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Abstract

The progression of diabetic kidney disease is often characterized by early dysfunction of
glomerular endothelial cells, including alterations in fenestration size and number linked
to impaired glomerular filtration. However, the cellular mechanisms regulating fenestra-
tions in glomerular endothelial cells remain poorly understood due to limitations in exist-
ing in vitro models, challenges in imaging small fenestrations in vivo, and inconsisten-
cies between in vitro and in vivo findings. This study used a logic-based protein-protein
interaction network model with normalized Hill functions for dynamics to explore how
glucose-mediated signaling dysregulation impacts fenestration dynamics in glomerular
endothelial cells. Key drivers of fenestration loss and size changes were identified by
incorporating signaling pathways related to actin remodeling, myosin light chain kinase,
Rho-associated kinase, calcium, and VEGF and its receptors. The model predicted how
hyperglycemia in diabetic mice leads to significant fenestration loss and increased size of
fenestrations. Glycemic control in the pre-diabetic stage mitigated signaling dysregulation
but was less effective as diabetic kidney disease developed and progressed. The model
suggested alternative disease intervention strategies to maintain the integrity of the fen-
estration structure, such as targeting Rho-associated kinase, VEGF-A, NFxB, and actin
stress fibers.

Author summary

Diabetic kidney disease is a serious complication of diabetes that affects approximately
20-40% of diabetic patients and can lead to kidney failure. Early diagnosis and treatment
of diabetic kidney disease are critical in slowing the progression of the disease and pre-
venting kidney failure. The progression of diabetic kidney disease is often characterized
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by structural changes in glomerular endothelial cells, which are important cells in the
kidney zones responsible for filtration. In this work, we expanded our previous model
of chemical interactions in glomerular endothelial cells that focused on cell culture

data from experiments outside an organism. Here, the model is adapted to data from
mice. Using a protein-protein interaction network, we computationally examined key
pathways that relate hyperglycemia in diabetic mice to significant structural changes

in glomerular endothelial cells. The analysis identified that targeting specific pathways
and proteins could maintain structural integrity when glucose control alone is insuffi-
cient. The proposed disease targets and biomarkers are closely correlated with structural
changes in glomerular endothelial cells and could support improved kidney function and
disease management.

Introduction

The kidney is a highly vascularized organ that includes different populations of endothelial
cells (ECs) with specialized structures and functions [1]. ECs in the kidney microvasculature
regulate blood flow, coagulation, inflammation, and vascular permeability [1,2]. In the func-
tional unit of the kidney, glomerular endothelial cells (GECs) are highly specialized ECs that
contribute to the structural and functional integrity of the glomerular filtration barrier in each
nephron and support other glomerular cells, such as podocytes and mesangial cells, and the
glomerular basement membrane [3,4].

The structure of GECs consists of transcellular holes, known as fenestrations, and a rich
surface of glycocalyx that together contribute to the size- and charge-selective properties of
the filtration barrier [1,5-8]. The endothelial glycocalyx lines the luminal side of the GECs
and is also present within the fenestrations [7,9]. The functional significance of fenestra-
tions is to provide selective passage of proteins, fluid, and small solutes across the GEC bar-
rier without the need for endocytosis or receptor-mediated mechanisms [7,10]. The fenes-
trated endothelium regulates the glomerular filtration rate and permeability [5,9,10]. Mature
GEC fenestrations are generally open and non-diaphragmed, located in the peripheral cyto-
plasm, and arranged in non-raft sieve plates [5,9,11,12]. The fenestrations are supported by
a fenestrae-associated cytoskeletal ring [13,14], wherein structural proteins like spectrin and
filamin crosslink with the actin cytoskeleton, contributing to fenestration formation, mem-
brane integrity, cell-cell interactions, and shape changes [2,13-15]. Although their protein
composition remains mostly unknown, studies have determined the structural composition
of fenestrations [13,16,17]. In addition to structural proteins, vascular endothelial growth fac-
tor (VEGF), endothelin-1, and tumor necrosis factor (TNF)-a are among other agents that
modulate endothelial fenestration structure and vascular permeability [2,12]. Shear stress also
regulates the production of vasoactive mediators, such as nitric oxide (NO) and endothelin-1,
and regulates fenestration structure and vascular tone [18].

GEC:s are susceptible to injury and dysfunction in kidney diseases. Alterations in the size
and density of GEC fenestrations are associated with the disruption in glomerular filtration
and progression of diabetic kidney disease (DKD) [9,10,19]. DKD is a microvascular dysfunc-
tion in the kidneys and is reported in 20-50% of diabetic patients [20]. DKD is the leading
cause of end-stage renal failure and is associated with significantly increased comorbidities
and mortality [10,20]. GEC activation and dysfunction are considered early signs of DKD
development and progression [6,21]. GEC activation results from dysregulated paracrine and
autocrine signals in these cells triggered by high glucose, inflammation, or injury [6] and pro-
gresses to endothelial dysfunction involving changes in structure and function. In our study,
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we consider the early stage of DKD to be 6-10 weeks in mice, i.e., after sustained hyper-
glycemia and before significant histological changes in cell structure are observed around
10-12 weeks as in prior studies [10,22].

Some recent studies have focused on understanding dysfunction and injury in endothe-
lial cells in a diseased state. Accumulated evidence associates pathways and signaling motifs
with actin cytoskeletal rearrangement and, ultimately, morphological changes in fenestra-
tions in liver sinusoidal endothelial cells (LSECs), which are structurally similar to GECs [9].
VEGE, NO, and calcium are linked to the regulation of myosin light chain kinases (MLCK),
vation of MLCK and Rho/Rock activation reduces endothelial porosity in LSECs and, in some
cases, increases the diameter of fenestrations [13,14,26]. Although most previous studies were
performed on fenestrated LSECs, some recent studies focused on fenestrated GECs [2,10].
Despite some progress toward a mechanistic understanding of markers and pathways associ-
ated with GEC dysfunction, research gaps remain in understanding the relationship between
signaling molecules and mechanical cues in GECs that cause structural deformation. Using
the information about pathways in other fenestrated ECs is a promising strategy for under-
standing these pathways’ potential impacts on the structural or functional stability of GECs
before they can be validated experimentally in GECs.

Computational network models have been shown to be useful in mechanistically link-
ing signaling cues to cellular dysfunction and activation. Previously, we [27] and others
[28-30] used computational modeling to demonstrate the intracellular signaling and inter-
cellular cross talk among pro-inflammatory mediators, pro-angiogenic factors, immune cells,
and endothelial cells. We previously developed a logic-based ordinary differential equations
(LBODESs) model to predict the effects of high glucose and inflammation on macrophage
and GEC activation and signaling dysregulation observed in vitro associated with early-stage
DKD [27]. Others have also used complex network models to study different macrophage
phenotypes in response to mixed pro- and anti-inflammatory stimuli [30,31]. Several large-
scale logic-gated network models have effectively determined signaling components and net-
work topology that regulate cell phenotype, function, and structure in other tissues [32,33].

In this study, we used an LBODEs model of protein-protein interaction to study the devel-
opment and progression of DKD. Here, we modified and extended our previously developed
LBODEs model [27] to include essential proteins and interactions that potentially modulate
fenestration density and size in GECs in vivo. We calibrated the influential parameters in the
extended LBODEs model using published experimental data of observed changes in fenestra-
tion size and number in diabetic mice. Using this extended LBODEs model, we analyzed net-
work motifs and dynamics under varying glucose stimuli and perturbed protein activity. We
identified potential strategies for therapeutic interventions to reduce fenestration loss across
early to advanced stages of DKD.

Methods
Network assembly

We modified our previously developed protein signaling network (PSN) between macrophages
and GECs [27] to include relevant pathways and proteins associated with changes in GEC
fenestrations (Fig 1). The previous network model [27] was assembled and validated based

on evidence from pathway databases, cell culture experiments, transcriptomic analyses, and
single cell RNA sequencing data [29,34-53]; please see [27] for more details on the rationale
behind the assembly of the previous network stimulated by glucose and by an inflammatory
lipopolysaccharide signal in vitro.
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Fig 1. Multi-cellular protein interaction network of in vivo cross talk between macrophages and glomerular endothelial cells. The
protein interaction network between macrophages (gray area) and glomerular endothelial cells (pink area) is stimulated with static or
dynamic glucose. The green oval is the input node, the blue ovals are the output nodes, and the white ovals are the regulatory nodes.
Structural changes in glomerular endothelial cells are shown as blue squares. The black solid arrows are activating interactions, the red
edges with dots at one end are inhibiting interactions, and the gray dashed arrows are interactions active for diabetic subjects. Open dotted
arrows in orange and black represent negative and positive effects on fenestration size, respectively. Red circles indicate logic AND gates.
An OR logic rule connects two or more edges to a subsequent node throughout the network unless indicated otherwise by an AND logic
gate. The subscript “ec” denotes an intracellular species expressed in endothelial cells. IL-6, TNF-a, IL-1(3, and VEGF-A are protein levels
expressed in the extracellular space. ROS, ROSec, VEGF-A (mRNA), and NO are expressed within the cells. The pJunction node represents
the phosphorylated junction protein levels. Stress fibers and relaxed fibers represent different forms of actin fibers. AGE: advanced glyca-
tion end products. AKT: serine/threonine-specific protein kinases. Ca: calcium. eNOS: endothelial nitric oxide synthase. IL: interleukin.
MLC: myosin light chain. MLCK: myosin light chain kinase. MLCP: myosin light chain phosphatase. NADPH: nicotinamide adenine
dinucleotide phosphate. NFxB: nuclear factor kappa B. NO: nitric oxide. ONOO: peroxynitrite. PI3K: phosphoinositide 3-kinases. PLC-y:
phospholipase C gamma. pMLC: phosphorylated myosin light chain. RAGE: receptor of advanced glycation end product. Rock: RhoA-
associated kinase. ROS: reactive oxygen species. TLR: toll-like receptor. TNF-a: tumor necrosis factor-alpha. VEGF: vascular endothelial
growth factor. VEGFR: vascular endothelial growth factor receptor. New nodes and interactions in the extended model compared to those
in the previous model [27] are highlighted in Fig A in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1013598.9001

Several experimentally determined effects were considered to extend the previous
PSN [27] to the network in Fig 1. The new regulatory nodes and interactions are highlighted
in Fig A in S1 Appendix and were derived from proteins and mechanisms proposed in pub-
The new regulatory nodes (white ovals in Figs 1 and A in S1 Appendix) include IL-1R,
Rho/RhoA-associated kinase (Rock), myosin light chain (MLC), MLC phosphatase (MLCP),
MLC kinase (MLCK), phosphorylated myosin light chain (pMLC), stressed actin fibers
(Actiny), relaxed actin fibers (Actin,), fenestration number, and fenestration diameter. Fig A
in S1 Appendix also highlights the new interactions between existing and new nodes in the
extended model of Fig 1. Abbreviations for all species are defined in Table A in S1 Appendix.
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Unlike the previous PSN, which was stimulated by static glucose and lipopolysaccharide
stimuli [27], the extended model is stimulated by a dynamic glucose concentration in dia-
betic mice and an endogenous inflammatory stimulus (IL-1f) indirectly regulated by glu-
cose via the macrophage cell portion of the network. Glucose is the only independent stim-
ulus in the extended network model (Fig 1) and is responsible for initiating a phenotypic
switch in macrophages, activating GECs, and initiating downstream signaling dysregulation.
IL-1P activates its receptor IL-1R on macrophages in the extended PSN. These are the only
modifications to the macrophage portion of the extended PSN.

The modifications to the endothelial cell portion of the extended PSN (Figs 1 and A in S1
Appendix) were of two types: biochemical and structural. First, the biochemical modifications
are described. VEGE a pro-angiogenic factor, increases EC porosity and permeability in dif-
ferent cell types [2,14,55-58] and promotes maintenance of fenestrations via NO-dependent
or NO-independent pathways. We linked VEGF-A, VEGF receptors, NO, ROSec, and cal-
cium in the previous PSN with additional nodes in the network. VEGF receptor 2 (VEGFR2)
mediates Rho/Rock activation, leading to defenestration in LSECs [2,13,57]. Treatment with
reactive oxygen species or nitrogen species increases fenestration diameter and decreases
fenestration number [14]. The calcium level, regulated by calcium membrane channels and
pumps, causes a cascade of cellular mechanisms that drive local changes in the cytoskeleton
and result in actin contraction [14,59]. The exact mechanism of action of NO on fenestra-
tion has not been shown. However, it has been demonstrated that eNOS-derived NO shows
a positive effect on LSEC fenestration maintenance [57]. It was proposed that activation of
the NO-dependent cGMP pathway reduces the activation of MLCK [14]. The local balances
regulating the calcium, ROS, NO, and VEGF levels in different parts of the cell control the
dynamics of fenestrated LSEC [14] and are included in the extended network. The activity of
MLCK is increased by calcium and protein kinase C (PKC)-mediated phosphorylation [14].
The link between MLCK and calcium is considered in the extended network. Moreover, indi-
rect inhibition of MLCK, either through a calcium-dependent or calcium-independent man-
ner, reduced endothelial porosity and increased fenestration diameter in a few cases [26].
Indirect inhibition of MLCK via NO and ROS activation is included in the extended net-
work. MLCP maintains the balance of phosphorylation or dephosphorylation of MLC. MLCK
and MLCP, together, keep the balance between pMLC and MLC protein levels (Fig 1). The
Rho/Rock pathway activates pMLC protein and inhibits MLCP protein [14,26]. pMLC pro-
tein increases contractile forces in the actin cytoskeleton structure, which we modeled as acti-
vation of stress fibers in the extended network (Fig 1). Other agents, such as PKA, PKG, and
PKC not explicitly included in the extended network, may also activate pMLC; however, they
are not as potent as the Rho/Rock pathway [14]. RhoA regulates the assembly of contractile
actin bundles and actin filaments, and negative regulators of Rho/Rock have resulted in mas-
sive proteinuria and renal failure in mice [60]. A previous study in mouse podocytes also indi-
cated that the actin cytoskeleton could be a potential target for stabilizing cellular morpholog-
ical changes, proteinuria, and renal function [60]. The interplays between pathways related to
MLC kinase and phosphatase, Rho/Rock, calcium, NO, VEGF, VEGFR, and ROS were promi-
nently observed in fenestrated LSECs [14]; therefore, these are considered in the extended
network.

For the structural modifications to the endothelial cell portion of the extended PSN (Figs 1
and A in S1 Appendix), we assumed that the overall fenestration number depends on the
actin cytoskeleton structure, which is regulated by the proportion of stressed and relaxed
actin fibers. The role of actin cytoskeleton as an essential structural and functional element
that controls cell shape, cell motility, and adhesion has been demonstrated in different cell
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types [60,61]. Myosins convert ATP to create a mechanical force on actin, which creates ten-
sion in the actomyosin cytoskeleton necessary for various functions [14]. Under a changing
extracellular environment, actin structures are disassembled and remodeled to maintain the
structural and functional integrity. Thick actin stress fibers have been associated with elevated
regions (raft regions) in endothelial cell monolayers. According to the sieve-raft hypothe-

sis [12], these elevated regions have no fenestrations. It has been postulated that the regulation
of fenestration size in LSECs is facilitated by the contraction or relaxation of the cytoskele-
ton surrounding the sieve plates [17,26]. Fenestrations exist within the mesh-like structure
comprised of actin [62]. The presence of stressed actin fibers leads to the loss of fenestrations,
whereas relaxed fibers promote fenestration formation. Thus, we consider both to determine
the changes in the fenestration number. As the thick actin fibers around the mesh-like struc-
ture cause it to stretch, the fenestrations increase in size [26]. On the other hand, when actin
fibers relax and tension around the mesh-like structure loosens, the fenestration size reduces.
Size is considered by the variable fenestration diameter. In the extended network, fenestration
diameter is directly linked to pMLC protein, which influences both stressed and relaxed actin
fibers.

Logic-based network model development

The LBODEs modeling technique combines ordinary differential equations (ODEs) that are
continuous functions of time with qualitative logic-based Boolean up- or down-regulation
(i.e., activation or inhibition) using normalized Hill functions (saturating sigmoidal terms)
for the logic-based modeling portion [27,63]. The LBODEs framework enables predictions
of network dynamics and is compatible with many analyses from nonlinear dynamics while
requiring minimal knowledge of biochemical parameters [32,64]. The LBODEs model uses
normalized-Hill functions to define normalized species activity generally between 0 and

1 [27], although we allowed dynamic glucose stimulus beyond this range on the normalized
scale.

The LBODEs model parameters are categorized as reaction parameters—reaction weight
(W), Hill coefficient (#;), and half-effect (ECso,) for reactions j—and species parameters—
maximum species activity (ymax, ), initial species value (yy,), and time constant (z;) for species
i. Reaction weight regulates the strength of each network interaction, half-effect determines
the amount of input activity required to achieve maximum output activity, and time con-
stant controls the time to activate or inhibit a network species. The species i and reactions j are
listed in Tables B and C in S1 Appendix. More detailed information on the LBODEs model
structure, equations, and parameters can be found in our earlier work [27].

Our previous model [27] characterized the early stages of DKD development by simulat-
ing protein dysregulation in macrophages and GECs occurring over a few hours to days. This
model was thoroughly calibrated and validated against in vitro experimental datasets. The
default parameters as defined by Kraeutler et al. [63] allowed a qualitative prediction using the
previous LBODEs model. The previous model was assessed for structural identifiability and
observability to minimize uncertainty due to non-identifiable parameters and address struc-
tural issues before model calibration [27,65,66]. Given the large number of model parame-
ters in the previous network model, we identified the most sensitive parameters based on a
global sensitivity analysis using Sobol’s variance-based method [67-69]. As information on
the model parameters were not available in the literature, we estimated the most sensitive
parameters using a multi-start nonlinear least squares optimization routine and quantified the
uncertainty associated with the estimated parameter values and how this propagated to model
prediction uncertainty [27].
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Here, we considered the expanded network (Fig 1) and in vivo data and scenarios. The
optimal parameters from the previous LBODE model were used in the extended model for
the respective nodes. Due to limited information on model parameters for the additional
nodes of the extended LBODEs model, we set these new parameters at default values (W; = 1,
nj =14, ECso; = 0.5, yo, = 0, Ymax, = 1, 7; = 1), as in multiple other publications using LBODEs
governed by biochemical reactions and interactions in the network model. These reactions
allow the transfer of information within or between cells, which can happen at a range of
timescales (seconds to hours). The time constant parameters in the LBODEs model modu-
late the early or late activation of proteins in the network. The previous LBODEs model [27]
was simulated and fitted for a short timescale (48 hours) suitable for in vitro studies. In the
extended LBODEs model, the time constant parameters for each protein come from a pub-
lished timescale analysis [74]. The previous timescale analysis was performed for biochemical
reactions similar to those seen in the extended network model, where time constant values
were grouped by reaction type. The reaction types in the extended network are categorized
into the following reaction types: ligand-receptor, transcription, translation, NF-xB activa-
tion, and signaling reactions. The time constants for the reaction types are as follows: those for
ligand-receptors are 21 min = 0.35 h, those for transcription are 88 hours, that for translation
is 1.13 hours, that for NF-xB activation is 3.3 min = 0.055 h, and those for all other signal-
ing interactions are 1 hour. For species, IL-6, TNF-a, and IL-18, the total times for transcrip-
tion and translation reactions are combined and approximated as 90 hours. The species and
reaction parameters are listed in Tables B and C in S1 Appendix.

The equations of the extended LBODEs model in Eqs (S1)-(S34) in S1 Appendix for the
extended PSN (Fig 1) were generated automatically using Netflux, an open-source software
package [63,64]. The information about model parameters and reaction rules in the extended
PSN (Tables B and C in S1 Appendix) is sufficient to generate the LBODEs using Netflux. The
use of Netflux graphical user interface is optional to set up the MATLAB scripts and basic
model structure. After defining the model equations in MATLAB or via Netflux, MATLAB
software has many advanced capabilities and was used to perform parameter estimation, sen-
sitivity analyses, and post hoc analyses. Here, the LBODEs model was simulated in MATLAB
after model modifications for the dynamic glucose stimulus and the structural aspects of the
endothelial cell portion of the extended PSN, as discussed below.

Dynamic glucose stimulus

The LBODESs model is simulated between 336 and 3360 hours (2-20 weeks). The extended
model is stimulated by dynamic glucose levels in leptin-deficient mice, denoted ob-/ob- or
ob/ob, with BTBR background that develop severe type 2 diabetes [10,22]. This mouse strain
models the later stages of DKD [75]. A representative data set of in vivo glucose dynamics

in diabetic mice [22] is used as the stimulus for the development of diabetic hyperglycemia
(Fig 2); glucose levels initially increase linearly from baseline and then fluctuate within a
hyperglycemic range. We considered glucose concentration as a linear function Eq (1) and
fitted it to data [22] for 336-1008 hours (2-6 weeks):

G(t)=0.051£-9.38, 336h<t<1008h (1)
where G(t) is glucose concentration at time ¢ in hours.

To mimic natural glucose dynamic variations without having fine details of feeding and
metabolism, for ¢ > 6 weeks, glucose is set to observed glucose concentrations in diabetic
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Fig 2. Simulated glucose input concentration profiles. Simulated glucose input concentration profiles (black dashed
curve on left axis) over 20 weeks using the linear fit for 2-6 weeks from Eq (1) and piecewise constant values of glu-
cose at the means of the observed data in diabetic mice for 6-20 weeks. Dimensional glucose values G(t) are shown
on the left axis, and normalized values of glucose reaction weight W¢, ;(¢) obtained using Eq (2) are shown on the
right axis (black dotted curve). Glucose concentration data values are from Lee et al. [22] (blue circles) and Finch et
al. [10] red triangles for male ob-/ob- mice. Data are shown as means =+ standard deviations.

https://doi.org/10.1371/journal.pchi.1013598.9g002

mice [10,22] using step changes at each time point. Glucose values are held constant dur-
ing each time interval between the measured data standard deviations (Fig 2) at time points
corresponding to published experimental measurement times: weekly until 11 weeks [22]
and biweekly during 12-20 weeks [10]. Fig 2 shows the glucose data and simulated levels fol-
lowing Eq (1) for 2 < t < 6 weeks and a piecewise constant function at the mean values of the
data in each measurement time interval for ¢ > 6 weeks. Data are shown as means =+ standard
deviations.

Glucose input to the LBODEs model must be a normalized value on the order of 1. There-
fore, a variable reaction weight (W, ;(#)) is calculated from glucose concentration at each
time by normalizing G(t) between the minimum value from Eq (1) at ¢ = 2 weeks and the
maximum value (mean + standard deviation) from the data in the 12-20 weeks interval:

G(t) - min(G(¢))
max(G(t)) - min(G(t))

Weru(t) = (2)

where min(G(¢)) and max(G(t)) are the minimum and maximum concentrations of
observed glucose, respectively. Reported data by Finch et al. [10] were primarily used for
calibration of the fenestration structural dynamics portion of the model. Therefore, we also
calibrated the glucose normalization to this data set. Due to a lack of reported data for glu-
cose between 2 and 12 weeks in [10], min(G(¢)) is set to the predicted glucose concentra-
tion at 2 weeks computed using Eq (1). max(G(t)) is set to the maximum value of the upper
bound of observed glucose from Finch et al. [10]. Therefore, a normalized glucose activity of
1 corresponds to the maximum mean + standard deviation of glucose concentration in mice
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reported in Finch et al. [10]. Note that this allows some normalized values from other data
sets (specifically, the Lee et al. [22] data) to have values greater than 1. The right axis of Fig 2
shows the results of the normalization using Eq (2).

Normalized glucose activity (GLU) is used as the input to the extended LBODESs network
and is calculated as

dGLU _ ymaXGLU W’GLU(t) -GLU
dt TGLU

€)

where Ymaxg,, i the maximal glucose activity and is set to 1, W ;(#) is the dynamic reac-
tion weight for glucose from Eq (2), and 7y is the time constant for glucose and is set to 1.
The GLU result from Eq (3) based on the G(¢) in Fig 2 is shown in the first panel of Fig B in S1

Appendix.

Glucose variability

We simulated inter-subject variability of glucose concentration in the mouse population
based on reported variability in previous studies [10,22]. We created an in silico virtual mouse
population (n = 100) that varied in their input glucose concentration dynamics. As in Fig 2,
we used the linear values following Eq (1) for 2 < t < 6 weeks and piecewise constant func-
tions at data-informed values in each measurement time interval for ¢ > 6 weeks. The differ-
ence is that in Fig 2, we used the data-informed values as the means from the data in each
interval. For inter-subject glucose variability, we sampled those values from distributions
informed by the data. Specifically, we constructed the piecewise constant functions for the
virtual mouse population for ¢ > 6 weeks by drawing 100 independent samples from a normal
distribution using the normrnd function in MATLAB with the mean and standard deviation
corresponding to the data at the start of each time interval. Another 100 independent sam-
ples were drawn for the next time interval, which had its own mean and standard deviation,
and this process proceeded until 20 weeks. Each virtual mouse got an arbitrary combination
of one glucose sample per time interval for its piecewise constant function. We ensured that
our glucose samples were the same 100 trajectories each time we reran the code by fixing the
seed for the random number generator. The resulting 100 sampled glucose trajectories and
the mean of these trajectories are shown in Fig 3. The visualization in Fig 3 has limitations

in showing all 100 trajectories without obscuring frequent samples. As an alternative visu-
alization, we have also provided histograms of the sampled GLU distributions in each time
interval for 6-20 weeks (first column of Fig C in S1 Appendix).

Dynamic changes in fenestration structure

We simulated the changes in fenestration number and diameter using a published in vivo
study of GEC dysfunction in the advanced stage of DKD [10]. In our model, the fenestra-
tion number depends on the total activity of stressed and relaxed actin fibers. Relaxed actin
fibers promote the formation of fenestrations at a rate kg, and stressed actin fibers reduce
fenestrations in GECs at a rate kjoss. Eq (4) defines the rate of change in fenestration number

(¥Number) OVer time:

dyNumber

dt = kformACtinr |yNumber551 - yNumberlnf - klossACtinslyNumberssz - yNumberlnf (4)

where kform and ki, are the rates of formation and loss of fenestrations, respectively. yNumber.,,
and YNumber,,, are the numbers of fenestrations at steady state for healthy control and diabetic
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Fig 3. Simulated glucose input concentration profiles (solid colorful lines) for a virtual mouse population

(n =100) to represent time-dependent inter-subject glucose variability. Glucose was sampled n times in each time
interval for 6-20 weeks by drawing from a normal distribution with mean and standard deviation from the data

at the start of the corresponding time interval. The mean of the 100 profiles is shown as a solid black line. Glucose
concentration data values are from Lee et al. [22] (blue circles) and Finch et al. [10] (red triangles). Data are shown as
means =+ standard deviations.

https://doi.org/10.1371/journal.pchi.1013598.9g003

mice, respectively. nyis the shape factor. Acting and Actin, are stressed and relaxed states of
actin fiber activity from Eqs (S1) and (S29) in S1 Appendix, respectively.

The predicted fenestration number was compared with the measured fenestration density
in GECs in mice, where density is defined as the total number of fenestrations per unit length
(pm) of the peripheral cytoplasm. The first term in Eq (4) defines a nonlinear increase in fen-
estration number compared to healthy mice. The second term in Eq (4) defines a nonlinear
decrease in fenestration number compared to baseline values in healthy mice.

The phosphorylation of MLC protein (pMLC) in Eq (S32) in S1 Appendix is assumed to
be the source of stress that increases fenestration diameter at a rate k; Eq (5). This assumption
is based on previous experimentation in fenestrated LSECs [14,26]. Eq (5) defines the rate of
change in fenestration diameter (¥piameter) OVer time:

d)’ Diameter

dt = ks(pMLC - pMLCO)nf - kd ()’Diameter - yDiametero) (5)

where k and k, are the rates of increase in diameter due to phosphorylation of MLC pro-
tein (units of nm/hr) and restoration of diameter (units of 1/hr), respectively. pMLCy and
YDiameter, are the initial values of normalized pMLC protein and diameter at baseline in con-
trol subjects or healthy mice. The increased fenestration diameter is restored via an unknown
restoring force at a rate of k.
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Parameter estimation

For parameters not used at default values, we calibrated the LBODEs model in Eqs (3)-(5)
and Eqs (S1)-(S34) in S1 Appendix to in vivo data for the glucose dynamics and changes in
fenestration structures for 12-20 weeks. We used the single mean glucose trajectory G(t)
(Fig 2) as the input. We performed a multi-start nonlinear least squares parameter estima-
tion to estimate unknown parameter values in Eqgs (4) and (5). We used Latin hypercube sam-
ples to generate 25 initial sets of parameter from specified ranges for each parameter. kom,
YNumbery; » and 717 were sampled in the ranges of [0.1,4] 1/hr, [6,8], and [2,5], respectively. kiqs
and yNumber,, were sampled in the ranges of [1,5] 1/hr and [3,5], respectively. k, kg, and Tpmic
were sampled in the ranges of [45,75] nm/hr, [1,4] 1/hr, and [400,600] hr, respectively. The
parameter estimation was performed using fmincon in MATLAB. The optimization objec-
tive function was to minimize the sum of squared error (SSE) between the model predictions
and the data. The optimization was repeated for the 25 sets of initial guesses of the parameters
to account for the local minimization algorithm in fmincon. The best-fit parameter values
were those that yielded the lowest SSE among the results from the 25 multi-start calls to the
optimization algorithm.

Rather than estimating all parameters for Egs (4) and (5) simultaneously, we partitioned
the problem into multiple steps based on the available data. In the first step in the param-
eter estimation process, only the first term in Eq (4) was considered, and three parameters
(Kform> YNumberys, » and 717) were fit to fenestration density at 6, 10, 15, and 20 weeks in healthy
mice [10]. Some changes were made to the disease model to simulate fenestration formation
in healthy cases. In healthy cases, we assumed a balance between relaxed and stressed actin
fiber activity. To observe balanced actin fiber activity, we switched to an activation interaction
between Rho/Rock and MLCP to promote the activation of relaxed actin fibers. We estimated
Kform»> YNumbery;; » and 717 using this methodology.

In the second step, we considered the disease model (Fig 1) and both terms in Eq (4). In
diseased cases, the model promotes an imbalanced expression of relaxed and stressed fibers.
The relaxed actin fibers are inactive in the diseased model mainly due to Rock-mediated
MLCP inhibition. Parameters kjoss and ynumber,,, in Eq (4) that define the decrease in fenestra-
tion number in the second term were fit using observed fenestration density at the same time
points (6, 10, 15, and 20 weeks) in diabetic mice [10]. Parameters k; and k; and time constant
(tpmic) for pMLC activation were calibrated against observed data for fenestration width in
GECs in diabetic mice in [10]. The shape factor () was set at the same value estimated in the
first step of the estimation process.

The best-fit parameters were used for model prediction. Parameters relevant to Eqs (4) and
(5) are reported in Table 1, and those for the species and reactions in the LBODEs are listed in
Tables B and C in S1 Appendix, respectively.

Uncertainty quantification

We quantified the uncertainty in the model predictions for fenestration diameter and num-
ber using a Monte Carlo ensemble simulation, a form of sampling-based uncertainty propa-
gation [27,76,77]. The fitted parameter sets from the multi-start parameter estimation were
labeled as an acceptable subset if the SSE for a given parameter subset was within 20% of the
lowest SSE for the best-fit parameters. To estimate the parameters’ uncertainty, we used the
function randsample in MATLAB to return a user-specified number of values sampled
uniformly at random from the values in the vector population. For each parameter, we
specified population as the values of that parameter in the acceptable parameters sub-
set. We called randsample independently for each parameter to generate 100 samples. The
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Table 1. Parameters that modulate change in fenestration number and diameter.

Parameter Value Unit Source
kform 1.01 hr! estimated
Kioss 4.61 hr! estimated
ny 4.00 - estimated
JNumbergg) 7.00 - estimated
JNumbergg, 4.02 - estimated
ks 65.9 nm hr! estimated
kg 2.04 hr! estimated
PMLC, 0 - -
JDiameter, 47.91 nm [10]
TpMLC 400.0 hr estimated

https://doi.org/10.1371/journal.pcbhi.1013598.t001

resulting 100 values for each parameter are considered as the posterior distribution for the
parameter. The model in Eqs (3)-(5) and Eqs (S1)-(S34) in S1 Appendix was run using the
single mean glucose trajectory G(t) (Fig 2) as the input for each parameter combination of the
100 samples from the parameter posterior distributions to predict the model outputs of fenes-
tration number and diameter. The posterior distributions of predictions for each output were
used to calculate the 95% equal-tail credible interval using quantiles at each time point, which
defines the region where there is a 95% probability of containing a true estimate [27,78,79].

Sensitivity analysis to determine targets for therapeutic interventions

We analyzed the model in Egs (3)-(5) and Eqs (S1)-(S34) in S1 Appendix under various simu-
lated perturbed activity levels to screen for new and potential strategies for therapeutic inter-
vention. We focused on two modes of therapeutic intervention: (1) protein knockdown and
(2) reducing the strength of a reaction. We compared the sensitivity of each species node and
reaction in the network to perturbations in ymay, and W;. Knockdown of species i is achieved
by reducing ymay;. Decreasing the reaction weight (W;) reduces the strength of the reaction.
The local sensitivity index is defined as

AY,, Py

= X 6
APy Yy, (©)

Sm,k

where S, is the normalized sensitivity coefficient for a given output m and parameter k,
Y, is the value of the output m at the optimal parameter values P, APy is a perturbation in
parameter k, and AY,, = Y,,,(P+ AP;) - Y,,(P) is the change in output m calculated at the
perturbed parameter value.

For the sensitivity analysis results presented, Eq (6) was used to calculate the local sensitiv-
ity index for fenestration number and fenestration diameter as the outputs when each species
and reaction parameter related to interventions—ymax; and Wj, respectively—in the LBODEs
model in Eqs (S1)-(S34) in S1 Appendix was reduced one-at-a-time by 100% from its opti-
mal value (Tables B and C in S1 Appendix), simulating complete knockdown of a species or
complete inhibition of a reaction for the entire duration of the simulation, effectively remov-
ing that species or reaction from the PSN. Note that these simulations used the single mean
glucose trajectory G(t) (Fig 2) input. We assessed the sensitivity indices to elucidate the func-
tional effects of each node and reaction on fenestration structure.
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In silico interventions

We considered three types of in silico interventions to “treat” our virtual mouse population:

1. Time-dependent glucose control.
2. Knockout of known targets for ECs using chemical agents.
3. Time-dependent perturbation tests on the PSN.

In silico interventions were simulated to identify the functional influence of each node under
high glucose conditions and the responses to various glucose trajectories. Similar in silico
knockdown experiments and sensitivity analyses have been commonly used to study large
network models [30,32,33]. Currently, no treatment strategies mitigate the loss of GEC fen-
estration in diabetic kidneys by leveraging precise mechanisms of action. I silico tests could
identify disease intervention strategies and mechanisms to regulate endothelial dysfunction.

Time-dependent glucose control. For intervention by time-dependent glucose control,
we simulated the model using the best-fit parameters while changing the dynamic glucose
stimulus. We used the 100 G(¢) trajectories for inter-subject variability (Fig 3) defined ear-
lier for all cases at times before a glucose “control” intervention was applied. After the time
point for glucose control intervention ¢, G(¢) = min(G(t)) and W, ;(#) =0 for ¢ > t.. We
explored the effects of multiple values of ¢, at 4 and 10 weeks on downstream species and fen-
estration structure. We also quantified the change in each species and the fenestration num-
ber and diameter relative to the baseline as the difference in values between 20 weeks and the
initial time. Each of the values was taken as the mean simulated output of the virtual mouse
population (n = 100) using glucose inter-subject variability in the input.

Knockout of known targets for endothelial cells using chemical agents. A recent study
demonstrated the dose-dependent role of several chemical agents in regulating fenestration
porosity and diameter of LSECs [26]. As a second type of in silico intervention, we simu-
lated the effects of the chemical agents on the GEC fenestration structure using the extended
LBODEs model. Five chemical agents KN93, ML-7, Y27632, calyculin A, and cytochalasin
B [26] have known inhibitory actions on targets calcium, MLCK, Rho/Rock, MLCP, and
stressed actin fibers, respectively. We have summarized the experimentally observed effects
of these chemical agents in LSECs in Table D in S1 Appendix. We simulated the effects of
these chemical agents by in silico species inhibition by reducing ymay, for the respective tar-
get species to 0 at the initial time. Glucose inter-subject variability was considered. A statisti-
cal pairwise Student’s t-test [80] was used to compare the differences in means of fenestration
number and diameter at 20 weeks between healthy and diabetic mice [10] and simulated dis-
eased groups with or without treatment using ttest2 in MATLAB, which uses observed
or model-predicted values in each group to compute a mean, variance, and sample size for
each group and compare them. Therefore, the extended LBODEs model was simulated for
each treatment’s effects on the virtual mouse population (n = 100) using the G(¢) trajectories
for inter-subject variability (Fig 3). For each pairwise t-test, a significant difference between
groups was reported when the calculated p-value is below the 0.05 significance level. We also
considered that the inhibition from the chemical agents could be partial and applied at dif-
ferent times. We did not do statistical tests on these comparisons, but we do provide dynamic
plots of the results.

Time-dependent perturbation tests on the PSN. The third type of in silico interven-
tion we considered was a more exploratory time-dependent series of perturbation tests on
the intervention-related parameters of the PSN. These simulations used the single mean glu-
cose trajectory G(t) (Fig 2) input. Similar to the sensitivity analysis, the fenestration number
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Fig 4. Simulated fenestration number and diameter. A: Simulated fenestration number fitted against observed mean
fenestration density (black circles) in diabetic mice [10]. B: Simulated fenestration diameter fitted against observed mean
fenestration width (black circles) in diabetic mice [10]. Blue-shaded regions show the 95% credible intervals of the predic-
tions. Data are shown as mean =+ standard deviation (SD). Individual fenestration width and density are also reported for
each diabetic mouse (open circles). Initial values for fenestration diameter and number were assumed to be the same as
baseline control mean data values of fenestration width and density (red squares) for healthy mice in Finch et al. [10].

https://doi.org/10.1371/journal.pcbi.1013598.9004

and fenestration diameter were predicted when species and reaction parameters— ymay, and
Wj, respectively—in the LBODEs model in Egs (S1)-(S34) in S1 Appendix were perturbed by
a one-at-a-time reduction from the optimal values (Tables B and C in S1 Appendix). How-
ever, here each inhibition was only by a 50% reduction in the respective parameter for a par-
tial knockdown, and the interventions were applied at 8, 10, or 20 weeks rather than at the
beginning of the simulation as in the sensitivity analysis. To determine the effects after inter-
ventions at 20 weeks, all these interventions were simulated until 30 weeks (5040 hours). We
kept the glucose stimulus constant at the final data point for the interval after 20 weeks, i.e.,
G(t) = G(20 weeks) for ¢ > 20 weeks. We grouped the results by sensitive and non-sensitive
species and reactions for visualizations.

Results
Model simulations of disease onset and progression

Using the glucose dynamics shown in Fig 2 for the single mean glucose trajectory G(t) with
simulated glucose levels in the piecewise constant function at the observed means of the
data in diabetic mice [10], we calibrated the predictions for the fenestration number Eq (4)
and the fenestration diameter Eq (5) to measured data from Finch et al. [10] and quantified
the uncertainty in the form of credible intervals (Fig 4). The full model dynamic outputs for
each species activity in response to the dynamic glucose stimulus are available in Fig B in S1
Appendix. Fenestration number (Fig 4A) decreased as early as 6 weeks, which coincided with
full activation (W > 1) of normalized glucose around 6 weeks (Fig 2) and subsequent sig-
nal transduction and protein activation in the network (Fig B in S1 Appendix). Similarly, we
observed an increase in the fenestration diameter in agreement with the experimental data
(Fig 4B). The credible intervals are reasonable given the variance of the data (Fig 4).
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Glucose variability effects on fenestration number and diameter

Next, we explored the effects of inter-subject variability in glucose concentration input using
the 100 G(¢) trajectories (Fig 3 and the first panel of Fig 5) for the virtual mouse popula-
tion. We simulated the effects on the changes in species activity and fenestration structure.
As an alternative visualization of the same results plotted in Fig 5, we created histograms for
the distributions of the glucose activity GLU and the structural response variables (fenestra-
tion number and diameter) for the virtual mouse population in each time interval for 6-20
weeks (Fig C in S1 Appendix). Note that the MATLAB ordinary differential equation solver
(odel5s)’s default tolerance of 107 was used, so distributions that vary within the range of
a value only at the 6th significant figure are essentially the same within the tolerance of the
technique for solving the model equations. This is characteristic of the distributions for fenes-
tration number for all times in 6-20 weeks (second column of Fig C in S1 Appendix) and for
the fenestration diameter at week 7 (third column, second row of Fig C in S1 Appendix).

We observed no substantial variations in fenestration dynamics and most species due to
glucose inter-subject variability (Fig 5). The activities for the nodes AGE, RAGE,, RAGE,
NADPH, and NADPH,. varied extensively with glucose variations (Fig 5). The variability in
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Fig 5. Predicted dynamics of the species in the multi-cellular protein interaction network (Fig 1) simulated using the 100 G(t) trajectories (Fig 3) for the virtual
mouse population as input. Note that the means of the outputs from the 100 input glucose trajectories are shown in black, while the dynamic outputs for individuals
cycle through MATLAB’s default color order.

https://doi.org/10.1371/journal.pcbi.1013598.9g005
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glucose concentration was mainly observed in the hyperglycemic range, indicating impaired
glucose tolerance.

Sensitive targets for interventions

We created heatmaps to summarize the sensitivity analysis results (Figs 6 and 7). In each
panel, the bars are colored by the normalized sensitivity index from Eq (6) expressed as per-
centages. The values are sorted from low to high. We considered all normalized sensitivity
indices S,,x > 1.5% to be “sensitive,” and values below the threshold to be “non-sensitive” We
generated four sensitive sets:

1. Species i that are sensitive with respect to the fenestration number output when yp,y, is
completely inhibited: Sy, . yme, > 1.5% (Fig 6A).

2. Reaction j that are sensitive with respect to the fenestration number output when W; is
completely inhibited: S, ,..w; > 1.5% (Fig 6B).

3. Species i that are sensitive with respect to the fenestration diameter output when ypay, is
completely inhibited: Sy, ey, > 1.5% (Fig 7A).

4. Reaction j that are sensitive with respect to the fenestration diameter output when W; is
completely inhibited: Sy, ....w; > 1.5% (Fig 7B).

The sensitive set with respect to the fenestration number output from Fig 6A includes
species Acting through PI3K on the blue side and Actin, through MCL on the red side. The
PI3K value is -2 and appears as a faint blue color. The sensitive set from Fig 6B includes the 13
reactions with vibrant blue bars, the three reactions with pink bars, and IL-1R = PI3K (j = 7),
which has a faint blue bar and a value of -2 %. The cutoff for the sensitive sets was determined
by observation of Fig D in S1 Appendix. PI3K and IL-1R = PI3K inhibition have noticeable
effects on the corresponding curves of Figs D.A and D.B in S1 Appendix. On the contrary,
none of the non-sensitive results were substantially different than the no inhibition cases
(Fig E in S1 Appendix).

Similarly for the fenestration diameter output, PI3K and IL-1R = PI3K were on the cut-
off of inclusion vs. exclusion from the sensitive sets based on Fig 7, where they have values of
3 % and appear in light shades of pink. The sensitive set from Fig 7A includes species PI3K
through pMLC. The sensitive set from Fig 7B includes IL-1R = PI3K and the 12 reactions
with vibrant red bars. PI3K and IL-1R = PI3K inhibition have noticeable effects on the cor-
responding curves of Figs D.C and D.D in S1 Appendix.

The magnitude of the sensitivity index indicates the degree of change in output (fenestra-
tion number or diameter) at the final time relative to the change in parameter at the initial
time. Because we only considered decreases in parameters, a positive sign of the sensitivity
index means that the model predicted a smaller value of the output than the no inhibition
case with a decrease in parameter value, and a negative sign indicates a larger value of the
output compared to the no inhibition case with a decrease in the parameter value.

For the fenestration number, MLCP, MLC, and relaxed actin fibers had positive val-
ues of the sensitivity index (Fig 6A), and their inhibition decreased the fenestration num-
ber further than the no inhibition case (Fig D.A in S1 Appendix). The remaining sensitive
species for fenestration number increased the fenestration number relative to the no inhi-
bition case, i.e., they had negative values of the sensitivity index (Fig 6A). Noticeably, inhi-
bition of stressed actin fibers Actin, led to an increase in fenestration number beyond the
healthy initial level (Fig D.A in S1 Appendix). Complete inhibition of AGE, VEGFR2, VEGF-
A (mRNA), RAGE,, IL-1R, NADPH,, ROS,., RAGE,, NFxB,., NFxB, IL-1§3, VEGF-A,
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Fig 6. Ordered normalized sensitivity indices in Eq (6) with respect to fenestration number output expressed as percentages. A: Sensitivity indices S  for
YNumber>Ymax;
species i when ymax; was completely inhibited at the initial time. B: Sensitivity indices Sy, . w; for reaction j when W; was completely inhibited at the initial time.

https://doi.org/10.1371/journal.pcbi.1013598.9006

Rho/Rock, and pMLC allowed for the fenestration number to remain at the initial condition
(healthy case), thus no disease condition was developed for these sensitive species. The fen-
estration number dynamics were similar for the sensitive reactions (Fig D.B in S1 Appendix)
as for the sensitive species (Fig D.A in S1 Appendix) because the sensitive reactions for the
fenestration number are those that activate the sensitive species (Fig 6B).

The sensitivity analysis with respect to the fenestration diameter (Fig 7) yielded sensitive
parameters with all positive sensitivity index values. PI3K and IL-1R = PI3K were the only
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sensitive species or reactions that did not maintain the diameter at the healthy initial con-
dition after their inhibition. We found that the following species were most effective in con-
trolling fenestration diameter when controlled early in diabetic mice (Figs 7 and D.C in S1
Appendix): AGE, VEGFR2, VEGF-A (mRNA), RAGE,,, IL-1R, NADPH,, ROS,., RAGE,,,
NFxB,., NFxB, IL-13, VEGF-A, RhoRock, and pMLC. The following reactions maintained
fenestration diameter at its healthy initial value (Figs 7 and D.D in S1 Appendix): IL-18 =
IL-1R, GLU = AGE, NFxB = VEGF-A (mRNA), VEGF-A (nRNA) = VEGEF-A, VEGF-A
= VEGFR2, AGE = RAGE,., RAGE.. = NADPH,., NADPH,. = ROS,., ROS.. = NF«xB,,
NF«B.. = IL-1B, RhoRock = pMLC, and VEGFR2 = RhoRock.

Proposed treatment and intervention strategies

The extended LBODEs model was helpful in making predictions about potential disease inter-
ventions and treatments. In the following, we show the results from the three types of in silico
interventions with the details defined in the Methods.

Glucose control starting at different times. In mice carrying the diabetes mutation
(leptin-deficient), the manifestation of the diabetic syndrome depends on genetic back-
ground. In these mice, used as the reference for this study, male mice developed diabetes
around 6 weeks of age [81-83]. In Fig 8, glucose levels were controlled in silico at time points
before (t = 4 weeks) and after (¢ = 10 weeks) the mice reached the diabetic state.

Fig 9 shows the changes in species activity and structural outputs relative to baseline (ini-
tial conditions) in response to the various glucose interventions (Fig 8B). The full model
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Fig 8. Simulated glucose input concentration profiles for time-dependent glucose control interventions. For 6-20
weeks, the 100 G(t) trajectories (Fig 3) for the virtual mouse population were used as the inputs before and without
intervention, and the means of the 100 profiles are plotted. The “No intervention” case (solid black line) is the glucose
inter-subject variability scenario. In silico glucose control “intervention” was applied at 4 weeks (dotted black line)
and 10 weeks (dashed gray line) by resetting glucose to its initial value G(t) = min(G(t)). Glucose concentration
data values are from Lee et al. [22] (blue circles) and Finch et al. [10] (red triangles). Data are shown as means +
standard deviations.

https://doi.org/10.1371/journal.pchi.1013598.9008
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Fig 9. Predicted changes in species in the multi-cellular protein interaction network (Fig 1) simulated using the time-dependent glucose control interventions
(Fig 8) as input. Predicted changes in A: activity and B: fenestration number and diameter from baseline without glucose intervention. Predicted changes in C:
activity and D: fenestration number and diameter from baseline with glucose intervention applied at 4 weeks. Predicted changes in E: activity and F: fenestration
number and diameter from baseline with glucose intervention applied at 10 weeks.

https://doi.org/10.1371/journal.pchi.1013598.9009
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dynamic outputs for each species activity in response to the various glucose stimuli (no inter-
vention and glucose control interventions at 4 and 8 weeks) are available. For the no inter-
vention case for the single mean glucose trajectory G(t) (Fig 2) as the input, the dynamic out-
puts are in Fig B in S1 Appendix. For the no intervention case for the inter-subject variability
(which begins at 6 weeks) using the 100 G(t) (Fig 3) input trajectories for the virtual mouse
population, the dynamic outputs are in Fig 5. These results are summarized in Fig 9A and 9B.
For glucose control intervention at 4 weeks (Fig 8), the dynamic outputs are in Fig F in S1
Appendix. The results from each of the panels are summarized in Fig 9C and 9D. For glucose
control intervention at 10 weeks with inter-subject variability (Fig 8), the dynamic outputs are
in Fig G in S1 Appendix. These results are summarized in Fig 9E and 9F.

The model predicted that glucose intervention at 4 weeks prevented upregulated protein
expression and changes in fenestration structure (Fig 9C and 9D). Glucose control at 4 weeks
maintained balance in NO and calcium activity (Fig F in S1 Appendix), which may be rele-
vant in regulating downstream signaling dysfunction. Comparing no intervention and inter-
vention at 4 weeks changes (Fig 9A and 9C), MLCK protein levels decreased, and MLCP pro-
tein levels increased considerably upon glucose intervention. On the contrary, glucose inter-
vention at 10 weeks was ineffective in controlling fenestration dynamics (Fig 9F); however, it
suppressed the upregulation of AGE, RAGE, and NADPH activity in macrophages and GECs
(Fig 9E). The normalized glucose levels reached their maximal activity (W, ; = 1) by 5 weeks
(Fig 8 and the first panel in Fig G in S1 Appendix), which led to a self-sustained maximal acti-
vation of the species in the network (Fig G in S1 Appendix). The activity of most species in
the network at 5 weeks (Fig G in S1 Appendix) was equal to or above their ECs, (Table C in
S1 Appendix). The positive feedback loops in the network also regulated the self-sustained
maximum activity of downstream species. This resulted in consistently dysregulated signaling,
loss of fenestrations, and an increase in fenestration diameter. Together, these results suggest
that glucose control may be an effective strategy for controlling and mediating GEC activation
in the early stages of DKD. Yet, it cannot be used as the only strategy to modulate complex
signals and pathways that regulate fenestrations in the later stages of DKD.

Knockout of known endothelial cell targets with chemical agents. We compared
the effects of KN93, ML-7, Y27632, calyculin A (CalA), and cytochalasin B (CytB) on
their respective targets—calcium, MLCK, Rho/Rock, MLCP, and stressed actin fibers,
respectively—that we assumed were shared between fenestrated endothelial cell types LSECs
and GECs (Table D in S1 Appendix). Fig 10 compares the simulated GEC fenestration diame-
ter and number in the virtual mouse population at 20 weeks without treatment, with in silico
treatment with these chemical agents at the start of the simulation (2 weeks), and reference
values observed in healthy and diabetic mice. We used the virtual mouse population for our
in silico knockout tests. The glucose input distributions are in Figs 3 and C in S1 Appendix.
The means and standard deviation values of fenestration number and diameter for each sim-
ulated condition are available in Table E in S1 Appendix for the virtual mouse population.

Fenestration number significantly increased upon treatment with Y27632 and cytocha-
lasin B (via inhibiting Rho/Rock and Acting) compared to diabetic mice and restored the
fenestration number back to the healthy level (Fig 10A). When MLCP protein was inhibited
by calyculin A, the predicted fenestration number decreased further than the no treatment
case, but the difference between the calyculin A treatment and the diabetic mice data was not
statistically significant (Fig 10A). No significant changes were observed in the fenestration
number upon treatment with KN93 and ML-7 compared to the no treatment case (Fig 10A).
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Fig 10. Bar plots comparing the simulated glomerular endothelial cell fenestration number and diameter. A:
fenestration number and B: diameter at 20 weeks in the inter-subject glucose variability virtual mouse population
without (gray bars) and with treatment by respective chemical agents (white bars). For the in silico treatment, each of
the targeted species parameters (ymax;) was reduced one-at-a-time by 100% at the initial time of 2 weeks. Observed
number and diameter in healthy (blue bars) and diabetic (black bars) mice from Finch et al. [10] are also shown as
mean =+ standard deviation of the data. ***: p-value<0.001, ****: p-value<0.0001 for t-test comparison between data
for healthy mice and model predictions in diseased virtual mice with or without treatment. **: p-value<0.01, ***:
p-value<0.001, ****: p-value<0.0001 for t-test comparison between data for diabetic mice and model predictions

in diseased virtual mice with or without treatment. Simulated results bars are shown as mean + standard deviation
across the virtual mouse population (1 = 100).

https://doi.org/10.1371/journal.pchi.1013598.9g010

Diabetic mice, the no treatment case, and treatments with KN93, ML-7, and CalA were sig-
nificantly different than the healthy control data, but not different from the diabetic mice data
(Fig 10A).

The fenestration diameter decreased significantly upon inhibition of Rho/Rock using
Y27632, and the predicted value was significantly lower than the mean for healthy mice
(Fig 10B). The other treatments KN93, ML-7, calyculin A, and cytochalasin B were ineffec-
tive in regulating the GEC fenestration diameter and were not statistically different than the
diabetic mice or the no treatment case (Fig 10B).

When comparing the knockout results in Fig 10 with the sensitivity analysis results in
Figs 6 and 7, the results were clearly explained. Y27632 targets Rho/Rock, which was sen-
sitive for both fenestration number and diameter (Figs 6 and 7). Complete inhibition of
Rho/Rock returned the fenestration number (Fig D.A in S1 Appendix) and fenestration diam-
eter (Fig D.C in S1 Appendix) to their baseline values. Cytochalasin B targets Actin,, which
had the largest negative sensitivity index for fenestration number (Fig 6) and went beyond
returning the number to the baseline (Fig D.A in S1 Appendix). Calyculin A targets MCLP,
which had a positive sensitivity index for fenestration number (Fig 6) and lowered the fen-
estration number further than the no inhibition case (Fig D.A in S1 Appendix). KN93 and
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ML-7 target Ca and MLCK, respectively, and were not among the sensitive species for fenes-
tration number or diameter (Figs 6, 7, E.A, and E.C in S1 Appendix). Additionally, Acting and
MCLP were not sensitive species for fenestration diameter (Fig E.C in S1 Appendix).

Exploratory perturbation of all possible targets in the network starting at different
times. In most studies, it was reported that diabetes may develop and progress into diabetic
kidney disease around 10-12 weeks in diabetic mice [22]. Therefore, it may be relevant to
understand when to intervene as DKD develops and progresses in these subjects and to effec-
tively regulate fenestration number and diameter before damage worsens. To study this in sil-
ico, we inhibited by 50% the influential species and reactions identified by the sensitivity anal-
ysis at 8, 10, and 20 weeks to compare the effects on fenestration structure during pre-DKD,
early-DKD, and late-DKD stages in diabetic mice, respectively. The dynamic effects of inhibit-
ing these species and interactions on fenestration structure during the early and late stages of
DKD in mice were simulated.

We considered the effects of the perturbations to the sensitive targets for the chemical
agents discussed in the previous section when applied at different times. Fig H in S1 Appendix
combines the sensitive analysis results with full inhibition at 2 weeks and the dynamic pertur-
bation analysis results with 50% inhibition at 8, 12, or 20 weeks. As a reminder, cytochalasin B
targets Actins, calyculin A targets MCLP, and Y27632 targets Rho/Rock. Notably, partial inhi-
bition was insufficient for returning fenestration number or diameter to their baseline values
for any of the sensitive targets (Fig H in S1 Appendix). However, Rho/Rock partial inhibition
did consistently lower the fenestration diameter to just 11 % above the baseline value by 30
weeks for any of the tested intervention times (Fig H.B in S1 Appendix).

For an in silico 50% knockdown of all sensitive species at 8 weeks in diabetic mice, a
noticeable increase in fenestration number was achieved with 50% inhibition of Actin,
VEGFR2, VEGF-A (mRNA), IL-1R, NFxB, IL-13, VEGF-A, and RhoRock (Fig 11A). A mod-
est, immediate decrease in fenestration number was achieved by inhibiting the activity of
MLC, MLCP, and Actin, (Fig 11A). NADPH,, inhibition gradually led to a modest decrease
in fenestration number by 30 weeks (Fig 11A). The other sensitive species did not deviate
from the fenestration number dynamics for the no inhibition case (Fig 11A), which was also
true for the insensitive species (Fig I.A in S1 Appendix).

Upon reducing the strength of interactions for reactions VEGFR2 = RhoRock, VEGF-
Amrna = VEGF-A, VEGF-A = VEGFR2, NFxB = VEGE-Anrya, and IL-18 = IL-1R, sub-
stantial increases in fenestration number were observed (Fig 11B). The other sensitive reac-
tions modulated the fenestration number within + 2.7% of the no inhibition case (Fig 11B)
and were not therapeutically relevant. The non-sensitive reactions did not deviate from fen-
estration number dynamics for the no inhibition case (Fig I.B in S1 Appendix).

The 50% inhibition of RhoRock, VEGF-A, VEGFR2, pMLC, VEGF-A (mRNA), and NFxB
restored fenestration diameter effectively, while the effects of IL-18 and IL-1R on reduc-
ing fenestration diameter were more modest (Fig 11C). The predicted fenestration diameter
dynamics for the other sensitive species and the non-sensitive species did not differ apprecia-
bly from the no inhibition case (Figs 11C and I.C in S1 Appendix).

Reducing the strengths of interactions for reactions NFxB = VEGF-Agna, RhoRock =
PMLC, VEGF-Agna = VEGE-A, VEGF-A = VEGFR2, and VEGFR2 = RhoRock were
most effective in restoring fenestration diameter (Fig 11D). IL-18 = IL-1R had a more mod-
est effect on lowering fenestration diameter (Fig 11D). The predicted fenestration diame-
ter dynamics for the other sensitive reactions and the non-sensitive reactions did not differ
appreciably from the no inhibition case (Figs 11D and 1D in S1 Appendix).
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Fig 11. Structural effects over time as a result of the perturbation analysis for inhibiting sensitive parameters at 8 weeks. After starting at their optimal values, each
of the species parameters (ymax;) and reaction parameters (W;) was reduced one-at-a-time by 50%. A, B: Fenestration number output for perturbed parameters for

sensitive A: species and B: reactions. C, D: Fenestration diameter output for perturbed parameters for sensitive C: species and D: reactions. Black curves (labeled as “No
inhibition”) on each panel serve as the controls and show the structural effects without inhibition.

https://doi.org/10.1371/journal.pcbhi.1013598.9011

The inhibition time (8, 12, or 20 weeks) did not significantly affect the final value at 30

weeks for the fenestration number or diameter (Figs 11, H, and I-M in S1 Appendix). In
comparison to the cases with partial inhibition at 8 weeks just described in detail (Figs 11

and I in S1 Appendix), we observed similar effects of inhibited species and reduced reaction
strengths on fenestration number and diameter for sensitive sets (Fig J in S1 Appendix) and
non-sensitive sets (Fig Kin S1 Appendix) inhibited partially at 10 weeks and for sensitive sets
(Fig L in S1 Appendix) and non-sensitive sets (Fig M in S1 Appendix) inhibited partially at 20
weeks.

Discussion

Glomerular endothelial activation and dysfunction are early signs of DKD development and
progression. Alterations in the size and density of GEC fenestrations have been recently asso-
ciated with the disruption in glomerular filtration and the progression of diabetic kidney
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disease [10]. Currently, significant barriers impede understanding the cellular mechanisms
that regulate GEC fenestrations, which include a lack of ideal in vitro models, fenestration

loss in culture, and inconsistencies between in vitro and in vivo findings [9]. The small size of
endothelial cell fenestrations is beyond the limit of resolution of light microscopy and needs
newer and advanced technology to be studied accurately. Hence, there is a lack of high-quality
quantitative data on transient changes in fenestration size and density in diseased states. It is
beneficial to leverage mathematical modeling to study GEC fenestrations and explore signal-
ing drivers that affect their size and density. In this study, we presented an extension to our
previously developed protein-protein signaling network model for cross talk between GECs
and macrophages. Here, we studied the effects of glucose-mediated signaling dysregulation on
structural changes in fenestrated GECs using an in silico approach.

Signaling drivers and mechanisms were derived from fenestrated LSECs and considered
in the presented model. The interplays between pathways modulating MLCK, Rho/Rock, cal-
cium, NO/eNOS, VEGF/VEGFR, ROS, and actin structure were crucial in understanding
fenestration dynamics. Under a changing extracellular environment, actin structures are dis-
assembled and remodeled to balance the structural and functional integrity of the fenestra-
tions [14]. Stresses within the actin structure are correlated with GECs’ fenestration density,
and MLC protein phosphorylation is associated with the enlargement of fenestrations [26].
We demonstrated that glucose intolerance and hyperglycemia in diabetic mice resulted in
the loss of approximately half of the fenestrations and a 70% increase in fenestration size in
GECs from baseline. Previous studies also reported changes in fenestration in the glomeruli
in patients diagnosed with diabetic nephropathy [10]. Fenestration loss and alterations in fen-
estration width for diabetic nephropathy patients [10] were also quantitatively similar to the
predicted changes in diabetic mice.

We showed that gradual increases in glucose levels associated with the development of dia-
betic conditions were correlated with dysregulated species and changes in the size and density
of fenestrations. We observed that inter-subject variability in glucose concentrations in dia-
betic mice had minimal or no effect on normalized protein activity in macrophages or GECs.
Note that these glucose variations were predominantly in the range above normalized activity
of 0.5 (Fig 3).

We mathematically related glucose-mediated signaling dysregulation and autocrine inflam-
matory feedback to loss of fenestration number and increased diameter. Previously published
logic-gated network models [32,70] have drawn mathematical relations between protein sig-
naling and normalized changes in the cell area using LBODEs. Compared to previous models,
our model related normalized signaling activity to actual changes in fenestration structure in
diabetic mice.

We observed that glycemic control in the early stage was most effective in reducing upreg-
ulated species and modulating fenestration loss. After glucose concentration reached 25
mmol/l, often considered a high glucose level in mice, glucose control was ineftective for con-
trolling GEC activation, signaling dysregulation, and structure in the later stages of DKD
development. We posit that disease intervention strategies beyond glucose control are essen-
tial for regulating the complex downstream signals and pathways that govern fenestrations
in diseased GECs. This was seen through the predicted imbalanced activity of proteins in the
MLC phosphorylation cycle (pMLC, MLCP, MLCK, and MLC) after glucose control (Fig 9).

Using sensitivity analyses, selective in silico knockdown of the species provided alterna-
tive strategies for disease intervention. Strategies to inhibit stressed actin fibers, VEGF-A
(mRNA), VEGF-A, VEGFR?2, IL-1R, IL-1f3, Rho/Rock, and NFxB were predicted to effectively
recover the loss in fenestrations in diseased GECs. Rho/Rock, VEGF-A, VEGFR2, pMLC, and
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NFxB protein inhibition were expected to be promising strategies for controlling fenestration
diameter in diseased GECs.

The presented network model was based on prior evidence on proteins or pathways that
regulate fenestrated endothelial structure integrity. Although limited in vivo studies have
investigated the role of these proteins or pathways on GEC fenestrations, some in vitro exper-
iments have demonstrated that treatment of whole glomeruli with cytochalasin B reduced
deformation and loss of foot processes in podocytes [84] and increased GEC porosity and
pore size [2,85]. Rock protein inhibitors and cytochalasin B noticeably increased porosity in
healthy LSECs in a few minutes to hours [16].

Non-selective Rock inhibitors, Fasudil [86] and Y27632, were shown to suppress renal
injury and promote renoprotective effects in diabetic mice. The proposed model demon-
strates a qualitatively similar regulatory effect of Y27632 on Rock inhibition and cytochalasin
B on GEC porosity and pore size(Fig 10). Inhibition of the Rho/Rock pathway also reduced
adhesion molecule expression and macrophage infiltration to GECs induced by AGE:s in dia-
betic mice [86]. Y27632 also affected fatty acid utilization and redox balance in mesangial
cells in the glomerulus [87]. We conclude that a plausible correlation between the proposed
target proteins in this work and glomerular dysfunction, cytoskeletal arrangement, immune
cell infiltration, and renal injury exists. The combined effects of Rock inhibitors and depoly-
merization agents have the potential to be investigated as a treatment strategy in diseased
GECs.

No published studies have tested the impacts of targeted inhibition of MLCK, Rock, and
MLCP proteins in GECs affected by diabetes. A balance in MLCP and MLCK protein levels
may be crucial in regulating fenestration diameter and number (Fig 9). A relatively higher
MLCK protein than MLCP protein was observed during fenestration structure damage
despite glucose intervention at 10 weeks (Fig 9). A balanced MLCP and MLCK expression
should enhance fenestration formation (Fig 6). At the same time, MLCP and MLCK perturba-
tions had potentially no or minimal change in fenestration diameter as seen from the sensitiv-
ity analysis (Fig 7). The interdependency of the MLCP and MLCK protein balance is essential
due to the positive feedback loops in the MLC phosphorylation cycle. Both MLCK and MLCP
proteins regulated the fenestration diameter and porosity in LSECs [26]. Counterintuitive to
the expectations, inhibition of MLCK and MLCP by chemical agents like ML-7 and calcyculin
A, respectively, resulted in fenestration loss and an increase in fenestration diameter (Table D
in S1 Appendix).

In silico treatment with KN93 did not affect fenestration diameter and number (Fig 10),
but treatment with KN93 has other renoprotective regulatory effects in mice. Targeted deliv-
ery of KN93 inhibited Ca2+/calmodulin-dependent kinase 4 (CaMK4) and reduced LPS-
induced podocyte injury, mesangial cell proliferation, and proteinuria in mice [88]. Inhibit-
ing CaMK4 using KN93 reduced glycolysis in regulatory T cells through metabolic rewiring
and alleviated immune response-mediated renal injury [88-90]. KN93 treatment also reduced
adhesive and migratory function in neutrophils and diminished CD4+ T cell population
associated with renal inflammation [91,92].

We acknowledge the limitations of the model and the potential for further improvement.
The protein activity is quantified as a fractional activation or inhibition rather than abso-
lute quantities, such as concentration, and is limited to analyses with normalized chemical
species levels. However, the predicted normalized activity of a species can be transformed
into its actual values if needed. Alternative mathematical functions could be used to define
the protein-protein interactions instead of the normalized Hill-type function to capture other
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cellular and molecular dynamics. Additionally, activity was used as a way to lump both inten-
sity from single cells and from variable numbers of cells. These could be decoupled by explicit
considerations of the dynamics of the numbers of infiltrating macrophages.

We considered a range of weekly or biweekly glucose fluctuations in the model, with
limited effects on the output. It would be possible to simulate glucose profiles on an hourly
timescale that represent a broad population of diabetic patients; however, additional model
considerations, such as meal intake, glucose distribution, and glucose clearance, would be
required to simulate accurate glucose profiles in a diabetic population. Future improvements,
including availability and integration of more cell-specific clinical data, would certainly
enhance the capabilities of the present model to represent diabetic patient populations.

In this model, the fenestration number was considered as a continuum, representing an
average value across all regions, not a discrete integer number of fenestrations. VEGF-A
is the only mediator of macrophage-GEC communication and GEC activation in the net-
work model, a major assumption and limitation of the model, which is based on prior evi-
dence on the role of VEGF and its receptors in maintaining GEC structure and functional
integrity [28]. Although podocytes in the kidney mainly regulate VEGF-mediated GEC acti-
vation [93], in the absence of podocytes, we considered macrophages to be the main source
of VEGF-A and VEGF-mediated GEC activation. Additionally, autocrine feedback between
cytokines (IFN-y, IL-1f3, and TNF-a) and their receptors could also activate GECs and ini-
tiate communication between macrophages and GECs; however, this is not considered in
the model [94,95]. The diseased model predictions are limited to the pro-inflammatory phe-
notype (M1-like) of macrophages and do not represent the individual cell-level interactions
between macrophages and the GEC population. The calibration and validation of the logic-
based modeling framework were limited to in vitro and in vivo mouse studies.

Moreover, among emerging or existing therapies being tested to control DKD progres-
sion, the SGLT2 inhibitor empagliflozin restored GEC fenestration density in leptin-deficient
mice despite no expression of SGLT2 in GECs in these mice [19]. Although no clear mecha-
nisms linking SGLT?2 inhibition and fenestration structure are known yet, changes in expres-
sions of PV-1, Caveolin-1, and EHD3 were implicated in regulating permeability through
GECs [9,10,19]. These proteins are implicated in diaphragm formation in GEC fenestrations.
Our research assumes that mature GECs do not possess diaphragms [5]. However, if sufficient
experimental evidence emerges, it could be useful to investigate the mechanistic role of the
PV-1, Caveolin-1, and/or EHD3 on fenestration structure and function in GECs.

There is a lack of knowledge related to the fundamental biology of the regulating GECs.
Advanced imaging techniques known as super-resolution microscopy may offer the potential
to facilitate the accurate measurement of fenestrations in GECs [9]. Technological advance-
ments in 3-dimensional (3D) glomerular organ-on-a-chip to precisely study cell-cell or cell-
matrix and soluble mediators within the glomerular microenvironment under physiologically
relevant flow rates and shear stresses [96] could also expand the translatability of glomeru-
lar biology under pathophysiologic conditions. The model accuracy can be further improved
through validation with other in vitro or in vivo data as available or through emerging data
from single-cell analyses. Further, capturing individual cell-level dynamics and molecular sig-
naling within each cell may be useful in understanding the macrophage phenotypic landscape
over time [97] as the disease progresses, as little is known about the dynamic effects of M1-M2
polarization in the pathogenesis of DKD. Single cell RNA sequencing of immune cells showed
a significant shift in macrophage subtypes in diabetic mice kidneys with an increase in both
M1 and M2 macrophages and a shift towards M1-like macrophages at 7 months as compared
to control mice [47]. Hence, integrating such data with relevant model improvements could
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be useful in the future in predicting GEC activation and structural changes in disease states
that depend directly on macrophage phenotype and individual cell-level dynamics.

The model suggests potential strategies for disease intervention that can complement
established methods once validated. Often, clinical biomarkers of kidney disease prediction
and progression risk, such as serum creatinine and albuminuria, only show alterations rela-
tively late in the disease process and, thus, may not be suitable for early disease diagnosis [98].
Therefore, the proposed mechanisms support our understanding of new disease biomarkers
that are more closely related to histological changes in the early development and progression
of DKD. When validated, they can potentially improve the early diagnosis and clinical man-
agement of the disease. The proposed mechanistic interactions based on diabetic mice data
may also be relevant in predicting changes in fenestration dynamics in the clinical popula-
tion, as a quantitatively similar effect on fenestrations in diabetic nephropathy patients was
observed [10].

Conclusion

In this study, we used a previously developed LBODEs model of protein-protein interac-
tions for GECs in vitro and extended it to study the development and progression of DKD

in vivo. The LBODEs network model predicted the effects of high glucose and inflammation
on macrophage phenotypic changes, GEC activation, and signaling dysregulation in diabetic
mice. Further, the extended LBODEs model related the signaling dysregulation with histo-
logical changes in GEC fenestrations, and mechanistic relationships were calibrated using

in vivo mice data. Through in silico targeted inhibition, we identified the effective response
time and confirmed mechanisms of action and effect on fenestrations through glucose con-
trol, species or pathway inhibition, or known chemical agents tested in other fenestrated
endothelial cell types. We identified that disease intervention strategies besides glucose con-
trol are essential in regulating the complex downstream signals and pathways that control
fenestrations in diseased GECs. Inhibition of network species, such as Rho/Rock, VEGE-A,
VEGFR2, VEGF-A (mRNA), and NFxB, restored fenestration number and diameter, and
PMLC restored fenestration diameter. Reducing the interaction strengths between Rho/Rock
and pMLC and between NFxB, VEGF-A (mRNA), and VEGF-A were most effective in restor-
ing fenestration diameter. The novel logic-based network model helped to quantify the cross
talk between macrophages and GECs in the early through late stages of DKD in mice. The
proposed mechanisms support our understanding of new disease biomarkers or pathways
more closely related to histological changes in DKD development and progression. The pro-
posed model could be integrated in the future with more complex models for other glomeru-
lar cells to better predict other aspects of disease progression and identify early biomarkers for
DKD, enhancing clinical management and intervention strategies.
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