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Abstract 

Prior studies have shown that approximately 40% of estrogen receptor positive 

(ER+) breast cancer (BC) patients harbor immune signaling defects in their blood at 

diagnosis, and the presence of these defects predicts overall survival. Therefore, it 

is of interest to quantitatively characterize and measure signaling errors in immune 

signaling systems in these patients. Here we propose a novel approach combining 

communication theory and signal processing concepts to model ligand discrimination 

in immune cells in the peripheral blood. We use the model to measure the specificity 

of ligand discrimination in the presence of molecular noise by estimating the probabil-

ity of error, which is the probability of making a wrong ligand identification. We apply 

our model to the JAK/STAT signaling pathway using high dimensional spectral flow 

cytometry measurements of transcription factors, including phosphorylated STATs 

and SMADs, in immune cells stimulated with several cytokines (IFNγ, IL-2, IL-6, IL-4, 

and IL-10) from 19 ER+ breast cancer patients and 32 healthy controls. In addition, 

we apply our model to 10 healthy donor samples treated with a clinically approved 

JAK1/2 inhibitor. Our results show reduced ligand identification accuracy and higher 

levels of molecular noise in BC patients as compared to healthy controls, which 

may indicate altered immune signaling and the potential for immune cell dysfunction 

in these patients. Moreover, the inhibition of JAK1/2 produces a unique pattern of 

signaling dysfunction, inducing increased ligand detection error rates and reduced 

signal-to-noise ratios for most immune cell subtypes. These results suggest a means 

to improve the use of signaling kinase inhibitor therapies by identifying patients with 

favorable ligand discrimination specificity profiles in their immune cells.
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Author summary

Approximately 40% of estrogen receptor-positive breast cancer patients have 
problems in immune cell signaling at diagnosis, which can affect survival. This 
study introduces a new method using ideas from communication theory to 
understand how immune cells recognize signals (called ligands) in the blood. 
By modeling how accurately cells identify these signals despite the presence of 
molecular “noise,” we were able to measure the likelihood of errors in signal de-
tection in immune cells. We applied this communication model to analyze blood 
samples collected from breast cancer patients and healthy individuals, to reveal 
how cells respond to various immune-stimulating molecules. The results showed 
that breast cancer patients had more difficulty correctly identifying signals, 
suggesting their immune systems may not function properly. Additionally, when 
healthy cells were treated with a drug that blocks certain signaling pathways 
(JAK1/2), they showed similar issues in correctly identifying signals. These find-
ings could help tailor treatments by identifying patients whose immune cells are 
better at signal recognition and could lead to new perspectives on the causes 
and consequences of immune dysfunction in breast cancer.

Introduction

Precise and efficient communication between immune cells is essential for main-
taining homeostasis and for mounting effective immune responses to pathogens. 
Cytokine-mediated signaling is a fundamental mechanism through which cells 
exchange information, that can be conceptualized as a communication network 
where cells act as both senders and receivers of signals. Here we apply concepts 
of information transmission, reception, and processing from digital communication 
theory to quantitatively study the function—and dysfunction—of immune signaling 
networks in healthy homeostasis and in breast cancer. Previous studies have shown 
that approximately 40% of estrogen receptor positive (ER+) breast cancer (BC) 
patients harbor immune signaling defects in their blood at diagnosis, and the pres-
ence of these defects predicts overall survival [1–3]. It is therefore of interest to quan-
titatively characterize and measure signaling errors and molecular noise in immune 
signaling systems.

Cell signaling is composed of several precisely regulated steps: cells release 
signaling molecules, such as cytokines, which diffuse between cells to interact with 
receptors on target cells. Receptor engagement initiates a cascade of intracellular 
events, including phosphorylation of proteins, that act in concert to determine cellular 
function or behavior. These processes mirror key principles of communication theory, 
including signal generation, message encoding, transmission, and reception, which 
are essential components for understanding how information is conveyed and inter-
preted between cells, particularly within the immune system. Cells encode signals 
from ligands through STAT phosphorylation. For example, IL-10 stimulation results in 

and reproduction in any medium, provided the 
original author and source are credited.

Data availability statement: All relevant data 
and computational codes to reproduce all 
results are provided at https://github.com/
rrockne/BreastCancerSignalProcessing, https://
doi.org/10.5281/zenodo.16906422.

Funding: Research reported in this publication 
included work performed in the Analytical 
Cytometry and Biostatistics and Mathematical 
Oncology Shared Resources supported by 
the National Cancer Institute of the National 
Institutes of Health under grant numbers 
P30CA033572, U01CA232216. The content 
is solely the responsibility of the authors and 
does not necessarily represent the official views 
of the National Institutes of Health. The funders 
had no role in study design, data collection and 
analysis, decision to publish, or preparation 
of the manuscript. All authors received salary 
support from NIH grant number U01CA232216.

Competing interests: The authors have 
declared that no competing interests exist.

https://github.com/rrockne/BreastCancerSignalProcessing
https://github.com/rrockne/BreastCancerSignalProcessing
https://doi.org/10.5281/zenodo.16906422
https://doi.org/10.5281/zenodo.16906422


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013615  October 30, 2025 3 / 17

STAT3 phosphorylation, IL-2 induces STAT5 phosphorylation, and STAT3 is strongly phosphorylated by IL-6 [4–7]. How-
ever, we find that each cytokine induces a pattern of phosphorylation across multiple STATs/SMADs and these patterns 
encode information that enable ligand discrimination [8].

Integrating digital communication theory into the study of cell signaling provides a mathematically rigorous and struc-
tured approach to studying cell signal processing. By examining the probability of signaling error and signal-to-noise 
ratio, we can gain insights into the efficiency and accuracy of cellular communication in immune cells from healthy donors 
versus patients with breast cancer. This interdisciplinary perspective not only enhances our understanding of signal trans-
duction and cellular response mechanisms but also has significant implications for advancing research in immunology, 
and cell biology, and for therapeutic interventions which may interfere with, or may be designed to correct, errors in cell 
signaling. Here we study how communication theory principles can enhance our understanding of cell signaling alterations 
in peripheral blood immune cells from ER+ breast cancer, as compared to healthy donors.

Communication model

A growing number of studies have used information-theoretic approaches to analyze complex single-cell data and to under-
stand reliable communication in cell populations [9–14], and to compile a compendium of responses to cytokine stimuli 
[15]. Shannon's information theory [16], originally developed for digital communication systems, established fundamental 
limits on communication and information transmission. In Shannon's formulation, the basic problem of reliable transmission 
of information is stated in statistical terms, using probabilistic models for information sources and communication channels. 
At a high level, all communication systems have an information source (input) which sends a message, encoded or mapped 
into a unique signal by a transmitter. The signal is then transported from the transmitter to the receiver through a channel. 
Regardless of the physical medium used for transmission of the information, the main feature of the channel is that the trans-
mitted signal is corrupted in a random manner by a variety of mechanisms, such as additive noise. The receiver decodes the 
corrupted signal into a decoded message, which is consumed in turn by an information sink (output). Under the principles 
of information theory, reliable transmission of information is possible if the information rate from the source is less than the 
channel capacity, which is the maximal mutual information (MI) between the input and the output of the channel.

This communication model is general enough to be applied to systems other than digital communication systems, such 
as a cell communication system (Fig 1). An intuitive application to cellular signaling is that the source is a cell that secretes 
a cell-signaling protein or cytokine (the message), recognized by a receptor (the transmitter). The receptor initiates a sig-
naling pathway (the channel), which results in the activation of a transcription factor (the receiver). The transcription factor 
in turn induces gene expression (the output). When cells are stimulated with different cytokines, each cell may respond 
differently due to molecular noise, variations in ligand-receptor affinity, and other factors.

Here we focus on the JAK/STAT intracellular signaling axis [5], with each phosphorylation event of a STAT (pSTAT) 
or SMAD (pSMAD) molecule modeled as a random variable with an empirical distribution. Under a Gaussian distribution 
assumption, the problem of signal identification is similar to the problem of signal detection in digital communications, 
where the noise is assumed to be an additive, zero-mean Gaussian noise [17]. The main difference is that in digital 
communication systems, the set of possible transmitted signals is known, while in cellular communication systems, the 
signals carried by cytokines are unknown. Therefore, we must first define the cytokine-induced signals from the responses 
determined by the phosphorylation status of the STATs. With a zero-mean Gaussian noise assumption, the signal is 
given by the mean of the pSTAT responses; therefore, the Gaussian assumption is conveniently apropos. Then, the 
basic communication model for immune signaling in the JAK/STAT signaling pathway consists of signal generation, noisy 
channel transmission, and signal detection. The signal generation model maps each cytokine-induced signal to a multi-
dimensional vector with elements equal to the means of the transcription factor responses. This vector defines a unique 
pattern of response for each cytokine treatment, which we call a codeword. The noisy channel adds a zero-mean Gauss-
ian noise to the signaled codeword, and the detector performs optimal signal detection and identification, assuming the 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013615  October 30, 2025 4 / 17

“correct” signal is the mean of the pSTAT responses, which is unique to each sample and stimulation. We then compare 
characteristics of signal detection and identification in breast cancer samples to healthy donor controls to provide insights 
into immune dysfunction observed in breast cancer.

Unlike previous studies that applied information-theoretic concepts such as channel capacity or mutual information to 
determine how much information is transmitted through signaling pathways, we adopt the perspective of detection the-
ory to determine the specificity of signaling networks. As such, we view cytokine discrimination as the following inference 
problem to be solved by the cell: given the number of intracellular readout molecules, determine if an extracellular ligand 
is present, and decide on its type. We note that this is not a determination of a “biologically correct” response, rather, a 
correct determination of the noisy signal as presented to the cell, which in an in vivo context would likely depend on cell 
extrinsic factors.

Results

Profiling signaling response

To characterize the specificity of immune signaling responses in estrogen receptor positive (ER+) breast cancer patients, 
we analyzed peripheral blood mononuclear cells (PBMCs) from 51 subjects, 32 of which were healthy donors (HD), 
and 19 of which were newly diagnosed with ER+ breast cancer (BC) (Tables 1, A and B in S1 Text). We systematically 
treated the PBMCs with 5 different cytokines alone or in combination with a JAK1/2 inhibitor ruxolitinib to study signal-
ing responses. The cytokines included IL-2, IL-4, IL-6, IL-10, and IFNγ. After stimulation for 15 minutes, cells were fixed 

Fig 1.  Elements of a communication system and signal detection model. A digital communication system consisting of source, transmitter, channel, 
receiver, and sink is used to study a cellular communication system consisting of surface receptors, signaling pathways, transcription factors, and target 
gene expression. The communication system can be modeled as a signal detection problem consisting of signal generation and transmission through a 
channel before detection. Figure created with Biorender.

https://doi.org/10.1371/journal.pcbi.1013615.g001

https://doi.org/10.1371/journal.pcbi.1013615.g001


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013615  October 30, 2025 5 / 17

and stained with a panel of 27 different intra- and extracellular markers, analyzed with spectral flow cytometry, and gated 
into distinct cell populations. Transcription factor phosphorylation was quantified by pSTAT1, pSTAT3, pSTAT4, pSTAT5, 
pSTAT6, and pSMAD2/3. Cell surface markers were used to identify CD4 + T cell subsets including central memory 
(TCM) CD4 + CD45RA-CD27 + , effector memory (TEM) CD4 + CD45RA-CD27-, and naïve T-cells CD4 + CD45RA+CD27+ 
(similarly for CD8 + T cells), CD20 + B cells, naïve B cells CD19 + CD27-, classical monocytes CD14 + CD16-, and 
CD3-CD16 + NK cells. Only cell populations with at least 200 cells were included in the analysis. The gating strategy to 
identify cell populations is provided in Figs A and B in S1 Text.

Modeling ligand encoding and discrimination

Given the probabilistic nature of signal detection, we formulated the input signal (ligand) identification problem as a 
multi-hypothesis testing problem, where the receiver decides which of M = 6 signals is the input by choosing one of the 
following hypotheses Hi, H0: baseline (no cytokine stimulation), H1: stimulation with IL-4, H2: stimulation with IL-2, H3:  
stimulation with IL-10, H4: stimulation with IL-6, or H5: stimulation with IFNγ. The signal response space is the set of all 
responses (pSTAT1, pSTAT3, pSTAT4, pSTAT5, pSTAT6, pSMAD2/3) to all signals (Fig 2).

In order to compute the probability of correct ligand identification, we compute the probability of choosing the hypothe-
sis Hi given the true hypothesis Hj, (Qij). Then, the overall probability of error, Pe, is given by Pe =

∑M–1
j=0 P (Hj)

∑M–1
i=0, i ̸=j Qij 

where P(Hj) is the a priori probability of the hypothesis Hj. The optimal signal detector that minimizes the probability of 
error is called the maximum likelihood (ML) detector [17]. Details are provided in the Materials and Methods.

In addition to the overall probability of error, we used the signal-to-noise ratio (SNR) to characterize the specificity of the 
signaling response. In digital communication, SNR is a measure of fidelity of signal transmission and detection by receiv-
ers. There is a direct relationship between SNR and the probability of error in signal identification. Assuming a communi-
cation system with M  possible discrete signals transmitted under an additive white Gaussian noise channel, the measured 
response to a discrete signal m is given by: x = m+ z where z is a zero-mean Gaussian random variable with variance σ2. 
The SNR is then given by SNR =

E[m2]
σ2 , where E

[
m2

]
= 1

M

∑M–1
i=0 m

2
i  if the signals are equiprobable.

Examination of ligand identification error rates in healthy donors and ER+ breast cancer patients

We applied our communication model to calculate the probability of error and the signal-to-noise ratio, to characterize the 
specificity of ligand identification for each sample and cell type and compared BC to HD (Fig 3). This analysis reveals how 

Table 1.  Summary of data. Flow cytometry gating strategy provided in S1 Text.

Category Details

Subjects 51 total: 32 Healthy Donors (HD), 19 ER+ Breast Cancer 
(BC) patients

Sample Type Peripheral Blood Mononuclear Cells (PBMCs)

Treatments 5 cytokines (IL-2, IL-4, IL-6, IL-10, IFNγ) ± JAK1/2 inhibitor 
(Ruxolitinib)

Stimulation Time 15 minutes

Analysis Method Spectral Flow Cytometry

Markers Used 27 intra- and extracellular markers

Signaling Transcription Factors pSTAT1, pSTAT3, pSTAT4, pSTAT5, pSTAT6, pSMAD2/3

Cell Populations CD4 + T cells (TCM, TEM, naïve), CD8 + T cells (TCM, 
TEM, naïve), CD20 + memory B cells, naïve B cells 
(CD19 + CD27-), classical monocytes (CD14 + CD16-), NK 
cells (CD3-CD16+)

Minimum Cell Count for Inclusion ≥ 200 cells per population

https://doi.org/10.1371/journal.pcbi.1013615.t001

https://doi.org/10.1371/journal.pcbi.1013615.t001
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immune cell populations differ in both the signal fidelity (SNR) and probability of signal identification error between BC and 
HD. Naïve CD4 + T cells and classical monocytes showed the largest error rates, with classical monocytes having lower 
SNR as compared to CD4 + T cells. Naïve CD8 + T cells showed lower SNR and higher error rates in BC as compared to 
HD. In contrast, classical monocytes show the same range of SNR for BC and HD but differ by an order of magnitude in 
the probability of error. Other cell types, such as naïve B cells, show overlapping SNR and error rates, with some healthy 
donor naïve B cells showing error rates exceeding those of breast cancer patients. NK cells showed the widest range of 
both SNR and error rates for both HD and BC. We observed increased error rates and reduced SNR for BC as compared 
to HD for nearly all immune cell subtypes (Fig 3B). SNR and Pe graphs for CD4 + , CD8 + T, and B cell subsets are pro-
vided in Figs C-E in S1 Text.

Immune signaling error profiles

In order to compare the profile of signaling error rates across all cell types in ER+ breast cancer patients, we plotted the 
SNR and Pe values together on common SNR-Pe axes (Fig 4A). When compared directly, the cells grouped into 4 dis-
tinct regions, consisting of combinations of low and high SNR and Pe, with classical monocytes showing low signal and 
high error, CD4 + T cells and central and effector memory subsets showing high signal and high error, B cells (naïve and 

Fig 2.  Illustration of experiment, measurement, modeling, and analysis process. Peripheral blood mononuclear cells from healthy donors and ER+ 
breast cancer patients were subjected to stimulation with one of 5 cytokines for 15 minutes. Cell surface markers and intracellular proteins were ana-
lyzed with spectral flow cytometry to establish cell identity and to measure response to cytokine stimulation. The response to any one of the cytokines is 
modeled as a sum of signal and noise. All stimulations and responses are combined to create a 6-dimensional signal response space, illustrated here in 
3 dimensions. The probability of error, or signal misidentification (Pe), and signal-to-noise ratio (SNR) are computed from the signal response space for 
each sample and compared across cell types, healthy donors, and breast cancer patient samples. Figure created with Biorender.

https://doi.org/10.1371/journal.pcbi.1013615.g002

https://doi.org/10.1371/journal.pcbi.1013615.g002
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memory) showing high signal and low error, and CD8 + T cells (including TCM and TEM) showing low signal and low error. 
To quantitatively compare these profiles for both BC and HD samples, we performed hierarchical clustering on the nega-
tive log transformed Pe values (Fig 4B). This analysis reveals a clear separation between BC and HD in terms of signaling 
specificity (columns), with a higher overall probability of signal misidentification in BC compared to HD, as well as similar-
ity of cell types (rows), with B, CD4 + , and CD8 + cells clustering together. This analysis reveals patterns of signal detec-
tion errors across immune cell types that are similar across HD and BC samples.

In addition to the probability of error, we examined error rates for pairs of ligands, which gives rise to a confusion 
matrix. For many cell types, the confusion analysis resulted in small variations for most pairs of ligands, however, the 
analysis revealed that IL-2 and IL-4 pair-wise error rates dominate the overall probability of error in naïve CD4 + T cells. In 
other words, IL-2 and IL-4 are more likely to be confused one for another compared to the other cytokine pairs. The analy-
sis also indicates a trend in elevated pair-wise error rates between IL-2 and IL-4 in CD4 + TCM cells and NK cells (S1 Figs 
F-K in S1 Text). No statistically significant correlations were found between signaling error rates or SNR with patient age, 
tumor stage, or receptor expression.

Signaling detection alterations induced by JAK inhibition

In order to investigate the impact of signaling kinase inhibition on ligand identification error rates and signal fidelity, we 
treated 10 of the healthy donor samples with a clinically approved JAK1/2 inhibitor, ruxolitinib. JAK1/2 inhibition increased 
the identification error rate and decreased the signal fidelity (increased noise) in all immune cell subtypes, resulting in a 

Fig 3.  Probability of error and signal-to-noise ratio are altered in peripheral blood immune cells in ER+ breast cancer patients as compared to 
healthy donors. A. Signal detection is characterized by Pe and SNR for naïve CD4 + , CD8 + , T cells, naïve B cells, NK cells, and classical monocytes 
in peripheral blood samples from 19 ER+ breast cancer patients and 32 healthy donors. Each datapoint corresponds to one healthy donor (grey) or ER+ 
breast cancer (blue) sample, integrating 6 different phosphorylation events from each of the 5 cytokine stimulations and baseline (no stimulation). B. 
Pairwise comparisons of the negative log transformed probability of error (–log10(Pe)) and SNR for HD and BC for each cell subtype (unpaired t-tests 
adjusted for multiple comparisons, ∗p < 0.05). For illustration in bar graphs, samples with Pe = 0 have –log10 (Pe) : = 6.

https://doi.org/10.1371/journal.pcbi.1013615.g003

https://doi.org/10.1371/journal.pcbi.1013615.g003
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pattern of signaling dysregulation distinct from both controls and BC samples (Fig 5A). Ruxolitinib increased the cell-type 
specific error rate in several cell types beyond those observed in BC samples, including classical monocytes, memory 
and naïve B cells, and CD8 + T cells, with the notable exception of Naïve CD4 + T cells, which showed a drastic decrease 
in signal fidelity but no change in error rate. JAK1/2 inhibition resulted in decreased SNR for all cell types as compared to 
BC and control samples (Fig 5C,D).

To compare the immune cell types to each other, we plotted the ruxolitinib samples together on common SNR-Pe axes 
(Fig 5B). This analysis revealed the stark differences in effect of the ruxolitinib by cell type, with classical monocytes and 
CD8 + T cells (including naïve, TEM, and TCM subsets) having the largest error rates and smallest SNR. In contrast, 
CD4 + T cells (including naïve, TEM, and TCM subsets) showed the smallest error rate and maintained a relatively large 
SNR.

Discussion

We have presented a communication model to quantify signal fidelity and error rates based on digital communication 
theory and shown that immune cells in the peripheral blood of ER+ breast cancer patients exhibit increased ligand identi-
fication error rates and reduced signal fidelity as compared to healthy controls. We observed patterns of ligand detection 
error rates across immune cells, suggesting that a higher probability of ligand misidentification in BC patients may be an 

Fig 4.  Patterns of signaling error rates and SNR across immune cells in ER+ breast cancer. A. Immune cells cluster in Pe and SNR by type and 
can be grouped into low and high signal and error combinations. B. Hierarchical clustering of signaling error across immune cell subtypes reveals pat-
terns of error rates (columns) and increased error rates across immune cell subtypes (rows) that distinguish breast cancer samples from healthy donors. 
Colorbar indicates row-wise z-score.

https://doi.org/10.1371/journal.pcbi.1013615.g004

https://doi.org/10.1371/journal.pcbi.1013615.g004
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indication of altered immune signaling, potentially leading to immune dysfunction in BC patients. This leads us to hypoth-
esize that BC patients that have lower signal detection error rates could have better prognoses through improved immune 
system functioning. In contrast, signaling kinase inhibiting therapies such as clinically approved JAK inhibitors may induce 
immune system dysregulation through reduction of SNR and amplification of Pe, which could be unintended downstream 
consequences of JAK suppression [7]. Specifically, we observed that JAK1/2 inhibition resulted in a pattern of immune 
signaling dysregulation different from controls or BC samples, with statistically significant increases in error rates and 
decreases in SNR observed in all cell types as compared to BC samples, with the notable exception of the error rates in 
CD4 + T cell subsets as relative to controls (Figs 5D and P in S1 Text).

Fig 5.  JAK1/2 inhibition induces error rates and reduces SNR in healthy donors to levels comparable to breast cancer. A. Immune cell sub-
types for ER+ breast cancer samples (blue), healthy donors (grey) and a subset of 10 healthy donor samples also treated with ruxolitinib (red). Signal 
detection error rates are increased, and signal fidelity is decreased in all cell subtypes except for the error rate in naïve CD4 + T cells. B. Plotting the 10 
samples treated with ruxolitinib on the same SNR-Pe axes reveal relative error and signal fidelity characteristics. C. Comparisons of SNR and error rates 
for all cell subtypes in BC, HD, and HD + rux, and D. comparison of HD and HD + rux (unpaired t-tests adjusted for multiple comparisons, ∗p < 0.05). For 
illustration in the bar graphs, samples with Pe = 0 have –log10 (Pe) : = 6.

https://doi.org/10.1371/journal.pcbi.1013615.g005

https://doi.org/10.1371/journal.pcbi.1013615.g005
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Although prior studies have applied concepts from information and communication theory to characterize cell signaling 
[9,12,13,18–23], this work is the first to provide a measurement of ligand detection probability as a function of the signal-
to-noise ratio by integrating the response of multiple transcription factors to multiple stimuli, thus enabling a more holistic 
view of signaling responses across multiple cell types.

Several prior experimental and theoretical studies have shown that pSTAT abundance and signal transduction 
peak around 15 minutes following cytokine stimulation [24–28]. We therefore hypothesized that signal detection 
accuracy should be maximized, and consequently, the probability of error minimized, at or around this timepoint. We 
note that signaling errors may be detected and subsequently corrected after STAT phosphorylation events and prior 
to protein production or other functional events such as proliferation, exhaustion, or microenvironmental factors. As 
a potential explanation for the signaling errors we observed, we explored the potential connection between receptor 
expression and SNR and Pe  through correlation analysis, as several prior studies have identified receptor dimeriza-
tion to be a key mechanism of ligand discrimination [8,29–34]. We found no consistent patterns across cell types or 
receptors for either healthy donors or BC samples that would explain differences observed in either SNR or Pe  (Figs 
L-O in S1 Text).

A limitation of this work is the focus on intracellular signaling events, without analysis of their downstream conse-
quences, such as proliferation or T cell exhaustion. As a foundational study, our primary aim was to establish the valid-
ity and applicability of this communication modeling framework to the well-characterized first steps of the cell signaling 
process in a controlled experimental setting. Because the detection error rate is calculated by integrating the signaling 
response of 5 cytokine stimulations individually, we interpret the error rate as the probability that a cell incorrectly identi-
fies an isolated signal/ligand and does not consider the case when multiple ligands are presented simultaneously, as is 
likely the case in vivo. Moreover, the study of cell response to cytokine stimulation in an ex vivo context may not reflect 
response in an in vivo context. It is difficult, perhaps technically impossible at the time of this study, to measure the 
response of a cell to multiple simultaneous signals in an in vivo setting. However, our observations of orders of mag-
nitude differences in SNR and Pe in several cell types suggest cell intrinsic mechanisms of signaling alterations in BC 
patients. As such, investigation into the functional outcomes of signaling errors, the establishment of a critical error rate, 
and the application of these methods to an in vivo setting remain outstanding questions and form the foundation for future 
research.

Although causality cannot be inferred from our data, we reason that signaling alterations observed in ER + BC patients 
compared to healthy controls may be explained by inflammatory and cellular stress mechanisms induced by the pres-
ence of breast cancer. Elevated blood levels of IL-6 and IL-10 in ER + BC suggest a pro-inflammatory environment that 
can chronically activate pathways such as IL-6/STAT3, which are known to correlate with poorer survival outcomes and 
may reflect more aggressive disease states [1,2,35]. Prolonged exposure to elevated IL-6 and other cytokines circulating 
in the peripheral blood can induce changes in cell membranes, potentially affecting signal transduction without altering 
receptor expression [36]. This immune stress and persistent inflammation may contribute to increased cellular entropy and 
systemic immune signaling dysregulation, which are known hallmarks of cancer [37]. Together, these factors may create 
a milieu in which signaling pathways are disrupted, even in the absence of changes in receptor levels, highlighting the 
impact of cytokine-driven stress and tumor-induced disruption and entropy in cellular communication, resulting in changes 
to SNR and increased signal detection error rates.

One significant finding of our analysis is the contrast in signaling characteristics between CD4+ and CD8 + T cells. 
CD4 + T cells, including naïve, effector, and central memory subsets, stand out as having the highest error rates in BC, 
despite also showing large SNR, and yet, CD4 + T cells appear to be the least sensitive to JAK1/2 inhibition, with a 
reduced SNR but no change in the detection error rate. An intriguing aspect of this analysis is the pairwise error anal-
ysis which reveals the elevated potential for IL-2 versus IL-4 signal misidentification in CD4 + T cells in breast cancer 
patients. In comparison, CD8 + T cells have a low SNR and low error rate, and yet are extraordinarily sensitive to 
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JAK1/2 inhibition, with orders of magnitude increase in error rate and the most drastic decrease in SNR. We hypothe-
size that due to their cytolytic function, CD8 + T cells require more stringent activation signals involving co-stimulation to 
avoid killing healthy cells, leading to more refined signal transduction pathways. This would correspond to the observed 
lower SNR and higher detection error rates for isolated, single cytokine stimulations in our experimental conditions. 
This is in contrast to CD4 + T cells, which differentiate into multiple helper subsets and therefore may have more broad 
functional consequences of signaling, corresponding to more specific responses to single cytokine stimulations with 
higher SNR and lower detection error rates. These dynamics suggest complex signaling interplay between T cell sub-
sets that may provide avenues for the identification of patients with favorable immune signaling profiles or for therapeu-
tic targeting.

Materials and methods

Ethics statement

Peripheral blood samples were obtained from breast cancer patients treated at City of Hope National Medical Center in 
Duarte, California, in compliance with protocols approved by the Institutional Review Board with informed consent (IRB 
21368 and 19186).

Human peripheral blood samples

The study cohort consisted of individuals with newly diagnosed breast cancer, all of whom were estrogen receptor-
positive (ER+), progesterone receptor-positive (PR+) and HER2/neu receptor-negative (HER2-), grade Ia-IIb, with a 
mean age of 57.3 years at diagnosis (range 35–76 years). All samples were obtained prior to treatment. TNM tumor 
staging and percent positive ki67 staining were collected for each patient. A summary of patient characteristics is 
provided in Table A in S1 Text. Blood was collected in EDTA-treated tubes. Peripheral blood mononuclear cells were 
subsequently isolated using Ficoll-Paque density gradient centrifugation (Cytiva, Marlborough, MA, USA), following 
the manufacturer’s protocol. The isolated PBMCs were cryopreserved in a solution containing 10% dimethyl sulf-
oxide (DMSO) and fetal bovine serum (FBS). Age-matched healthy control samples were acquired from the City of 
Hope Blood Donor Center.

Cell culture

Cryopreserved PBMCs were carefully thawed and incubated overnight (16 hours) in RPMI 1640 medium, enriched with 
10% fetal bovine serum and 1% penicillin-streptomycin-glutamine (PSG), under controlled conditions (37°C, 5% CO2). 
Cell counts and viability assessments were conducted using a hemocytometer and trypan blue exclusion method (Sigma-
Aldrich). Subsequently, the cells were cultured in a 96 deep-well plate at densities ranging from 0.5 to 1 × 106 cells/ml in 
fresh RPMI 1640 medium (Thermo Fisher Scientific Inc., MA, USA).

Cytokine stimulation

Following a resting period, PBMCs were cultured either untreated, stimulated with cytokine alone, or in combination with 
0.1 mmol/L ruxolitinib (Cayman Chemical, Ann Arbor, MI, USA), a selective Janus kinase (JAK) 1/2 inhibitor. Cytokines 
included IFNγ (50 ng/ml), IL-10 (50 ng/ml), IL-2 (50 ng/ml), IL-6 (50 ng/ml), or IL-4 (50 ng/ml) (PeproTech, Rocky Hill, NJ, 
USA) at 37°C for 15 minutes. Following stimulation, cells were fixed with 1.5% paraformaldehyde (PFA) for 10 minutes 
at room temperature to preserve cellular structures and signaling intermediates. Fixed cells were then washed with 
phosphate-buffered saline (PBS) and permeabilized using ice-cold 100% methanol. Methanol-treated cells were stored 
at -80°C until further analysis. Before antibody staining, the fixed and permeabilized cells were washed three times with 
staining buffer (PBS supplemented with 1% fetal bovine serum).
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Phospho flow cytometry

Phospho flow cytometry was performed using the following antibodies: STAT4-AF647 (clone 38/p-Stat4), CD14-
APC-Cy7 (clone HCD14), CD20-AF700 (clone H1), STAT6-V450 (clone 18/pStat6), PD-L1-BV510 (clone 29E.2A3), 
CD3-BV570 (clone UCHT1), PD1-BV605 (clone EH12.1), CD33-BV750 (clone p67.6), CD27-BV786 (clone L128), 
CD45RA-BUV395 (clone HI100), CD4-BUV563 (clone SK3), CD16-BUV737 (clone 3G8), CD8-BUV805 (clone SK1), 
STAT3-AF488 (clone 4/p-Stat3), STAT1-Percp-Cy5.5 (clone 4a), SMAD2/3-PE (clone O72-670), Foxp3-PE-CF594 (clone 
259D/C7), and STAT5-PE-Cy7 (clone 47). Antibody dilutions were prepared according to the manufacturer’s instructions 
and optimized through preliminary experiments to achieve optimal staining. The incubation was conducted for 45 minutes 
at room temperature. All antibodies were sourced from BioLegend (San Diego, CA, USA) or BD Biosciences (Franklin 
Lakes, NJ, USA).

Data acquisition and gating strategy

Stained cells were analyzed using a Cytek Aurora flow cytometer, equipped with lasers at 355 nm, 405 nm, 488 nm, 
561 nm, and 640 nm. Compensation settings were established using single-stain controls along with a negative control. 
Data acquisition was conducted at a rate of 1000 events per second, with between 50,000 and 100,000 events collected 
per sample. Gating strategies for cell population identification are provided in Figs A and B in S1 Text

Data processing

Because we observed that pSTAT or pSMAD measurements did not always follow a Gaussian distribution, with their 
observed distribution tending closer to a log-normal distribution, all pSTAT/pSMAD measurements were first transformed 
with a log-like transformation (eq. 1). Then the transformed measurements were fit to a Gaussian mixture (GM) with 
two components. Each component is a multivariate normal distribution, where each variate corresponds to one of the 6 
signaling molecules (5 pSTATs and pSMAD2/3). The log-transformed measurements together with knowledge of the GM 
parameters were fed to the optimal detector in a Monte-Carlo style simulation to obtain the probability of correct signal 
detection, or equivalently, the average probability of error in each analyzed signaling system. Here, one signaling system 
refers to the signaling pathway corresponding to one HD or BC patient and one cell type.

All pSTAT/pSMAD response data were log transformed as:

	 xi(k) = log (di(k) – αi(k) + 1) , 0 ≤ i ≤ M – 1, 1 ≤ k ≤ K 	 (1)

where di(k) is the measured response of the kth pSTAT/pSMAD to the ith treatment, M = 6 is the number of treatments (5 
cytokines and untreated case), and αi(k) is a parameter found by taking the minimum over all di(k) measurements belong-
ing to a given cell type and donor category (HD or BC). A global offset αi(k) – 1 was introduced to ensure the argument of 
the log function is greater or equal to one, since di(k) – αi(k) ≥ 0.

Measurement data was organized in comma separated value (.csv) files, one file per subject, cytokine treatment, and 
cell type, provided in S1 Text. Given the large amount of data, the measurements were consolidated in structure arrays, 
one per HD/BC subject, cell type, and cytokine treatment. Each field in the structure array is a matrix with K = 6 columns 
(one column for each pSTAT/pSMAD) and Ni rows, where Ni is the number of gated cells for the ith cytokine treatment.

Gaussian mixture modeling

GM modeling assumes that the log-transformed responses have a multi-variate Gaussian mixture distribution with two 
components. That is, the probability density function (PDF) of xi = [xi(1), xi(2), . . . xi(K)] is given by:

	 p (xi) = ρiℵ (m1,i,Σ1,i) + (1 – ρi)ℵ (m2,i,Σ2,i) ,	 (2)
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where ℵ (m1,i,Σ1,i) and ℵ (m2,i,Σ2,i) are multi-variate Gaussians with means m1,i  and m2,i , and covariance matrices Σ1,i 
and Σ2,i respectively, and 0 ≤ ρi ≤ 1 is the mixing parameter. The means, covariance matrices, and mixing parameters 
were obtained from the log-transformed measurements using the MATLAB function “fitgmdist,” which implements the 
Expectation-Maximization algorithm.

Probability of error computation

In order to compute the probability of error, let Qij = P(Hi|Hj) be the probability of choosing the hypothesis Hi given the 
true hypothesis Hj. Then, the overall probability of error, Pe, is given by Pe =

∑M–1
j=0 P (Hj)

∑M–1
i=0, i ̸=j Qij where P (Hj) is the a 

priori probability of the hypothesis Hj. The optimal signal detector that minimizes the probability of error under the Bayes 
strategy is one that maximizes the probability of observed data under the hypothesis Hi. More precisely, suppose that x 
is the multi-variate observation and p(x|Hi) are the conditional probability density functions (PDFs) of x under Hi. More-
over, assume equiprobable hypotheses, i.e., P (Hi) = 1/M , which is a reasonable assumption in the absence of prior 
information on the frequencies of Hi. Then, the optimal detector decides Hi if p(x|Hi) is maximized. That is, it decides Hi if 
p (x

∣∣Hi) > p (x
∣∣Hj) , for all j ≠ i. This detector is called the maximum likelihood (ML) detector [17].

To evaluate the average error probability for one sample and one cell type, all the log-transformed pSTAT/pSMAD 
responses for all hypotheses (M  matrices Xi  of size Ni × K, 0 ≤ i ≤ M – 1) were fed into a simulator that implements the 
ML detector and accumulates the number of detection errors over all the simulated trials (N =

∑M–1
i=0 Ni). In this simulator 

implementation, one trial corresponds to a single cell response for each hypothesis, i.e., a row in theXi matrices. The sim-
ulation loops over each hypothesis Hj, 0 ≤ j ≤ M – 1 and each trial n, 1 ≤ n ≤ Nj , and computes the conditional probability 
of the hypothesis Hj (the measured response Xj(n)) given the hypothesis Hi, 0 ≤ i ≤ M – 1. With the GM assumption, this 
conditional probability is given by:

	 p (Hj|Hi) = ρip (Xj(n)|m1,i) + (1 – ρi) (Xj(n)|m2,i)	

where

	
p (Xj(n)|m1,i) =

1√
(2π)Mdet(Σ1,i)

exp
{
–
1
2
(Xj(n) –m1,i)Σ

–1
1,i (Xj(n) –m1,i)

T
}

	

	
p (Xj(n)|m2,i) =

1√
(2π)Mdet(Σ2,i)

exp
{
–
1
2
(Xj(n) –m2,i)Σ

–1
2,j (Xj(n) –m2,i)

T
}

	

m1,i  and m2,i  are the signals corresponding to the hypothesis Hi and Σ1,i and Σ2,i are the noise covariance matrices corre-
sponding to the hypothesis Hi.

Then, the ML detector selects the hypothesis Hi∗ such that the conditional probability p (Hj|Hi) is maximized:

	 i∗ = argmax
{
p (Xj(n)|Hi) , 0 ≤ i ≤ M – 1

}
.	

If i∗ ̸= i, we declare a detection error and a counter in a M×M error matrix Q is incremented at the index (i∗, i). Otherwise, 
a correct decision is made and the counter at the index (i, i) is incremented in the error matrix. Finally, the conditional 
probability Qij, the probability of choosing the hypothesis Hi given the true hypothesis Hj is estimated from Qij =

Q(i,j)
N , and 

the overall probability of error Pe is given by Pe = 1 – Pc = 1 –
∑M–1

i=0 P (Hi)Qii . Note that the confusion matrix is the matrix 
having the element indexed by ith row and jth column equal to the conditional probabilities Qij.
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Signal-to-noise ratio computation

SNR is a dimensionless ratio of signal power PS  to noise power PN. We extend the SNR definition to the GM mixture 
model as follows. We assume a communication system with M  possible signals which is described by the following 
relationship:

	
x =

{
m1 + z1 with probability ρ
m2 + z2 with probability 1 – ρ	

That is, under the hypothesis Hi, the transmitted signal is equal to m1,i with probability ρi and it is equal to m2,i with prob-
ability 1 – ρi . Similarly, under the hypothesis Hi, the noise is z1i  with probability ρi and it is z2i  with probability 1 – ρi , where 
z1,i  is a zero-mean Gaussian random variable with variance σ21,i  and z2i  is a zero-mean Gaussian random variable with 
variance σ22,i .

Then, for a Gaussian mixture with two components, the SNR can be expressed as:

	
SNR =

∑M–1
i=0 (ρim2

1,i + (1 – ρi)m2
2,i)∑M–1

i=0 (ρiσ
2
1,i + (1 – ρi)σ

2
2,i)

.
	

Finally, we generalize the above expression for the multivariate signal case, where under the hypothesis Hi, the transmit-
ted signal is equal to m1,i  with probability ρi and it is equal to m2,i  with probability 1 – ρi . The noise corrupting the signal 
m1,i  is a zero-mean multivariate Gaussian noise with covariance matrix Σ1,i, and the noise corrupting the signal m2,i  is a 
zero-mean multivariate Gaussian noise with covariance matrix Σ2,i. Under these assumptions, the SNR becomes:

	
SNR =

∑M–1
i=0 (ρim1,imT

1,i + (1 – ρi)m2,imT
2,i)∑M–1

i=0 (ρiTrace(Σ1,i) + (1 – ρi)Trace(Σ2,i))
.
	

All communication model simulations and analyses were performed in MATLAB. Correlation and statistical analyses 
were performed in Prism Graphpad 10.4.0. Note that it is customary to express SNR in decibels (dB), where the relation 
between linear SNR and SNR in dB is given by SNRdB = 10log10SNR.

Supporting information

S1 Text.  Table A. Breast cancer patient characteristics. Table B. Healthy donor characteristics. Fig A. Identification 
of PBMCs, single cells, live cells, and T, myeloid, monocyte, and B cell populations. Fig B. Identification of T cell 
subsets. Fig C. Signal error and SNR for CD4 + T cell subsets. Fig D. Signal error and SNR for CD8 + T cell subsets. 
Fig E. Signal error and SNR for B cell subsets. Fig F. Confusion matrix for CD4 + TCM cells given by –ln (Pe). The 
most likely signal confusion is between IL-4 and IL-2 cytokine stimulation, followed by INF-γ and IL-2. Fig G. Confu-
sion matrix for CD16 + NK cells given by –ln (Pe). The most likely signal confusion is between IL-4 and IL-2 cytokine 
stimulation. Fig H. Confusion matrix for CD8 + T cells given by –ln (Pe). The most likely signal confusion is between 
untreated and IL-10 IL-2 cytokine stimulation, followed by IL-2 and INF-γ. Fig I. Confusion matrix for naïve B cells 
given by –ln (Pe). The most likely signal confusion is between IL-6 and IL-10 cytokine stimulation, followed by IL-6 and 
IL-2. Fig J. Confusion matrix for classical monocytes given by –ln (Pe). The most likely signal confusion is between 
IL-6 and INF-γ cytokine stimulation, followed by IL-6 and IL-10. Fig K. Confusion matrix for CD20 + B cells given by 
–ln (Pe). The most likely signal confusion is between IL-10 and IL-2 cytokine stimulation. Fig L. Probability of error 
receptor expression correlation analysis. Receptor expression was correlated with Pe for each cell type in all HD 

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013615.s001
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samples (n = 32, top) and BC samples (n = 19, bottom). Statistically significant positive correlations are shown in green 
and negative correlations are shown in red (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001, ∗ ∗ ∗ ∗ p < 0.0001). Fig M. Signal-
to-noise receptor expression correlation analysis. Receptor expression was correlated with SNR for each cell type in 
all HD samples (n = 32, top) and BC samples (n = 19, bottom). Statistically significant positive correlations are shown 
in green and negative correlations are shown in red (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001, ∗ ∗ ∗ ∗ p < 0.0001). Fig N. 
Correlation analysis of receptor expression rSNR on classical monocytes with overall SNR in breast cancer samples. 
Statistically significant correlations were found in expression levels of CD130, CD119, CD122, CD210, and CD132 
on classical monocytes in breast cancer samples (n = 19). CD130, CD119, and CD122 were positively correlated, and 
CD210 and CD132 were negatively correlated. Because overall SNR is computed by integrating all pSTAT responses 
from all cytokine stimulations, these correlations do not explain differences observed between healthy donors and BC 
samples; moreover, classical monocytes show the lowest SNR in HD and BC samples for any immune cell subtype. 
Fig O. Correlation analysis of PDL and PD1 expression rSNR on NK cells with Pe and overall SNR in healthy donors 
and breast cancer samples. Because of the clinical relevance of PDL1 and PD1 expression on immune cells, we 
examined the correlation of PD(L)1 expression levels in NK cells for healthy donors (n = 32) and breast cancer (n = 19) 
samples. Neither PDL1 nor PD1 were consistently correlated with Pe or SNR in either healthy donors or breast cancer 
samples. The significance of the correlation is driven by large outliers in Pe and small outliers in SNR. Fig P. Signaling 
profiles of ruxolitinib as compared to BC. Statistical comparisons of A. signal-to-noise ratio and B. error rates for all 
immune cell types for ruxolitinib (red) and breast cancer samples (blue) shown in main text Fig 5C (unpaired t-tests 
adjusted for multiple comparisons, ∗p < 0.05).
(DOCX)
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