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Abstract
Cancer metastasis, which requires migration of cancer cells away from the primary
tumor, is responsible for approximately 65% percent of cancer-related deaths. There-
fore, targeting signaling pathways that drive cancer cell migration or proliferation is a
common therapeutic approach. Cell migration is commonly studied using experimen-
tal approaches which track cells or cell monolayers as they evolve over time. Computa-
tional modeling can then be used to fit partial differential equation (PDE) models to the
data, providing mechanistic insights underlying the observed cell motion, including the
contribution of various cellular behaviors such as random motion, directed motion, and
cell division. A popular experimental technique, the scratch assay, measures the migra-
tion and proliferation-driven cell closure of a scratch in a confluent cell monolayer. How-
ever, these assays do not disambiguate between different drivers of scratch closure (for
instance between cell proliferation and migration to open space). To improve analysis
of this technique, we combine scratch assays, video microscopy, and PDE inference to
gain quantitative insight to mechanisms of cell migration and proliferation. We capture
the evolution of cell density fields over time using live-cell microscopy and automated
image processing. Our PDE inference methods involve the use of weak form-based sys-
tem identification techniques for cell density dynamics modeled with advection-diffusion-
reaction systems. We then compare our method with recent modeling work, finding
that our model discovery tool automatically identifies similar models including reaction
and diffusion terms from a larger set of bases. We demonstrate the application of this
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framework on 2-dimensional scratch assays subject to the inhibiting effect of trametinib
on wound closure and characterize the results in the context of the quantified uncertainty
in our inference approach. Our integrated experimental and computational pipeline can
be used to rapidly identify and refine models of cell migration in a variety of contexts,
enabling the quantitative measurement of the effect of drugs and other perturbations on
cell migration and proliferation with uncertainty accounted for.

Author summary
Collective cell migration underlies a wide range of biological phenomena, from cancer
migration to tissue regeneration. Mathematical models, based on random and directed
cell motion and cell birth or death, have been used to understand cell migration in a
variety of contexts. However, such models can be time consuming to develop. Here, we
advance a model discovery tool which rapidly and automatically identifies parsimonious
models of cell migration. We validate our tool against previously analyzed data, and then
deploy it to model cell migration in the presence or absence of a chemotherapeutic drug.
We find that the drug reduces random cell migration by approximately 40%. We envision
our tool being used to rapidly identify quantitative models of cell migration to compare
the effects of new drugs or genetic perturbations.
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1. Introduction
Cell migration is a complex, multiscale phenomenon that integrates many different inputs
and cell behaviors, including directed and random motion, that are differentially regulated
by signaling kinases, cell density, and other factors [1,2]. Cell migration helps maintain or
form tissues or monolayers both in vivo and in vitro [3,4]; cell division also contributes to the
development or maintenance of these multicellular structures. Further, cell migration is asso-
ciated with cancer metastasis, and therefore is commonly studied in the context of oncogenic
mutations or cancer treatments.

Inferring relationships between perturbations such as drugs or genetic modifications
and migratory outputs is challenging. Such perturbations could affect one or more differ-
ent drivers of cell migration, potentially in different ways, with difficult-to-predict overall
effects. Cell migration is commonly measured using scratch assays, where a monolayer of
cells is scratched to physically remove cells in a localized region [5]. Subsequently, migration
into the newly emptied space is measured over time. These measurements are commonplace
in biological research, and have, for instance, been used to identify novel inhibitors of cell
migration or genes responsible for regulating migration [6,7]. However, typically the com-
plexity of cell migration is reduced to a single number, which represents the amount of space
filled in a given time or the distance traveled by the leading edge of cells [8–10]. This reduc-
tion to a single number obscures the behavioral changes that modify migration and could,
for instance, fail to identify differences between drugs that inhibit migration to the same
degree, but through the modulation of either directed migration or cell proliferation. Thus,
the utility of scratch assays could be improved by identifying relationships between biological
perturbations and specific biological effects.
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Computational and mathematical modeling of cell migration has been used to extract
granular, quantitative information from scratch assays. First-principles modeling has estab-
lished a variety of partial differential equation (PDE) models that accurately represent the
behavior of scratch assays with a high cell density and under a variety of conditions. [11,12]
These models commonly include reaction terms, which represent cell proliferation or death,
and diffusion terms, which represent random cell motion, with various functional forms. For
example, some models use a reaction equation corresponding to cells growing with a constant
proliferation rate, affected by a maximum carrying capacity. Other terms, including advection
(directed cell migration), could also be included to model scenarios where cells have a direc-
tional movement stimulus, such as chemotaxis or migration to regions of lower cell density.
Finally, delay differential equations have been employed to better model the observed time-
dependence of cell migration in some contexts. [11,13] By estimating parameters and quan-
tifying parameter uncertainty for these models, past work has helped identify quantitative
effects of biological perturbations in scratch assays [11,13–15].

While, the development of some of the foregoing classes of models has traditionally been
laborious, requiring many months, it would be desirable to rapidly and quantitatively com-
pare behaviors from assays performed in different conditions, including experiments per-
formed using novel drugs, in 3-D culture, [16] or in the presence of external gradients, [17,18]
where previous models might not be appropriate. Modern data-driven approaches that allow
for more rapid model development are discussed next.

Recent work has also established the use of physics-informed neural networks to model
cell migration in scratch assays [13]. In this approach, a neural network is trained to predict
the progression of cell densities over time. During training, the neural network optimizes a
loss function which penalizes both inaccurate predictions and deviations from a pre-defined
reaction-diffusion model. In this way, the neural network learns density-dependent prolifer-
ation and diffusion terms which best fit the data. However, in such approaches, neural net-
works can learn relationships to make predictions without any guarantee that the growth or
diffusivities learned are physically realizable.

Another method for learning governing PDEs from experimental data and known physical
constraints is Variational System Identification (VSI). It extends the popular SINDy approach
[19–23] to inferring PDEs in weak form. The weak form-based inference of PDEs presented as
Variational System Identification and employed in this study [24,25] was also independently
developed under a different name, Weak-SINDy, introduced by Messenger and Bortz [26].
The weak form formulation is particularly useful in the presence of noise because it allows
for lower-order derivatives in the governing equations, thereby reducing the amplification
of noise that typically occurs when estimating higher-order derivatives from data [24,25,27].
Variational System Identification enables modelers to identify a library of physically mean-
ingful operators (e.g, differential terms such as the gradient, Laplacian and biharmonic opera-
tors, as well as algebraic ones such as polynomials, trigonometric functions and exponential
functions) which make up the PDE. Variational System Identification then identifies parsi-
monious models incorporating a subset of operators by iteratively dropping terms from the
library. Variational System Identification and SINDy respectively use the weak and strong
forms of differential equations in regression-based approaches, and therefore do not require
repeated forward evaluations of the model, unlike traditional PDE-constrained inverse mod-
eling. This substantially reduces the computational cost. Variational System Identification
has been applied to identify governing equations for the evolution of materials [24,25,28], the
spatiotemporal spread of COVID-19 [27,29], as well as constitutive models of soft materials
[30,31]. After identifying a sparse set of operators, their coefficients in the inferred PDE can
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be fine-tuned using PDE-constrained optimization and validated against additional exper-
imental test data. Finally, the surviving operators and parameters can be compared among
models inferred from datasets under different conditions in order to extract quantitative
insights from data.

We hypothesized that a two-stage approach–first using Variational System Identifica-
tion for rapid model discovery and then refining the inferred models using PDE-constrained
optimization– could be applied to wound healing data, providing quantitative comparisons
between different conditions. To test this hypothesis, we first applied the approach to previ-
ously published wound healing data [11]. With it, we were able to rapidly identify an accurate
model describing the evolution of cell density over time for a variety of initial seeding den-
sities with accuracy that matched or improved upon results in the literature [11]. Reaction
and diffusion terms were identified underlying the observed behavior and consistent with
previous results. We next applied Variational System Identification to our own data. We per-
formed scratch assays on MDA-MB-231 breast cancer cells under a variety of conditions and
used automated image processing to extract cell density fields over time. We found that Vari-
ational System Identification could successfully identify mechanisms of advection (directed
motion), diffusion (random motion) and proliferation of cells in 2-D scratch assays by infer-
ring the governing PDEs. These mechanisms are illustrated in Fig 1. Extending the approach’s
application, we quantitatively inferred the effect of trametinib, a MAPK pathway inhibitor,
on cell diffusion and proliferation. We present this work as a useful modeling approach to
rapidly identify plausible models for cell population dynamics and quantify model effects
under different experimental conditions.

2. Methods
2.1. Stable cell line generation
We engineered the MDA-MB-231 breast cancer cells used in this work to express a stable
histone-2B (H2B) nuclear marker (mCherry), along with kinase translocation reporters [32]
for the Akt and ERK kinases, as described previously [33,34]. We refer to these cells as pHAEP
cells. Only the nuclear marker was used for tracking cells.

2.2. Cell culture
We cultured MDA-MB-231 pHAEP cells in Dulbecco’s Modified Eagle Medium (DMEM)
with 10% fetal bovine serum (FBS). We passaged cells at a 1∶ 10 ratio when they were

Fig 1. (A) Illustration of wound healing/scratch assay. (B) Diffusion, advection, and reaction mechanisms for cell random motion,
directed motion and proliferation, respectively.

https://doi.org/10.1371/journal.pcbi.1013607.g001
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approximately 90% confluent. For imaging experiments, we cultured cells in imaging media,
consisting of fluorobrite phenol red-free medium supplemented by variable FBS (depend-
ing on desired experimental conditions), 1X penicillin/streptomycin, 1X GlutaMAX, and 1X
sodium pyruvate. Sodium pyruvate was added as an antioxidant to reduce imaging-induced
stress.

2.3. Scratch assay and live cell microscopy
For scratch assay experiments, we seeded 50,000 MDA-MB-231 pHAEP cells in 1 ml imag-
ing media in a 24-well glass-bottom imaging plate. We grew cells to full confluency (approx-
imately 36 hours) before starting the scratch assay. For the scratch assay, we manually
scratched each cell monolayer using a p200 pipette tip. Immediately after scratching, we
washed the cells with 1 ml warm phosphate buffered saline (PBS) and then added 1 ml of
warm imaging media containing experimental treatments.

We imaged cells using an EVOS M7000 fluorescent microscope with on-stage incubator.
After scratching each well, we placed the well plate into the prepared EVOS incubator. The
incubator was maintained at 37°C, 5% CO2, and > 80% humidity. For time-lapse imaging,
we captured fields centered on the scratch near the center of each well. We captured fluores-
cence from mCherry to position individual cells over time. We acquired images every 20 min-
utes over 48 hours in all wells in the well plate. We imaged one region of the scratch per well.
We quantified wound closure using MATLAB. We stitched the wound images together, drew
a line at each side of the wound at 0 hours and 48 hours, and then calculated the distance
between the lines.

2.4. Automated image processing
We processed fluorescent images of the MDA-MB-231 pHAEP cells as described previously
[35]. Image processing was performed using MATLAB. Briefly, we first thresholded the
nuclear images using an adaptive thresholding method. After identifying nuclear pixels, we
extracted the centroid pixel of each distinct nuclear object. In contrast to previous work, we
did not track each cell between frames, because we were interested in tracking the evolution
of the density field, not individual cells. After automated image processing, we extracted cell
density fields C(x, t) (number/𝜇m2) from each well in the experiment. (Here, x = (x1, x2)∈
ℝ2 is the two-dimensional position vector of a point.) To do so, we applied spatial binning
to the cell positions. Bin sizes between 50𝜇m and 100𝜇m were used. We smoothed C(x, t) in
space and time. We applied a moving average filter with a window of 150 𝜇m to spatial data
and a window of 3 hour and 40 minutes to temporal data. Thus smoothing the data alleviates
numerical noise in the calculation of derivatives.

The bin sizes were chosen empirically to ensure that each bin contained a sufficient num-
ber of cells to meaningfully represent cell density and continuum behavior. This approach
naturally led to a noisy field with discrete jumps, as cells moved between bins, necessitating
additional filtering to smooth the data field for PDE inference. The filtering window sizes were
determined using synthetic data with added Gaussian noise, where we identified the smallest
window size that effectively reduced noise while preserving spatial and temporal variations in
the data. Synthetic data generation was guided by the expected noise levels in experimental
data to ensure robustness.
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2.5. Wound healing quantification
We quantified wound closure by identifying the distance between wound edges at the first,
d(tstart) and last d(tend) time instants in the experiment. By aligning the wound edges with the
x2–axis, we estimated the position of the front of each wound as a line x1 = d(t) at time t and
calculated the distance in the x1 direction (perpendicular to the wound) between each wound
front. Then, we calculated wound closure as:

Wound closure = |d(tstart) – d(tend)|
d(tstart)

(1)

3. Continuum-scale data-driven modeling for cell migration
The cell density is defined as a spatiotemporal field, C(x, t) with (x, t)∈Ω × [0,T] where
Ω⊂ℝ2 and [0,T] are the spatial domain and time period of interest. The evolution of this
field is described by the following PDE, which is of first-order in time:

𝜕C
𝜕t =L (C;𝜽) (2)

where, L is a differential operator parameterized by 𝜽. Given 𝜽 the PDE also can be stated in
terms of the residual:

R(C;𝜽) = 𝜕C𝜕t –L (C;𝜽). (3)

For some C̃ that is not the solution of the PDE, R(C̃;𝜽) is the pointwise residual, equiva-
lent to the error in satisfaction of the PDE. Obtaining the solution of the forward PDE prob-
lem means finding C such that R(C;𝜽) = 0, given 𝜽. System identification, on the other hand,
is an inverse problem, in which, given data Cd(xi, tj) at a finite number of sampling points xi
and times tj from measurements of a field representing C, we seek the optimal parameters 𝜃∗
satisfying

𝜽∗ = argmin
𝜽∈𝚯

∣∣∣R(Cd;𝜽)∣∣∣ (4)

where the set of admissible parameters is𝚯 and ||| ● ||| is a suitable norm. The above statement
of the system identification problem also holds for nonlinear PDEs. This approach to system
identification reduces to a regression problem that is fairly inexpensive to solve computation-
ally. It allows us to start with a large library of candidate terms that could comprise L and
subsequently eliminate the insignificant ones using principled approaches including regular-
ization and stepwise regression. Here, we have intentionally omitted details such as the choice
of norm ||| ● |||, and functional spaces for Cd, in favor of presenting the basic idea of system
identification. Finite element methods arrive at the residual formulated in terms of the weak
form of the PDE, instead of the strong form as in (3). We adopt the weak form for PDE infer-
ence, and therefore refer to it as Variational System Identification [24,25,27]. This technique is
described next.

3.1. Variational formulation of the advection diffusion reaction problem
The advection-diffusion-reaction equation represents transport of cell density, and is encoded
in the operator, L . Mechanistically, the advection represents the directed motion of the cells,
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diffusion represents their random motion and reaction models cell proliferation/death. The
strong form of the advection-diffusion-reaction equation is written as follows:

𝜕C
𝜕t =∇ ⋅ (D∇C) –∇ ⋅ (Cvfvunit) + r (5)

where D≡D(C) is the diffusivity, vf ≡ vf(C) is the advective speed, vunit is a unit vector
perpendicular to the wound, and r is the cell reaction rate. The statement of the Initial and
Boundary Value Problem (IBVP) includes the initial density C(x, 0), Dirichlet and Neu-
mann boundary conditions on 𝜕ΩD and 𝜕ΩN, respectively, where 𝜕ΩD ∪ 𝜕ΩN = 𝜕Ω and
𝜕ΩD ∩𝜕ΩN =∅:

C(x, 0) = C0(x), ∀ x∈Ω
C(x, t) = C(x, t), ∀ x∈ 𝜕ΩD, t∈ [0,T]

(D∇C – Cvfvunit) ⋅ n = q(x, t), ∀ x∈ 𝜕ΩN, t∈ [0,T] (6)

The Dirichlet boundary condition specifies the cell density, and the Neumann boundary con-
dition specifies the cell flux on the respective boundaries. Here, n is the unit outward normal
vector on the boundary 𝜕Ω.

There exist models that have considered density-dependent effects on migration, for
instance representing cells interacting with each other, and on cell proliferation, for instance,
modeling its saturation at high cell density [11,36]. We incorporate such mechanisms in our
model by considering parameters that are functions of cell density, D(C), vf(C), and r(C).

The weak form of Eq (5) is:

∫Ω
w
𝜕C
𝜕t dV =∫Ω (–D∇w ⋅ ∇C + Cvf∇w ⋅ vunit +wr)dV +∫𝜕ΩN

wqds (7)

for all w in a suitable functional space, which we detail below. We seek the solution C(x, t)
in the Sobolev space H1(Ω), which consists of functions that are square-integrable and have
square-integrable first-order weak derivatives. The field w is a weighting function and belongs
to a subspace of H1(Ω) defined as {w∈H1(Ω) |w = 0 on 𝜕ΩD}.

3.2. The finite element form
The weak form of the advection-diffusion-reaction equation, given in Eq (7), can be dis-
cretized using the finite element method (FEM). The domainΩ is partitioned into nel
elements,Ω = ∪nel

e=1Ωe. The unknown field C(x, t) is replaced by a finite-dimensional approx-
imation Ch(x, t), defined over each element using a linear combination of basis functions:

Ch(x, t) =
nbasis
∑
i=1

di(t)Ni(x) (8)

where di(t) = Ch(xi, t) are the time-dependent coefficients at finite element nodes xi, and
the spatial dependence of Ch(x, t) is represented by the finite element basis functions Ni(x)
(also known as shape functions). The span of these basis functions defines a finite dimen-
sional H1 space: Vh = span({Ni}Nbasis

i=1 )⊂H1(Ω). There are many ways to define these basis
functions but for our study we will choose piecewise linear basis functions for one- and
two-dimensional problems, the latter using triangular elements [37]. Also within the Galerkin
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approach, we consider finite dimensional weighting functions, wh ∈ {Vh(Ω)|wh = 0 on 𝜕ΩD}
which we write as wh(x) =∑nwt

j=1 bjNj where Nj are the nwt ≤ nbasis basis functions of Vh that
vanish on 𝜕ΩD. Substituting these finite-dimensional approximations Ch and wh for C and w,
respectively, in (7) and invoking its validity for all wh ∈Vh we obtain the following residual
vector:

R(Ch;𝜽) =∫Ω (
𝜕Ch

𝜕t NdΩ +D∇N ⋅ ∇Ch – Chvfvunit ⋅ ∇N – rN)dV – ∫𝜕ΩT
Nqds (9)

where N is the vector of finite element basis functions, and the second integral on the right
imposes the Neumann boundary condition. The field Ch is used to estimate the spatial deriva-
tives in (9), as ∇Ch =∑i di∇Ni and the time derivative as 𝜕Ch

𝜕t =∑i
𝜕di
𝜕t Ni where the 𝜕di

𝜕t is esti-
mated using backward Euler scheme on the time-discretized data point. The residual vector
R(Ch;𝜽) is a finite-dimensional version of the residual of the weak form of the PDE.

3.3. Inference of the advection diffusion reaction system
We infer the advection-diffusion-reaction system by posing it as a standard optimization
problem using the residual derived in the previous section and the cell density field from
wound healing experiments (see Sect 2.4). The density field extracted from the data is writ-
ten by interpolation of its values di(t) by positioning finite element nodes xi such that di(t) =
Ch(xi, t). This allows the use of (8) with the nodal values di(t) defining the density field
Ch(x, t). We impose Dirichlet boundary conditions on all edges. Therefore, the Neumann
boundary integral of (9) does not feature in the following discussion.

We consider the following ansatz for the parameters D, vf and r:

D = 𝜃0 ⋅ 1 + 𝜃1C + 𝜃2C2 (10a)
vf = 𝜃3 ⋅ 1 + 𝜃4C + 𝜃5C2 (10b)
r = 𝜃6C + 𝜃7C2 (10c)

where C is replaced by Ch from Eq (8) during inference. The constant reaction term was
omitted, since it represents cell proliferation (r > 0) or death (r < 0) in a region with zero
cell density, both of which are unphysical. We included advection terms, even though they
have not previously been required to model wound closure, to demonstrate the utility of our
method as a model discovery tool, and because advection has been used in other cases to
model cell migration tracked with live-cell microscopy [16,17]. We also omitted delay dif-
ferential terms for modeling the advection diffusion reaction system from the main focus
of this work, even though they have been shown to provide slightly better fits to data in the
past. [13] Although delay differential terms can be treated within the Variational System Iden-
tification framework, they pose significant challenges for PDE-constrained optimization,
which is a critical subsequent component of our workflow. The combination of delay dif-
ferential equations with PDE-constrained optimization remains an open area of computa-
tional research beyond the scope of this communication. Instead, in S2 Appendix we present a
restricted delay model within the Variational System Identification framework, and show that
its performance is comparable to that of the non-delay treatment.

We can now rewrite the residual equations equation as a matrix-vector problem with the
following form, whereA represents the standard finite element assembly operation that maps
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local element contributions to the global system of equations [37].

R(Ch;𝜽) = y – 𝚵 ⋅ 𝜽 (11)

y =A
e
[–∫Ωe

𝜕Ch

𝜕t NdΩ] (12)

𝚵≡ [𝚵0,⋯,𝚵7] . (13)

Here, N = {Nk} represents the vector of basis functions for k = 1,…nnp where nnp is the
number of nodes in the problem, and 𝚵 is a matrix where the columns 𝚵j represent the resid-
ual vector terms corresponding to diffusive, advective and reaction operators in weak form
from Eq (9). The rows correspond to the components of the basis function vector N concate-
nated over timesteps. We have,

[𝚵0 𝚵1 𝚵2] =A
e
[∫Ωe

[1 Ch Ch2]∇N ⋅ ∇ChdΩ] (14a)

[𝚵3 𝚵4 𝚵5] =A
e
[–∫Ωe

[1 Ch Ch2]Chvunit ⋅ ∇NdΩ] (14b)

[𝚵6 𝚵7] =A
e
[–∫Ωe

[Ch Ch2]NdΩ] (14c)

Here, the integration over the element domain is numerically approximated using the Gauss-
Legendre quadrature [37]. We finally state the inference problem for the optimal parameters
as the following minimization problem with a quadratic cost defined as the Euclidean norm
|R|:

𝜽∗ = argmin
𝜃

|R(Ch;𝜽)|2 (15)

In Variational System Identification, spatial derivatives on the data field are limited to first
order, despite originating from a second-order differential equation. In the weak form, deriva-
tives that act on the trial solution in the strong form are transferred to the weighting func-
tions, reducing the need for direct computation of higher-order derivatives. Since noise prop-
agation in numerical differentiation scales asO(h–d) for a d-order derivative, transitioning
from a second-order derivative in the strong form to a first-order derivative in the weak form
reduces noise amplification byO(h–1). This significantly improves the reliability of estimated
parameters in the presence of noisy data.

In the interest of model parsimony, we seek to estimate the most significant terms given
ansatz Eq (10) for the parameters using stepwise regression [24,25,27]. Since an increase in
parsimony comes at the cost of an attendant growth in the loss between model iterates, we
adopt a search across surviving terms and select for elimination the candidate that, when
excluded from the basis, leads to the minimal growth in the loss of the reduced optimization
problem from Eq (15). This results in a parameter vector 𝜽 that is sparse in the sense that most
of its components 𝜃m = 0 form∈ {0,… , 7}.

3.4. PDE constrained optimization for model refinement
Following Variational System Identification that identifies the parsimonious governing PDE
structure, PDE-constrained optimization is employed to refine the numerical values of the

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013607 October 28, 2025 9/ 27

https://doi.org/10.1371/journal.pcbi.1013607


ID: pcbi.1013607 — 2025/10/30 — page 10 — #10

PLOS COMPUTATIONAL BIOLOGY Inference of weak-form PDEs describing migration and proliferation in cancer cells

coefficients through adjoint-based gradient computations, further improving model fit. The
optimization problem statement is:

Find 𝜽∗∗ = argmin
𝜽

ℓ(𝜽;C′h), where ℓ(𝜽) = ||C′h(x, t;𝜽) – Ch(x, t)||2L2(Ω×[0,T]) (16a)

such that R(C′
h
;𝜽) = 𝟎 (16b)

for C′
h
(x, t) =

nbasis
∑
i=1

d′i(t)Ni(x) defined over each element

(16c)

Here, C′
h
is a finite element interpolant field that is different from the data-derived field Ch

introduced in equation 8. Thus, the optimization problem in (16) involves solution of the
forward model, which can be computationally expensive and require exploring regions of
parameter space that are numerically unstable, making it unsuitable for large models. How-
ever, if a parsimonious model has been identified, then the approach in (16) can be applied to
refine the PDE parameters starting from their values 𝜽 inferred by Variational System Identi-
fication as initial iterates. We solve the forward model in (16b) using experimentally observed
initial conditions, generating a predicted cell density field, which enables computation of an
associated loss in (16a). However that minimization problem requires computing a variational
derivative through the chain rule which also involves evaluating the derivative of C′

h
with

respect to 𝜽. We complete this step via adjoint-based gradient optimization with the BFGS
solver. PDE-constrained optimization with adjoint-based gradient computation does not
change the selected operators but generates a new set of parameter values, which fit the data
better than the those obtained by Variational System Identification with stepwise regression.

3.5. Computational framework for inference
The numerical examples presented in this work have been posed and solved in two dimen-
sions by the finite element method implemented on the FEniCS platform [38,39]. The 1D
forward solutions presented in this work were carried out on a uniform mesh with 42 piece-
wise linear elements. The 2D solutions were obtained on a rectangular domain using a struc-
tured mesh with 6478 linear triangular elements. The nonlinear optimization for minimizing
(15) was carried out using the Newton solver in the FEniCS package. The PDE constrained
optimization (16) was implemented in the dolfin-adjoint package [40,41]. In the com-
putational studies presented in the next section, for the nonlinear PDE solver, we used a
Newton solver with absolute and relative error tolerance stopping criteria of 1e–8 and 1e–9
respectively. For dolfin-adjoint we used ‘L-BFGS-B’ with tolerance of 1e–9.

It is also worth noting the possible non-uniqueness of the identified model. In general, the
ability to uniquely recover PDE parameters depends on the richness of the data, particularly
the initial and boundary conditions as well as the spatiotemporal resolution of observations.
Given a specific choice of initial conditions, the available simulation data may not contain suf-
ficient information to uniquely determine all mechanisms in the PDE, potentially leading to
non-uniqueness in the inferred parameters. In our previous work [42], we demonstrated that
while this inference technique can successfully recover a PDE model whose solution closely
matches the ground-truth simulation, the inferred parameters may differ from the true val-
ues. This suggests that while the model captures the essential dynamics of the system, mul-
tiple parameter sets may yield similar macroscopic behavior. In such cases, it is important
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to assess whether the inferred parameters are biophysically reasonable and consistent across
different experimental conditions. In Sect 4.2, we will use the sensitivity plots to determine
the degeneracy in the inferred model. From a more abstract perspective, however, it is also
possible for non-uniqueness to be intrinsic to the model itself, regardless of data quality or
resolution, as highlighted in recent works on structural identifiability of PDE models [43].
These studies distinguish between globally and locally structurally identifiable models, and
our framework, which is linear in parameters, falls under this setting. While our VSI formu-
lation guarantees a unique global minimum under a positive definite quadratic form, subse-
quent PDE-constrained optimization explores only local neighborhoods and may therefore
overlook other admissible solutions.

4. Results
4.1. Variational system identification of 1-D wound healing dynamics from
data
We first tested Variational System Identification on a previously reported scratch assay
dataset. The dataset, collected by Jin et al., [11] consists of scratch assays performed on PC-
3 prostate cancer cells with varying initial densities prior to the scratch. Different extents of
confluence were achieved by varying the initial seeding between 10,000 and 20,000 cells in
steps of 2000. The high cell densities that were achieved in this experiment justified the con-
sideration of continuum advection-diffusion-reaction PDEs to model these data. For each of
the resulting six datasets, cell density was measured every 12hr for 48hr and averaged across
three replicates. Next, the density was averaged along the (x2) direction parallel to the scratch,
yielding a one-dimensional density field (along x1) for each initial density.

The 1D cell density profiles over time are shown in Fig 2. The scratch, which is approxi-
mately 400𝜇m long, is clear in the initial density profiles. For all initial seeding with 14000
or more cells, the center of the scratch (around x1 = 500𝜇m) is occupied by cells after 36
hours. Furthermore, there is an increase in cell density at the scratch edge (near x = 0𝜇m or
∼ 950𝜇m) over time for all initial seeding densities, indicating that the cells continue growing
during the experiment.

Next, we used our computational pipeline to find parsimonious models for each of the
six scratch assay datasets corresponding to different initial cell densities. First, we used the
data Ch(x1, t) to generate diffusivity, advective velocity, and reaction rates that are polyno-
mial functions of density up to second order (quadratic in (10)). Then, we used VSI to iden-
tify models from the generated bases. Fig 3 shows that for all cases initial cell densities, the
loss does not decrease for models having more than 3 terms. In every case, the three-term
model excluded advection. We next performed PDE-constrained optimization of the 3-term
model for each of the six cases with different initial number of cells seeded, with the addi-
tional physical constraint of positive diffusivities. The diffusivity in each resulting optimized
model has a constant term, and either a linear or quadratic dependence on local density, C.
All the inferred reaction functions have linear density dependence, except the 4-term model
for 18,000 cells (see Table 1). For the case of 18,000 cells, we observed minimal improvement
in the cost function Eq (16c) from the PDE-constrained optimization. The model, both before
and after refinement, is presented in Table 1 under the label 18,000 (3 terms). Furthermore,
we noticed that in the 3-term model, the partial derivatives of the cost function with respect
to the diffusivity coefficients remained low, indicating that the available data was not suffi-
ciently sensitive to the diffusive mechanism of random cell motion. To address this issue, we
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Fig 2. Experimental wound healing data (symbols), the model inferred by Jin et al. [11] (dashed curves), and the model inferred by Variational System Identifica-
tion and refined by PDE-constrained optimization (solid curves). For the 18000 initial density data, the 4-term model was used. Inferred model parameters appear in
Table 1.

https://doi.org/10.1371/journal.pcbi.1013607.g002

expanded the model to include four terms–incorporating both linear and quadratic depen-
dence on the local cell density. This expansion led to a significant reduction in the cost func-
tion during PDE-constrained optimization. The refined model, presented in Table 1 under
the label 18,000 (4 terms), demonstrates a strong agreement between the model solution and
the experimental data. The diffusivity values after refinement by PDE-constrained optimiza-
tion have a constant term and a positive linear or quadratic dependence on the local cell den-
sity, C. This suggests a mechanism of intercellular communication between the cells, which is
likely to be contact-mediated, and drives the cells to further explore their immediate vicinity
by random walks. However, given that the maximum cell density satisfies C ≤ 2× 10–3 𝜇m–2
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Fig 3. Elbow curve illustrating the Variational System Identification (VSI) loss at each step of stepwise regres-
sion. At each step, the loss is computed as the minimum residual norm over the space of all admissible parameters for
the current model.

https://doi.org/10.1371/journal.pcbi.1013607.g003

(Fig 2), this density dependence is weak. The constant diffusivity term has a roughly increas-
ing trend with the initial number of cells seeded (except for the outlier at 18,000 cells that
interrupts this increasing trend, Table 1). The trend for higher diffusivity with increase in the
number of cells initially seeded is consistent with the increase of diffusivity with local den-
sity C. The proposed mechanism of contact-mediated random walk explorations of the envi-
ronment is also a reasonable explanation for both aspects of increasing diffusivity. Similarly,
refinement of the inference results by PDE-constrained optimization yields a reaction (prolif-
eration) term with a weak linear dependence on local cell density C for all except the 18,000
cell seeding case. Note that the final form of the reaction (proliferation) with the 4-term
18,000 cell model has a negative quadratic dependence on density that results in a decrease of
proliferation at higher densities.

We used these refined models to run a forward simulation from the initial conditions of
each dataset with the different numbers of initial cells seeded. The model predictions and
experimental observations appear in Fig 2, where we also present the forward simulation of
the reaction-diffusion model using the parameters provided by Jin et.al. [11]. We draw the
reader’s attention to the qualitative match between the forward solutions and the dynam-
ics observed in the dataset at early times and the quantitative match at later times. We found
that for four of the six initial seeding densities, our models have root mean squared errors
(RMSEs) that are significantly lower than the RMSE reported by Jin et al. and are similar to
their results for the other two cases (Fig 4). These results suggest that our inference frame-
work of Variational System Identification and PDE-constrained parameter optimization can
be used to infer models for cell migration dynamics that are competitive with previous meth-
ods such as those by Jin et al, which fit a model based on prior knowledge about the system.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013607 October 28, 2025 13/ 27

https://doi.org/10.1371/journal.pcbi.1013607.g003
https://doi.org/10.1371/journal.pcbi.1013607


ID: pcbi.1013607 — 2025/10/30 — page 14 — #14

PLOS COMPUTATIONAL BIOLOGY Inference of weak-form PDEs describing migration and proliferation in cancer cells

Table 1.Model terms learnt by Variational System Identification and PDE-constrained parameter optimization
for each experimental condition presented in Jin et al. As in the text, C is the cell number density measured in the
units of cells/𝜇m2.
Initial density Method Diffusivity (𝜇m2/hr) Reaction Term (1/hr)
10000 VSI inferred 7.9 + 9.0 × 103C 3.6 × 10–2C

VSI+Optim 7.9 + 8.9 × 103C 2.7 × 10–2C
12000 VSI inferred 15 + 2.8 × 103C 2.7 × 10–2C

VSI+Optim 15 + 2.9 × 103C 2.3 × 10–2C
14000 VSI inferred 17 + 7.1 × 103C 2.1 × 10–2C

VSI+Optim 4.6 × 102 + 0.25C 2.3 × 10–2C
16000 VSI inferred 13 + 1.3 × 102C2 1.9 × 10–2C

VSI+Optim 3.6 × 102 + 1.3 × 102C2 2.3 × 10–2C
18000 (3 Term) VSI inferred 17 + 1.3 × 10–3C 1.7 × 10–2C

VSI+Optim 17 + 1.3 × 10–3C 1.5 × 10–2C
18000 (4 Term) VSI inferred 17 + 1.3 × 10–3C 1.7 × 10–2C + 1 × 10–8C2

VSI+Optim 36.4 + 1.2 × 10–2C 9.5 × 10–2C – 69.7C2

20000 VSI inferred 22 + 3.1 × 10–2C2 1.2 × 10–2C
VSI+Optim 8.1 × 102 + 3.1 × 10–2C2 1.7 × 10–2C

https://doi.org/10.1371/journal.pcbi.1013607.t001

Fig 4. Root mean squared error (RMSE) calculated between experimental data and reaction-diffusion models
from Jin et al. (blue), and a model obtained by PDE-constrained optimization following Variational System
Identification (red) for each case with different initial number of seeded cells. For the 18000 initial density data,
the 4-term model was used. The model parameters inferred in this work are shown in Table 1.

https://doi.org/10.1371/journal.pcbi.1013607.g004

In this work, we considered a polynomial cell density dependence in the diffusivity for model-
ing nonlinear diffusion, but at higher cell densities, more rigorous models, such as Maxwell-
Stefan diffusion would be more appropriate [42]. In such formulations, phenomenological
extensions can be constructed by treating void space as an additional species, which effectively
yields a single-independent-component representation of nonlinear diffusion.
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4.2. Model-based quantification of the effect of inhibitor levels on
migration dynamics in 2-dimensional scratch assays
After demonstrating that Variational System Identification and PDE-constrained optimization
could be used to learn parsimonious advection-diffusion-reaction models for cell migration
data in the literature, we used the approach on our own cell density data gathered from fluo-
rescence microscopy experiments. We performed scratch assays using MDA-MB-231 breast
cancer cells and tracked scratch closure over time using live-cell fluorescence microscopy
Fig 5. As seen in Fig 6A, the cell densities achieved are comparable to those observed by
Jin et al., [11] and admit treatment of the problem using continuum advection-diffusion-
reaction PDEs.

We used this assay to compare how trametinib, a MEK kinase inhibitor, affects cell migra-
tion. MEK kinase is known to regulate cell migration and proliferation [44]. Our past study
showed that trametinib reduces both random and directed motion in chemotaxis [18]. We
captured wound-closure dynamics for cells exposed to 5 trametinib concentrations from
10 𝜇M to 100 nM, and for an untreated control. We observed that untreated cells were able to
almost close the wound after 24 hours, while 100 nM trametinib was enough to significantly
inhibit wound closure. Higher trametinib concentrations did not further inhibit wound
closure (Fig 5).

We next applied our PDE inference pipeline to learn models for the observed wound clo-
sure dynamics. We used the same library of candidate operators, including constant, linear,
and quadratic terms for diffusion and advection, and linear and quadratic terms for reaction.
Four replicates of the scratch assay were obtained for each treatment condition (five trame-
tinib concentrations and one with no treatment). The fractional wound closures across the
replicates for each treatment condition had standard deviations less than 15% of the mean
(Fig 5). Guided by this reproducibility, the PDE parameters were inferred using the data
aggregated across replicates, generating a single model for each condition. We aggregated the
data by minimizing the VSI loss function (equations 15 and 16) across all 4 replicates. The

Fig 5. Fractional wound closure Eq (1) calculated for a range of trametinib concentrations and an untreated
control (labeled NT), with N = 4 wells for all conditions. Individual datapoints are shown in red, and the mean +/-
standard deviation is shown by the bars and error bars, respectively.

https://doi.org/10.1371/journal.pcbi.1013607.g005
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Fig 6. (A) Comparison of experimental data and predictions of a model inferred by Variational System Identification followed by
PDE-constrained parameter optimization under the same initial conditions.The experimental condition is with no treatment. (B)
Variational System Identification loss as a function of the number of terms in the model inferred for the untreated and 100 nM trametinib
conditions. (C-D) PDE-constrained and optimized diffusivity (C) and reaction (cell proliferation) (D) terms as functions of density. Dif-
fusivity is constant, while reaction/proliferation is a combination of linear and quadratic terms. The horizontal axis ranges were chosen to
represent the densities present in the experimental data.

https://doi.org/10.1371/journal.pcbi.1013607.g006

PDE-constrained minimization procedure results in further refinement of losses as shown
in the Fig 7. The average loss and individual losses for each replicate are presented in Fig 8,
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Fig 7. Loss minimization during PDE-constrained optimization process.

https://doi.org/10.1371/journal.pcbi.1013607.g007

Fig 8. RMSE evaluated between the forward prediction of VSI+Optimmodels (Variational System Identification
and PDE-constrained parameter optimization) presented in Table 2.The red dots represent the RMSE for each
replicate, and the bar represents the mean value.

https://doi.org/10.1371/journal.pcbi.1013607.g008

indicating consistent losses across replicates. This verifies that the inferred PDE model does
not exhibit sensitivity to initial conditions, such as distribution of cells, which would vary
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Table 2.Model terms inferred by Variational System Identification and PDE-constrained parameter optimiza-
tion for each experimental condition shown in Fig 3. As in the text, C is the cell number density measured in the
units of cells/𝜇m2.
Condition Method Diffusivity (𝜇m2/hr) Reaction Term (1/hr)
10 𝜇M VSI inferred 6.8 5.5 × 10–2C – 3.4 × 101C2

VSI+Optim 2.7 × 101 8.2 × 10–2C – 5.2 × 101C2

5 𝜇M VSI inferred 7.2 5.0 × 10–2C – 3.0 × 101C2

VSI+Optim 2.8 × 101 7.0 × 10–2C – 4.4 × 101C2

1 𝜇M VSI inferred 6.2 5.2 × 10–2C – 3.2 × 101C2

VSI+Optim 2.3 × 101 7.1 × 10–2C – 4.5 × 101C2

500nM VSI inferred 7.8 4.8 × 10–2C – 2.9 × 101C2

VSI+Optim 3.0 × 101 6.3 × 10–2C – 4.0 × 101C2

100 nM VSI inferred 7.3 5.1 × 10–2C – 3.0 × 101C2

VSI+Optim 2.8 × 101 6.6 × 10–2C – 4.1 × 101C2

NT VSI inferred 9.1 9.1 × 10–2C – 6.0 × 101C2

VSI+Optim 5.0 × 101 1.3 × 10–1C – 9.2 × 101C2

https://doi.org/10.1371/journal.pcbi.1013607.t002

between the replicates. Finally, we ran the inferred model for each condition starting from
the experimentally measured initial cell density (Fig 6A). We observed that the Variational
System Identification loss function is essentially constant for two-term models including dif-
fusion and reaction terms, and only starts to increase for models that lack reaction terms (Fig
6B). Based on the these results, we adopted a three-term model. For both the untreated con-
dition and 100 nM trametinib, these terms corresponded to constant (density-independent)
diffusivity, and reaction terms that are linear and quadratic in cell density. Table 2 shows the
coefficients inferred initially by Variational System Identification in the process of delineat-
ing mechanisms, and their subsequent refinement by PDE-constrained optimization. After
model refinement, our inferred models show that diffusivity decreases by approximately 44%,
from 50𝜇m2/hr in the untreated cells to 28𝜇m2/hr, in 100 nM trametinib, and remains com-
parable for higher levels of the inhibitor. We also found a non-linear functional dependence
of cell proliferation (reaction in the PDE) rate on cell density: positive at low cell densities
and negative above a critical density; i.e., the model predicts cell death sets in (Fig 6D). This
inferred mechanism could be interpreted as a crowding-induced death in the cell popula-
tion. However, no cell death was observed in our experimental data. The models inferred with
and without trametinib suggest that even 100 nM trametinib causes a decrease in random cell
migration and cell proliferation. Notably, the effect of trametinib treatment quickly saturates,
as is reflected in the coefficients for constant diffusivity and linear/quadratic reaction terms
in Table 2. The RMSEs between the forward predictions of the model and the data are pre-
sented in Fig 8, and are essentially comparable across trametinib concentrations and for the
untreated case.

To assess the sensitivity and robustness of the inferred parameters in the 3-term model,
we analyze the contour plots of the loss function (16a) as a function of parameter variations
in Fig 9. In each plot, one parameter is held fixed at its inferred value, while the remaining
two are systematically varied. The first two columns reveal a shallow minimum in the dif-
fusion parameter direction, suggesting that a broad range of admissible diffusive values can
yield similarly low losses, indicating lower sensitivity to diffusion estimates. The third column
highlights an affine relationship between the coefficients of the linear and quadratic reaction
terms, showing a lack of sensitivity along this direction. It can be shown that the ratio –C2/C1

is equal to the carrying capacity (the maximum cell density) used in previous work [11].
The linear relationship between C2 and C1 shows that while the carrying capacity is sharply
estimated, the growth rate exhibits greater uncertainty.
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Fig 9. Sensitivity analysis of the inferred parameters in the 3-termmodel: 𝜕C/𝜕t =D0ΔC+C1C+C2C2. Contour plots show the nor-
malized loss function from Eq (16a) as a function of parameter variations. Each column represents a case where one parameter– C2 (left),
C1 (middle), or D0 (right)–is held fixed at its inferred value, while the remaining two parameters are varied in a neighborhood around
their inferred values: (D0,C1), (D0,C2), and (C1,C2), respectively. Each row corresponds to one of the six experimental conditions.
Contours illustrate the sensitivity of the loss function to changes in the inferred parameters, where sharp minima indicate high sensitivity
(well-constrained parameters), and broader regions suggest lower sensitivity (potential parameter degeneracy).

https://doi.org/10.1371/journal.pcbi.1013607.g009
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We note that our current analysis uses point estimates of the inferred parameters, which
does not provide a complete picture of the underlying parameter distributions. If the poste-
rior distribution of a parameter is broad or flat, then comparing single values, whether they
are maximum likelihood estimates (MLEs), maximum a posteriori (MAP) estimates, or other
point summaries, can obscure the true level of uncertainty. A more comprehensive charac-
terization in terms of posterior means, variances, correlations, and higher moments would
provide a deeper understanding of how drug treatments influence the parameters.

A full Bayesian treatment using Markov Chain Monte Carlo would represent a rigorous
approach to obtain such posterior distributions. However, for PDE models with repeated for-
ward evaluations, especially in the presence of the high variability suggested by our sensitivity
plots, this becomes computationally expensive, requiring a large number of proposed points
to adequately explore the parameter space. In place of such a Bayesian treatment, which we
are pursuing in related work, we have performed a post-inference variability analysis of the
inferred parameters using a local Gaussian approximation to the posterior in S1 Appendix.
As that analysis shows, the standard deviation on the inferred diffusivity is of the order of the
reported parameter values. This large uncertainty reflects the nature of random motion and
the second-order Laplacian of the concentration which amplifies noise in the data as we have
shown previously. [24] Given the analysis in S1 Appendix, the ∼ 44% decrease in diffusivity
upon application of 100 nM trametinib that we report in Table 2 corresponds to one param-
eter set that explains the data, but other combinations with smaller differences in diffusivity
also could be admissible models.

5. Discussion
The treatment of cell migration via continuum PDEs is well established in biophysics [45–
47], as is the role of cell arrangement in determining aspects of the progression of cancers
[48]. Here, we demonstrate the strength of our two-stage inference approach, where Vari-
ational System Identification (VSI) rapidly identifies candidate PDE structures, and PDE-
constrained optimization further refines the inferred parameters, enabling the discovery of
parsimonious, quantitative, and physics-based models for collective cell migration. In a 1D
setting, we infer models with accuracies that are competitive with other recent approaches.
We also have applied our approach to our own 2D wound healing experiments. Relative to the
1D data, our 2D wound healing experiments were sampled more frequently (every 20 min-
utes compared to every 12 hours) with similar spatial resolution. In this setting, we estimate
diffusivity values for breast cancer cells around 50 𝜇m2/hr in untreated conditions, decreasing
to between 46– 60% of that value in response to trametinib. Previous computational analyses
of cell migration, conducted on data gathered from a variety of experimental cell lines, have
identified a wide range of diffusivity values, from approximately 50 to 3000 𝜇m2/hr [12,49,50].
Past work focused on U251 glioma cancer cells measured a random motion coefficient (akin
to diffusivity measured for a single cell) of between 60 and 300 𝜇m2/hr across a range of sub-
strate stiffnesses [51]. Hence, our estimated diffusivity values for both PC-3 prostate cancer
cells [11] and MDA-MB-231 breast cancer cells are consistent the lower end of the range of
prior measurements and close to values measured previously in other cancer cell lines. We
note, however, that the uncertainty in diffusivity that emerges in the post-inference variabil-
ity analysis of the parameters in S1 Appendix shows that other parameter combinations also
could explain the trametinib results.
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There are some advantages to inference by Variational System Identification followed
by PDE-constrained parameter optimization compared to other approaches such as tradi-
tional model inference or Physics Informed Neural Networks (PINNs). Traditionally, build-
ing models of cell migration has utilized iterative cycles of model conceptualization, based
on known cell biology, that include increasingly complex models for cell division or diffu-
sion. These models are informative and have made substantial progress towards a general
theory of collective cell migration. However, model development can require a substantial
amount of expertise or trial and error. Furthermore, this approach does not scale well if new
sources of data are acquired, which could increase the number of potential model terms
based on the interaction of a new data source with all other types of data previously consid-
ered in the model. For example, data about cell state (e.g. signaling activity, cell-cycle sta-
tus, metabolic activity) gathered from fluorescent reporters or cell morphology could require
updating a model to consider diffusivity as a function of both cell state and local cell density
[3,52–54]. Hence, we envision that Variational System Identification and PDE-constrained
parameter optimization can improve traditional cell dynamics and signaling modeling in at
least two ways. First, it could serve as a hypothesis-testing tool. When considering a library
of mathematically expressed candidate mechanisms and datasets to test against, modelers
could use the approach advanced here to develop models that explain the data within speci-
fied error bounds and with a desired parsimony. Second, the approach presented here could
identify new experimental conditions to generate data that activate mechanisms not queried
by existing datasets. Traditional modeling can be time consuming, and a more rapid, semi-
automated model testing approach such as Variational System Identification combined with
PDE-constrained parameter optimization could thus lead to more tightly coupled model-
driven experimentation and data generation.

We also envision two key applications of Variational System Identification followed by
PDE-constrained parameter optimization furthering our understanding of biology more
broadly. First, it can be used to quantify the effects of drugs in high-throughput screens.
Scratch assays have been miniaturized and mechanized, making them compatible with high-
throughput screening [55,56]. Thus, the approach presented here with trametinib could be
extended and combined with high-throughput drug screens so that the specific effects of
drugs on cell migration and division could be determined. Second, our approach could be
used to rapidly infer models based on new streams of data gathered from scratch assays.
Cell morphology [52] and fluorescent reporters [54] have been used to measure or infer cell
states in migrating cells. Thus, Variational System Identification followed by PDE-constrained
parameter optimization could be used to resolve diffusivity or reaction (proliferation) terms
as functions of not only cell density but also local measures of cell state.

This approach identifies the best-fit PDE for the data within the space of models repre-
sented by the chosen basis functions for different mechanisms. Since this is a mechanism-
based model, it can generalize beyond the experimental conditions to some extent. However,
there are inherent limitations to such extrapolation. In certain cases, particularly at lower cell
densities, some mechanisms may not be activated, leading to their exclusion during inference.
A similar issue arises with the inferred quadratic terms in the reaction function during the
VSI procedure. A positive coefficient suggests a superlinear increase in local cell density at low
densities, which is unlikely to persist at higher densities due to biological constraints. How-
ever, since the dataset does not contain sufficiently high-density regions, the PDE inference
process lacks the necessary information to constrain the quadratic term appropriately. While
one could impose a negative coefficient constraint on the quadratic term to enforce saturation
effects at high densities, doing so might completely ignore the observed superlinear growth at
low densities, which would also be non-physical. This highlights the trade-off between model
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flexibility and prior biological knowledge in the PDE inference process. A potential solution
to this issue is expanding the candidate function space for the inferred PDE. In this work,
we have chosen a simple polynomial basis, however, more sophisticated functional forms
[57] could lead to more biologically robust models. We will explore these extensions in future
studies to improve model generalizability while maintaining mechanistic interpretability.

We draw attention to the fact that the advective terms consistently dropped out during
the VSI procedure because their inclusion did not contribute to reducing the loss functional.
This outcome reflects that, within the spatio-temporal resolution of the wound healing exper-
iments considered here, advective transport was not detected as a dominant mechanism.
We would like to emphasize, however, that this result does not imply the absence of advec-
tive influences in general. Rather, it indicates that any such effects were not detectable at the
timescale and under the experimental conditions analyzed in this study. Our initial moti-
vation for including advective terms in the candidate library was to allow for the possibil-
ity of directed migration behavior. While these effects may not have been resolvable in the
present dataset, the framework remains capable of capturing advective transport if it becomes
significant under different experimental conditions (for example, alternative initial condi-
tions, boundary conditions, or chemical perturbations). While our current results suggest
that advection is not an identifiable driver in the data analyzed here, the methodology is flex-
ible and would be able to identify such contributions should they arise in future experiments
where directed motility effects are more prominent.

Other modeling approaches have used neural networks to perform data-driven inference
on reaction and diffusion equations governing cell migration. In Variational System Identi-
fication, the equations learned are confined to the candidate library terms used, while neural
networks can learn arbitrary relationships for equation parameters to best fit the data. Lager-
gren et al. demonstrated the power of this approach on the Jin et al. dataset [11] (also ana-
lyzed by Jin et al.), when they inferred density-dependent reaction-diffusion equations for
cell migration [13]. They identified non-linear functions of density for diffusivity and reac-
tion terms, and found that these functions vary with initial seeding density, consistent with
our findings. There is one noteworthy difference between neural network-based approaches
and Variational System Identification. In the case of cell migration, while the neural networks
can learn arbitrary relationships between cell density and diffusivity or reaction (prolifera-
tion), there is no guarantee that physically realizable relationships are learnt, unless a number
of physics-based constraints are built in. Variational System Identification, on the other hand,
enables the modeler to restrict the candidate mechanisms and their mathematical forms to
those that rigorously encode physical mechanisms. PINNs can infer diffusivity, advection, and
reaction terms by treating them as unknown functions within the governing equations. How-
ever, unlike Variational System Identification, PINNs do not inherently promote parsimony,
potentially leading to the identification of overly complex relationships rather than the most
concise and mechanistically interpretable terms. A possible criticism of the Variational Sys-
tem Identification approach is that inference proceeds by model selection from a library of
candidates, and not by a method of de novo discovery.

The Advection-Diffusion-Reaction (ADR) model provides a simple yet mechanistically
meaningful continuum-scale representation of cell migration and proliferation. The advec-
tive and diffusive terms in the PDE naturally link to single-cell dynamics, where individual
cell migration can be described as a stochastic process governed by an underlying stochastic
differential equation. Meanwhile, the reaction term encapsulates cell division and death rates,
making ADR models a versatile tool for inferring both collective- and single-cell-level behav-
iors from experimental data. Recently, delayed diffusion-reaction PDE models have been
introduced to study scratch assay dynamics. [13,15,58,59] Delay terms in PDEs generally arise
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as phenomenological approximations, intended to capture latent biological processes that are
difficult to model explicitly at the continuum scale. While such models provide descriptive
frameworks for reconciling differences between low-density and high-density regimes, the
precise relationship between delayed PDE formulations and stochastic single-cell dynamics is
yet to be fully understood.

Delay differential equations also present difficulties in both inference and refinement.
While progress has been made in the inference of delayed ordinary differential equa-
tions (ODEs) using techniques such as Delayed SINDy [60], and in delayed PDEs through
approaches like Physics-Informed Neural Networks (PINNs) [13] and Maximum Likelihood
Estimation (MLE) [59], computational methods for high-fidelity inference of these mod-
els remain limited. Our approach to PDE-constrained optimization leverages adjoint-based
techniques to enable accurate parameter estimation in models. However, a major challenge
in extending our framework to delayed PDEs is the scarcity of robust solvers that support
automatic differentiation, which is essential for efficient gradient-based PDE-constrained
optimization. Additionally, an extra layer of complexity is introduced by identifying and
incorporating parameterized nonlinear delay kernels that can accurately capture history-
dependent effects while remaining computationally tractable. Developing or integrating
such solvers, alongside strategies for efficiently parameterizing and inferring nonlinear
delay kernels, is a promising future direction in PDE-constrained optimization, and for our
work.

The above difficulties around complete treatments of inference with delay-differential
equations can be circumvented by including a restricted delay model within the VSI frame-
work. In S2 Appendix we have explored a change-point treatment of delay differential equa-
tions, where we use ramp functions in time on the diffusive and reactive mechanisms. These
approaches have been studied previously by Lagergren et al. [13] In our studies, these mod-
els show similar performance to our baseline VSI approach. However, this approach presents
a simple extension to delay-differential equations pending the more extensive algorithmic
developments that we have outlined above.

6. Conclusion
In summary, our study presents a computational pipeline that integrates Variational System
Identification (VSI) for fast model discovery with PDE-constrained parameter optimization
for refinement. This two-step approach enables the efficient inference of models describing
collective cell migration and proliferation/death in wound healing assays. We benchmark this
method by comparing inferred models with previous reaction-diffusion models applied to 1-
D wound healing data, finding that our models are comparable in accuracy to the previously
published, traditionally derived models. We next capture cell migration in 2-D wound healing
assays using video microscopy, measuring the effect of trametinib on cell migration as a test
case. We further find that the approach advanced here can be applied to 2-D wound healing to
quantify effects of a targeted inhibitor on cell migration and density-dependent effects on pro-
liferation. Our work demonstrates that this pipeline can be used to rapidly identify parsimo-
nious models for cell migration and proliferation from scratch assays. In the future, we aim
to address limitations in experiments that may not resolve length scales with sufficiently high
cell densities for continuum-level predictions. In such cases, we plan to leverage the relation-
ship between transport PDEs and Brownian motion-based stochastic differential equations to
further inform the inference procedure when working with sparse data.
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