
ID: pcbi.1013606 — 2025/10/27 — page 1 — #1

PLOS COMPUTATIONAL BIOLOGY

OPEN ACCESS

Citation: Charlier J, Sherkatghanad Z,
Makarenkov V (2025) Similarity-based transfer
learning with deep learning networks for
accurate CRISPR-Cas9 off-target prediction.
PLoS Comput Biol 21(10):e1013606.
https://doi.org/10.1371/journal.pcbi.1013606

Editor: Lun Hu, Xinjiang Technical Institute of
Physics and Chemistry, CHINA

Received: May 22, 2025

Accepted: October 9, 2025

Published: October 24, 2025

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles.
The editorial history of this article is available
here: https://doi.org/10.1371/journal.pcbi.
1013606

Copyright: © 2025 Charlier et al. This is an
open access article distributed under the terms
of the Creative Commons Attribution License,
which permits unrestricted use, distribution,
and reproduction in any medium, provided the
original author and source are credited.

Data availability statement: All relevant data
are within the manuscript and its Supporting
information files. The submission contains all
raw data required to replicate the results of our
study.

RESEARCH ARTICLE

Similarity-based transfer learning with
deep learning networks for accurate
CRISPR-Cas9 off-target prediction
Jeremy Charlier1☯, Zeinab Sherkatghanad1☯, Vladimir Makarenkov

 

 

1,2∗

1 Département d’Informatique, Université du Québec à Montréal, Montreal, Quebec, Canada,
2 Mila - Quebec AI Institute, Montreal, Quebec, Canada

☯ These authors contributed equally to this work.
∗ makarenkov.vladimir@uqam.ca

Abstract
Transfer learning has emerged as a powerful tool for enhancing predictive accuracy in
complex tasks, particularly in scenarios where data is limited or imbalanced. This study
explores the use of similarity-based pre-evaluation as a methodology to identify optimal
source datasets for transfer learning, addressing the dual challenge of efficient source-
target dataset pairing and off-target prediction in CRISPR-Cas9, while existing transfer
learning applications in the field of gene editing often lack a principled method for source
dataset selection. We use cosine, Euclidean, and Manhattan distances to evaluate simi-
larity between the source and target datasets used in our transfer learning experiments.
Four deep learning network architectures, i.e. Multilayer Perceptron (MLP), Convolutional
Neural Networks (CNNs), Feedforward Neural Networks (FNNs), and Recurrent Neural
Networks (RNNs), and two traditional machine learning models, i.e. Logistic Regression
(LR) and Random Forest (RF), were tested and compared in our simulations. The results
suggest that similarity scores are reliable indicators for pre-selecting source datasets
in CRISPR-Cas9 transfer learning experiments, with cosine distance proving to be a
more effective dataset comparison metric than either Euclidean or Manhattan distances.
An RNN-GRU, a 5-layer FNN, and two MLP variants provided the best overall predic-
tion results in our simulations. By integrating similarity-based source pre-selection with
machine learning outcomes, we propose a dual-layered framework that not only stream-
lines the transfer learning process but also significantly improves off-target prediction
accuracy. The code and data used in this study are freely available at: https://github.com/
dagrate/transferlearning_offtargets.

Author summary
CRISPR-Cas9 is a popular gene-editing technology that allows researchers to mod-
ify an organism’s genomic DNA at precise locations. Significant research efforts have
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been focusing on improving its precision and effectiveness, with particular emphasis on
minimizing off-target effects. At the same time, transfer learning techniques are becom-
ing increasingly important for addressing deep learning challenges in computational
biology, especially in the field of CRISPR-Cas9, where plausible training data availability
can be limited. This study investigates the effectiveness of integrating similarity-based
analysis with transfer learning for improving CRISPR-Cas9 off-target prediction. Our
key contribution consists in an experimental evaluation of three distance metrics, i.e.
cosine, Euclidean, and Manhattan distances, along with several traditional machine
learning and deep learning models, in the context of knowledge transfer by transfer
learning applied to gene editing data. For each considered target dataset our transfer
learning framework determines the most suitable source dataset to be used in the model
pre-training. The proposed computational framework offers a reliable and systematic
method for selecting suitable source data, streamlining the transfer learning process, and
improving prediction accuracy.
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Introduction
CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and the associated
protein 9) has become a leading technology for precise and efficient genome (or gene) editing,
allowing genetic material to be added, removed, or altered at particular locations of a given
genome. Its simplicity, high precision, and versatility across various applications have made
it a dominant tool in the field [1–4]. The CRISPR-Cas9 genetic engineering system reflects
the immune defense mechanism of certain bacteria. Bacteria identify the invading viral DNA
and cut out a segment of the virus DNA, known as a protospacer, to insert it into the front of
the CRISPR array. Bacteria are armed by the protein Cas9 to produce RNA segments from
CRISPR arrays to cut the DNA of the phage virus, and thus defend themselves from the phage
infection return [5]. In CRISPR-Cas9, single-guide RNA (sgRNA) consists of a crRNA and
tracrRNA duplex that guides Cas9 to its Protospacer-Adjacent Motif (PAM) target at the end
of the DNA sequence [6]. The PAM sequence that follows the protospacer sequence in a viral
genome helps Cas9 to distinguish between itself and the enemy. The CRISPR-Cas9 gene edit-
ing system covers many areas of human health and welfare [7,8]. The technology has demon-
strated important clinical potential for drug development to treat various human diseases,
including cancer [9–11], for preventing genetic disorders in plant genetic engineering [12–
14], for providing animal disease treatment [15,16], as well as for assisting bio-fuel production
[17,18].

A significant challenge in the CRISPR-Cas9 gene editing process is the off-target effect,
where the sgRNA targets DNA fragments other than the original DNA fragment aimed,
resulting in unwanted cuttings of the DNA sequence [19,20]. To ensure safe, reliable, and
efficient application of the CRISPR-Cas9 technology, it is essential to develop an accurate
method to maximize the on-target efficiency and minimize the number of potential off-
targets. There are common scoring methods for off-target prediction, such as CFD score [21],
MIT score [22], CHOPCHOP [23] and CCTop score [24] that are based on specific scoring
function highlighting mismatch locations. The main disadvantage of the traditional scoring
methods is their incapability to improve predictive performance when the number of samples
increases as well as their inability to discover relationships between mismatched and matched
sites [25]. Nowadays, effective and feasible solutions to address these issues are provided
by data-driven algorithms [26]. The modern data-driven models that rely on deep learning
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(DL) show promising results with the growing number of CRISPR-Cas9 data; they typically
outperform existing scoring methods in terms of off-target prediction [25].

However, deep learning models employ thousands of parameters, requiring a substan-
tial number of samples in CRISPR-Cas9 datasets. To this end, Transfer Learning (TL) has
emerged as an effective approach to overcome the problem of insufficient number of samples
[25,27,28]. TL is used to learn properties of large source datasets in order to transfer them to
smaller target datasets. TL is employed to improve the prediction accuracy and to avoid data
overfitting on small datasets by leveraging the knowledge learned from larger datasets having
similar properties.

Although some CRISPR-Cas9 benchmark datasets for on- and off-target prediction are
currently available [22], the number of samples they contain is often insufficient to achieve
accurate deep learning predictions. In this case, TL can be viewed as a viable alternative
approach to the use of traditional machine learning (ML) or more sophisticated DL models
which are both prone to overfitting when the data availability is limited. Recently, Lin et al.
[25] and Charlier et al. [28] used TL to predict off-targets in small CRISPR-Cas9 datasets.
Precisely, they trained the model on a large CRISPOR dataset (18,236 samples) to predict off-
targets in a much smaller GUIDE-Seq dataset (430 samples). Elkayam et al. [29] introduced
the DeepCRISTL model, pretraining it on high-throughput source datasets, including more
than 150 000 gRNAs. Then, using TL, they successfully applied DeepCRISTL on target data
consisting of much smaller functional or endogenous datasets. Zhang et al. [30] proposed
the C-RNNCrispr model to predict sgRNA activity using convolutional and recurrent neu-
ral networks (CNNs and RNNs, respectively). After pretraining their model on benchmark
data, the authors applied TL by using small-size datasets to fine-tune C-RNNCrispr. Zhang
et al. [31] developed two attention-based CNNmodels, called CRISPR-ONT and CRISPR-
OFFT, for on- and off-target prediction, respectively. They employed TL for small-size cell-
line sgRNA specificity prediction. Zhang et al. [32] applied TL by using their pre-trained
Hybrid CNN-SVR model that was fine-tuned to provide predictions for small sample cell-line
datasets. Yaish et al. [33] also proposed a novel DL network leveraging TL for off-target activ-
ity prediction. The authors introduced some innovative metrics and visualization techniques
to enhance the understanding of the bulges impact on genome editing. Elkayam et al. [34]
developed the DeepCRISTL model to predict the editing efficiency in a specific cellular con-
text. The authors proposed and compared four TL approaches that are as follows: (a) the full
approach that fine-tunes all model weights; (b) the last-layer approach that fine-tunes only the
weights of the last hidden layer and of the output layers; (c) the no-embedding/convolution
approach that fine-tunes all model weights besides those of the embedding and the convo-
lutional layers; (d) the gradual-learning approach that first fine-tunes the weights of the last
hidden and the output layers, and then all other model weights with a smaller learning rate.

We need to point out that different CRISPR-Cas9 datasets are collected under distinct
laboratory conditions and equipment, resulting in different data patterns and distributions.
The prediction accuracy provided by the TL technique under consideration for a given target
dataset depends drastically on the similarity between this target dataset and the source dataset
used in pretraining. In other words, using completely different source and target datasets in
TL should not lead to satisfactory prediction results for the target data. This paper addresses
the challenge of similarity of the source and target datasets used in transfer learning experi-
ments with CRISPR-Cas9 off-target data.

Our key contributions are outlined below:

• First, we propose a robust dual-layer framework that integrates similarity-based pre-
evaluation with transfer learning for off-target predictions in CRISPR-Cas9 (see Fig 1).
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Fig 1. An overview of the proposed framework leveraging data similarity analysis with genome editing transfer learning. (A) Three
distance measures: cosine, Euclidean, and Manhattan distances are used to identify the most suitable source dataset, among three bench-
mark candidate datasets CD33, CIRCLE, and SITE (complete large dataset), for a given target dataset (smaller bootstrapped dataset);
(B) The framework subsequently transfers the learned model knowledge from the selected optimal source dataset to the target dataset,
enhancing the predictive accuracy.

https://doi.org/10.1371/journal.pcbi.1013606.g001

In contrast to previous studies applying transfer learning to CRISPR-Cas9 datasets,
our approach first compares the sgRNA-DNA sequence patterns of the source and tar-
get datasets using cosine, Euclidean, or Manhattan distance to identify the optimal
source-target pair. The model knowledge is then transferred from a source dataset with
a similar sgRNA-DNA sequence pattern to the target dataset.

• Second, we compare the suitability of cosine, Euclidean, and Manhattan distances for
transfer learning experiments in CRISPR-Cas9, based on the performance of data-
driven DL and ML models.

• Third, we identify the best-performing DL and ML models using reliable performance
evaluation metrics to effectively predict off-targets in CRISPR-Cas9.

• Fourth, we demonstrate the effectiveness of our proposed framework by applying it to
the analysis of seven popular benchmark datasets: CD33, CIRCLE, SITE, Tasi_GUIDE,
Listgarten_GUIDE, Kleinstiver_GUIDE, and Listgarten_Elevation_Hmg.

We need to highlight that existing transfer learning applications in CRISPR-Cas9 (e.g.
DeepCRISTL [34], C-RNNCrispr [31], CRISPR-ONT and CRISPR-OFFT [31]) often lack a
principled method for effective source dataset selection. Thus, our key contribution is in opti-
mizing the transfer learning process through intelligent source selection, and not in inventing
new deep learning architectures designed for transfer learning experiments.
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1. Materials and methods
1.1. Datasets
We conducted our off-target prediction experiments on seven well-known public CRISPR-
Cas9 datasets:

• CD33 dataset was constructed and made available by Doench et al. [35]. It consists of
gRNA-target pairs with only mismatches, comprising 4,853 gRNAs targeting the human
coding sequence of CD33. This is one of the rare well-balanced datasets in which the
class imbalance ratio is 0.81 (i.e. close to 1).

• CIRCLE dataset contains gRNA-target pairs with both mismatches and indels from 10
different guide-RNAs. In our study, we voluntarily modified the encoding process to
aggregate mismatches and indels into the same group. This was a deliberate choice on
our end in order not to bias the results of our experiments. The dataset contains 7,371
active off-targets, which were validated using the Circularization for In vitro Reporting
of CLeavage Effects by sequencing (CIRCLE-seq) technique [36]. Additionally, Lin et al.
[37] used Cas-Offinder [38] to identify 577,578 inactive off-target genomic sites in this
dataset, including mismatches and indels.

• SITE dataset contains 217,733 sgRNA-DNA sequence pairs with 9 guide sequences;
3,767 of them correspond to active off-targets. The dataset is validated by the SITE-
Seq [39,40] biochemical method which employs Cas9 programmed with sgRNAs to
recognize cut sites within genomic DNA.

• Tasi_GUIDE dataset has been provided by Tsai et al. [41] based on the cellular method,
called GUIDE-seq. This dataset includes a total of 294,534 target sites, with 354 off-
target sites containing mismatches.

• Listgarten_GUIDE is the fifth dataset used in our experiments, comprising 56 minor-
ity class samples and 383,463 majority class samples, validated with the GUIDE-seq
technology [42].

• Kleinstiver_GUIDE dataset consists of 54 positive off-target sites and 95,775 inactive
off-target sites, validated by the GUIDE-seq technology [43].

• Listgarten_Elevation_Hmg dataset, referred to as Hmg, comprises 52 active off-targets
among 10,129 potential off-target sites from 19 gRNAs, which was organized and made
publicly available by Haeussler et al. [22].

The dataset’s name, the CRISPR-Cas9 technique used, the number of gRNAs, the number
of samples in both the minority and majority classes, and the class imbalance ratio for each
of these datasets are summarized in Table 1. The datasets are publicly available in our GitHub
repository at: https://github.com/dagrate/transferlearning_offtargets.

Table 1. Seven CRISPR-Cas9 benchmark off-target datasets used in our study. Six of them include gRNA-target pairs with mismatches only, and one of them (CIR-
CLE, denoted with an asterisk) includes gRNA-target pairs with both mismatches and indels. Minority class samples correspond to active off-target sites (or active
off-targets) and Majority class samples correspond to inactive off-target sites.
Dataset CRISPR-Cas9 technique gRNAs Minority class samples Majority class samples Class imbalance ratio
CD33 Protein Knockout Detection 65 2,273 2,580 0.8810
CIRCLE* CIRCLE-Seq 10 7,371 577,578 0.0128
SITE SITE-Seq 9 3,767 213,966 0.0176
Tasi_GUIDE GUIDE-Seq 9 354 294,180 0.0012
Listgarten_GUIDE GUIDE-Seq 22 56 383,463 0.0001
Kleinstiver_GUIDE GUIDE-Seq 5 54 95,775 0.0005
Listgarten_Elevation_Hmg PCR, Digenome-Seq and HTGTS 19 52 10,077 0.0052

https://doi.org/10.1371/journal.pcbi.1013606.t001

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013606 October 24, 2025 5/ 30

https://github.com/dagrate/transferlearning_offtargets
https://doi.org/10.1371/journal.pcbi.1013606.t001
https://doi.org/10.1371/journal.pcbi.1013606


ID: pcbi.1013606 — 2025/10/27 — page 6 — #6

PLOS COMPUTATIONAL BIOLOGY Similarity-based transfer learning with deep learning networks in CRISPR-Cas9

1.2. Data encoding
To encode sgRNA-DNA sequences, we adopted the encoded scheme introduced by Lin et al.
[37] that integrates mismatches, insertions, deletions, and matches to preserve the mutual
information between on-target and off-target sites. This scheme represents each sgRNA-DNA
sequence pair using seven-bit one-hot encoding: a five-bit channel (A, C, G, T, _) and a two-
bit direction channel used to indicate the insertion/indel or mismatch directions. Conse-
quently, a 7× 23 matrix (where 23 represents the sequence length, including the 3-bp PAM
adjacent to the 20 bases) allows for considering three types of base mismatches, missing
bases (RNA bulge or insertion), and extra bases (DNA bulge or deletion) in off-target sites.
An overview of this encoding technique, with examples including an insertion (RNA bulge),
a mismatch, and a deletion (DNA bulge) is presented in Fig 2.

1.3. Data splitting procedure for model training
We specifically selected three datasets, CD33, CIRCLE, and SITE, as potential source datasets
due to a large number of positive samples in their minority class (i.e. active off-targets) and
the lowest class imbalance among the seven datasets considered, as indicated in Table 1. This
selection enhances the robustness of our analyses during the training process.

We used a standard train-test split from the scikit-learn [44] implementation with shuf-
fling, a ratio of 0.3, and equal stratification of the classes. The stratification was employed to
ensure that the class distribution within the training and testing datasets accurately reflects
the original class proportions before the train-test split. By maintaining relative class ratios,
stratification mitigates biases and enhances the reliability of model evaluation to address the
issue of data imbalance [45].

1.4. Model description
An overview of the classification models used in our experiments is provided in Supporting
Information. The two following Python libraries were used for model implementation:

• Scikit-Learn ML and DLmodels: Four classification models were implemented
using this library: One Hidden Layer Perceptron (MLP1), Two Hidden Layer Percep-
tron (MLP2), Random Forest (RF) classifier, and Logistic Regression (LR) classifier.
These models are well-established ML and DL techniques widely used in practical
applications.

• DL networks with TensorFlow: In Supporting Information, we provide details on eight
deep neural network models implemented using the Python package TensorFlow. They
include a three-layer feedforward neural network (FNN3), a five-layer FNN (FNN5),
and a ten-layer FNN (FNN10); a three-layer convolutional neural network (CNN3),
a five-layer CNN (CNN5), and a ten-layer CNN (CNN10); a three-layer Long Short-
Term Memory (LSTM) RNNmodel and a three-layer Gated Recurrent Unit (GRU)
RNNmodel. These network architectures offer flexibility for complex data representa-
tions. Fig 3 outlines the main features of the FNN, CNN, and RNN networks used in
our study.

1.5. Model hypertuning
We present hereinafter the methodology used for hypertuning the traditional ML classifiers
and DL network models considered in our study.
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Fig 2. A schematic view of the encoding of an sgRNA-DNA sequence pair, as employed in the study of Lin et al.
[37]. A seven-bit encoding example is illustrated, where the _ symbol indicates the position of DNA or RNA bulges.
Each sgRNA-DNA sequence pair is encoded as a fixed-length matrix with seven rows, comprising a five-bit character
channel (A, G, C, T, _) and a two-bit direction channel. The five-bit channel encodes the nucleotides at the on- and
off-target sites, while the direction channel identifies the locations of mismatches and indels. L denotes the sequence
length (L=23 in our study).

https://doi.org/10.1371/journal.pcbi.1013606.g002

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013606 October 24, 2025 7/ 30

https://doi.org/10.1371/journal.pcbi.1013606.g002
https://doi.org/10.1371/journal.pcbi.1013606


ID: pcbi.1013606 — 2025/10/27 — page 8 — #8

PLOS COMPUTATIONAL BIOLOGY Similarity-based transfer learning with deep learning networks in CRISPR-Cas9

Fig 3. Representation of transfer learning for FNNs, CNNs, and RNNs.Minor variations exist between different CNN
and FNN architectures used in our experiments, based on the number of layers included. However, the architecture
presented is consistent across all RNNs evaluated in our study.

https://doi.org/10.1371/journal.pcbi.1013606.g003
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1.5.1. Classifiers hypertuning. To determine the optimal parameters for each trained
classifier, we employed random search with a 3-fold cross-validation on the training set. The
3-fold cross-validation ensures that there is no data leakage when assessing performance
on the test set in our experiments. We utilized the RandomizedSearchCV function from the
Scikit-Learn library, which implements a random search. Unlike exhaustive grid search, ran-
dom search explores a subset of hyperparameter values using a fixed number of samples.
These values can be specified as lists or sampled from distributions. By doing so, random
search efficiently explores a wider range of hyperparameters while minimizing the running
time [46]. The hyperparameters used with the CD33, CIRCLE, and SITE datasets are detailed
in Tables A, B, and C in S1 Table.

1.5.2. Deep neural networks hypertuning. Finding the optimal set of hyperparame-
ters for DL models can require significant computational time and resources [46]. Thus, we
decided to use a random search method optimized for DL models offering a good compro-
mise between the computational resources being employed and the optimality of the model’s
parameters [47]. The Keras Tuner library offers a simple and efficient framework to fine-tune
the deep learning models used in our experiments: FNN3, FNN5, FNN10, CNN3, CNN5,
CNN10, LSTM, and GRU. With DL models, we applied a 3-fold cross-validation on the
training set applying a similar methodology as that used with traditional scikit-learn classi-
fiers. The number of maximum trials was set to 30. This parameter represents the maximum
total number of trials during a hyperparameter search. The hyperparameters for the CD33,
CIRCLE, and SITE datasets are detailed in Tables D, E, and F in S1 Table.

1.6. Neural network overfit monitoring
Both traditional ML classifiers and DL networks require overfit monitoring during their
training [46]. In our experiments, we employed two essential callbacks to mitigate overfit-
ting in our deep learning models. First, we used the Reduce Learning Rate on Plateau call-
back dynamic approach that automatically adjusts the learning rate during training based on
the model’s performance. If the validation loss reaches a plateau (i.e., stops improving), the
learning rate is reduced, allowing the model to converge more effectively. Second, we used the
Early Stopping callbacks with a patience of 8 epochs and a minimum delta parameter of 0.02
on the validation loss. This callback function monitors the model’s performance during train-
ing. If the validation loss fails to improve significantly (i.e. it is less than the specified delta)
for a certain number of consecutive epochs (determined by the patience value), the training is
halted early to prevent overfitting. These combined strategies help ensure that our DL models
generalize well to unseen data [48].

1.7. Transfer learning based on distance evaluation
In this section, we delve into the background and detailed explanation of the proposed
approach for similarity-based transfer learning off-target prediction in CRISPR-Cas9. A
notable concern in transfer learning is the risk of negative transfer [49], which arises when
the source dataset is inappropriately selected. In this case, a model pre-trained on a larger
but dissimilar dataset may perform worse than a model trained from scratch with ran-
domly initialized weights. This issue emphasizes the importance of quantifying the similar-
ity between source and target datasets to ensure the success of transfer learning. To address
this challenge for off-target CRISPR-Cas9 data, we evaluate the similarity between the two
involved datasets (i.e. a potential source and the given target datasets) using three different
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metrics: cosine similarity (here, we use its distance form), and Euclidean and Manhattan
distances:

dcosine(a,b) = 1 –
∑K

i=1 aibi√
∑K

i=1 a
2
i

√
∑K

i=1 b
2
i

, (1)

dEuclidean(a,b) =

¿
ÁÁÀ

K
∑
i=1
(ai – bi)2, (2)

dManhattan(a,b) =
K
∑
i=1

|ai – bi|. (3)

Here, a and b are vectors of length K = 7L (i.e. L is the sequence length, which is equal to 23
in our study) representing the encoded sgRNA-DNA sequence pairs in the source and tar-
get datasets, respectively. Each encoded matrix of size 7×L (see Fig 2) is flattened into a
vector of length 7L in order to calculate the distance between sgRNA-DNA sequence pairs
from the source and target datasets. It is worth noting that the number of rows, i.e. 7, in the
matrix corresponds to the number of bits used to encode a given sgRNA-DNA sequence pair,
including a five-bit character channel (i.e. A, G, C, T, and _) and a two-bit direction chan-
nel (to indicate if they appear in the sgRNA or DNA sequence). The five-bit channel encodes
the presence-absence of the four nucleotides and insertions/deletions, whereas the direction
channel identifies the location of the mismatched nucleotides or insertions/deletions, if any
(see Fig 2 for three examples of such a sequence encoding). We should highlight that 7 is the
minimum number of rows one can use to encode the presence-absence of the A, G, C, T, and
_ characters in two sequences, including their location information, without any information
loss.

It is important to note that cosine, Euclidean, and Manhattan distances compared in our
study have different strengths and disadvantages. For example, cosine distance is sensitive
to direction in high-dimensional sparse spaces. It is used when the magnitude of the vec-
tors is not important. This is the case of binary data such as our sgRNA-DNA sequence pairs
encoded as 7L binary vectors. With cosine distance the difference in values is not fully taken
into account, but this is not a disadvantage in our settings since this difference can be either
0 or 1 with our sequence encoding. Theoretically, cosine distance should work better in cases
when the encoded sgRNA-DNA sequence pairs have more matching nucleotides, than in
cases with frequent insertions, deletions, and mismatches, since better matching sequences
would lead to more sparse binary spaces. Euclidean distance is certainly the most natu-
ral distance choice as it is directly computed from the cartesian coordinates of the points
using the Pythagorean theorem. Euclidean distance is sensitive to magnitude but, as speci-
fied above, this is not of importance in our binary settings. This distance usually works well
with low-dimensional data. Manhattan distance is known for its robustness to outliers. It is
less intuitive than Euclidean distance but works well with discrete and binary components
as it considers the veritable path that can be taken within values of those components. Thus,
in our settings, we could expect that Manhattan distance treats equally well binary encoded
matching nucleotides, insertions, deletions, and mismatches.
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Clearly, the most intuitive way of computing the distance between the source and the target
datasets is the following:

• A. For each element in the source dataset, calculate the minimum distance between it
and all elements in the target dataset.

• B. For each element in the target dataset, calculate the minimum distance between it
and all elements in the source dataset.

• C. Take an average of all these minimum distances. This average can play the role of
the distance between the source and the target data. This distance could then be used
to determine the most appropriate source dataset for a given target dataset to carry out
transfer learning.

Such an exhaustive approach would work in practice when both the source and target
datasets are small (< 50, 000 elements each). However, real-world CRISPR-Cas 9 datasets
often contain hundreds of thousands elements (see Table 1) each of which must be encoded
in a numerical vector format beforehand in order to perform machine learning experiments.
For example, the execution of the above-mentioned exhaustive approach applied to the
CIRCLE (used as source data) and SITE (used as target data) datasets would require several
weeks of intensive computation on a modern PC computer. Moreover, in many practical sit-
uations the target datasets is so small that deep learning experiments, which usually necessi-
tate a huge amount of data, cannot be performed on it (e.g. see [25,28] for examples of such
off-target datasets used in CRISPR-Cas9). Finally, to perform our Monte Carlo simulations
to determine the most appropriate distance measure as well as the most suitable ML and DL
models in the context of CRISPR-Cas9 off-target transfer learning, we need several hundred
real-world datasets of realistic size.

Thus, we decided to perform our Monte Carlo simulations with bootstrap replicates of the
considered benchmark target datasets. A bootstrap replicate of a given target dataset per sim-
ilarity experiment was generated and the average simulation results were then reported. The
size of each bootstrapped target dataset was 250, while the number of iterations (i.e. com-
parisons of each target element with the source elements used to assess the distance between
the source and target datasets) was set to 5,000. As we determined experimentally, with this
number of iterations (denoted by nitr in Algorithm 1 below), the average distance between the
source and target datasets found by the random search converges towards the distance pro-
vided by an exhaustive search algorithm. In the large majority of cases, this number of itera-
tions was sufficient to achieve two-digit precision after the decimal point during the distance
calculation. This allowed us to obtain reliable results without having to run the computations
for several days. Regarding the size of 250 of the bootstrapped targets, it was selected to see
how the proposed methodology would work with some high-quality CRISPR-Cas9 datasets
of realistically small size. For example, in a recent Nature Communication paper, Ham et al.
[50] used the TevSpCas9 dataset with 279 samples as well as the SpCas9 dataset with 303 sam-
ples to conduct their transfer learning experiments with a novel machine learning architecture
(crisprHAL) meant to improve sgRNA activity prediction.

Furthermore, we made sure that the sample ratios between the majority and minority
classes in each bootstrapped target datasets were equivalent to those in the complete target
dataset.

Algorithm 1 outlines the key steps of our similarity-based transfer learning approach. The
algorithm takes as input N potential source datasets (representing labeled data), denoted as
DS ∶= {D1, ....,DN}, a given bootstrapped target dataset (representing unlabeled data), denoted
as DT , and a distance measure d (cosine, Euclidean, or Manhattan distance, in our case).
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The set of the encoded vector representations of the source dataset Di (i = 1, ...,N) is
denoted as {Xi}, and of the bootstrapped target dataset DTb as {X

t}, each of them of dimen-
sion 7L.

Algorithm 1 Similarity-Based Transfer Learning for CRISPR-Cas9 Off-Target Prediction
Require: Set DS of N potential source datasets {D1, ....,DN} (labeled

off-target data)
Require: Bootstrapped target dataset DTb (unlabeled off-target data)
Require: Distance measure d (i.e. cosine, Euclidean, or Manhattan

distance)
Ensure: Off-target predictions by similarity-based transfer learning
1: DS ∶= {D1, ....,DN},Di = Encode(Di) = {Xi}, i = 1, ...N
2: DTb = Bootstrap(Encode(DT )) = {Xt}

Phase 1 - Similarity Analysis - Selecting Optimal Source Dataset

3: DistOpt ←∞ ⊳ Initialize optimal (minimum) distance between source and target
4: DSOpt =∅ ⊳ Initialize optimal source dataset for transfer learning
5: for each Di ∈ DN do
6: for m← 1, ..., |DTb | do
7: distmin ←∞ ⊳ Initialize the minimum distance
8: am = Xt

m,∶ ⊳ Extract the mth sample of the target dataset
9: for iteration← 1, ..., nitr do
10: n = randint[1, |Di|] ⊳ Randomly sample an index from the source dataset
11: bn = Xi

n,∶ ⊳ Extract the nth sample of the ith source dataset
12: dcurrent ← d(am, bn) ⊳ Using Eqs. (1)-(3)
13: if dcurrent < distmin then
14: distmin ← dcurrent
15: end if
16: end for
17: dm ← distmin ⊳ Store the minimum distance for the mth sample in vector d
18: end for
19: if d < DistOpt then ⊳ d is the mean of the minimum distance vector d
20: DistOpt ← d ⊳ Update the optimal distance between source and target
21: DSOpt ←Di ⊳ Update the optimal source dataset
22: end if
23: end for

Phase 2 - Transfer Learning

24: MS ← Train model using the selected source dataset DSOpt
25: wS ← Save the trained model weights
26: MTS ← Apply transfer learning using target data by loading weights wS
27: Perform off-target predictions using MTS

During the first phase of Algorithm 1, refereed to as Similarity Analysis phase, we system-
atically evaluate the distance between each potential source datasetDi ∈DN and the boot-
strapped target dataset DTb to determine the most suitable source dataset for a given target.
Cosine, Euclidean, or Manhattan distance between the following vectors is then computed:
(1) am - a vector of length 7L representing themth encoded sgRNA-DNA sequence pair in the
bootstrapped target dataset DTb , wherem∈ {1,… , |DTb |} and (2) bn - a randomly selected
vector of length 7L representing the nth encoded sgRNA-DNA sequence pair in the ith source
datasetDi, where n∈ {1,… , |Di|}. For each datasetDi ∈DS , we iterate over every element
in DTb computing the current distance value, dcurrent, between each element in DTb (i.e. am
vectors) and a random subset of elements inDi (i.e. bn vectors). The number of elements in
this random subset equals nitr. Thus, a unique subset of the current source datasetDi is gen-
erated through random sampling with replacement. If the computed current distance dcurrent
is smaller than the previously stored minimum distance distmin, we update distmin to dcurrent.
This process is repeated over nitr iterations, ensuring that distmin consistently represents a
close match between the target element and the source datasetDi. We then construct the
vector d of dimension |DTb | that includes the minimum distance values for all samples in DTb .
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Themean of this vector is used to determine the optimal source candidate dataset for transfer
learning (i.e. the set that exhibits the highest similarity with a given target).

The second phase of Algorithm 1, referred to as Transfer Learning phase, implements the
transfer learning process using the optimal source dataset DSOpt (selected at Phase 1).

2. Results and discussion
In this section, we present the results of our simulation study that addresses two core objec-
tives: (i) evaluating the effectiveness of transfer learning in improving off-target predictions
in CRISPR-Cas9, and (ii) developing a methodology for pre-assessing the success of trans-
fer learning predictions through a similarity-based analysis of the source and target data. The
flowchart of our approach is illustrated in Fig 1.

2.1. Similarity analysis
Similarity analysis evaluates the closeness of a given target dataset to a potential source
dataset. This analysis is crucial for determining the appropriateness of employing transfer
learning for the data at hand. In our study, cosine, Euclidean, and Manhattan distances were
used to quantify the degree of similarity between datasets. Each of these metrics has its own
strengths and weaknesses. Thus, cosine distance is preferable for high-dimensional and text
data, Euclidean distance provides an intuitive measure of similarity for normalized data,
whereas Manhattan distance is beneficial for datasets encompassing outliers or non-linear
relationships [51].

To conduct our simulation study, we selected the CD33, CIRCLE, and SITE datasets as
candidate sources datasets, as they offer a sufficient number of minority class samples (i.e.
off-targets), thereby increasing the robustness of our approach. In our simulations, the size
of the subset of the source dataset compared to the given target dataset was set to 5,000 (i.e.
nitr = 5, 000 in Algorithm 1), whereas the size of the bootstrapped target datasets was set to
250 (the class imbalance ratio in the bootstrapped datasets was equivalent to that of the cor-
responding complete dataset; see Table 2). We observed that the distance estimations usually
converged when the number of iterations, i.e. nitr, was between 4000 and 5000.

Table 3 reports the average estimated similarities between the three source datasets (CD33,
CIRCLE, and SITE) and the seven bootstrapped target datasets (CD33_BS, CIRCLE_BS,
SITE_BS, Tasi_GUIDE_BS, Listgarten_GUIDE_BS, Kleinstiver_GUIDE_BS, and Hmg_BS)
calculated using cosine, Euclidean, and Manhattan distances. Each similarity estimate appear-
ing in Table 3 was computed as 1–NormalizedAverageDistance between the selected source
and bootstrapped target dataset using cosine, Euclidean, or Manhattan distance. The exact
procedure used in our experiments to compute the similarity values is as follows:

Table 2.Minority and majority class distribution, and class imbalance ratio for bootstrapped target datasets,
with sample size of 250, used in our experiments.
Dataset Minority Class Samples Majority Class Samples Class Imbalance Ratio
CD33_BS 117 133 0.879
CIRCLE_BS 3 247 0.012
SITE_BS 4 246 0.016
Tasi_GUIDE_BS 2 248 0.008
Listgarten_GUIDE_BS 2 248 0.008
Kleinstiver_GUIDE_BS 2 248 0.008
Hmg_BS 3 247 0.012

https://doi.org/10.1371/journal.pcbi.1013606.t002
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Table 3. Average Estimated Similarities (1 - Normalized Average Distances) between the three source datasets
(CD33, CIRCLE, and SITE) and the seven bootstrapped target datasets (CD33_BS, CIRCLE_BS, SITE_BS,
Tasi_GUIDE_BS, Listgarten_GUIDE_BS, Kleinstiver_GUIDE_BS, and Hmg_BS) calculated using cosine,
Euclidean, and Manhattan distances. Similarity values corresponding to the most suitable source-target dataset pairs
are highlighted in bold.
Target data Metric CD33 CIRCLE SITE
CD33_BS Cosine 0.9585 0.5669 0.5484

Euclidean 0.7843 0.0821 0.0520
Manhattan 0.8933 0.1589 0.1095

CIRCLE_BS Cosine 0.5443 0.8650 0.6299
Euclidean 0.0680 0.4450 0.0845
Manhattan 0.1295 0.6809 0.1389

SITE_BS Cosine 0.5352 0.6021 0.8841
Euclidean 0.0408 0.0589 0.4550
Manhattan 0.0884 0.10280 0.7052

Tasi_GUIDE_BS Cosine 0.5448 0.8269 0.6266
Euclidean 0.0549 0.3586 0.0776
Manhattan 0.1105 0.5755 0.1283

Listgarten_GUIDE_BS Cosine 0.5605 0.5701 0.5583
Euclidean 0.0726 0.0202 0.0024
Manhattan 0.1563 0.0502 0.0080

Kleinstiver_GUIDE_BS Cosine 0.5265 0.5672 0.5676
Euclidean 0.0418 0.0184 0.0007
Manhattan 0.0827 0.0329 0.0220

Hmg_BS Cosine 0.5317 0.5598 0.5728
Euclidean 0.0695 0.0442 0.0363
Manhattan 0.1478 0.0725 0.0616

https://doi.org/10.1371/journal.pcbi.1013606.t003

1. A bootstrapped target dataset of size 250 was generated for each of the 7 (complete)
benchmark off-target datasets considered in our work. The class imbalance ratio of the
corresponding complete benchmark dataset was preserved in bootstrapped data (e.g.
see Table 2);

2. A 7× 7 distance matrix,Dist, containing pairwise distances between 7 complete and 7
bootstrapped datasets was computed using Algorithm 1;

3. Steps 1 and 2 above were repeated 5 times to create 5 replicates of the distance matrix
Dist;

4. The average 7 × 7 distance matrixDist_av was computed using these replicates;
5. The average similarity matrix S was computed from this average distance matrix using

the Min-Max normalization:
s(i, j) = 1– Dist_av(i, j) –min(Dist_av)

max(Dist_av) –min(Dist_av)
,

where 1≤ i, j ≤ 7, andmax(Dist_av) andmin(Dist_av) are, respectively, the mini-
mum and maximum values of the distance matrixDist_av. Obviously, higher similarity
values are associated with lower distances.

In addition, Fig 4 presents the corresponding bar plot diagrams for each of the three con-
sidered distance measures.

The results presented in Table 3 and Fig 4 demonstrate that the cosine metric provides the
highest overall similarity values between source and target datasets, compared to Manhat-
tan and Euclidean distances, whereas Euclidean distance corresponds to the lowest similari-
ties. However, Manhattan and Euclidean metrics provide the largest differences between the
similarities corresponding to the recommended and non-recommended source datasets. This
means that Euclidean and Manhattan distances, being sensitive to absolute differences, better
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Fig 4. Bar plot representation of Average Estimated Similarities (1 - Normalized Average Distances). Similarities between the three source datasets (CD33, CIR-
CLE, and SITE) and the seven bootstrapped target datasets (CD33_BS, CIRCLE_BS, SITE_BS, Tasi_GUIDE_BS, Listgarten_GUIDE_BS, Kleinstiver_GUIDE_BS, and
Hmg_BS) were assessed using the cosine, Euclidean, and Manhattan distances.

https://doi.org/10.1371/journal.pcbi.1013606.g004

highlight stark dissimilarity between datasets. However, our findings suggest that overall mag-
nitude is less important for transferability than feature direction, which is captured by cosine
distance (see Sect 2.3). Such a result should be related to the binary nature of the encoded
sgRNA-DNA sequence pairs since in our settings even the vectors with different locations of
matches, mismatches, and indels are sparse enough to have at least 50% of matching 0 values,
thus leading to the lowest cosine similarity values that are slightly higher than 0.5. In the case
of Euclidean and Manhattan distances, the lowest normalized distance values can be close to
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1, leading to the corresponding similarity values that are slightly higher than 0. Obviously, the
maximum similarity value is limited by 1 (in case of a perfect sequence match) for all three
metrics considered.

As expected, the most appropriate source datasets for the bootstrapped target datasets
CD33_BS, CIRCLE_BS, and SITE_BS were their complete source counterparts CD33,
CIRCLE, and SITE, respectively. The corresponding cosine similarity values for these source-
target pairs were 0.9585, 0.8650, and 0.8841, respectively.

Interestingly, for the other target datasets, i.e. Tasi_GUIDE_BS, Listgarten_GUIDE_BS,
Kleinstiver_GUIDE_BS, and Hmg_BS, the choice of the most suitable source dataset depends
on the selected distance/similarity measure. For example, for Tasi_GUIDE_BS, the CIRCLE
dataset stands out as the most suitable source, achieving the highest similarity across all three
distance metrics (cosine, Euclidean, and Manhattan). However, for Listgarten_GUIDE_BS,
the CIRCLE dataset is the most suitable source according to cosine similarity, but both Man-
hattan and Euclidean metrics indicate CD33 as the most suitable source dataset for it. In
the case of Kleinstiver_GUIDE_BS, the CIRCLE and SITE datasets provide a slightly bet-
ter performance compared to CD33 according to cosine similarity. However, according to
both Euclidean and Manhattan metrics, CD33 shows the highest similarity with this target
dataset. For Hmg_BS, the obtained results reveal that the SITE dataset demonstrates the high-
est similarity with it using cosine similarity, whereas the CD33 dataset is designated as the
most suitable source for it according to Euclidean and Manhattan metrics. Clearly, the choice
of the most appropriate source dataset depends on the specific distance/similarity measure
being employed as the results provided by Euclidean and Manhattan metrics are usually well
aligned, but don’t always correspond to those yielded by the cosine metric.

2.2. Evaluation metrics
The performance of the proposed model was assessed using several standard evaluation
metrics, as detailed below:

• AUC_ROC (Area Under the Receiver Operating Characteristic Curve):This metric
evaluates the model’s ability to distinguish between positive and negative classes. It rep-
resents the probability that the classifier will assign a higher score to a randomly chosen
positive instance than to a randomly chosen negative instance.

• Precision is defined as the proportion of true positive predictions among all predicted
positives:

Precision = TP
TP + FP

, (4)

where TP denotes the number of true positives and FP the number of false positives.
• Recall, which is also known as sensitivity or true positive rate, assesses the proportion
of correctly identified positive samples:

Recall = TP
TP + FN

, (5)

where FN is the number of false negatives.
• F1-score is the harmonic mean of precision and recall, offering a balance between them:

F1-score = 2 × Precision× Recall
Precision + Recall

. (6)
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• Brier score is defined as the mean squared difference between the predicted probability
and its binary outcome:

Brier score = 1
N

N
∑
i=1
(pi – oi)2, (7)

where pi is the predicted probability of sample i, oi ∈ {0, 1} is the observed outcome of
i, and N is the total number of samples. Lower values of the Brier score correspond to
better calibrated probabilistic predictions.

• Accuracy is the proportion of correctly classified samples among their total number:

Accuracy = TP + TN
TP + TN + FP + FN

, (8)

where TN is the number of true negatives.

2.3. Assessing the impact of similarity analysis in transfer learning
In this section, we evaluate the impact of similarity analysis in transfer learning with CRISPR-
Cas9 off-target data. Thus, we assess the reliability of the similarity scores reported in Table 3
for ML and DL-based off-target predictions. This evaluation is structured around three
distinct scenarios, where machine learning models are trained on one of the three source
datasets (CD33, CIRCLE, and SITE) and applied, via transfer learning, to different variants of
seven bootstrapped datasets constructed as outlined in Table 2. For each scenario, we report
the average results for 10 DL models: FNN models with 3, 5, and 10 layers; CNN models with
3, 5, and 10 layers; LSTM and GRU models with 4 layers; MLP models with 1 and 2 layers; as
well as for traditional RF and LR classifiers (see Supplementary Information for further details
on the models considered).

In the first scenario, the CD33 dataset served as the source dataset for transfer learn-
ing. The Receiver Operating Characteristic (ROC) curves (see Fig 5A) and Precision-Recall
(PR) curves (see Fig A(A) in S1 Fig) are presented for various models trained on the CD33
dataset and tested on its bootstrapped counterpart, CD33_BS. To help evaluate the models
performance, the AUC-ROC values are displayed in descending order within these figures.
Furthermore, Fig 6 and Fig B in S1 Fig present the ROC and PR curves, respectively, for all
considered ML and DL models using the CD33 dataset as source and six other bootstrapped
datasets as targets. Additionally, Table 4 reports the values of the six selected evaluation met-
rics, including AUC ROC, Precision, Recall, F1-score, Brier score, and Accuracy, obtained
using the CD33 dataset as source for all bootstrapped targets. Target datasets exhibiting the
highest similarity to the CD33 dataset are marked with an asterisk (based on the similarity
scores reported in Table 3). When the CD33_BS dataset served as the transfer learning tar-
get, GRU and MLP1 achieved a superior AUC-ROC performance compared to other mod-
els, with MLP1 providing the highest AUC-ROC score of 0.9863, closely followed by GRU
at 0.9839. Both GRU and MLP1 consistently outperformed the other competing models
across all evaluation metrics. Among the bootstrapped datasets, Listgarten_GUIDE_BS, Kle-
instiver_GUIDE_BS, and Hmg_BS showed the highest similarity with CD33 according to
Euclidean and Manhattan metrics (see Table 3). When Listgarten_GUIDE_BS was used as
target, MLP1 achieved the highest AUC ROC (0.9629) and Precision (0.6828) results. When
Kleinstiver_GUIDE_BS was used as target, MLP1 and MLP2 outperformed all other models
across all metrics. Moreover, MLP2 consistently provided the best results across all metrics for
the Hmg_BS target dataset, with the highest AUC-ROC, precision, and F1-score values, and
the lowest Brier score.
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Fig 5. ROC curves for model evaluation. ROC curves for models trained on: (A) CD33 dataset, (B) CIRCLE dataset,
and (C) SITE dataset, used as sources, and evaluated on their respective bootstrapped targets. The AUC ROC values
for each model are displayed in descending order within each figure.

https://doi.org/10.1371/journal.pcbi.1013606.g005
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Fig 6. ROC curves for model evaluation. ROC curves for models trained on the CD33 dataset, used as source, and six bootstrapped datasets:
CIRCLE_BS, SITE_BS, Tasi_GUIDE_BS, Listgarten_GUIDE_BS, Kleinstiver_GUIDE_BS, Hmg_BS, used as targets. The AUC ROC values for each
model are displayed in descending order within the figure.

https://doi.org/10.1371/journal.pcbi.1013606.g006
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Table 4. Performance metrics for each considered classification model obtained using the CD33 dataset for training (i.e. as source). Target datasets exhibiting the
highest similarity to the CD33 dataset are marked with an asterisk. The results of the top-performing models are highlighted in bold.
Target Metric FNN3 FNN5 FNN10 CNN3 CNN5 CNN10 LSTM GRU MLP1 MLP2 RF LR
CD33_BS* AUC ROC 0.9680 0.9671 0.9720 0.9814 0.9799 0.9754 0.9618 0.9839 0.9863 0.9851 0.9829 0.8860

Precision 0.9740 0.9745 0.9785 0.9859 0.9842 0.9823 0.9608 0.9867 0.9832 0.9803 0.9822 0.8621
Recall 0.8782 0.8889 0.9145 0.8931 0.8814 0.9060 0.9299 0.9402 0.9583 0.9487 0.9701 0.8120
F1 Score 0.9278 0.9265 0.9369 0.9425 0.9348 0.9464 0.8838 0.9392 0.9522 0.9541 0.9390 0.7925
Brier Score 0.0570 0.0578 0.0493 0.0481 0.0499 0.0440 0.0874 0.0464 0.0361 0.0371 0.0550 0.1489
Accuracy 0.9360 0.9340 0.9423 0.9490 0.9425 0.9520 0.8856 0.9430 0.9550 0.9573 0.9410 0.8010

CIRCLE_BS AUC ROC 0.6650 0.6518 0.7189 0.7193 0.7447 0.7840 0.7599 0.7477 0.8056 0.8051 0.7974 0.7467
Precision 0.0576 0.0445 0.0671 0.0533 0.0667 0.1225 0.1052 0.1040 0.1342 0.1165 0.0951 0.0799
Recall 0.5384 0.4615 0.5385 0.9231 0.8462 0.8462 0.8846 0.4403 0.0000 0.0170 0.3846 0.5637
F1 Score 0.1356 0.0752 0.1057 0.0721 0.0965 0.0799 0.1365 0.12345 0.0000 0.0282 0.1266 0.0947
Brier Score 0.1703 0.2736 0.2115 0.5926 0.3815 0.4633 0.2392 0.1378 0.0275 0.0282 0.1069 0.1754
Accuracy 0.8185 0.7050 0.7630 0.3820 0.5880 0.4930 0.7070 0.8390 0.9722 0.9705 0.8574 0.7231

SITE_BS AUC ROC 0.6759 0.7158 0.7256 0.7221 0.7880 0.8313 0.8062 0.8151 0.9067 0.8887 0.7487 0.6295
Precision 0.4387 0.4925 0.4969 0.5187 0.5899 0.6840 0.6508 0.6683 0.8363 0.7926 0.5625 0.4138
Recall 0.5156 0.6884 0.6884 0.9632 0.9292 0.9575 0.7652 0.6686 0.1218 0.1132 0.5542 0.7651
F1 Score 0.5098 0.5810 0.6152 0.6066 0.6735 0.6377 0.6526 0.6413 0.2166 0.2022 0.5602 0.5670
Brier Score 0.3338 0.3282 0.2767 0.4232 0.2974 0.3464 0.2415 0.2190 0.3038 0.3083 0.2081 0.2543
Accuracy 0.6500 0.6495 0.6960 0.5590 0.6820 0.6160 0.7120 0.7360 0.6890 0.6843 0.6920 0.5870

Tasi_GUIDE_BS AUC ROC 0.7131 0.7387 0.7419 0.7705 0.7762 0.7793 0.7905 0.7152 0.6638 0.6360 0.7632 0.7787
Precision 0.1156 0.0922 0.1944 0.1127 0.1551 0.1667 0.2499 0.1122 0.1443 0.1227 0.1739 0.1693
Recall 0.2941 0.7647 0.5686 0.7005 0.5882 0.7487 0.7941 0.3835 0.0000 0.0000 0.3529 0.7647
F1 Score 0.1136 0.1425 0.1400 0.0987 0.1299 0.1163 0.1730 0.1444 0.0000 0.0000 0.1277 0.1197
Brier Score 0.1461 0.2801 0.2045 0.4021 0.2470 0.3335 0.2125 0.1349 0.0336 0.0335 0.1459 0.2321
Accuracy 0.8440 0.6870 0.7633 0.5700 0.7320 0.6162 0.7425 0.8457 0.9663 0.9663 0.8360 0.6175

Listgarten_
GUIDE_BS*

AUC ROC 0.8037 0.7974 0.8134 0.7396 0.8169 0.8424 0.8327 0.8098 0.9629 0.9530 0.8148 0.7860
Precision 0.1416 0.1443 0.1741 0.1119 0.1616 0.2399 0.2560 0.3021 0.6828 0.6027 0.2962 0.2431
Recall 0.5893 0.7679 0.7143 0.9286 0.9107 0.9107 0.6964 0.5714 0.1429 0.1071 0.6071 0.7857
F1 Score 0.2662 0.2266 0.2459 0.1578 0.2214 0.1882 0.2400 0.2832 0.2500 0.1935 0.2798 0.1832
Brier Score 0.1739 0.2736 0.2199 0.5259 0.3346 0.3846 0.2011 0.1386 0.0450 0.0471 0.1501 0.2311
Accuracy 0.8175 0.7060 0.7540 0.4450 0.6410 0.5600 0.7530 0.8380 0.9520 0.9500 0.8250 0.6075

Kleinstiver_
GUIDE_BS*

AUC ROC 0.7305 0.7036 0.6947 0.6343 0.7106 0.7713 0.7485 0.7821 0.9379 0.8956 0.7442 0.7502
Precision 0.1083 0.0967 0.1101 0.0768 0.0917 0.1636 0.1508 0.2459 0.5460 0.4574 0.1871 0.1323
Recall 0.7222 0.7037 0.6296 0.9074 0.8519 0.8889 0.7778 0.6667 0.1111 0.1481 0.6111 0.9259
F1 Score 0.1862 0.1535 0.1704 0.1266 0.1620 0.1387 0.1888 0.1875 0.1946 0.2500 0.1724 0.1362
Brier Score 0.3251 0.3998 0.3000 0.6531 0.4484 0.5496 0.3101 0.2738 0.0479 0.0460 0.1848 0.3372
Accuracy 0.6590 0.5807 0.6690 0.3241 0.5241 0.4041 0.6390 0.6880 0.9503 0.9521 0.6830 0.3660

Hmg_BS* AUC ROC 0.6770 0.6935 0.6559 0.7106 0.7670 0.7454 0.8157 0.8130 0.8418 0.8620 0.7511 0.5934
Precision 0.0837 0.0885 0.0833 0.1009 0.1205 0.1455 0.1796 0.2009 0.3617 0.3832 0.1216 0.0705
Recall 0.3419 0.5962 0.3846 0.7885 0.6538 0.7885 0.8503 0.5748 0.1923 0.2885 0.4423 0.6154
F1 Score 0.1461 0.1722 0.1541 0.1488 0.1771 0.1643 0.2536 0.2706 0.2778 0.3721 0.2125 0.1210
Brier Score 0.1926 0.2770 0.1960 0.4351 0.2864 0.3756 0.2021 0.1397 0.0476 0.0469 0.1752 0.2649
Accuracy 0.7927 0.7020 0.7801 0.5310 0.6833 0.5830 0.7405 0.8395 0.9480 0.9493 0.8295 0.5350

https://doi.org/10.1371/journal.pcbi.1013606.t004

In the second scenario, the CIRCLE dataset was used as the source dataset in our trans-
fer learning experiments. The corresponding ROC curves (see Fig 5B) and PR curves (see
Fig A(B) in S1 Fig) are presented for the considered ML and DL models trained on the entire
CIRCLE dataset and evaluated on the CIRCLE_BS dataset. Additionally, Fig 7 and Fig C in
S1 Fig show the ROC and PR curves for all considered models obtained using the CIRCLE
dataset as source and the six other bootstrapped datasets as targets. The detailed quantitative
results are reported in Table 5. When the CIRCLE_BS dataset was used as target, MLP2 per-
formed exceptionally well with an AUC ROC score of 0.9959, a precision of 0.9564, a recall
of 0.9231, an F1-score of 0.9600, a Brier score of 0.0021, and an accuracy of 0.9980. When
the Tasi_GUIDE_BS dataset was used as target, MLP1 provided the best overal performance
across all metrics. Similarly, for the Listgarten_GUIDE_BS target dataset, MLP2 showcased
a robust performance, maintained consistency across all evaluation metrics. When the Kle-
instiver_BS dataset was used as target, the best overall results were achieved once again using
the MLP1 and MLP2 models.
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Fig 7. ROC curves for model evaluation. ROC curves for models trained on the CIRCLE dataset, used as source, and six bootstrapped datasets:
CD33_BS, SITE_BS, Tasi_GUIDE_BS, Listgarten_GUIDE_BS, Kleinstiver_GUIDE_BS, Hmg_BS, used as targets. The AUC ROC values for each
model are displayed in descending order within the figure.

https://doi.org/10.1371/journal.pcbi.1013606.g007
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Table 5. Performance metrics for each considered classification model obtained using the CIRCLE dataset for training (i.e. as source). Target datasets exhibiting
the highest similarity to the CIRCLE dataset are marked with an asterisk. The results of the top-performing models are highlighted in bold.
Target Metric FNN3 FNN5 FNN10 CNN3 CNN5 CNN10 LSTM GRU MLP1 MLP2 RF LR
CD33_BS AUC ROC 0.5269 0.6227 0.5660 0.6781 0.6014 0.5955 0.6026 0.6053 0.6632 0.6515 0.6872 0.6884

Precision 0.4818 0.5690 0.5164 0.6055 0.5245 0.5399 0.5159 0.5113 0.5729 0.5673 0.6190 0.6348
Recall 0.9952 0.9797 1.0000 0.9957 0.9893 0.0085 1.0000 1.0000 1.0000 0.9786 0.0000 0.9979
F1 Score 0.6477 0.6501 0.6407 0.6430 0.6391 0.0167 0.6376 0.6376 0.6624 0.6735 0.0000 0.6518
Brier Score 0.3197 0.4865 0.4543 0.5132 0.5118 0.4009 0.5320 0.5320 0.4676 0.4266 0.4287 0.4843
Accuracy 0.4932 0.5065 0.4750 0.4825 0.4770 0.5290 0.4680 0.4680 0.5230 0.5560 0.5320 0.5010

CIRCLE_BS* AUC ROC 0.7754 0.7625 0.7419 0.7939 0.8369 0.7368 0.8888 0.8880 0.9959 0.9956 0.9924 0.9716
Precision 0.0604 0.0692 0.1300 0.1950 0.1332 0.0762 0.2730 0.2354 0.9385 0.9564 0.9307 0.6556
Recall 0.6923 0.8462 0.8523 0.8846 1.0000 0.1488 1.0000 1.0000 0.8846 0.9231 0.7551 0.4231
F1 Score 0.1205 0.0742 0.0656 0.0838 0.0778 0.0868 0.0632 0.0633 0.9028 0.9600 0.8503 0.5703
Brier Score 0.1723 0.5441 0.5808 0.4984 0.5994 0.0819 0.7650 0.7660 0.0041 0.0021 0.0058 0.0125
Accuracy 0.7368 0.4510 0.3760 0.4965 0.3898 0.9198 0.2290 0.2298 0.9950 0.9980 0.9934 0.9835

SITE_BS AUC ROC 0.4990 0.5876 0.5702 0.5786 0.5796 0.6268 0.4711 0.5090 0.6160 0.6902 0.7940 0.5208
Precision 0.0403 0.0463 0.0462 0.0536 0.0570 0.0530 0.0631 0.0548 0.1544 0.1785 0.2569 0.1148
Recall 0.2941 0.7059 1.0000 1.0000 0.7647 0.0392 0.1934 0.1765 0.0588 0.1176 0.0701 0.1765
F1 Score 0.0505 0.0645 0.0720 0.0666 0.0633 0.0485 0.0613 0.0591 0.0612 0.1345 0.1173 0.1319
Brier Score 0.2543 0.6838 0.7566 0.9450 0.7421 0.0595 0.2003 0.1967 0.0549 0.0470 0.0301 0.0675
Accuracy 0.6245 0.3040 0.1230 0.0470 0.2300 0.9480 0.8010 0.8090 0.9385 0.9505 0.9663 0.9210

Tasi_GUIDE_BS* AUC ROC 0.7528 0.7151 0.6508 0.7718 0.7952 0.7312 0.9412 0.9449 0.9964 0.9930 0.9713 0.9909
Precision 0.5341 0.5367 0.4677 0.7023 0.6763 0.5653 0.8822 0.9138 0.9933 0.9861 0.9522 0.9861
Recall 0.8784 0.9011 0.8842 0.9294 1.0000 0.4492 1.0000 1.0000 0.9746 0.9435 0.7680 0.8588
F1 Score 0.6568 0.5411 0.5283 0.5595 0.5476 0.5282 0.5229 0.5229 0.9705 0.9612 0.8599 0.9129
Brier Score 0.2213 0.5245 0.4841 0.5067 0.5733 0.2172 0.6457 0.6454 0.0182 0.0216 0.0840 0.0458
Accuracy 0.6750 0.4590 0.4410 0.4820 0.4150 0.7160 0.3540 0.3540 0.9790 0.9730 0.9115 0.9420

Listgarten_
GUIDE_BS*

AUC ROC 0.7896 0.6300 0.5541 0.7792 0.7461 0.7317 0.8204 0.7975 0.9224 0.9395 0.7819 0.9340
Precision 0.1261 0.0897 0.0986 0.1491 0.1573 0.1177 0.3388 0.2091 0.6376 0.6654 0.1773 0.6347
Recall 0.9464 0.9643 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.5357 0.4286 0.0000 0.6786
F1 Score 0.2179 0.1234 0.1067 0.1167 0.1163 0.0000 0.1061 0.1061 0.5646 0.5524 0.0000 0.5803
Brier Score 0.2608 0.7585 0.8058 0.8393 0.8341 0.0681 0.9438 0.9437 0.0389 0.0381 0.0514 0.0422
Accuracy 0.6195 0.2330 0.0625 0.1520 0.1490 0.9260 0.0560 0.0560 0.9537 0.9610 0.9440 0.9450

Kleinstiver_
GUIDE_BS*

AUC ROC 0.7602 0.5580 0.4803 0.7566 0.7649 0.6457 0.9377 0.9412 0.9690 0.9505 0.7497 0.9643
Precision 0.1126 0.0708 0.0899 0.2345 0.2391 0.0980 0.6364 0.6774 0.6964 0.7314 0.1759 0.6776
Recall 0.7222 0.8696 1.0000 1.0000 0.9815 0.0000 1.0000 1.0000 0.5741 0.6852 0.0000 0.5185
F1 Score 0.1973 0.1137 0.1086 0.1070 0.1168 0.0000 0.1025 0.1025 0.6596 0.7048 0.0000 0.6222
Brier Score 0.2136 0.7190 0.7624 0.8903 0.7784 0.0590 0.9458 0.9455 0.0276 0.0294 0.0496 0.0244
Accuracy 0.6827 0.2727 0.1130 0.0990 0.1980 0.9420 0.0540 0.0540 0.9680 0.9690 0.9462 0.9660

Hmg_BS AUC ROC 0.6815 0.7501 0.7508 0.5313 0.7387 0.5976 0.8736 0.8782 0.9419 0.9508 0.7417 0.8817
Precision 0.0797 0.1109 0.1485 0.0529 0.1140 0.0722 0.3842 0.3497 0.6047 0.4935 0.2402 0.4825
Recall 0.9807 1.0000 1.0000 1.0000 0.9808 0.0000 1.0000 1.0000 0.9615 0.8654 0.0000 0.9615
F1 Score 0.1417 0.1034 0.0990 0.1034 0.1079 0.0000 0.0989 0.0989 0.2813 0.4823 0.0000 0.1741
Brier Score 0.3939 0.8954 0.8136 0.8969 0.8278 0.0603 0.9479 0.9476 0.2098 0.0883 0.0475 0.3634
Accuracy 0.3823 0.0980 0.0530 0.0985 0.1570 0.9435 0.0520 0.0520 0.7445 0.9027 0.9480 0.5253

https://doi.org/10.1371/journal.pcbi.1013606.t005

In the third scenario, the SITE dataset served as the source dataset in our transfer learning
experiments. The obtained ROC curves (see Fig 5C) and PR curves (see Fig A(C) in S1 Fig)
are presented for all considered ML and DL models trained on the SITE dataset and evaluated
on its bootstrapped counterpart, SITE_BS. Additionally, Fig 8 compares the ROC curves for
all considered models, using the complete SITE dataset as source and the bootstrapped vari-
ants of the remaining datasets as targets (for PR curves see Fig D in S1 Fig). Further quantita-
tive results are provided in Table 6. For the SITE_BS target dataset, FNN3 and MLP2 emerged
as the best-performing models across all metrics. When the Kleinstiver_BS and Hmg_BS
datasets were used as targets, the FNN5 model demonstrated notable results across diverse
evaluation metrics.

Based on the evaluation results summarized in Tables 4, 5, and 6 across the three scenar-
ios, the CD33, CIRCLE, and SITE datasets were found to be the most suitable sources for
their respective bootstrapped counterparts: CD33_BS, CIRCLE_BS, and SITE_BS. This result
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Fig 8. ROC curves for model evaluation. ROC curves for models trained on the SITE dataset, used as source, and six bootstrapped datasets:
CD33_BS, CIRCLE_BS, Tasi_GUIDE_BS, Listgarten_GUIDE_BS, Kleinstiver_GUIDE_BS, Hmg_BS, used as targets. The AUC ROC values for
each model are displayed in descending order within the figure.

https://doi.org/10.1371/journal.pcbi.1013606.g008
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Table 6. Performance metrics for each considered classification model obtained using the SITE dataset for training (i.e. as source). Target datasets exhibiting the
highest similarity to the SITE dataset are marked with an asterisk. The results of the top-performing models are highlighted in bold.
Target Metric FNN3 FNN5 FNN10 CNN3 CNN5 CNN10 LSTM GRU MLP1 MLP2 RF LR
CD33_BS AUC ROC 0.7158 0.5332 0.7281 0.6531 0.5949 0.7178 0.7497 0.5926 0.6945 0.7074 0.7226 0.6376

Precision 0.6802 0.4725 0.6852 0.5647 0.5598 0.6488 0.6777 0.5192 0.6619 0.6372 0.6631 0.6051
Recall 0.5021 0.6282 0.7115 1.0000 1.0000 0.9808 1.0000 1.0000 0.4615 0.8568 0.0000 0.0000
F1 Score 0.5725 0.5460 0.6755 0.6376 0.6376 0.6770 0.6376 0.6376 0.5461 0.6820 0.0000 0.0000
Brier Score 0.2577 0.2694 0.2216 0.5318 0.5137 0.3577 0.5265 0.5320 0.3129 0.3294 0.4422 0.4665
Accuracy 0.6490 0.5110 0.6800 0.4680 0.4680 0.5620 0.4680 0.4680 0.6410 0.6260 0.5320 0.5320

CIRCLE_BS AUC ROC 0.7962 0.8191 0.7221 0.7563 0.7340 0.5987 0.8287 0.8854 0.7894 0.6273 0.7739 0.7371
Precision 0.1440 0.1565 0.1077 0.1034 0.1188 0.0536 0.1704 0.2002 0.1270 0.0634 0.2160 0.1158
Recall 0.0385 0.0220 0.0684 1.0000 0.8462 0.2462 0.9872 1.0000 0.0849 0.0559 0.0000 0.0000
F1 Score 0.0571 0.0323 0.0757 0.0586 0.0854 0.0736 0.0627 0.0817 0.1008 0.0429 0.0000 0.0000
Brier Score 0.0282 0.0280 0.0375 0.7098 0.3803 0.1235 0.5620 0.5001 0.0345 0.0577 0.0238 0.0255
Accuracy 0.9670 0.9681 0.9570 0.1640 0.5292 0.8393 0.2330 0.4152 0.9627 0.9360 0.9740 0.9740

SITE_BS* AUC ROC 0.9939 0.9883 0.9820 0.8019 0.7815 0.7767 0.8729 0.9142 0.9908 0.9881 0.9875 0.8795
Precision 0.9373 0.8747 0.8838 0.1866 0.1367 0.1163 0.4825 0.5284 0.9547 0.9613 0.9338 0.5560
Recall 0.6176 0.4706 0.4706 0.9706 0.9403 0.6863 1.0000 0.9118 0.8235 0.9113 0.8209 0.3262
F1 Score 0.7565 0.6275 0.6275 0.0831 0.0882 0.1514 0.0799 0.1426 0.9032 0.9450 0.9016 0.4787
Brier Score 0.0118 0.0144 0.0154 0.6250 0.5370 0.2173 0.5822 0.3077 0.0061 0.0035 0.0073 0.0208
Accuracy 0.9865 0.9810 0.9810 0.2710 0.3432 0.7397 0.2170 0.6270 0.9940 0.9965 0.9940 0.9768

Tasi_GUIDE_BS AUC ROC 0.4724 0.8475 0.5287 0.9041 0.8027 0.5658 0.8784 0.9597 0.6712 0.4202 0.6226 0.4288
Precision 0.3086 0.6122 0.3374 0.8173 0.6037 0.3693 0.7931 0.9072 0.5243 0.3196 0.5215 0.3138
Recall 0.0932 0.1723 0.1384 1.0000 0.9520 0.2740 0.9972 1.0000 0.1461 0.1864 0.0565 0.0000
F1 Score 0.1048 0.2552 0.1620 0.5527 0.6172 0.3201 0.5700 0.6093 0.2381 0.2333 0.1067 0.0000
Brier Score 0.5417 0.2923 0.4474 0.4799 0.3151 0.3362 0.4143 0.3880 0.3131 0.4184 0.3067 0.3477
Accuracy 0.4360 0.6440 0.4930 0.4270 0.5820 0.5880 0.4675 0.5460 0.6693 0.5660 0.6650 0.6460

Listgarten_
GUIDE_BS

AUC ROC 0.7540 0.9485 0.8447 0.9366 0.9003 0.6951 0.8826 0.9570 0.7035 0.4565 0.6475 0.6002
Precision 0.1793 0.6272 0.2161 0.4875 0.2725 0.1548 0.5412 0.7098 0.1302 0.0521 0.1279 0.0775
Recall 0.0893 0.4286 0.1429 1.0000 1.0000 0.3214 1.0000 1.0000 0.1071 0.0893 0.0000 0.0000
F1 Score 0.1389 0.5393 0.1517 0.1208 0.1528 0.2130 0.1109 0.1615 0.1270 0.0400 0.0000 0.0000
Brier Score 0.0592 0.0303 0.0684 0.7149 0.4775 0.0955 0.7056 0.4989 0.0740 0.2192 0.0524 0.0566
Accuracy 0.9380 0.9590 0.9103 0.1845 0.3790 0.8670 0.1020 0.4185 0.9175 0.7600 0.9440 0.9420

Kleinstiver_
GUIDE_BS*

AUC ROC 0.7946 0.9726 0.8640 0.9547 0.8736 0.8406 0.9409 0.9769 0.7366 0.5852 0.6313 0.6227
Precision 0.1231 0.6514 0.1887 0.6502 0.2419 0.3640 0.7339 0.8588 0.1246 0.0780 0.1111 0.1128
Recall 0.0556 0.5001 0.2407 1.0000 0.9815 0.6111 1.0000 1.0000 0.0741 0.1667 0.0000 0.0000
F1 Score 0.0619 0.5902 0.1745 0.1155 0.1608 0.3002 0.1425 0.2097 0.0879 0.1395 0.0000 0.0000
Brier Score 0.0831 0.0286 0.0860 0.7231 0.4254 0.0994 0.4717 0.3086 0.0709 0.1052 0.0507 0.0529
Accuracy 0.9086 0.9625 0.8770 0.1730 0.4470 0.8460 0.3500 0.5930 0.9170 0.8890 0.9460 0.9457

Hmg_BS* AUC ROC 0.8035 0.9225 0.7144 0.8187 0.7817 0.8598 0.8642 0.9326 0.8259 0.8140 0.6368 0.3828
Precision 0.3102 0.4260 0.3091 0.1840 0.2073 0.3882 0.4257 0.5081 0.3882 0.3666 0.0810 0.0396
Recall 0.1123 0.7692 0.3058 1.0000 0.9805 0.4423 1.0000 1.0000 0.2692 0.4423 0.0000 0.0000
F1 Score 0.1941 0.5011 0.3795 0.1042 0.1145 0.3566 0.1144 0.1244 0.3590 0.4600 0.0000 0.0000
Brier Score 0.0437 0.0599 0.0481 0.8443 0.6543 0.0587 0.6440 0.6359 0.0432 0.0502 0.0491 0.0520
Accuracy 0.9518 0.9204 0.9485 0.1060 0.2217 0.9170 0.1950 0.2680 0.9500 0.9460 0.9480 0.9480

https://doi.org/10.1371/journal.pcbi.1013606.t006

was rather expected given the highest similarity scores between the complete datasets and
their bootstrapped counterparts observed for all the three similarity measures considered
(see Table 3). Furthermore, among the three source datasets (CD33, SITE, and CIRCLE),
CIRCLE was identified as the optimal source for the Tasi_GUIDE_BS target dataset across
all metrics, when using the MLP1 model (this corresponds to the highest similarity scores
between Tasi_GUIDE_BS and CIRCLE provided by cosine, Euclidean, and Manhattan met-
rics; see Table 3), and for the Listgarten_GUIDE_BS target dataset, also across all metrics,
when using the MLP2 model (this corresponds to the highest similarity score between List-
garten_GUIDE_BS and CIRCLE provided by cosine similarity; see Table 3). When the Klein-
stiver_GUIDE_BS dataset was used as target, the CIRCLE (with the MLP1 and MLP2 models)
and SITE (with the FNN5 model) datasets emerged as the optimal sources (see Tables 5 and
6). This corresponds to the highest similarity score between Kleinstiver_GUIDE_BS and both
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CIRCLE and SITE provided by cosine similarity (see Table 3). When the Hmg_BS dataset was
used as target, the SITE dataset (using the FNN5 model) was identified as the optimal source
(see Table 6); once again, this reflects the highest similarity score between Hmg_BS and SITE
provided by cosine similarity (see Table 3).

These results validate two critical points of our study: First, similarity score results are
reliable and trustworthy indices for determining the most appropriate source dataset for
a given target dataset prior to performing transfer learning experiments in CRISPR-Cas9.
They reinforce the effectiveness of our methodology as a robust pre-selection tool for trans-
fer learning, providing a systematic approach for identifying efficiently suitable source data.
Second, cosine distance (or cosine similarity) emerges as the most dependable metric, among
the three metrics considered, for selecting the most appropriate source dataset for transfer
learning.

Moreover, our results clearly demonstrate that similarity-based source data pre-selection is
necessary to mitigate negative knowledge transfers. If a source dataset is chosen solely by size,
availability, or even class imbalance ratio, but without similarity assessment, this could even-
tually lead to a suboptimal or negative transfer. For example, the CIRCLE and SITE datasets
considered in our study have comparable sizes and almost identical class imbalance ratios
(0.0128 and 0.0176, respectively - see Table 1), but a knowledge transfer from CIRCLE to
SITE as well as that from SITE to CIRCLE are clearly negative with the highest F1-score val-
ues of 0.1345 (see Table 5) and 0.1008 (see Table 6), respectively, over all competing ML and
DL models. Our similarity-based analysis suggests that such transfers should be avoided (see
Table 3).

It is worth noting that in some cases a potential source dataset with a slightly lower cosine
similarity with the target might still yield competitive or even superior performance for spe-
cific models - MLP-based models in our case. This could be due to such factors as a richer
representation of specific rare patterns important for the target task or some MLP inductive
biases aligning better with the source data distribution. For example, the recommended trans-
fers with lower cosine similarity scores of 0.5701 from CIRCLE to Listgarten_GUIDE_BS and
of 0.5672 from CIRCLE to Kleinstiver_GUIDE_BS led to competitive knowledge transfers
with the corresponding best F1-score score values of 0.5646 and 0.7048, obtained, respec-
tively, with MLP1 and MLP2 (see Table 5). It was not so for Euclidean and Manhattan simi-
larities whose highest values in this case led to transfers from CD33 (instead of CIRCLE) with
much lower best F1-score score values of 0.2500 for Listgarten_GUIDE_BS and of 0.1946 for
Kleinstiver_GUIDE_BS, both obtained with MLP1 (see Table 4).

3. Conclusion
This study explores the effectiveness and applicability of transfer learning in improving
CRISPR-Cas9 off-target predictions by adapting a similarity-based approach. We consider
three popular distance measures - cosine, Euclidean, and Manhattan distances to assess simi-
larity between a given target dataset and an ensemble of potential source datasets. A candidate
source dataset having the highest similarity with the given target can then be recommended
for transfer learning experiments.

Establishing the most appropriate source dataset for a given target dataset in the trans-
fer learning prospective is a relevant theoretical problem in itself. We show how it can
be effectively solved in practice in the context of CRISPR-Cas9 off-target prediction. The
main novelty of our study consists in the proposed similarity-based pre-evaluation rather
than in an innovative transfer learning algorithm or an effective deep learning network
architecture.
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Our experiments were conducted using seven real-world CRISPR-Cas9 off-target datasets:
CD33, CIRCLE, SITE, Tasi_GUIDE, Listgarten_GUIDE, Kleinstiver_GUIDE, and Hmg. The
performance of various deep learning network architectures, i.e. CNNs, FNNs, LSTM-RNNs,
GRU-RNNs, and MLPs, alongside two traditional machine learning models, i.e. RF and LR,
was evaluated in a comprehensive simulation study. Six evaluation metrics, including AUC
ROC, Precision, Recall, F1-score, Brier score, and Accuracy were considered. AUC ROC, F1-
score, and Brier score are well adapted for assessing the model performances in our case since
real-world CRISPR-Cas9 data are often highly imbalanced.

Our results indicate that cosine distance stands out as the most reliable and consistent
measure for assessing similarity between two CRISPR-Cas9 datasets in terms of off-target
transfer learning experiments. High similarity values provided by cosine similarity usually
correspond to the top results achieved by the considered evaluation metrics. This was not
always the case of Euclidean and Manhattan distances whose results were highly correlated
as we worked with binary data representations. Overall, MLP variants 1 and 2, 3- and 5-layer
FNNs, and an RNN-GRU turned out to be the best-performing models in our transfer learn-
ing scenarios. While these models tend to offer a superior performance in most cases, the
choice between machine learning and deep learning models should depend on the charac-
teristics of the given target and source datasets, taking into account the dataset sizes and an
eventual class imbalance. The fact that in many instances two simple MLP models outper-
formed much more sophisticated RNN-GRU and, especially, RNN-LSTM neural network
architectures is not very surprising since MLPs usually cope well with tabular data, such
as our CRISPR-Cas9 one-hot encoded sequence datasets, allowing for capturing complex,
non-linear patterns, whereas RNN-based models excel at capturing time-series patterns and
long-term dependencies in complex scenarios, being particularly useful in natural language
processing and speech recognition.

Our findings highlight the critical role of similarity-based insights in optimizing transfer
learning workflows. Broader impacts of the proposed dual-layered framework are the follow-
ing: (1) The new framework streamlines the transfer learning process by reducing the num-
ber of potential source datasets and recommended ML and DL models, and thus the num-
ber of trial-and-error attempts, which are convenient for a selected target dataset, and (2) it
enables faster development of transfer learning models for CRISPR-Cas9 off-target prediction,
which can now be successfully tested on mutually compatible sets (i.e. those with high cosine
similarity scores) of source and target data.

In the future, we plan to compare our approach with transformer-based models optimized
for tabular data [52] as well as with different data augmentation techniques allowing for bet-
ter leverage of limited datasets [53]. Moreover, it would be interesting to extend the proposed
similarity framework beyond sequence similarity by incorporating into it available biological
and experimental information, such as species data, cell type, enzyme type, experimental con-
ditions/technology being used, and data size. Specifically, each of these factors could be added
to the discussed 7L input vectors as an extra component, normalized to [0,1] range for numer-
ical data and one-hot encoded for categorical data. It would also be interesting to integrate
the proposed similarity-based selection with deep learning architectures for domain adapta-
tion that explicitly address distribution shifts between source and target [54,55]. In this case,
the source labeled sample weights could ideally be calculated leveraging both distribution and
similarity patterns of the source and target samples.
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