of feature spatial distribution by 3 methods.

https://doi.org/10.1371/journal.pcbi.1013621.g005
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On the contrary, a small number of negative samples in SBL-TSK-FS are misclassified as pos-
itive samples. The worst TSK-FS has a higher incidence of classification errors, resulting in
areas of overlap between the two classes.

The results of above 3 methods on Mouse are detailed in Table 2. Our model is superior
to the two models in the overall evaluation metrics. Specifically, compared to SBL-TSK-FS
method on the Mouse dataset, the accuracy and AUC of our model improve by an average of
1.33% and0.97%, respectively. TSK-FS perform the worst, especially on the MCC value, with
an average of just 0.7138. Compared with TSK-FS, BSBL-TSK-FS improves MCC by 3.5%,
10.33%, 0.53%, 1.25% and 22.18% on these 5 datasets, respectively. TSK-FS performs worst
on Mouse Testis, with an ACC value of 0.7721. Our model shows slightly lower SP than TSK-
FS on the Mouse Liver dataset. However, its SN is only 0.8828, much lower than that of our
model.

The results on Human datasets are detailed in Table 3. The experimental results show that
our model is superior to the two models in all evaluation metrics. The performance of TSK-FS
is still the lowest, but the MCC is above 0.63, and the performance of SBL-TSK-FS is slightly
better, with MCC values between 0.6694 and 0.8349. Compared to SBL-TSK-FS method on
the Human dataset, the ACC, MCC and AUC of our model improve by an average of 1.59%,
3.08% and2.38%, respectively. On these three data sets, our model improves scores of evalu-
ation metrics more significantly. Compared with TSK-FS, BSBL-TSK-FS improves MCC by
3.83%, 10.69% and 16.36% on these 3 datasets, respectively. Moreover, the average ACC and
AUC of SBL-TSK-FS are 3.36% and 2.75% higher than that of TSK-FS, respectively.

Table 2. Results of multiple methods on the mouse datasets as analyzed by 5-CV.
Dataset Tool MCC SN(%) AUC SP(%) ACC
Brain TSK-FS 0.6613 85.41 0.9023 80.43 0.8294

SBL-TSK-FS 0.6588 86.10 0.8923 79.58 0.8320
BSBL-TSK-FS 0.6963 87.69 0.9231 81.83 0.8475

Heart TSK-FS 0.8042 89.16 0.9649 91.23 0.9020
SBL-TSK-FS 0.8585 95.43 0.9644 90.22 0.9287
BSBL-TSK-FS 0.9075 96.16 0.9894 94.68 0.9542

Kidney TSK-FS 0.7875 89.47 0.9465 89.29 0.8936
SBL-TSK-FS 0.7861 89.95 0.9465 88.65 0.8930
BSBL-TSK-FS 0.7928 89.89 0.9533 89.38 0.8963

Liver TSK-FS 0.7708 88.28 0.9541 88.80 0.8854
SBL-TSK-FS 0.7811 91.47 0.9558 86.52 0.8901
BSBL-TSK-FS 0.7833 91.90 0.9582 86.30 0.8911

Testis TSK-FS 0.5451 79.37 0.8648 75.03 0.7721
SBL-TSK-FS 0.7612 91.28 0.9511 84.67 0.8798
BSBL-TSK-FS 0.7669 91.33 0.9527 85.23 0.8828

https://doi.org/10.1371/journal.pcbi.1013621.t002

Table 3. Results of multiple methods on the human datasets as analyzed by 5-CV.
Dataset Tool MCC SN(%) AUC SP(%) ACC
Brain TSK-FS 0.6776 86.63 0.9176 80.92 0.8381

SBL-TSK-FS 0.7063 86.50 0.9313 84.09 0.8530
BSBL-TSK-FS 0.7159 86.72 0.9345 84.85 0.8578

Kidney TSK-FS 0.6383 80.29 0.8678 83.15 0.8171
SBL-TSK-FS 0.6694 87.29 0.8863 79.37 0.8332
BSBL-TSK-FS 0.7452 88.03 0.9533 86.50 0.8725

Liver TSK-FS 0.6785 80.75 0.9239 87.03 0.8387
SBL-TSK-FS 0.8349 92.10 0.9741 91.37 0.9175
BSBL-TSK-FS 0.8421 92.40 0.9754 91.78 0.9211

https://doi.org/10.1371/journal.pcbi.1013621.t003
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According to Table 4, shows the results of ablation experiments on Rat datasets. Our model
generally performs very well, with an average ACC of 0.9357 and an average MCC of 0.8718.
The rat is the species that our model predicts most accurately. TSK-FS continues to perform
poorly, with the lowest ACC not exceeding 0.8 and the worst MCC only 0.5801. And SBL-
TSK-FS performs marginally acceptable, with ACC values between 0.8908 and 0.9298. Com-
pared to SBL-TSK-FS method, the ACC, MCC and AUC of our model improve by an average
of 2.26%, 6.36% and8.01%, respectively. Compared with TSK-FS, the average ACC, MCC and
AUC of SBL-TSK-FS improve by 7.83%, 13.15% and 5.34% on these 3 datasets, respectively.
Among them, TSK-FS has the highest SP score on Rat Kindey dataset, but the correspond-
ing SN is the lowest. A similar situation is seen with SBL-TSK-FS on the Rat Liver dataset.
Overall, our model is more balanced and stable.

Comparison with other advanced tools
To evaluate the effectiveness of our model, we conducted comparisons with several main-
stream tools, namely im6A-TS-CNN, im6APred, iRNA-m6A, DL-m6A, TS-m6A-DL, and
M6A-BiNP, under a 5-CV framework. The lollipop plot of Fig 6A shows the comparison of
six methods SN and SP on three human data sets. It can be seen that our method has the
highest performance and has made great progress, especially in SP. Fig 6B and 6C show mcc
comparisons across 11 datasets. Fig 6B shows that there is a big gap between other methods
and ours in MCC score. It can be intuitively seen that BSBL-TSK-FS is significantly elevated
in rat brain, rat liver, and mouse brain (Fig 6C). Fig 7 uses a heat map to show a compari-
son of ACC, MCC, SN, SP, and AUC scores for different methods on a standard dataset. The
brighter the circle, the higher the value. In addition to our approach, DL-m6A and TS-m6A-
DL performed better. BSBL-TSK-FS has the best prediction effect on MCC and ACC. The
results show that our method is very effective and reliable in m6A modification prediction
task.

More detailed comparison results are shown in Tables 5–7. BSBL-TSK-FS has excellent
performance on Mouse datasets (Table 5). As shown in the experiment, our proposed model
BSBL-TSK-FS shows the best performance compared to SOTA methods on 5 datasets, with
an average improvement of 0.99% Acc, 20.44% MCC, and 8.22% AUC compared to other
baseline methods. DL-m6A performs slightly better, with an average ACC of 0.7954, an aver-
age MCC of 0.585 and an average AUC of 0.8731. BSBL-TSK-FS provides the best accuracy
and AUC values on Mouse Heart (0.9542 and 0,9894). Among the methods evaluated, iRNA-
m6A, a predictor based on traditional machine learning techniques, showes the lowest overall
performance across all 11 datasets, with an Acc of 0.735 and an MCC of 0.47. This observation
suggests that deep characterization of RNA sequences has a stronger ability to characterize

Table 4. Results of multiple methods on the rat datasets as analyzed by 5-CV.
Dataset Tool MCC SN AUC SP ACC
Brain TSK-FS 0.5801 90.43 0.8715 66.48 0.7835

SBL-TSK-FS 0.8584 93.62 0.9711 92.21 0.9298
BSBL-TSK-FS 0.8810 94.83 0.9873 93.27 0.9404

Kidney TSK-FS 0.7538 85.74 0.9418 89.50 0.8758
SBL-TSK-FS 0.7673 92.22 0.9390 83.95 0.8908
BSBL-TSK-FS 0.8260 93.11 0.9716 89.42 0.9127

Liver TSK-FS 0.6961 85.65 0.8954 83.49 0.8451
SBL-TSK-FS 0.7989 96.00 0.9587 81.94 0.9186
BSBL-TSK-FS 0.9084 95.60 0.9900 95.29 0.9541

https://doi.org/10.1371/journal.pcbi.1013621.t004
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Fig 6. (A) Comparison results between the proposed method and 5 advanced methods on SN and SP indicators. (B) Piano plots of
MCC comparisons of six methods across 11 datasets. (C) Radar maps of six methods for MCC comparison on 11 data sets.

https://doi.org/10.1371/journal.pcbi.1013621.g006

RNA sequences than shallow characterization. For other methods, TS-m6A-DL and im6A-
TS-CNN initialize the RNA sequence mainly based on one-hot encoding, thus ignoring the
underlying semantic information.

On the Human datasets, there is no doubt that ACC and AUC have shown clear signs of
improvement (Table 6).The Acc of BSBL-TSK-FS improved by approximately 5.35-9.24% over
the next highest predictor (DL-m6A). However, on the Human Brain, our method is slightly
lower than DL-m6A in terms of MCC. Our proposed model BSBL-TSK-FS shows the best
performance on AUC, with an average improvement of 6.95% compared to other baseline
methods. DL-m6A performs slightly better, with an average ACC of 0.8074, an average MCC
of 0.7188 and an average AUC of 0.8849. On all three datasets, AUC values for all methods
exceed 0.8. BSBL-TSK-FS provides the best accuracy value on Human Liver (0.9211).

On Rat datasets, our model is relatively stable and performs well on all datasets (Table 7).
BSBL-TSK-FS provides the best accuracy value on Rat Liver (0.9541). Our proposed model
BSBL-TSK-FS shows the best performance on ACC and MCC, with an average improvement
of 10.34% ACC and an average improvement of 20.41% MCC, compared to other baseline
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Fig 7. Comparison of six methods on MCC, SN, SP, ACC and AUC indicators.The larger and brighter the bubbles, the higher the value.

https://doi.org/10.1371/journal.pcbi.1013621.g007

methods. The AUC alues of our method are higher than DL-m6A method by 0.0943, 0.0616
and 0.0703, respectively. The remaining four methods (iRNA-m6A, im6APred, im6A-TS-
CNN and TS-m6A-DL) also achieved reasonable performance on AUC, all above 0.82.

m6A-TSFinder [44] proposed a weakly supervised deep learning framework to predict
tissue-specific m6A methylation from low-resolution data and constructed tissue-level models
for 23 human tissues. This approach significantly broadened the landscape of m6A prediction
beyond base-resolution data. However, due to differences in data resolution, sequence struc-
ture, and prediction tasks, our model cannot be directly compared with m6A-TSFinder on the
23 human tissue datasets. To ensure fairness, we evaluated our model on the same benchmark
dataset used in the m6A-TSFinder study, enabling direct comparison under an equivalent
prediction setting. Detailed performance comparisons are provided in Table 8.
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Table 5. Comparison with models on mouse datasets via 5-CV.
Dataset Tool MCC SN(%) AUC SP(%) ACC
Brain im6A-TS-CNN 0.5749 81.50 0.8705 75.85 0.7867

im6APred 0.60 83.54 0.8847 76.16 0.7985
iRNA-m6A 0.58 79.32 0.8701 76.90 0.7875
DL-m6A 0.6016 83.1 0.8879 79.07 0.8109
TS-m6A-DL 0.5974 81.34 0.8831 78.36 0.7985
M6A-BiNP
(PSP-PMI)

0.464 74.4 0.818 72.0 0.732

M6A-BiNP
(PSP-PJMI)

0.544 76.8 0.858 77.5 0.772

BSBL-TSK-FS 0.6963 87.69 0.9231 81.83 0.8475
Heart im6A-TS-CNN 0.4633 78.37 0.8115 67.60 0.7299

im6APred 0.51 81.69 0.8350 68.92 0.7531
iRNA-m6A 0.44 75.24 0.7948 68.97 0.7276
DL-m6A 0.5720 83.55 0.8682 76.22 0.7989
TS-m6A-DL 0.5664 81.50 0.8504 74.96 0.7823
M6A-BiNP
(PSP-PMI)

0.588 80.7 0.880 78.0 0.794

M6A-BiNP
(PSP-PJMI)

0.873 93.7 0.984 93.6 0.937

BSBL-TSK-FS 0.9075 96.16 0.9894 94.68 0.9542
Kidney im6A-TS-CNN 0.6094 79.91 0.8842 81.00 0.8046

im6APred 0.64 83.51 0.9008 80.42 0.8196
iRNA-m6A 0.60 82.60 0.8726 77.31 0.7998
DL-m6A 0.6618 85.21 0.9112 80.98 0.8310
TS-m6A-DL 0.6451 82.59 0.9079 81.86 0.8222
M6A-BiNP
(PSP-PMI)

0.550 79.5 0.859 75.4 0.775

M6A-BiNP
(PSP-PJMI)

0.696 84.2 0.929 85.3 0.848

BSBL-TSK-FS 0.7928 89.89 0.9533 89.38 0.8963
Liver im6A-TS-CNN 0.4288 72.39 0.7953 70.24 0.7132

im6APred 0.48 84.01 0.8181 63.05 0.7353
iRNA-m6A 0.41 74.93 0.7743 65.59 0.7059
DL-m6A 0.5429 85.08 0.8443 68.31 0.7670
TS-m6A-DL 0.5044 79.53 0.8288 70.60 0.7506
M6A-BiNP
(PSP-PMI)

0.456 75.5 0.813 70.1 0.728

M6A-BiNP
(PSP-PJMI)

0.702 85.6 0.927 84.5 0.851

BSBL-TSK-FS 0.7833 91.90 0.9582 86.30 0.8911
Testis im6A-TS-CNN 0.5090 75.21 0.8380 75.61 0.7541

im6APred 0.54 85.70 0.8522 68.09 0.7690
iRNA-m6A 0.48 78.14 0.8156 70.02 0.7440
DL-m6A 0.5465 88.21 0.8541 65.62 0.7692
TS-m6A-DL 0.5544 81.79 0.8630 73.33 0.7756
M6A-BiNP
(PSP-PMI)

0.487 77.7 0.824 70.9 0.743

M6A-BiNP
(PSP-PJMI)

0.701 84.8 0.930 85.2 0.850

BSBL-TSK-FS 0.7669 91.33 0.9527 85.23 0.8828

https://doi.org/10.1371/journal.pcbi.1013621.t005

Performance comparison on the m5C datasets
Our model is capable of predicting not only m6A methylation but also m5C methylation. To
assess the performance of the proposed method, we employed the same dataset used by m5C-
pred [52]. Table 9 summarizes the comparison results. On datasetM.musculus, BSBL-TSK-
FS achieves the best ACC value (0.9088) with improvements of 14.86% and over the m5C-
pred. On dataset A.thaliana, the accuracy and MCC of our prediction are also significantly
improved.
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Table 6. Comparison with models on human datasets via 5-CV.
Dataset Tool MCC SN(%) AUC SP(%) ACC
Brain im6A-TS-CNN 0.4523 75.35 0.8029 69.71 0.7253

im6APred 0.49 82.48 0.8241 65.99 0.7423
iRNA-m6A 0.41 74.79 0.7756 66.19 0.7126
DL-m6A 0.8515 85.21 0.8278 67.87 0.7654
TS-m6A-DL 0.5068 81.91 0.8262 68.23 0.7507
M6A-BiNP
(PSP-PMI)

0.440 71.1 0.793 72.9 0.720

M6A-BiNP
(PSP-PJMI)

0.641 81.0 0.900 83.1 0.820

BSBL-TSK-FS 0.7159 86.72 0.9345 84.85 0.8578
Kidney im6A-TS-CNN 0.6006 81.70 0.8781 78.25 0.7998

im6APred 0.62 84.89 0.8896 76.45 0.8067
iRNA-m6A 0.57 80.85 0.8634 76.34 0.7899
DL-m6A 0.6335 86.85 0.9009 76.94 0.8190
TS-m6A-DL 0.6211 83.93 0.8904 78.04 0.8099
M6A-BiNP
(PSP-PMI)

0.493 75.5 0.832 73.8 0.746

M6A-BiNP
(PSP-PJMI)

0.633 80.9 0.896 82.3 0.816

BSBL-TSK-FS 0.7452 88.03 0.9533 86.50 0.8725
Liver im6A-TS-CNN 0.5992 80.81 0.8811 79.69 0.7994

im6APred 0.63 84.13 0.8915 78.98 0.8155
iRNA-m6A 0.59 81.32 0.8738 78.13 0.8013
DL-m6A 0.6714 88.07 0.9259 79.49 0.8378
TS-m6A-DL 0.6684 85.95 0.9135 80.75 0.8335
M6A-BiNP
(PSP-PMI)

0.550 76.9 0.856 78.1 0.775

M6A-BiNP
(PSP-PJMI)

0.748 87.4 0.951 87.4 0.874

BSBL-TSK-FS 0.8421 92.40 0.9754 91.78 0.9211

https://doi.org/10.1371/journal.pcbi.1013621.t006

Cross-species and cross-tissues prediction analysis
We conducte cross species and cross tissue experiments to demonstrate that the predictor is
not dependent on species and tissue. The result is shown in Fig 8, where each circle in the heat
map represents the accuracy obtained. The rows represent training sets and the columns rep-
resent test sets. The accuracy of cross-tissue prediction may be affected by factors such as dif-
ferences in sample size, intra-dataset redundancy, and random noise. All prediction accuracy
is higher than 0.79. It can be seen that using different species or tissues for prediction can also
achieve good accuracy.

Discussion
In this paper, we designed a BSBL-TFS-FS model to detect RNA m6A sites in a variety of
tissues. We apply fuzzy systems to block sparse Bayesian learning. Compared with the tra-
ditional fuzzy network, this method has better approximation performance. We tested the
benchmark dataset. The experimental results show that BSBL-TFS-FS is an effective model for
sequence prediction. Compared with existing predictors, BSBL-TFS-FS has higher predictive
performance. Our model can predict methylation sites in different tissues of different species.
To account for tissue- and species-specific characteristics of m6A modifications, we trained
separate models for each tissue type and organism. This design ensured that each model was
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Table 7. Comparison with models on rat datasets via 5-CV.
Dataset Tool MCC SN(%) AUC SP(%) ACC
Brain im6A-TS-CNN 0.5379 79.04 0.8469 74.23 0.7664

im6APred 0.55 81.80 0.8580 72.75 0.7727
iRNA-m6A 0.50 77.00 0.8282 73.47 0.7596
DL-m6A 0.6221 85.64 0.8930 74.16 0.7990
TS-m6A-DL 0.5922 82.27 0.8758 76.82 0.7955
M6A-BiNP
(PSP-PMI)

0.570 78.4 0.869 78.6 0.785

M6A-BiNP
(PSP-PJMI)

0.853 91.8 0.980 93.5 0.926

BSBL-TSK-FS 0.8810 94.83 0.9873 93.27 0.9404
Kidney im6A-TS-CNN 0.6500 84.15 0.9017 80.77 0.8246

im6APred 0.66 82.90 0.9061 83.05 0.8297
iRNA-m6A 0.63 82.46 0.8877 80.05 0.8178
DL-m6A 0.6915 85.70 0.9100 83.95 0.8484
TS-m6A-DL 0.6683 84.00 0.9066 82.81 0.8341
M6A-BiNP
(PSP-PMI)

0.563 79.2 0.868 77.1 0.781

M6A-BiNP
(PSP-PJMI)

0.750 86.78 0.946 88.3 0.875

BSBL-TSK-FS 0.8260 93.11 0.9716 89.42 0.9127
Liver im6A-TS-CNN 0.6126 81.56 0.8830 79.63 0.8059

im6APred 0.64 82.24 0.8949 81.38 0.8181
iRNA-m6A 0.60 83.09 0.8766 76.33 0.8090
DL-m6A 0.6894 89.70 0.9197 80.21 0.8496
TS-m6A-DL 0.6706 83.47 0.9025 83.48 0.8348
M6A-BiNP
(PSP-PMI)

0.663 82.6 0.912 82.6 0.826

M6A-BiNP
(PSP-PJMI)

0.900 94.6 0.989 95.4 0.950

BSBL-TSK-FS 0.9084 95.60 0.9900 95.29 0.9541

https://doi.org/10.1371/journal.pcbi.1013621.t007

Table 8. Performance comparison between different approaches on independent datasets from human tissues.
Tissue m6A-TSFinder TS-m6A-DL im6A-TS-CNN iRNA-m6A BSBL-TSK-FS
Brain 0.8132 0.8097 0.8056 0.7845 0.8627
Liver 0.8850 0.8784 0.8805 0.8681 0.9176
Kidney 0.8796 0.8802 0.8727 0.8565 0.8893
Note: The results for m6A-TSFinder, TS-m6A-DL, im6A-TS-CNN, and iRNA-m6A in this table are taken from reference [44].

https://doi.org/10.1371/journal.pcbi.1013621.t008

Table 9. Performance comparison on the m5C datasets.
Species Tool SN(%) SP(%) MCC ACC
A.thaliana m5C-pred 67.49 77.42 0.4514 0.7245

BSBL-TSK-FS 80.58 88.76 0.6958 0.8467
M.musculus m5C-pred 76.59 75.40 0.5201 0.7602

BSBL-TSK-FS 90.30 91.48 0.8177 0.9088

https://doi.org/10.1371/journal.pcbi.1013621.t009

optimally adapted to its respective dataset. Moreover, while our framework is not fully inter-
pretable in the strictest sense, it provides greater interpretability compared to deep learning-
based methods. This is mainly due to its rule-based fuzzy inference system and structured
Bayesian framework, which together offer clearer insight into the relationship between input
features and prediction outcomes. Next, we want to change the form of converting sequences
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Fig 8. Heap map showing ACCs of cross-species and cross-tissues prediction accuracies.

https://doi.org/10.1371/journal.pcbi.1013621.g008

into numerical values through physicochemical properties and then input into the model, and
instead use biological sequences directly as inputs to the model.

Materials and methods
Benchmark datasets
Zhang et al. [24] developed a technique for detecting m6A sites in different tissues. Based on
this study, Dao et al. [39] constructed high-quality benchmark datasets for computational
methods. Each dataset contains 41nt long sequences of m6A and non-m6A sites. Using CD-
HIT, a sequence similarity score of less than 80% was achieved. Table 10 shows the summary
of tissue-specific datasets. Table 11 presents information on independent datasets from three
human tissues.

This study also utilized high-quality m5C datasets forMusmusculus and Arabidop-
sisthaliana from the work of Abbas et al. [52], which were retrieved from the GEO database
(accession numbers GSE93751 and GSE94065) and processed using CD-HIT to remove
redundant sequences with more than 70% similarity. Detailed information is provided in
Table 12.

Position-specific nucleotide propensity
In bioinformatics, the position-specific nucleotide propensity (PSNP) have become a popu-
lar method for predicting the sites of biological sequences [27,32]. PSNP is an approach that
extracts information from sequences by computing the frequency of nucleotides at certain
positions. Most mammalian m6A sequences are found within the consensus motif DRACH
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Table 10. Summary of tissue-specific m6A datasets.
Species Tissues Positive Negative
Mouse Brain 8025 8025

Heart 2201 2201
Kidney 3953 3953
Liver 4133 4133
Testis 4707 4707

Human Brain 4605 4605
Kidney 4574 4574
Liver 2634 2634

Rat Brain 2352 2352
Kidney 3433 3433
Liver 1762 1762

https://doi.org/10.1371/journal.pcbi.1013621.t010

Table 11. Summary of m6A independent datasets from human tissues.
Species Tissues Positive Negative
Human Brain 4604 4604

Kidney 4573 4573
Liver 2634 2634

https://doi.org/10.1371/journal.pcbi.1013621.t011

Table 12. Summary of m5C datasets.
Species Positive Negative
M.musculus 4563 4563
A.thaliana 5289 5289

https://doi.org/10.1371/journal.pcbi.1013621.t012

[51,53]. Therefore, we use 5-mer nucleotides to calculate the frequency and get 45 combina-
tions. For a sequence of length 41nt, we get a 37-dimensional vector.

BSBL-TSK-FS
Fuzzy system. Given N samples X = [x1,… , xi,… , xN]T ∈RN×d, where xi = [xi1, xi2,… , xid]∈

R1×d. We notate the label vector in the form of y∈ RN×1. Suppose the 1-order TSK fuzzy
system has K fuzzy rules, then the k-th rule as follows [54,55].

if xi1 is Ak
1 ∧ xi2 is Ak

2 ∧…∧ xid is Ak
d,

then fk (xi) = pk0 + pk1xi1 +… + pkdxid, k = 1, 2,… ,K,
(1)

where ∧ represents a fuzzy conjunction operator and Ak
j refers to the fuzzy subset. Input vec-

tor xi corresponds to each rule, which maps the fuzzy set Ak in the input space to the fuzzy set
fk (xi) in the output space. The Gaussian membership function is applied to the sample in the
if-parts.

𝜇Ak
j
(xij) = exp

⎛
⎝
– (xij – ckj )

2𝛿kj
⎞
⎠
. (2)

Fuzzy C-means (FCM) clustering [56–58] can be used to determine the membership func-
tion mean ckj and variance 𝛿kj .

ckj =
∑N

i=1 𝜇ikxij
∑N

i=1 𝜇ik
, (3)

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013621 October 30, 2025 17/ 24

https://doi.org/10.1371/journal.pcbi.1013621.t010
https://doi.org/10.1371/journal.pcbi.1013621.t011
https://doi.org/10.1371/journal.pcbi.1013621.t012
https://doi.org/10.1371/journal.pcbi.1013621


ID: pcbi.1013621 — 2025/11/3 — page 18 — #18

PLOS COMPUTATIONAL BIOLOGY A fuzzy system for RNA N6-methyladenosine sites prediction

𝛿kj =
h∑N

i=1 𝜇ik (xij – ckj )
2

∑N
i=1 𝜇ik

, (4)

where h is a manually adjustable coefficient, and 𝜇ik represents the fuzzy membership of the
i-th sample within the k-th cluster.

The fuzzy membership function 𝜇k(xi) and normalized fuzzy membership 𝜇̃(xi) for fuzzy
set Ak are defined as

𝜇k(xi) =
d
∏
j=1

𝜇Ak
j
(xij) , (5)

𝜇̃k(xi) =
𝜇k(xi)

∑K
k′=1 𝜇k′(xi)

. (6)

The output is given by

yo (xi) =
K
∑
k=1

𝜇̃ (xi) fk (xi) . (7)

When the if-part of the parameter is determined, then 𝜇̃k (xi) is determined. Let

xe = (1, xi)∈R1×(1+d), (8)

x̃ki = 𝜇̃k (xi) xe ∈R1×(1+d), (9)

xgi = (x̃1i ,… , x̃ki ,… , x̃Ki )∈R1×[(1+d)×K]. (10)

A set of parameters for the then-parts can be expressed as

p = ((p1)T ,… , (pk)
T
,… , (pK)T)

T
, (11)

where pk = ((pk0)
T
, (pk1)

T
,… , (pkd)

T)
T
∈R(1+d)×1 and p∈R[(1+d)×K]c1.

Therefor, the output can be rewritten as

yo (xi) = xgip. (12)

Block sparse Bayesian learning. Let Xg = [xg1; xg2;… ; xgN]∈RN×[(1+d)×K]. Then we can
obtain

y =Xgp. (13)

First, we assume that the data is divided into i = 1,⋯,M blocks and all the sources pi(∀i)
are mutually independent, and the density of each pi is Gaussian, given by

p (pi;𝛾i,Bi)∼N (0,𝛾iBi) , i = 1,⋯,M (14)

where 𝛾i is a nonnegative hyperparameter controlling the row sparsity of pi, representing the
correlation of the ith block of data. For smaller 𝛾i, the correlation pi is noise. When 𝛾i = 0, the
associated pi becomes 0. 𝛾iBi is the covariance matrix of pi. Bi is a positive-definite matrix
that captures the structure of the correlation of pi that needs to be estimated.
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Further, assuming that blocks are uncorrelated with each other, it can be modeled as

p (pi ∣ {𝛾i,Bi}) =N (x;0,𝚪), (15)

where

𝚪 =
⎡⎢⎢⎢⎢⎢⎣

𝛾1B1

⋱
𝛾MBM

⎤⎥⎥⎥⎥⎥⎦
. (16)

For the observation vector y, it is assumed to obey the following probability density
distribution

p(y ∣ 𝛽) =N (y;Xgp,𝛽–1I) . (17)

The posterior probability density and the likelihood function can be obtained by utilizing
Gauss’s constant equation.

p (p ∣ y,{𝛾i,Bi} ,𝛽) =N (p ∣ 𝝁,𝚺)
p (y ∣ {𝛾i,Bi} ,𝛽) =N (y ∣ 0,C)

(18)

where

𝚺–1 = 𝚪–1 +XT
g 𝛽Xg

𝝁 = 𝚺XT
g 𝛽y

C = 𝛽–1I +Xg𝚪XT
g

(19)

In order to estimate the covariates Bi, a two-type maximum likelihood approach can be
used to obtain the cost function L:

L ({𝛾i,Bi} ,𝛽)≜ –2 log p (y ∣ {𝛾i,Bi} ,𝛽)
= log |C| + yTC–1y.

(20)

Estimation of hyperparameters. Using a matrix to find the inverse equation, Eq (20) can
be written as

L =(
g

∑
i=1

log ∣𝛾iBi∣ –N log |𝛽| + log ∣𝚺–1∣)

+ (𝛽∥y –Xg𝝁∥22 + 𝝁T𝚪–1𝝁) .
(21)

Taking partial derivatives separately yields

𝜕L
𝜕𝛾i
= di𝛾i

– Tr
⎡⎢⎢⎢⎣

B–1
i (𝝁i𝝁T

i + 𝚺i)
𝛾2i

⎤⎥⎥⎥⎦
, ∀i

𝜕L
𝜕Bi
= B–1

i – 𝛾–1i B–1
i [𝚺i + 𝝁i𝝁T

i ]B–1
i , ∀i

𝜕L
𝜕𝛽 = –

N
𝛽 + Tr [𝚺X

T
gXg] + ∥y –Xg𝝁∥22.

(22)
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Furthermore, the updated formula can be obtained

𝛾i =
1
di

Tr [B–1
i (𝚺i + 𝝁i𝝁T

i )] , ∀i,

Bi =
[𝚺i + 𝝁i𝝁T

i ]
𝛾i

, ∀i

𝛽 = N
∥y –Xg𝝁∥2 + Tr [𝚺XT

gXg]
.

(23)

Algorithm 1 describes the entire process of BSBL-TSK-FS, and Fig 1 shows the framework
of the proposed approach.

Algorithm 1 Algorithm of BSBL-TSK-FS model.
Require: The training set X∈ RN×d, number of blocks M, number of fuzzy

rules K, adjustable parameter h;
Ensure: The prediction labels y∈ RN×1;
1: Determine the mean ckj and variance 𝛿kj using the FCM method;
2: Calculate the normalized fuzzy membership 𝜇̃m (xt) by Eq (6);
3: Construct the dataset Xg = [xg1;… ; xgi;… , xgN]∈ RN×[(1+d)×K] using the fuzzy

rules mapped to the new feature space, where xgt are obtained by Eq
(10);

4: Initialize 𝛾 and set 𝛾 = 1;
5: Initialize 𝛽 and set 𝛽 = 1e–2∥y∥2;
6: while ∥𝛾new–𝛾∥

∥𝛾∥ > 𝜂 do
7: Calculate 𝚺,𝝁 by Eq (19);
8: Calculate 𝛽, 𝛾i,∀i and intra-block correlation coefficient r by Eq

(23);
9: Calculate Bi,∀i by Eq (23);
10: Calculate C by Eq (19);
11: end while
12: Estimate sparse solution p = 𝝁, parameter estimation {𝛾iBi} and 𝛽.
13: Estimate Y by Eq (13).

Evaluation metrics
Model evaluation of methylation datasets is based on Matthews correlation coefficient
(MCC), specificity (SP), accuracy (ACC) and sensitivity (SN) [59–61]. Moreover, our model
was evaluated objectively by calculating the AUC [36]. There is a range of AUC values
between 0 and 1. Generally, models with higher AUCs perform better.
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