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Abstract
A major challenge in working with single-cell RNA sequencing data is the prevalence
of “dropout,” when some transcripts’ expression values are erroneously not captured.
Addressing this issue, which produces zero-inflated count data, is crucial for many down-
stream data analyses including the inference of gene regulatory networks (GRNs). In
this paper, we introduce two novel contributions. First, we propose Dropout Augmen-
tation (DA), a simple but effective model regularization method to improve resilience to
zero inflation in single-cell data by augmenting the data with synthetic dropout events.
DA offers a new perspective to solve the “dropout” problem beyond imputation. Sec-
ond, we present DAZZLE, a stabilized and robust version of the autoencoder-based
structure equation model for GRN inference using the DA concept. Benchmark experi-
ments illustrate the improved performance and increased stability of the proposed DAZ-
ZLE model over existing approaches. The practical application of the DAZZLE model
on a longitudinal mouse microglia dataset containing over 15,000 genes illustrates its
ability to handle real-world single cell data with minimal gene filtration. The improved
robustness and stability of DAZZLE make it a practical and valuable addition to the toolkit
for GRN inference from single-cell data. Finally, we propose that Dropout Augmenta-
tion may have wider applications beyond the GRN-inference problem. Project website:
https://bcb.cs.tufts.edu/DAZZLE.

Author summary
The prevalence of false zeros in single-cell data, or “dropout,” affects many downstream
analyses. A common approach is to eliminate these zeros through data imputation. We
propose an alternative solution that focuses on regularizing the model and increasing
model robustness against dropout noise. Counter-intuitively, this is done by augment-
ing the input data with a small number of zeros to simulate additional dropout noise.
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Validation is performed on the task of gene regulatory network inference. Our pro-
posed model, DAZZLE, which uses the dropout augmentation idea, shows improved
performance and robustness.

1. Introduction
Gene Regulatory Network (GRN) inference from expression data offers a contextual model
of the interactions between genes in vivo. [1–3]. Understanding these interactions is crucial
to gain insight into the development, pathology, and key points of regulation that may be
amenable to therapeutic intervention [4].
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While GRN inference from bulk transcriptomic data has a long history, many recent stud-
ies consider the contextual specificity offered by single-cell RNA sequence data (scRNA-seq)
[5]. Single cell RNA sequencing allows researchers to analyze transcriptomic profiles of indi-
vidual cells, providing a more detailed and accurate view of cellular diversity than traditional
bulk methods. However, opportunities come with challenges. A recent benchmark paper on
GRN inference summarized the major issues in single-cell data that cause challenges for GRN
inference: cellular diversity, inter-cell variation in sequencing depth, cell-cycle problems, and
sparsity due to dropout [6].

Despite these challenges, many methods have been proposed for context-specific GRN
inference from single-cell RNA-sequencing data alone. Among established methods, GENIE3
[7] and GRNBoost2 [8] are tree-based approaches, initially proposed for bulk data, that have
been found to work well on single-cell data without modification. LEAP [9] estimates pseu-
dotime to infer gene co-expression over several lagged windows, suggesting that the lags can
be used to infer regulatory relationships. SCODE [10] and SINGE [11] apply a similar pseu-
dotime idea, combined with ordinary differential equations (ODEs) and Granger causality
ensembles, to model the results. PIDC uses partial information decomposition to incorporate
mutual information among sets of genes, modeling cellular heterogeneity[12].

Other methods infer GRNs by integrating transcriptomic and other data sources.
For example, SCENIC [13] starts by identifying gene co-expression modules using
GENIE3/GRNBoost2, followed by identifying key transcription factors (TFs) that regulate
these modules or regulons. scMTNI [14] studies GRNs in different cell clusters using a multi-
task learning framework. GRNUlar [15] uses recently developed unrolled algorithms to infer
undirected GRNs from single-cell data by incorporating TF information. NetREX-CF [16]
performs optimizations based on prior GRN networks and uses collaborative filtering to
address the incompleteness of prior data. PANDA [17] further optimizes prior GRN networks
using massage passing. However, single cell data alone is much more widely available and
accessible in specific contexts than integrated multi-omic data sets.

The application of neural networks (NNs) in the analysis of single-cell data has advanced
rapidly in the last couple of years. One of the leading NN-based GRN inference methods,
DeepSEM, [18] parameterizes the adjacency matrix and uses a variational autoencoder (VAE)
[19] architecture optimized on reconstruction error. In fact, on the BEELINE benchmarks [6]
where the “right” networks are (approximately) known, DeepSEM reports better performance
than other methods and runs significantly faster than most.

However, as shown later in this paper, one of the issues with DeepSEM is that as training
continues, the quality of the inferred networks may degrade quickly. A possible explanation is
that soon after the model converges, it may begin to over-fit the dropout noise in the data.

Single-cell data is often characterized by an excessive number of zero expression counts,
referred to as “zero-inflation.” For example, in the nine data sets examined in [20], 57 to 92
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percent of the observed counts are zeros. Among these zero values, “dropout” describes the
situation when transcripts, often those with low or moderate expression in a cell, are not
counted by the sequencing technology. Later droplet-based protocols, such as inDrops [21]
and 10X Genomics Chromium [22], helped improved detection rates. However, the “dropout”
problem still persists, as even recent methods have relatively low sensitivity [23,24].

Therefore, there has been research into data imputation methods for use in single-cell anal-
ysis. Several methods have been proposed to identify and replace missing data with imputed
values [23–27]. Yet many of these methods depend on restrictive assumptions, and some
require additional information, such as GRNs or bulk transcriptomic data.

In this paper, we introduce two novel contributions to the fields of single cell analysis and
GRN inference. First, we propose “dropout augmentation” (DA), a novel approach to miti-
gate the impact of the zero-inflation problem by augmenting the data with a small amount
of simulated dropout noise. We found that this idea, while seemingly counter-intuitive, can
effectively regularize models so that they remain robust against dropout noise.

It has long been known that by adding noise to the input data during training, we can
improve the robustness, and sometimes even the performance, of many machine learning
models. Bishop first pointed out that adding noise is equivalent to Tikhonov regularization
[28]. Hinton further introduced the idea of using random “dropout” on either input or model
parameters to improve training performance [29]. Thus, the theoretical foundations of DA are
also solid.

Our second contribution is the DAZZLE model, or Dropout Augmentation for Zero-
inflated Learning Enhancement. DAZZLE uses the same VAE-based GRN learning framework
introduced by DeepSEM and DAG-GNN [18,30], but it employs dropout augmentation and
several other model modifications. These include a new method optimizing the adjacency
matrix sparsity control strategy, a simplified model structure, and a closed-formed prior.
Compared to DeepSEM, DAZZLE shows better model stability and robustness in our bench-
mark experiments. We further illustrate how DAZZLE’s network inference facilitates inter-
preting typical-sized data sets efficiently, in this case explaining microglial expression dynam-
ics across the mouse lifespan. (This noise augmentation concept has been further developed
in our RegDiffusion software [31], which relies instead on a diffusion-based learning frame-
work.)

2. Results
2.1. Dropout augmentation and the DAZZLE model
GRN inference in DAZZLE is based on the structure equation model (SEM) framework pre-
viously employed by DAG-GNN and DeepSEM [18,30]. The input of the model is the gene
expression matrix representing the scRNAseq data, where each raw count of x is transformed
to log(x + 1) to reduce the variance and avoid taking the log of zero. We assume that the rows
of the input matrix represent cells and the columns represent genes. The adjacency matrix
A is parameterized and used in both sides of an autoencoder, as shown in Fig 1. The model
input is simply a single-cell gene expression matrix, where the rows correspond to cells and
the columns to genes. The model is trained to reconstruct the input while the weights of the
trained adjacency matrix are retrieved as a by-product of training. Since ground truth net-
works are never available to the training model, this type of SEMmodel should be consid-
ered an unsupervised learning method for GRN inference. We include a detailed explana-
tion of why the learned adjacency matrix A represents the underlying GRN, as well as other
methodological details for DA and DAZZLE, in the Methods section.
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Fig 1. One of the major differences between DAZZLE and DeepSEM is the use of Dropout Augmentation. Dropout augmentation regularizes model training by
simulating small amounts of random dropout at each training iteration such that the model is protected against the negative impact of dropout noise. Rounded boxes
indicate trainable model parameters.

https://doi.org/10.1371/journal.pcbi.1013603.g001

One unique design aspect that differentiates DAZZLE from DeepSEM is the use of DA, as
shown in Fig 1. As a model regularization method, DA can be applied to any model design
that is continuously optimized. At each training iteration, we introduce a small amount of
simulated dropout noise by sampling a proportion of the expression values and setting them
to zeros. With multiple training iterations, the model is exposed to multiple versions of the
same data with slightly different batches of dropout noise. As a result, it is less likely to over-fit
any particular batch.

DAZZLE also includes a noise classifier to predict the chance that each zero is an aug-
mented dropout value; this classifier is trained together with the autoencoder. Since we gen-
erate the locations of the augmented dropout, we can confidently use them for training. The
purpose of this classifier is to move the values that are more likely to be dropout noise to a
similar region in the latent space Z′, so that the decoder will learn to put less weight on them
when reconstructing the input data.

We made several additional model design and training choices that further distinguish our
model from that of DeepSEM. First, we improved the stability of the model by delaying the
introduction of the sparse loss term by a customizeable number of epochs. Another difference
is that, to estimate the prior, DeepSEM estimates a separate latent variable while DAZZLE
uses a closed-form Normal distribution. These changes lead to reduced model sizes and com-
putational time. For example, to process the BEELINE-hESC dataset with 1,410 genes, the
original DeepSEM implementation used 2,584,205 parameters and ran in 49.6 seconds (clock
time) on an H100 GPU. Eliminating some unnecessary calculations, our DAZZLE implemen-
tation reduces the model to 2,022,030 parameters (a 21.7% reduction) without changing the
size of the hidden layers. On the same device, our implementation finished inference in 24.4
seconds (a 50.8% reduction in running time). Finally, while DeepSEM is trained with two
separate optimizers in an alternating manner (one on the adjacency matrix and the other on
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the rest of the neural networks), DAZZLE is trained using a single optimizer with different
learning rates. This improvement helps DAZZLE stay modular, so it can be integrated with
other network components more easily in the future.

2.2. DAZZLE improves GRN inference on BEELINE benchmarks
We performed a benchmark comparison of DAZZLE to DeepSEM [18], GENIE3 [7], GRN-
Boost2 [8], and PIDC [12] on the BEELINE single cell benchmark, which includes seven
datasets (two from human and five from mouse) and three sets of ground truth networks. The
details of the BEELINE benchmarks are described in the Methods section. We chose to com-
pare to GENIE3 and GRNBoost2 as representatives of non-deep-learning methods because
these two decision-tree-based methods are among the most widely used GRN inference algo-
rithms. PIDC is another strong baseline method using mutual information on triplets of
genes. Recent benchmarks on single cell data [32], [6] also showed that these methods gen-
erally outperformed SCODE [10], ppcor [33], and SINCERITIES [34]. We also included
DeepSEM, the model that inspired this work and the previous front-runner.

Note that a single run of DeepSEM is not stable (a point that we discuss further in later
Results sections). Thus, DeepSEM was proposed as an ensemble algorithm, combining results
from a set of 10 runs. Here, we include both single runs (1x) and the ensemble model (10x)
in the comparison for both DAZZLE and DeepSEM. For fair comparison, both DAZZLE
and DeepSEM use the same size neural networks, and both are trained for 120 iterations as
suggested by the DeepSEM paper. The hyperparameter settings are identical except for the
changes already mentioned in Sect 2.1 (see also the comparison of hyperparameters in Sect 2
of S1 Text).

The main benchmark results are provided in Table 1. The numbers reported are the aver-
age area under the precision recall curve (AUPRC) ratios over 10 runs, where higher values
represent better performance. In Table 1, the evaluation is done separately for the STRING
network, the Non-celltype-specific ChIP-Seq network, and the Celltype-specific ChIP-Seq
network. Note that for celltype-specific ChIP-Seq, we followed the recommendations of the
DeepSEM paper and applied a very small L1 sparsity regulation to the adjacency matrix for
better performance.

Among all the evaluations in Table 1 the ensemble version of DAZZLE (DAZZLE-10x)
has the best performance of all methods in over half the cases, and in all the other cases it
ranks either 2nd or 3rd, with a result that is within 6% of the top score. The DAZZLE-10x
results also typically have lower variance compared to the DeepSEM-10x results, illustrat-
ing the stability of the DAZZLE model. Further, across nearly all benchmarks, a single run of
DAZZLE, DAZZLE-1x, has a higher AUPRC ratio than the comparable single-run DeepSEM-
1x. Yet, DAZZLE-1x is typically also more stable. Some DeepSEM-1x results in Table 1 have
substantial variance, but this unwanted model behavior is eliminated in DAZZLE-1x; the rea-
sons for this are explained in Sect 2.4. We see similar findings when we use Early Precision
Ratio (EPR) or the Area Under the Receiver Operating Curve (AUROC) as the evaluation
metrics (Supplement Tables B and C in S1 Text).

For the cell-type specific data, the highest observed AUPRC ratio for any data set or
method is 1.10, and the highest observed EPR is 1.20 (just slightly better than random per-
formance), suggesting that for all methods, reproducing these cell-specific networks is nearly
impossible. A possible explanation of this effect appears in S2 Fig, which shows that the
results are highly variable across training iterations. We confirmed that using very low L1 reg-
ularization yields better performance on this ground truth network; the reason for this is still
unclear.
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Table 1. DAZZLE shows improved GRN inference capacity on BEELINE benchmarks.
hESC hHep mDC mESC mHSC-E mHSC-GM mHSC-L

# of Genes 1410 1448 1321 1620 1204 1132 692
# of Cells 758 425 383 421 1071 889 847
Ground Truth: STRING
# of True Edges 5,149 9,000 5,898 8,479 1,826 1,311 154
GENIE3 1.98 (0.01) 1.86 (0.01) 1.72 (0.01) 2.05 (0.01) 4.19 (0.05) 6.27 (0.04) 7.02 (0.08)
GRNBoost2 1.67 (0.01) 1.50 (0.01) 1.43 (0.01) 1.88 (0.02) 3.65 (0.05) 5.16 (0.11) 7.07 (0.08)
PIDC 2.01 (0.00) 1.90 (0.00) 1.58 (0.00) 2.06 (0.00) 5.09 (0.00) 6.27 (0.00) 6.72 (0.00)
DeepSEM-1x 2.00 (0.06) 1.66 (0.04) 1.55 (0.06) 2.20 (0.02) 5.27 (0.16) 5.93 (0.38) 7.28 (0.60)
DeepSEM-10x 2.10 (0.03) 1.82 (0.05) 1.68 (0.02) 2.33 (0.03) 5.68 (0.11) 6.91 (0.12) 7.47 (0.14)
DAZZLE-1x 2.39 (0.05) 1.80 (0.02) 1.58 (0.03) 2.27 (0.04) 5.87 (0.21) 6.56 (0.10) 7.50 (0.07)
DAZZLE-10x 2.44 (0.02) 1.82 (0.01) 1.62 (0.01) 2.34 (0.03) 6.07 (0.03) 6.63 (0.04) 7.53 (0.05)
Ground Truth: Non-celltype-specific ChIP-Seq
# of True Edges 4,597 5,335 3,918 8,030 1,960 1,358 317
GENIE3 0.97 (0.00) 1.01 (0.01) 1.56 (0.01) 1.65 (0.01) 2.54 (0.02) 3.56 (0.03) 2.78 (0.04)
GRNBoost2 1.01 (0.01) 1.09 (0.01) 1.36 (0.02) 1.49 (0.02) 2.39 (0.04) 2.84 (0.03) 2.45 (0.05)
PIDC 1.13 (0.00) 1.20 (0.00) 1.65 (0.00) 1.42 (0.00) 2.65 (0.00) 3.35 (0.00) 2.91 (0.00)
DeepSEM-1x 1.22 (0.05) 1.29 (0.08) 1.73 (0.07) 1.58 (0.05) 2.94 (0.32) 3.27 (0.15) 2.50 (0.56)
DeepSEM-10x 1.24 (0.01) 1.41 (0.03) 1.93 (0.02) 1.66 (0.02) 3.18 (0.06) 3.48 (0.12) 3.01 (0.20)
DAZZLE-1x 1.27 (0.05) 1.44 (0.04) 1.85 (0.04) 1.62 (0.05) 3.30 (0.05) 3.45 (0.06) 3.00 (0.12)
DAZZLE-10x 1.29 (0.01) 1.44 (0.01) 1.89 (0.02) 1.64 (0.01) 3.35 (0.02) 3.51 (0.03) 3.21 (0.11)
Ground Truth: Celltype-specific ChIP-Seq
# of True Edges 7,050 15,410 1,193 42,795 21,975 14,135 5,180
GENIE3 0.96 (0.00) 1.10 (0.00) 1.01 (0.01) 1.06 (0.00) 0.99 (0.00) 0.98 (0.00) 1.05 (0.00)
GRNBoost2 1.01 (0.00) 1.02 (0.00) 1.00 (0.01) 1.02 (0.00) 0.99 (0.00) 0.99 (0.00) 1.01 (0.00)
PIDC 0.98 (0.00) 1.03 (0.00) 1.04 (0.00) 1.02 (0.00) 0.95 (0.00) 0.96 (0.00) 0.99 (0.00)
DeepSEM-1x 1.06 (0.02) 1.03 (0.01) 1.04 (0.03) 1.03 (0.01) 1.01 (0.00) 1.02 (0.01) 1.06 (0.01)
DeepSEM-10x 1.07 (0.01) 1.03 (0.00) 1.05 (0.01) 1.03 (0.00) 1.01 (0.00) 1.02 (0.00) 1.06 (0.00)
DAZZLE-1x 1.10 (0.02) 1.02 (0.01) 1.03 (0.03) 1.03 (0.01) 1.01 (0.01) 1.01 (0.01) 1.08 (0.01)
DAZZLE-10x 1.10 (0.01) 1.03 (0.00) 1.05 (0.01) 1.03 (0.01) 1.01 (0.00) 1.08 (0.00) 1.08 (0.00)
Metric: AUPRC Ratio; Number of target genes: 1000.
Numbers reported are mean and std. of AUPRC Ratio compared with random guess over 10 runs. Higher ratios indicate better performance. Here, italicized text in dark shading indicate the best algorithms
and lightly shaded cells indicate the 2nd best algorithms. In this experiment, we ran each algorithm on all available data with the default settings. The 10x models ensemble inferred networks from 10 runs and
the 1x models are simply single-run models.
Further explanations of the model improvements are discussed in Sects 2.3 and 2.4.

https://doi.org/10.1371/journal.pcbi.1013603.t001

In summary, under similar training conditions, DAZZLE outperforms DeepSEM and
demonstrates more stable performance. We found that while a single run of DeepSEM can
produce unstable results, the ensemble strategy proposed in the DeepSEM paper significantly
enhances its performance and reduces variance. However, this improvement comes at the cost
of a tenfold increase in execution time. For DAZZLE, the ensemble strategy also yields excel-
lent results, making DAZZLE-10x the best performer in our comparison. Note however that
the performance of DAZZLE-1x itself approaches that of an ensemble method, in essence
because it functions as an ensemble method, as described in the Methods section below. For
datasets with a large number of genes and cells, a single pass of DeepSEM-1x or DAZZLE-
1x can take several hours to compute, even on modern GPUs. In such cases, a single pass of
DAZZLE-1x offers a sufficiently-good solution at a more reasonable cost.

2.3. Dropout augmentation contributes to model robustness
In this section, we discuss the effects of dropout augmentation alone on GRN inference.
S2 Fig shows the quality of the inferred networks from DeepSEM-1x as a function of the
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number of training steps. Specifically, it shows that the quality of the inferred networks from
DeepSEM tends to drop quickly if the model is over-trained, suggesting that the model may
be overfitting to unwanted patterns in the training data. One possible solution is to stop
training early, as suggested in the DeepSEM paper, which ends model training at 120 iter-
ations. The tricky part is that the point of peak performance is very difficult to predict and
may depend highly on the number of genes and cells in the dataset. In practice, when ground-
truth networks are not available, it is very difficult to identify a good convergence point
for the model. It would be ideal if inferred GRN accuracy remained robust, or at least if it
dropped slowly and consistently after the performance peak, so that the cost of picking a sub-
optimal stopping point would be low. We believe that dropout augmentation is potentially an
effective solution to this problem.

For fairness, all the comparisons shown in Fig 2 were performed on his DAZZLE-1x. We
varied only the percentage of augmented dropout values while keeping all the other hyper-
parameters the same. Without DA (thick black lines, representing a DA probability of 0%), a
common pattern is that the AUPRC Ratios drop after the performance peaks, similar to what
we observed with the DeepSEMmethod (S2 Fig). However, when we train the model with

Fig 2. Appropriate amount of augmented dropout helps maintain model robustness and may contribute to better performance. Color reflects the probability of
dropout augmentation. The two thick lines represent two important conditions, 0% - no augmented dropout, and 10% - the default dropout augmentation level we
recommend. Dashed lines show the default number of training iterations used in DeepSEM and DAZZLE.

https://doi.org/10.1371/journal.pcbi.1013603.g002
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some amount of DA, in most cases the AUPRC Ratios either stay flat or decrease at a slower
pace. For some data sets, such as hESC and hHep, DA also improves accuracy significantly.
However, we observed that different datasets and ground truth networks seem to require dif-
ferent optimal levels of dropout augmentation. For hESC and hHep on the STRING network,
20% dropout augmentation yields the best AUPRC scores, but that amount of DA is too high
for mHSC-E, mHSC-GM, and mHSC-L since it either slows down the model’s convergence or
leads to lower accuracy. After reviewing all cases, we recommend using 10% DA probability
as the default for DAZZLE.

To further study the actual impact of DA, we conducted a controlled ablation study on
the BEELINE benchmarks (with STRING as ground truth) by training variants of DAZZLE-
1x (with different DA probabilities) and DeepSEM-1x under identical hyperparameter set-
tings (NN learning rate = 1× 10–4, Adj matrix learning rate = 2× 10–5, batch size = 64). In
all cases, we zeroed out a certain proportion of data points before the models saw the data to
simulate background dropout noise. As shown in S1 Fig, DAZZLE-1x maintains its perfor-
mance advantages over DeepSEM-1x in nearly all cases. In many cases, such as hESC, hHep,
mDC, mHSC-E, mHSC-GM, and mHSC-L, DAZZLE-1x running on data with 10% addi-
tional background dropout noise performs better than DeepSEM-1x running on the full data
set, demonstrating DAZZLE’s resilience with zero-inflated data.

2.4. Sparsity control strategy improves DAZZLE’s stability
In addition to increased robustness, DAZZLE also generates more stable GRN inference
results thanks to its improved sparsity control strategy. As mentioned in Sect 2.2, results
from DeepSEM-1x are not stable. Fig 3 examines this issue using 100 runs of DeepSEM-1x
and DAZZLE-1x on the hESC dataset evaluated using the STRING network. In Fig 3a, we
show histograms of the AUPRC ratios for both methods. The accuracy of the 100 runs of
DeepSEM-1x can be separated into two groups. As shown in S3 Fig, other benchmark data
sets produced similar results. Further investigation suggested that the L1 regularization on the
adjacency matrix might be the main cause of those less ideal results.

Both DAZZLE and DeepSEM are trained with L1 regularization on the adjacency matrix.
This regularization term ensures that the model doesn’t add unnecessary weights to the
adjacency matrix. It also ensures the singularity of the inferred adjacency matrix. Experi-
ments have shown that a large enough coefficient for this sparse loss is required to generate
a meaningful adjacency matrix prediction in GRN inference. However, as shown in Fig 3b,
for DeepSEM-1x, where this L1 sparse loss is introduced at the very beginning of the training
process, the optimization of this loss may be prioritized such that the values in the adjacency
matrix quickly drop to near zero within the first several training steps. Most runs that do this
end up in the low performance group. In DAZZLE, we propose a simple solution to overcome
this limitation by delaying the introduction of the L1 sparse loss by a few training steps. As
shown in Fig 3c, after 5 steps of training without the L1 sparse loss, the values and the gra-
dients on the adjacency matrix parameters are stabilized sufficiently so the introduction of
the sparse loss is less likely to destabilize the training process. We also see similar findings on
other benchmark datasets; detailed results are included in S3 Fig.

2.5. Case study: Using DAZZLE to predict temporal changes in GRNs
in mouse microglia
To test the effectiveness of running DAZZLE on more typical-sized sets of single-cell data,
we applied the method to published data characterizing mouse microglia at different devel-
opmental stages [35]. For each time point, DAZZLE inferred an adjacency matrix for all the
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Fig 3. Comparison of 100 runs of DeepSEM-1x and DAZZLE-1x on hESC evaluated using the STRING network. In DeepSEM-1x, the prioritization of the L1 sparsity
control at early stage is the main cause of unstable GRN inference performance. DAZZLE solves this issue by delaying the introduction of the L1 sparse loss by 5 itera-
tions. a)Histogram of AUPRC ratios. b) Sparse loss over time for DeepSEM-1X, colored by AUPRR at convergence. c) Sparse loss over time for DAZZLE-1x, colored by
AUPRR at convergence.

https://doi.org/10.1371/journal.pcbi.1013603.g003

input genes. All edges whose weights have an absolute value over 0.001 are extracted and
analyzed.

For this case study, we focused on validation using literature evidence, since our goal
was to confirm those context-specific regulatory interactions. General-purpose regulation
databases, such as TRRUST v2, are invaluable for general quantitative benchmarking (as
described in Sect 3.3.1 and Table 1), but literature curation is better suited for verifying if the
discovered links are relevant to the specific cell types and conditions analyzed here.

These GRN inference results confirm that gene regulation is a dynamic process that
changes across the lifespan. Fig 4a lists the top ten regulated genes at each time point, ranked
by the summed edge weights of regulating relationships on each gene. At the earliest life
stages, most of the top regulated genes are associated with cell proliferation and differentia-
tion. For example, Tuba1a (Tubulin alpha 1a) encodes proteins in microtubules, which form
the mitotic spindle for cell division and motility structures that move cells to their correct
positions. At later ages, however, we see more regulation of immune response genes. Many
of these genes, such as Tmem176B (transmembrane protein 176B), H2.D1 (histocompatibil-
ity 2, D region locus 1), and PISD (phosphatidylserine decarboxylase), encode key proteins,
receptors, and enzymes of microglial immune response.

Fig 4b shows a closer view of two specific genes of interest. First, since Tmem119 (trans-
membrane protein 119) is often used as a biomarker to differentiate microglia from other
immune cells in the brain [36], we chose it as the center of the local network to analyze. Fig 4b
shows that regulation of and by Tmem119 is only heavily active starting in the late juvenile
stage. Seven of the top 10 predicted regulators, C1qc, Cd81, Cx3cr1, Hexb, Lgmn, P2ry12, and
Selplg, are commonly considered to be part of the microglial transcriptional “signature,” as
they are generally expressed at low levels in other immune cells [37–41]. In addition, Csf1r
has recently been identified as a regulator of pathogenesis for microglia and macrophages
[42]. It is reasonable to hypothesize that this surrounding local neighborhood includes much
of the core functionality of healthy microglia.

Apoe (apolipoprotein E) is another well-studied gene that encodes a protein playing a cen-
tral role in lipid metabolism, neurobiology, and neurodegenerative diseases. Unlike Tmem119,
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Fig 4. a. Top 10 regulated genes at each life stage in mouse microglia. b. Predicted local networks around Tmem119 and Apoe in mouse microglia. Here
edge weights are min-max scaled at each time point. Top genes are selected according to the maximum weight at all time points.

https://doi.org/10.1371/journal.pcbi.1013603.g004

Apoe is highly regulated at embryonic day E14. As the mice mature, the relative impact of
Apoe drops, but it increases again in old age. The list of top predicted links by DAZZLE is
consistent with recent studies showing the variety of Apoe’s roles in cellular activities. For
example, at E14, the top three genes regulating Apoe are Ftl1 (ferritin light polypeptide 1),
Tmsb4x (thymosin beta 4 X-linked), and Itm2b (integral membrane protein 2B). Although the
connection between Apoe and Ftl1 is not well established, a recent study [43] shows that Apoe

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013603 October 24, 2025 10/ 20

https://doi.org/10.1371/journal.pcbi.1013603.g004
https://doi.org/10.1371/journal.pcbi.1013603


ID: pcbi.1013603 — 2025/10/27 — page 11 — #11

PLOS COMPUTATIONAL BIOLOGY Dropout augmentation

deficiency leads to increased iron levels. Another study [44] suggests iron loading is a promi-
nent marker of activated microglia in Alzheimer’s disease patients. Further, both genes are
located on mouse chromosome 7, about 20cM apart. This evidence suggests a plausible reg-
ulatory connection between Ftl1 and Apoe and further reflects the important role of iron in
early brain development.

Fig 4 illustrates DAZZLE’s predicted regulation patterns for these two typical well
expressed genes. However, we have found that DAZZLE’s regulatory predictions make sense
even for genes whose overall expression levels are low. (See, e.g., comparable images for
Ifit3 (Interferon Induced Protein With Tetratricopeptide Repeats 3) on the project web site
https://bcb.cs.tufts.edu/DAZZLE/hammond.html.)

Another molecule worth mentioning here isMalat1 (Metastasis Associated Lung Adeno-
carcinoma Transcript 1), which appears in our predicted networks as one of the top regula-
tors for many microglia core genes, including (Fig 4) Tmem119, Apoe, and H2.D1. As a long
non-coding RNA (lncRNA),Malat1 has been identified in many pathological processes with
immunological components, including several types of cancer [45] and diabetes [46]. It has
also been identified as a key regulator in the microglial inflammatory response [47,48], but
beyond that its function in microglia is mostly unexplored.

Overall, our analysis of this data set confirms that DAZZLE can handle typical real-world
single-cell data with more than 10,000 genes and thousands of cells. On examination, the
predicted networks appear generally consistent with current research on gene regulation in
microglia. Beyond previously identified links, DAZZLE also suggests novel yet plausible links
that may be confirmed through future experiments.

3. Materials and methods
3.1. Dropout augmentation
Previous research suggests that zero values in single cell data include both biologically real
zeros, corresponding to truly absent genes, and random dropout events. A successful single-
cell model should remain robust regardless of how dropout values are distributed. This idea
informs the dropout augmentation algorithm.

Let X∈ℝn×m be a gene expression matrix from a single-cell experiment, where n is the
number of cells andm is the number of genes. We randomly sample a proportion (p) of data
and temporarily replace these values with zeros. Alternatively, the augmented data could be
treated as the sum of the original expression data X and a dropout noise term E, where E is
the Hadamard product of negative X and a masking term derived from Bernoulli sampling.
By denoting the mask of dropout augmentation asMDA and the probability of augmented
dropout by p, we can write the dropout noise term E and the augmented data X′ as follows:

E = –X⊙MDA, whereM
ij
DA ∼ Bernoulli(p) (1)

X′ = X + E. (2)

In theory, the dropout augmentation algorithm could be applied to any iterative learn-
ing algorithm, such as expectation maximization, gradient boosting, or neural networks. As
shown in Fig 1,MDA is re-sampled at every training step, so the augmented data X′ changes in
every iteration. During the entire training process, the model is only exposed to the altered X′

instead of X.
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3.2. GRN inference with DAZZLE
The task of GRN inference is to infer a weighted adjacency matrix A∈ℝm×m based on the
expression data X. Previous methods DAG-GNN [30] and DeepSEM [18] rely on a linear
additive assumption that can be written as

X = XA + Z, (3)

where Z∈ℝn×m is a random variable characterizing the noise, essentially describing the gap
between the overall expected counts of the genes based on their regularizers (XA) and the
observed counts (X). To embrace the idea that the observed data are noisy due to dropout, we
modify this assumption and rewrite Eq 3 as:

X′ = X′A + Z′, (4)

where Z′ is defined for X′ analogously to the definition of Z for X. Since dropout is so preva-
lent in single-cell data, we believe Eq 4 describes the actual situation more accurately. Follow-
ing a similar transformation to that done in DAG-GNN and DeepSEM, by rearranging the
terms we can rewrite Eq 4 in the following two forms:

Z′ = X′(I –A), (5)
X′ = Z′(I –A)–1. (6)

Eq 5 infers Z′ from X′ and Eq 6 is a generative model that reconstructs X′ based on the
noise sum. These two equations naturally fit into a VAE framework with Eq 5 as an encoder
and Eq 6 as a decoder. When we parameterize both the VAE model and the adjacency matrix,
the encoder can be denoted by q𝜙(Z′|X′) and the decoder can be denoted by p𝜃(X′|Z′), with
A being part of 𝜙 and 𝜃. In this case, Z′ is the latent variable.

For a VAE, the problem of finding the set of parameters 𝜃 that maximizes the log evi-
dence log(P(X′)) is intractable. Instead, it is common to maximize the evidence lower bound
(ELBO), which we write as

ELBO = –DKL(q𝜙(Z′|X′)||p𝜃(Z′))
+ 𝔼z′∼q𝜙(Z′|X′)[log p𝜃(X

′|Z′)],
(7)

where the first term is the KL divergence and the second term can be thought of as the recon-
struction loss.

The random variable Z′ describes the deviation of the observed value X′ from the expected
value X′A. In a particular cell, if the expression value of a particular gene happens to be
observed as 0 due to dropout events, we will more likely see a larger deviation Z′. In other
words, Z′ contains information that can be used to infer whether a value comes from a
dropout event. Following this rationale, we can add a classifier CDA based on the specified
dropout augmentation maskedMDA, as shown in Eq 8 below. As a naïve approach, here we
choose a simple 3-layer multi-layer perceptron (MLP, activated by tanh) followed by sigmoid
as the DA classification:

M̂DA = sigmoid(CDA(Z′)). (8)
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The loss function of this classifier is simply a binary cross entropy function.

LBCE = –𝔼 [MDA log M̂DA + (I –MDA) log(I – M̂DA)] (9)

The dropout augmentation classifier can be trained either separately or together with the
main model using the same optimizer. In our experiments, we add the classification loss
to the ELBO function scaled by a hyper parameter 𝜒. Additionally, following the design of
DeepSEM, we include an L1 sparse loss term that regulates the sparsity of the learned adja-
cency matrix. The final form of the objective function is to minimize the following loss func-
tion:

Loss = – 𝔼z∼q𝜙(Z|X)[log p𝜃(X|Z)]

+ 𝛼∑ |A|

+ 𝛽DKL(q𝜙(Z|X)||p𝜃(Z))
+ 𝛾LBCE(MDA, M̂DA).

(10)

3.3. Datasets used
3.3.1. BEELINE single-cell benchmarks. The BEELINE benchmarks consist of both syn-

thetic expression data based on curated ground truth networks, as well as seven pre-processed
real single-cell RNA-seq datasets [6]. These scRNA-seq datasets come from both human and
mouse samples and have undergone different pre-processing steps, including normalization,
depending on the original data format (e.g. raw counts or processed data). In some aspects,
this variety reflects the wide array of differences we encounter in real-world data.

Next, BEELINE combines the scRNA-seq data with three different sources of “ground
truth” data about regulatory relationships, including the functional interaction network rep-
resented in the STRING database v11 [49], non cell-type specific transcriptional networks,
and cell-type specific networks. The Non-specific ChIPSeq network combines links from
DoRothEA [50], RegNetwork [51], and TRRUST v2 [52]. The cell-type specific networks were
created by the BEELINE authors for each dataset by searching through the ENCODE [53],
ChIP-Atlas [54], and ESCAPE [55] databases. To generate a benchmarking dataset, BEELINE
identifies highly variable transcription factors and genes and randomly samples from this
pool to create a benchmark of the desired size.

3.3.2. Hammond microglial data. To assess DAZZLE’s performance in a more practi-
cal context, we use a published data set from [35] (data available from NCBI’s Gene Expres-
sion Omnibus database [56] under accession number GSE121654). The Hammond mouse
microglial dataset includes RNA sequencing counts for cells underlying several possible com-
parisons. In our analysis, we selected the data from five mouse developmental stages, each of
which includes single cell data from four healthy male mice. To preprocess the data, follow-
ing suggestions from [57] for the same data, we filtered out cells with fewer than 400 or more
than 3,000 unique genes, cells with more than 10,000 UMIs, and cells with over 3% of reads
mapping to mitochondrial genes. Note that here we adopt a cross-sectional slicing strategy
and treated each developmental time point as independent samples. The top regulations for
key regulators are then compared to existing literature to validate the biological plausibility of
the inferred networks.

Many standard analysis approaches further reduce the data set size by filtering the gene set,
keeping only the most variable genes. However, here, we only remove genes with a raw count
of zero transcripts detected in all cells. We further removed all gene models, mitochondrial
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genes, and ribosomal genes from this pool to simplify the interpretation of the resulting net-
works. The expression values were normalized using natural log transformation.

After this cell and gene filtering, the final data set includes 49,972 cells from five time
points across the mouse lifespan: Embryonic (embryonic day E14, 15,673 genes and 11,262
cells), Early Postnatal (postnatal day P4/5, 13,316 cells and 15,039 genes), Late Juvenile (P30,
9,431 cells and 13,929 genes), Adulthood (P100, 8,259 cells and 13,998 genes), and Old Age
(P540, 7,704 cells and 14,140 genes). Note that compared to the original paper [35], here we
are using a very different approach, analyzing changes in potential regulatory links across
time, rather than attempting to identify microglial subpopulations defined by specific injury-
responsive cell clusters.

3.4. Evaluation metrics
In this report, we follow the recommendations from the BEELINE paper and use Area Under
the Precision Recall Curve Ratio (AUPRC Ratio) and Early Precision Ratio as the main evalu-
ation metrics. The main reason why AUPRC is preferred over Area Under the Receiver Oper-
ating Characteristic (AUROC) is that ultimately we are classifying a potential link between a
TF and a target gene to be either exist or not exist. In the ground truth data, usually there are
far more non-existing edges than existing edges. For example, in the hESC dataset, there are
5,149 edges in a data set with 578,100 potential edges. AUPRC is generally considered a bet-
ter metric when there is a class imbalance between the positive and negative groups [58], as
in this case. For easy comparison with other methods, we still provide results evaluated by the
AUROC metric in Table C in supplement S1 Text. The AUROC results show similar trends to
those of the other metrics.

In this paper, AUPRC is approximated using its discretized form without interpolation, as
shown in Eq 11:

AUPRC =∫
1

0
P(R)dR≈

N
∑
n=1

Pn ⋅ (Rn – Rn–1), (11)

where P(R) is the Precision at Recall level R, N is the number of unique predictions, and Rn

and Pn are the Recall and Precision scores at item n. This approximation is often referred to
as average precision [59] and is the same analysis performed in the DeepSEM paper. The
AUPRC Ratio is calculated by dividing the calculated AUPRC score with the theoretical
AUPRC score of a random predictor. In this case, the expected precision of a random pre-
dictor is equal to the proportion of positive cases. On the Precision-Recall plot, the perfor-
mance of a random predictor forms a horizontal straight line (see Fig 5D in [58]). Therefore,
the AUPRC of a random predictor is simply the proportional of positive cases and we can
calculate AUPRC Ratio with Eq 12.

AUPRC Ratio≈ Positives
Total Instances

⋅
N
∑
n=1

Pn ⋅ (Rn – Rn–1) (12)

Early Precision (EP) is the fraction of true positives within the top-k candidates, where k is
the number of edges in the ground truth network. Early Precision Ratio further divides that
fraction with the expected Early Precision of a random predictor, which is the edge density of
the ground truth network [6].

Since the number of all possible edges and the number of true edges are usually very large
in actual GRNs, the values of the AUPRC and Early Precision themselves tend to be small. As
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claimed in the BEELINE paper, converting them to ratios make it easier to understand the
performance across benchmarks.

4. Discussion
In this study, we tackle the dropout problem in real-world single-cell data paradoxically by
adding more dropout. As previously mentioned, while the idea of using dropout to improve
the robustness of machine learning models has existed for a long time, thanks to the pioneer-
ing work of Bishop and Hinton [28,29], it has rarely been discussed and recognized in the
’omics community as a useful method although our data suffers greatly from sparsity and
noise. Our work shows that it can be useful in the task of GRN inference, but it seems to be
a reasonable assumption that it would also help many other applications in the single-cell
domain with robustness and perhaps improved performance at very low cost. Of course, as in
other machine learning domains, dropout augmentation is not a magic bullet that can guar-
antee a significant amount of performance gain. But it is clear that that Dropout Augmen-
tation can improve model robustness, which is equally important, making observed perfor-
mance gains believable. Building on the principles established in this paper, we have since
developed RegDiffusion [31], a follow-up method that frames the noise augmentation con-
cept within a more formal diffusion model framework. Instead of adding dropout noise,
RegDiffusion incrementally adds Gaussian noise and learns to reverse the process. This subse-
quent approach offers further improvements in computational speed and inference accuracy,
demonstrating the extensibility of the core idea introduced in DAZZLE.

In the specific case of GRN inference, our proposed method DAZZLE not only stabilizes
the output but also produces better predictions. On the BEELINE benchmarks, a single-run of
DAZZLE yields comparable results to an ensemble containing of 10 repeated trials of the pre-
viously most-accurate method. Our experiment with the microglia dataset shows that DAZ-
ZLE has the capacity to run on large single-cell data with minimal gene filtration. While we
do not have ground-truth networks suitable for direct comparison in these cases, the pre-
dicted networks are consistent with current understanding and include plausible novel links.
These novel links may be good candidates for future investigations of key regulatory relation-
ships.

Finally, DAZZLE, like GENIE3 and GRNBOOST2, only requires the gene expression
matrix as the input. Therefore, since DAZZLE has better performance and runs faster, it
can be seemlessly used in popular downstream GRN analysis tools such as SCENIC [13,60]
and SCENIC Plus [61]. As suggested in the SCENIC papers, the results of DAZZLE could
be pruned using cisTarget data [62] to remove unlikely edges and further improve the accu-
racy. The learned regulation could be used to calculate AUCell scores[13] to describe the TF
activities for each cell and to build dimension reduction plots for cells. We provide a tuto-
rial on how to integrate the results from DAZZLE and RegDiffusion into the SCENIC work-
flow on the documentation site for RegDiffusion (https://tuftsbcb.github.io/RegDiffusion).
We are also developing a GPU-based SCENIC calculation pipeline called flashscenic
(https://github.com/haozhu233/flashscenic).

One limitation of this method is that it can not directly predict if the regulation is positive
or negative. One of the advantages of DeepSEM and DAZZLE is that they use neural networks
to do nonlinear transformation. At the end, the learned adjacency matrix is in fact describ-
ing the relationships among the non-linearly transformed data. Therefore, positive/negative
regulation is not directly computable. One possible solution to this problem would be, after
the existence of regulation is confirmed, to create another simple linear model between the
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TF and the target and use the sign of the linear model as the direction of the inferred relation-
ship.

A practical limitation of the current model architecture is that the space complexity of this
model also scales quadratically. With 15,000 genes, the model requires 30 Gb GPU memory,
which still fits in a single modern GPU. However, for even larger use cases, the method may
require multiple GPUs. Another limitation is that the current version is designed to be applied
to each individual dataset (time point or cell cluster). Thus, it does not help us develop a uni-
versal understanding of gene interactions. How to relax these restrictions, how to learn these
connections in a more efficient way, and how to interpret the inferred networks biologically
are important questions to consider in future work.

Supporting information
S1 Fig. Additional ablation study shows the usefulness of Dropout Augmentation. Cer-
tain proportions of data points (x-axis) were drop to simulate background dropout noise at
the very beginning.
(TIFF)

S2 Fig. Quality of inferred GRN from DeepSEM-1x: AUPRC Ratio as a function of the
number of training iterations. Quality may quickly downgrade after the performance peak.
Dashed line is the recommended stopping point from DeepSEM. Note that for the celltype-
specific data sets, performance is particularly volatile.
(TIFF)

S3 Fig. Distribution of 100 runs of DAZZLE-1x and DeepSEM-1x on BEELINE evaluated
using the STRING network. Results from DAZZLE-1x tend to be more stable than results
from DeepSEM-1x.
(TIFF)

S1 Text. Addition supplement information including hyperparameter choices and addi-
tional benchmarks.
(PDF)
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