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Abstract
A ubiquitous phenomenon observed along the ventral stream of the primate hierarchical
visual system is the suppression of neural responses to familiar stimuli at the popula-
tion level. The observation of the suppression of the neural response in the early visual
cortex (V1 and V2) to familiar stimuli that are multiple times larger in size than the recep-
tive fields of individual neurons implicates the plausible development of recurrent cir-
cuits for encoding these global stimuli. In this work, we investigated the neural mecha-
nisms of familiarity suppression and showed that a recurrent neural circuit based on Heb-
bian learning, consisting of neurons with small and local receptive fields, can develop
to encode specific global familiar stimuli robustly as a result of familiarity training. We
proposed that the learned recurrent circuit implements a manifold transform. The recur-
rent circuit compresses the dimensions of nuisance variations of a familiar image in the
neural response manifold relative to the dimensions for discriminating different familiar
stimuli, resulting in increased robustness of the global stimulus representation against
noise and other irrelevant perturbations. We demonstrate that a recurrent circuit imple-
ments the manifold transform using a mixed strategy of locally linear and globally nonlin-
ear computations, where the local linear computation selectively redistributes recurrent
gain to enhance concept discrimination. These results provide testable predictions for
neurophysiological experiments.

Author summary
In this research, we explored how the brain can become more efficient at processing
familiar visual information. When we repeatedly see something, our brain’s response to
it changes. In response to familiar stimuli, neurons across different visual areas of the
mammalian visual system become more selective and their overall activities decrease.
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We developed a computational model to investigate why this happens and what func-
tional advantages these mechanisms might provide. We discovered that familiarity leads
to the development of a more efficient and robust neural representation of what we
see. It allows us to rapidly and robustly recognize our friend’s face despite changes in
lighting conditions, view angle, or facial expression. Our model showed that through
repeated exposure, the brain’s neural circuits, even in the early stages of visual process-
ing, rapidly adapt and organize themselves to focus on important and consistent features
in our visual environment while becoming less sensitive to irrelevant variations, and
distractions.

1. Introduction
Familiarity suppression refers to a phenomenon observed in the inferotemporal cortex (ITC)

Competing interests: The authors have
declared that no competing interests exist.

[1–7] and more recently in early visual cortex [8] that repeated exposure to a set of famil-
iar visual stimuli leads to the suppression of neural responses to these stimuli, particularly
in the later part of the temporal responses. There is evidence in the inferotemporal cortex
that familiarity training leads to the sparsification of population neural representation to the
familiar stimuli, as neurons’ responses to their preferred familiar stimuli were found to be
enhanced, while their responses to non-preferred familiar stimuli were suppressed, resulting
in a sharpening of the stimulus selectivity tuning curves of the neurons [6,7].

In the early visual cortex, Huang et al. [8] showed that neurons with localized receptive
fields became sensitive to the global context of familiar images. Based on timing, it can be
inferred that this sensitivity is mediated by the recurrent circuits within V2 rather than feed-
back from higher visual areas. Similar effects have also been observed in V1 as well, but with a
shorter delay with stimulus onset, significantly earlier than the familiarity effects in IT. These
observations suggest a rapid plasticity mechanism in the early visual cortex modifying the
recurrent circuit within each visual area along the visual hierarchical system to encode global
or semi-global familiar image context. These findings suggest that neurons in the early visual
cortex, with local receptive fields, can rapidly learn recurrent excitatory circuits to encode
global images.

The computational rationale and neural mechanisms of rapid neural plasticity are not well
understood, though proposals on its behavioral benefits have focused on image discrimi-
nation, reduced saliency, and novelty detection [6,7,9,10]. One promising framework con-
ceptualizes familiarity training as a type of manifold transform. This transform is mediated
by recurrent circuits which, through Hebbian learning, encode relationships between local
visual concepts. By finding the correct geometric relations between concepts and their vari-
ants generated by nuisance transformations (e.g., view angles or occlusions), this process
reshapes the representation of global image context to facilitate an invariant representation at
the population level [11–14]. In this work, we investigate this proposal.

In this paper, we develop a V1-based neural circuit model based on Hebbian learning and
other standard V1 circuitry elements that can account for the familiarity training effects. This
is a canonical circuit motif that can be generalized to V2, V4, and IT. We analyzed this circuit
to show that familiarity training of the global image stimulus transforms the neural represen-
tation manifold in such a way that nuisance variations of the same concept are ignored while
distinction of different visual concepts is maintained. We demonstrated that this manifold
transform provides a more noise-robust encoding of familiar images or concepts. Our find-
ings show the recurrent circuit performs manifold transformation using a mixed local-linear
and global-nonlinear strategy, depending on signal-to-noise ratio and the training stage, and
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the local linear strategy redistributes recurrent gain to enhance concept discrimination. This
novel perspective on cortical recurrent circuits provides insights into the functional rationales
underlying the familiarity learning observed in the various visual areas along the hierarchical
visual system.

2. Results
2.1. Plastic recurrent neural circuit model of primary visual cortex
Familiarity training effects have been reported in macaque ITC and V2 as well as in mouse V1
[10,15,16]. We constructed a neural circuit model of the primary visual cortex to demonstrate
that plastic horizontal connections can reproduce familiarity effects based on Hebbian learn-
ing mechanisms. Such a retinotopic map-based circuit with basic associative learning mech-
anisms is likely generalizable to understanding the familiarity effect that is similarly observed
in V2, V4, and IT.

Connectivity and dynamics. The network model (Fig 1A) is a firing-rate-based recurrent
neural network with Nh hypercolumns (with Nr rows and Nc columns). Each hypercolumn
comprises Nd excitatory neurons with receptive fields (RF) derived from sparse coding [17,
18]. We have Ne =Nr ×Nc ×Nd excitatory neurons and the same number (Ni) of inhibitory
neurons in the network. Each excitatory neuron k receives a projection from its excitatory
neighborhood (NE(k)) with a spatial extent of Re, and extends vertically to include feature
channels (Fig 1C). The size of the excitatory neighbor is then |NE(k)| =Nd × (2Re + 1)2.
Each inhibitory neuron k receives projections from the excitatory neurons of the same fea-
ture channel located in its inhibitory neighborhood (NI(k)) with range Ri and projects back
to all excitatory neurons in the network, mediating surround suppression. In addition, this
inhibitory neuron will receive projections from excitatory neurons within the same hypercol-
umn, and uniformly inhibits these excitatory neurons in return, as a form of divisive normal-
ization [19,20] (Fig 1D). Therefore, the size of the inhibitory neighbor is |NI(k)| = (2Ri + 1)2 +
Nd – 1.

The dynamics of the excitatory population and inhibitory population are given as:

𝜏e
drek
dt
= –rek + 𝜎(∑l

Wee
kl r

e
l +∑l′

Wei
kl′ r

i
l′ + 𝛼k) (1)

𝜏i
drik
dt
= –rik + 𝜎(∑l

Wie
kl r

e
k) (2)

where rek, r
i
k are the firing rates of the kth excitatory neuron and inhibitory neuron, respec-

tively. Wee
kl is the E-E connections from excitatory neuron l to excitatory neuron k; simi-

larly Wie
kl and Wei

ij are the E-I and I-E connections; 𝛼k is the input to the excitatory neuron k
obtained via convolutional sparse coding [18]. We used a squared relu activation function
𝜎(z) = ⌊z⌋2+ (Fig 1E), as introduced in [20]. 𝜏e and 𝜏i are the time constants of excitatory and
inhibitory neurons, respectively.

The initial value of the E-E connection is set to wee/|NE(k)|, within the excitatory neigh-
borhood. For a single inhibitory neuron, the E-I connection to this neuron is uniformly set
to a fixed value wie/|NI(k)| within its inhibitory neighbors. The I-E connection from this
inhibitory neuron to all excitatory neurons is set to the fixed value –1/Ni (Fig 1F). wie is set so
that normalization within the hypercolumn and iso-orientation (iso-feature) surround sup-
pression across the hypercolumns are strong enough to ensure the stability of the network.
This configuration establishes an attractor network at the computational level (Fig 1B). The
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Fig 1. Recurrent circuit model of the primary visual cortex. (A) The network architecture. An excitatory sub-circuit, spanning multiple hypercolumns, encodes a
global image. Different local subcircuits encode different global images. Neurons compete via two inhibitory mechanisms: (i) suppression among neurons within the
same feature channel across different hypercolumns, and (ii) divisive normalization among neurons representing different features within the same hypercolumn. The
network input, 𝜶, is the sparse code representation of an image [17], and its output, r, is the resulting steady-state response of the excitatory-inhibitory population. (B)
Computational function. The circuit operates as an attractor network, transforming the sparse code of an input stimulus 𝜶 that is generated via convolution by a dictio-
nary of filters (lower left: three example filters) into neural representations (r). Right: trajectories of population activity of excitatory neurons to two stimuli (triangle =
start, circle = end). Both converge to distinct fixed points, providing stable stimulus representations. The example input image is publicly available here, also see [21].
(C) The excitatory neighborhood. For a given target excitatory neuron (orange circle), its neighborhood consists of all excitatory neurons (gray circles) within an Re ×Re
square region, spanning all feature channels. (D) The inhibitory neighborhood. For a given target inhibitory neuron (blue circle), its presynaptic neighborhood of excita-
tory neurons (gray circles) mediates two functions: surround suppression via connections from an Ri ×Ri spatial region and divisive normalization via connections from
the same hypercolumn. (E) The neuronal activation function, which maps total synaptic input to a non-linear firing rate response. (F) Connection types and plasticity.
The model includes excitatory-to-excitatory connections (E-E, initial weight wee), excitatory-to-inhibitory connections (E-I, weight wie), and inhibitory-to-excitatory
connections (I-E, weight wei = –1). Only E-E connections are plastic.

https://doi.org/10.1371/journal.pcbi.1013587.g001

recurrent circuit acts as an encoder 𝜙, mapping the sparse code 𝛼(x) to a steady-state repre-
sentation r. This is shown by the trajectory (Fig 1B, right): In the trained network, stimulus-
evoked activity of excitatory neurons converges to distinct attractors that stably encode each
stimulus.

Synaptic plasticity. Here, we are pursuing a minimal circuit mechanism that could repro-
duce the familiarity effect in neural circuits. Hence, we begin by considering excitatory plas-
ticity only, assuming that inhibitory connectivity remains static and is not subject to plastic-
ity. Hence, only Wee is subject to associative learning, while Wei and W ie are fixed (Fig 1F).
Classical familiarity effects are characterized by two concurrent changes in neural activity:
a decrease in the population-averaged response, and a selective increase in the activity of a
sparse ensemble of neurons highly tuned to the stimulus. This dual effect can be explained by
a mechanism similar to the Bienenstock–Cooper–Munro (BCM) learning rule, as inferred
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by Lim et al. [22]. In BCM learning, a sliding modification threshold determines whether
a synapse undergoes depression or potentiation, leading to an increase in the selectivity of
neurons for the familiar stimulus. The typical implementation of the BCM rule has the form:

𝜏w
dWee

kl
dt
= rel r

e
k (r

e
k – 𝜉k); 𝜏𝜉

d𝜉k
dt
= –𝜉k + (rek)2 (3)

where 𝜏w is the synaptic time scale determining the speed of learning. The BCM threshold 𝜉k
for excitatory neuron k is computed by taking the exponential moving average of the neuron’s
squared firing rate, with the time constant 𝜏𝜉 .

We further assumed that each excitatory neuron k has limited synaptic resources, which
means that the total pre-synaptic connection strength should be preserved throughout the
learning process. This constraint can be instantiated biologically through homeostatic pro-
cesses like synaptic scaling [23], implemented as the weight normalization for each neuron:
∑l W

ee
kl =wee(a constant). We hypothesized that the synaptic resource constraint serves as

a surrogate for the threshold that controls potentiation and depression. This is because the
resource constraint induces a selective redistribution: when a postsynaptic neuron fires at
a high rate, Hebbian learning strengthens its most correlated inputs, which in turn necessi-
tates a compensatory depression of less correlated inputs to maintain the fixed total weight.
To investigate whether the threshold is necessary with the explicit normalization mechanism
included, we remove the threshold from the BCM rule and leave the other part of the learning
signal the same. The new rule, coupled with weight normalization, is then very similar to the
Oja rule [24].

𝜏w
dWee

kl
dt
= rel (r

e
k)

2. (4)

In the following experiments, we refer to this as the “general Hebbian rule” and contrast its
outcomes with those of the BCM rule.

2.2. Familiarity suppression and tuning curve sharpening in the model
Our model successfully reproduced familiarity suppression under both the general Hebbian
and BCM learning rules. To achieve this, the network was trained for 80 epochs on a set of 25
natural images from the CIFAR-100 dataset, with each image presented for 300 simulation
steps per epoch. Fig 2A displays the peri-stimulus firing rate, averaged across all excitatory
neurons and stimuli, before and after training. Following stimulus onset, the network exhibits
a characteristic dynamic: a sharp transient peak followed by a decay as surround suppression
takes effect, finally settling into a steady state. Critically, after training, the average steady-state
population response to these familiar stimuli is markedly suppressed under both the Heb-
bian (blue) and BCM (orange) rules compared to the pre-training response (dashed line). To
confirm this suppression at the single neuron level, we analyzed the stimulus-average suppres-
sion index (abbreviated SI, the relative change of each neuron’s stimulus-averaged firing rate
measured by (post - pre) / (post + pre)) during the steady-state period. Fig 2B shows that both
learning rules result in a comparable proportion of neurons exhibiting a decrease in SI.

In addition to population-wide suppression, the network exhibited significant tuning
curve sharpening for familiar stimuli. Fig 2D shows a representative sharpened tuning curve,
where the neuron’s response to its most preferred stimulus is enhanced while responses to
other stimuli are suppressed. To quantify this effect across the population, we measured both
lifetime sparsity (intuitively, the area-under-curve in Fig 2D; see Sect 4.3) and peak firing
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Fig 2. Tuning curve sharpening and familiarity suppression. (A) Suppression of the average population response following familiarity training with both BCM
and Hebbian rules. The curve represents the average response across all excitatory neurons and all stimuli, normalized according to r = r/rmax, where rmax is the peak
response over time. (B) Population histograms of SI of individual neurons. Both learning rules result in a statistically significant decrease in the SI. The inset shows the
convergence of the distribution’s mean over training epochs. Triangle markers indicate the mean of each distribution. (∗∗∗: p<0.001, one-sided t-test against a mean
of 0). (C) Stimulus-averaged change in population tuning curve. For each stimulus, neuronal responses were sorted in descending order and organized in a log scale.
Both rules lead to a sharpening of the population tuning: responses of the most selective neurons are enhanced, while responses of moderately selective neurons are
suppressed. Both rules produce comparable profiles. (D) Example of a single neuron’s tuning curve across 25 stimuli before (blue) and after (orange) familiarity training.
The tuning curve sharpens, characterized by an enhanced response to the most preferred stimulus and suppressed responses to non-preferred stimuli. (E) Population
histograms of the relative change in the lifetime sparsity. Both learning rules produce a statistically significant increase in lifetime sparsity, indicating that neuronal
tuning becomes more selective. The inset shows the convergence of the distribution’s mean over training epochs. (∗∗∗ : p<0.001, one-sided t-test against a mean of 0). (F)
Scatter plot of maximum values of tuning curves pre- and post-training. Both rules result in an increase in peak response in the responsive neuron.

https://doi.org/10.1371/journal.pcbi.1013587.g002

rate. For both the Hebbian and BCM rules, familiarity training induced a significant positive
shift in the lifetime sparsity across the population (Fig 2E). Meanwhile, the responsive neu-
rons (which have a high affinity to the 25 images stimuli) showed a marked increase in the
peak response (Fig 2F). The increased lifetime sparsity and peak response together quanti-
tatively verified the characteristic of the sharpened tuning curve (Fig 2D) across the neuron
population.

These results suggest the formation of specialized local circuits, or cell assemblies, ded-
icated to familiar stimuli. The excitatory connections of the neurons in the assembly boost
one another’s responses, amplifying their responses to the preferred stimulus, resulting in an
increase in peak response. This amplified activity, in turn, would drive stronger inhibition of
surrounding neurons via surround suppression and divisive normalization, producing the
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net decrease in the average population response. The increase in the lifetime sparsity is then
a synergistic effect of selective amplification and feedback inhibition. This proposed mech-
anism is directly supported by the stimulus-averaged population tuning curve (Fig 2C). In
this plot, the population responses of the neurons were sorted according to rank order for
each stimulus, and then averaged across stimuli. It shows that only the most selective neu-
rons are enhanced post-training, while all others are suppressed. The fact that both learning
rules produce these comparable changes across all key statistics—population suppression, life-
time sparsity, and population tuning curve—demonstrates that both are valid mechanisms for
generating the full suite of familiarity effects.

2.3. Relating familiarity-trained recurrent circuit and manifold transform
In this section and the following, we investigate the computational consequences of forming
a recurrent circuit in the early visual area through familiarity training on the manifold geom-
etry of neural response space [25,26] for representing a set of global images. Inspired by the
recently proposed sparse manifold transform framework [13,27], we propose that the recur-
rent circuit learned by familiar training performs a manifold transform that maps the input
representation manifold to a representation manifold in which perceptually related or simi-
lar images become proximal in this manifold, thus better reflecting the geometry of the image
manifold and facilitating the computation of invariant representations of visual concepts
downstream.

The objective of manifold transform. Research in manifold learning has demonstrated
that primary sensory areas such as V1 cannot represent the geometric relations between
semantically or perceptually similar images, because their neurons are selective to local fea-
tures, such as those in our model’s sparse code dictionary [11,13,28]. A small nuisance trans-
formation of a global image, e.g., changes in view of an object, or adding occlusion noises can
drastically change the representation in the sparse population codes [13,27], inducing a large
distance between the two perceptually similar images in the neural space (Fig 3A, 3B). The
manifold transform aims to find a representation whose geometry is more consistent with the
perceptual similarity structure of the images.

For each image concept i and nuisance condition 𝜃, we write the stimulus as xi,𝜃 = si + 𝜂𝜃 ;
thus, variants share a concept-specific signal (si) and differ by nuisance-specific residuals (𝜂𝜃).
A sparse-coding front end produces 𝜶(x), and the recurrent circuit acts as an encoder 𝜙W
(parameterized by W∶=Wee), mapping 𝜶(x) to a steady-state representation r = 𝜙W(𝜶(x))
that preserves the perceptual-similarity structure in the stimuli. Given this decomposition, we
define the induced manifolds in either representation space (𝜶 and r):

M𝛼
𝜃 (i) = {𝜶(xi,𝜃) ∶ 𝜃 ∈Θi }, M𝛼

𝛾 (𝜃) = {𝜶(xi,𝜃) ∶ j∈ Γ𝜃 },

Mr
𝜃(i) = { r(xi,𝜃) ∶ 𝜃 ∈Θi }, Mr

𝛾(𝜃) = { r(xi,𝜃) ∶ j∈ Γ𝜃 }.

For brevity, we refer toM𝜃 as the 𝜃 manifold (variants manifold) and toM𝛾 as the 𝛾
manifold (concept manifold).

The learned representation r needs to satisfy the following property compared to the sparse
code 𝜶: the stimulus xi should be closer to similar stimuli xn(i) that are in the same variants
manifold, relative to dissimilar stimuli xj that are in other variants manifolds, i.e., the man-
ifold transform should compress all the variants manifolds relative to the concept manifold
(Fig 3B), minimizing the effects of nuisance transformations. Such a manifold transform can
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Fig 3. Manifold transformation in the familiarity association experiment. (A) Conceptual illustration of a visual feature manifold. Consider a smooth surface of local
visual features on which a sparse coding dictionary provides discrete samples (M) [13]. Nuisance transformations of a visual stimulus, such as noise or changing view-
points, correspond to flows along this manifold (blue dotted lines). The circles and triangles represent distinct sets of activated dictionary elements for two perceptually
similar stimuli generated by the nuisance transformation (xi and x(n(i))), with arrows indicating response amplitudes. Because the dictionary is unordered, a smooth
manifold flow can result in dissimilar sparse code activations (top). (B) Schematic of the manifold transform performed by the learned circuit. The model considers two
types of relationships: a ’concept manifold’ (blue curve) representing the neural codes of distinct stimuli such as a target image xi (black dot) and a dissimilar stimulus xj
(blue dot); and a ’variants manifold’ (red curve) representing the neural codes of variations of the same concept, such as xi and a related similar stimulus xn(i) (red dot).
The learned circuit encoder, 𝜙W, maps the sparse codes to a new representation, r. This transformation compresses the variants manifold, reducing the distance between
xi and xn(i) to better reflect their geometric relationship. For visual simplicity, the concept manifold is depicted as unchanged by the encoder. (C) Example images from
the stimulus set (CIFAR100, publicly available here, also see [21]), corrupted with 10%, 30%, and 50% salt-and-pepper occlusion noise. (D) Schematic of the neural man-
ifold geometry in the familiarity association experiment. The orange rings represent the signal variance for stimuli at different noise levels, forming a “signal cone.” Each
target image and its corrupted samples would form an opposite “noise cone”. The blue rings represent the noise variances inside the noise cone at varying noise levels.
From a specific noise sample (the red dot), the level distance is marked by the light blue arrow, the residual distance is marked by the deep blue arrow, and the signal
distance is marked by the orange arrow. (E) Across noise levels, Rlev and Rres over the first 200 epochs show a two-phase trajectory: a minimum at epoch 30 (dashed
line), and an overall decrease. This indicates a compression of the neural manifold in both level and residual directions. Ribbons represent the standard deviation across
different target images. (F) Dsig, Dlev and Dres over first 200 epoch at all noise levels. The net decrease in both relative distances is primarily due to the larger increase in
Dsig. (G, H) The relative distances exhibit a reverse correlation with neuronal tuning selectivity and the magnitude of SI. The darkness of the scatter indicates the number
of epochs, with deeper colors corresponding to earlier epochs. The solid lines represent the fitted regression lines, with the corresponding Pearson correlation coefficient
noted aside.

https://doi.org/10.1371/journal.pcbi.1013587.g003
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be defined as a learning objective function that acts to minimize the distance between the rep-
resentations of stimuli within the variants manifold of each image concept while maintaining
the distinction between the representations of the different image concepts:

L(W) =∑
i

𝔼k∈n(i)[ ∥ rW(xi) – rW(xk) ∥2 ]
𝔼j[ ∥ rW(xi) – rW(xj) ∥2 ]

; rW(xi) = 𝜙W(𝜶(xi)), (5)

where xi and xk are the similar stimuli, whereas xi and xj are dissimilar stimuli across the con-
cept manifold, and 𝜙W is the manifold transform, in our case, implemented by the recurrent
circuit.

Experiment to link manifold transform and familiarity training. To establish the rela-
tionship between familiarity training and the manifold transform, we designed the follow-
ing simulation experiment to demonstrate that the objective function above indeed decreases
during familiarity training. In this experiment, we trained the network with five global image
concepts. For each concept, we will also train its variant images, characterized by different
degrees of salt and pepper noise occlusions. Fig 3C shows two example visual concepts, i.e.,
noiseless global target images, as well as examples of these two concepts corrupted by 10%,
30%, and 50% of noise. Corruption of target image l with noise level n results in a conditional
distribution of stimuli p(x |n, l). We draw 10 noisy samples denoted by xkn,l, k = 1,⋯, 10 from
each conditional distribution for each target image at each noise level.

This design allows us to explore the 𝜃 manifold in two dimensions, across noise level and
within each noise level. Fig 3D illustrates the geometric relationship between the two exam-
ple stimuli and their variations across noise levels and within noise levels. The 𝜃 manifold for
each stimulus is a cone, with the axis of the cone (noise-to-signal axis) spanning the noise
level, and the cross-section of the cone representing the distribution of samples within each
noise level, referred to as residuals (S1 Fig, panel B). The 𝛾 manifold is an opposite cone,
reflecting the reduced signal contents in the corrupted images as the noise level increases (S1
Fig, panel C). For 100% noise, all the “images” will converge to the same cloud.

The manifold transform predicts that familiarity training compresses the variants manifold
relative to the concept manifold. For a sample k at noise level n and target l, with steady-state
response r(x), we define: level distance (adjacent lower noise, same target):

Dlev
n,l,k = 𝔼k′[∥r(xkn,l) – r(x

k′
n–1,l)∥

2
] (light-blue arrow in Fig 4D);

residual distance (same noise and target):

Dres
n,l,k = 𝔼k′[∥r(xkn,l) – r(x

k′
n,l)∥

2
] (dark-blue arrow);

and signal distance (other targets at the same noise level):

Dsig
n,k = 𝔼 l′≠l, k′[∥r(xkn,l) – r(x

k′
n,l′)∥

2
] (orange arrow).

We then form relative (level and residual) distances via normalizing by the signal distance:

Rlev
n,l,k =

Dlev
n,l,k

Dsig
n,k

, Rres
n,l,k =

Dres
n,l,k

Dsig
n,k

.
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Relative compression of the variants manifold corresponds to decreases in Rlev and Rres

during familiarity training. These ratios are specific instantiations of the objective in Eq 5,
obtained by evaluating its numerator along across-level and within-level nuisance dimensions,
respectively.

In total, there are 155 different stimuli we used in the familiarity training. Each target
image was trained 30 times, while each of its 30 different variants was trained once in each
epoch. The network is trained for 350 epochs, where each input image was presented once.
The set of stimuli was shuffled and presented in random sequences. Our Analyses were cen-
tered on the general Hebbian model; BCM metrics are presented in the Supplementary (Fig
A2B and Sect B in S1 Text).

Results of the simulated experiment. After each epoch of training, we probed the pop-
ulation activity and analyzed the neural representation manifold formed by fixed points. The
evolution of the population activity in response to stimuli of different noise levels forms dis-
tinct trajectories in the neural representation space, which start at the same initial resting state
of the network, then diverge and settle into different fixed points corresponding to the dis-
tinct input images. Fixed points of different noise levels are organized along certain directions
in the neural representation space, forming a signal-to-noise axis along which the noise level
increases gradually (S1 Fig, panel A).

We then computed Rlev and the Rres. We observed that both relative distances decreased
in the early training stages, followed by a modest, gradual rebound in later training epochs,
and ultimately exhibited a net decrease. Additionally, the reduction was more pronounced
at higher noise levels (Fig 3E). These results confirm that familiarity-driven training effec-
tively compresses the variants manifold relative to the concept manifold. We found that the
observed reductions in both R are primarily due to the expansion of the concept manifold.
There is a larger increase in Dsig compared to Dlev and Dres (Fig 3F), indicating that the mutual
excitation of the neurons that encodes the familiar stimulus context have led to a selective
amplification of the concept-specific signal component [29–31]. Interestingly, for both net-
works, the relative compression of the variant manifolds was strongly correlated with the
observed familiarity effects, specifically the increase in tuning selectivity, and an increase in SI
(Fig 3G, 3H). This suggests that the compression of the neural representation and the famil-
iarity effects observed in neurons are tightly linked, potentially through a common underlying
driver or a direct causal relationship.

We further assessed the impact of the manifold transform in the primary visual cortex
on the higher-level visual area. We trained individual neurons to represent specific familiar
concepts encoded in the trained circuit with a competitive learning rule that partitioned the
representation space into concept clusters, each associated with a concept neuron (see Sect
D in S1 Text). We found that familiarity training significantly increased the concept selec-
tivity of these downstream concept neurons (Fig A4 in S1 Text). In addition, we found that
training the network with the clean target images alone, without training the noise samples,
is sufficient to produce essentially the same effect (Fig A2A in S1 Text). This is consistent with
the observation that the relative compression of the variants manifold is primarily due to the
expansion of the concept manifold. Together, these results demonstrate that familiarity train-
ing induces a change in representation consistent with the proposed manifold transform,
compressing the variants manifolds relative to the concept manifolds.

2.4. Linear system analysis to dissect the mechanisms of manifold
transform in the recurrent circuit
We have shown that familiarity training compressed the noise variant manifold primarily
by increasing the signal distance Dsig (Fig 3E, 3F), suggesting that the familiarity training
modulates gain of the recurrent circuit in a selective manner. In this section, we will first
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establish when the manifold transform in the recurrent circuit is locally linear around each
attractor, and then we will use linear system analysis to reveal how mechanistically the recur-
rent circuit expands the concept manifold relative to the noise variant manifold through
familiarity training.

A local linear strategy for manifold transform in recurrent circuit. As shown in Fig 4A,
the displacement from one image xi to another image xj on the representation manifold
(denoted by Δr) can be decomposed into a linear component and a nonlinear component.
The linear component dominates in the vicinity of the point xi, indicated by the dotted circle.
To reshape the manifold’s overall geometry, the network can modulate either of these compo-
nents. Local linear transform is a strategy networks use to manipulate the local linear com-
ponent to drive global geometric changes. This approach is analogous to the “fit locally, think
globally” principle, which is foundational to many manifold learning algorithms [11,13,14].
According to this principle, the global structure of a manifold can be accurately reconstructed
by preserving local neighborhood relationships, ensuring nearby points on the original mani-
fold remain neighbors in the new representation.

We considered how recurrent dynamics would affect the norm of the local linear compo-
nent. A key property of nonlinear recurrent dynamics is that, near an attractor, the network’s
input-output properties can be accurately captured by a linear, first-order approximation
defined by a recurrent gain matrix M. The influence of this recurrent circuitry can be decom-
posed along a set of recurrent gain modes (see Sect 4.5 for details). These modes represent
specific patterns of neural activity that are selectively amplified or attenuated by the network,
with the degree of modulation for each mode determined by its corresponding eigenvalue.
Crucially, the norm of the linear component is not determined by these gain modes in isola-
tion, but by their interactions. These interactions give rise to a set of emergent collective modes
(see Sect 4.5 for details), which capture the interaction pattern of the recurrent gain modes.
Specifically, the collective modes arise from the non-orthogonal geometry of the gain modes
and provide an orthogonal basis that diagonalizes their interactions. Each collective mode
thus represents a pattern of activity whose eigenvalue (spectrum) quantifies the net amplifica-
tion arising from this constructive and destructive interference. The expected squared norm,
E[Δr⊤Δr], can be expressed in terms of these collective modes as:

⟨Δr⊤Δr⟩ =
N
∑
k=1

𝜆k
®

spectrum

𝜑⊤k ⟨Δ𝜶Δ𝜶⊤⟩𝜑k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

alignment

. (6)

Each term in the sum is the product of two factors: first, the “spectrum” term 𝜆k, which
is the eigenvalue of the k-th collective mode, representing its amplification gain, second the
“alignment” term, which measures how well the direction of input variations, Δ𝜶⊤, align with
the k-th mode’s effective input filter 𝜑k (see Sect 4.5).

We define the signal directions as the vectors of variations on the 𝛾 manifold (blue curve
in Fig 4A, denoted by Δ𝛾), and the noise directions as the vectors of variations (both across
noise levels and residual noise, denoted by Δ𝜃) on the 𝜃 manifold (red curve in Fig 4A). Here,
we use “noise” as a general term for nuisance variables or irrelevant transforms, though occlu-
sion noise will be used as a type of nuisance variable in our simulation study. The objective of
the local linear transform is to adjust the recurrent gain of the linearized network anisotrop-
ically: amplifying it along the signal direction while suppressing it along the noise direction.
This effectively stretches the local geometry along the relevant signal direction and com-
presses it along the irrelevant noise direction (Fig 4A, Pre-trained and Post-trained). This
can be implemented via two possible mechanisms: (1) The selective spectrum modulation
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Fig 4. A Locally Linear Dynamic Strategy for Manifold Learning. (A) This schematic illustrates how a recurrent circuit can perform a manifold transform. On the left,
the red and blue curves represent the variants 𝜃 manifold and the concept 𝛾 manifold, respectively. Similar to Fig 3B, the black dot is the representation of stimulus xi,
and the red dot is the positive sample, the blue dot is the negative sample. The displacement between two attractors (Δr) on the manifold decomposes into locally linear
(within the vicinity of the attractor, denoted by the dashed circle) and globally nonlinear components, and the network can reshape the manifold by modulating either.
The local linear transform is the strategy that manipulates the local linear component to drive global geometric changes. The objective of the local linear strategy is to
anisotropically adjust network’s recurrent gain, thereby stretching the signal geometry while compressing the noise (pre-training vs post-training). This
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can be achieved via two possible mechanisms (middle): selective spectrum modulation (top), which increases the spectrum of signal-oriented modes and decreases
the spectrum of noise-oriented modes, or alignment modulation (bottom), which rotates the modes to be more signal-oriented. The blue and red arrows represent
signal and noise directions in the input 𝜶 space (Δ𝛾𝜶 and Δ𝜃𝜶, respectively). The grey, solid arrow represents pre-training collective modes, and the black, dashed
arrow represents post-training collective modes. (B) Evolution of the linearized Rlev and the Rres across three different noise levels. For 10–30% noise, R shows an early
drop (maximal linear compression, epoch 30) that parallels the full metrics; at low noise, R rebounds in the late training stage while the full metric remains reduced,
indicating additional nonlinear contributions. At 50% noise, R increases, marking a regime not well captured by local linearization. (C) Corresponding evolution of
linearized Dsig, Dlev and Dres used to calculate R in panel B, which also mirrors full distances at low-to-mid noise levels in the early stage (compare to Fig 3F). D–F are
shown at epoch 30, the time of maximal linear compression for 10–30% noise to isolate the locally linear mechanism. (D) Density distributions of the normalized change
in modes’ alignment (Δg) to signal versus noise direction. For 10-30% noise, where the Hebbian network employs a local linear transform, learning selectively increases
signal direction alignment (blue) while simultaneously decreasing noise direction alignment (orange). The noise alignment here represents the average of the level
and residual alignments. (E) Density distributions of the normalized change in the collective mode spectrum (Δ𝜆) for signal-oriented modes versus noise-oriented
modes. In contrast to alignment modulation, the change in the spectrum is largely non-selective. Δ𝜆 exhibits no significant change for both signal-oriented (blue) and
noise-oriented (orange) modes. The signal-oriented modes are those that align more with the signal direction in the input 𝜶 space pre-training, and similarly for the
noise-oriented modes. The noise alignment here represents the average of the level and residual alignments. (F) Large plot on the left: Joint density plot showing the
relationship between the normalized sensitivity magnitude (|𝜕D̃/𝜕Δ𝜆|) and the normalized change magnitude (|Δ𝜆|) for the spectrum. The two small plots on the right
show similar relations for signal and noise alignment (Δgs and Δgn). The sensitivity quantifies the contribution of the change in mode alignment or spectrum to the
linear relative distance. The three density plots reveal a consistent inverse relationship: learning primarily modifies modes that were initially insensitive (low sensitivity,
high change, top-left cluster), while leaving highly sensitive modes largely unchanged (high sensitivity, low change, bottom-right cluster).

https://doi.org/10.1371/journal.pcbi.1013587.g004

(Fig 4A, middle top), which creates a spectral gap by amplifying the spectrum of signal-
oriented modes (modes that align more with the signal direction in the input 𝜶 space (Δ𝛾𝜶)
in the pre-training stage) while suppressing the spectrum of noise-oriented modes (modes
that align more with the noise direction in the input 𝜶 space (Δ𝜃𝜶) in the pre-training stage),
without changing the direction of modes. (2) The alignment modulation (Fig 4A, middle bot-
tom), which rotates the principal collective modes to align more closely with the Δ𝛾𝜶, without
selectively modulating the spectrum based on the mode direction pre-training.

Recurrent networks employ local linear transform at low-to-mid noise levels in the
early stage. To investigate whether the familiarity-trained network employed the local linear
transform, we numerically linearized the network around each attractor and computed Rlev

and the Rres using the first-order approximation. As shown in Fig 4B, for 10–30% noise, the
early decrease and the timing of the minimum in the full relative distances are captured by the
linear model, indicating that the initial compression of the variants manifold is predominantly
linear. Consistent with this, the linearized Dsig, Dlev and Dres track their full counterparts in
this phase: both increase, with the signal component rising more steeply than the noise com-
ponent, and matched elbow points at epoch 30, resulting in the early drop in the relative dis-
tances (Fig 4C and Fig 3F). After this locally linear phase, the linear metric partially rebounds
with a net increase at 10% by the end; thus, the net decrease at 10% in the full relative dis-
tances reflects additional nonlinear contributions. By contrast, at 50% noise, the linear model
predicts an increase in relative distance, indicating that input variation has moved the system
beyond the local-linear regime, where global nonlinear effects dominate the manifold trans-
form (Fig 4B–-4C). Together, these findings revealed a two-phase change at the low-to-mid
noise level: locally linear compression followed by nonlinear consolidation, and an overall
nonlinear, global compression at the high noise level.

The local linear transform is implemented by alignment modulation. As shown in
Fig 3E, the recurrent circuit compresses the variants manifold relative to the concept mani-
fold, reaching a minimum around epoch 30 and then roughly plateauing. This early trajectory
is captured by the linear approximation (Fig 4B–4C). After epoch 30, the linear model begins
to lose compression for certain noise levels, diverging from the full network (Fig 3E), indicat-
ing emerging nonlinear effects for the maintenance of the relative compression. These later
nonlinearities appear to have a secondary impact on the relative manifold compression, as the
most significant change in relative distance appears before 30 epochs (Fig 3E). Accordingly,
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we focus the mechanistic analysis on the locally linear phase (≤ epoch 30), which isolates the
primary driver of the manifold transform.

We now tested which of the two mechanisms (alignment vs spectrum modulation) drives
the local linear transform at low–mid noise by focusing on epoch 30. We found that the data
are not consistent with the selective spectrum modulation hypothesis. Fig 4E shows that the
change in the collective mode spectrum (Δ𝜆) is largely non-selective. The distributions of Δ𝜆
are almost identical whether the modes are primarily oriented towards the signal direction
or to the noise directions. In contrast, the results support the alignment modulation strategy.
Within the effective linear regime (10% and 30% noise), the distributions of normalized align-
ment change (Δg) exhibit an increase in the alignment with the signal direction (blue distribu-
tions, Fig 4D) and a decrease in the alignment with the noise direction (orange distributions,
Fig 4D).

The local linear transform primarily recruits low-sensitivity modes. Finally, we investi-
gated how the magnitude of alignment modulation and spectrum strengthening of each mode
are related to their contribution to the linear relative distance (R). With D̃ =ΔD/Dpre, the frac-
tional change in the individual noise or signal distance, our linear analysis reveals R↓ when
D̃sig > D̃noise (see Sect 4.7). We thereby defining the sensitivity of the linear relative distance
with respect to the change in model spectrum or mode alignment as 𝜕D̃ /𝜕Δ𝜆 or 𝜕D̃ /𝜕Δg,
which are determined by the initial values in the alignment g or the spectrum 𝜆 in the pre-
trained phase, respectively (see Sect 4.7). An efficient learning strategy is expected to primar-
ily modify the most sensitive modes, allowing for a stronger change in compression with the
same amount of change in the mode spectrum and alignment.

However, our analysis reveals that the network employs the opposite strategy. Fig 4F shows
the joint density of each mode’s sensitivity magnitude against the magnitude of its change
at epoch 30, the time of maximal linear compression for 10–30%. The distribution is highly
non-uniform and dominated by three distinct features. The vast majority of modes are con-
centrated in a dense peak near the origin, corresponding to null modes with both low pre-
training sensitivity and minimal change during learning. From this central mass, the distri-
bution extends into two sparse tails. The vertical tail represents a population of initially weak
modes that are subject to large modifications. This group constitutes the network’s plasticity
budget: modes that are recruited during familiarity learning. Conversely, the horizontal tail
represents the network’s stable, high-sensitivity core modes, which are left untouched during
training.

While this strategy may seem less efficient from an optimization perspective, it may rep-
resent a more robust and stable solution: modifying dominant, high-sensitivity modes could
risk destabilizing the network’s computational dynamics. By preserving these modes, the net-
work would also be protecting its foundational memories from being overwritten, thus mit-
igating catastrophic forgetting. In this view, the network utilizes its large pool of weak, low-
sensitivity modes as a flexible “plasticity budget,” allowing it to integrate new computational
functions.

3. Discussion
Neurophysiological observations indicate that familiarity effects depend on contextual infor-
mation beyond a neuron’s classical receptive field. Furthermore, these effects appear earliest in
V1, then in V2, and subsequently in IT, suggesting the emergence of horizontal recurrent cir-
cuits within each visual area along the visual hierarchy. In this work, we demonstrate that the
suppression of population-averaged responses to familiar images in V1 and V2, as reported
by Huang et al. [8], can be accounted for by the formation of local recurrent circuits linking
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excitatory neurons across hypercolumns in a canonical V1 circuit. These circuits rely on well-
established mechanisms, including Hebbian learning, within-hypercolumn normalization,
and iso-feature-channel normalization ( generalized from iso-orientation suppression) across
hypercolumns.

Our model shows that the formation of such local recurrent circuits can enhance the
responses of neurons involved in encoding a specific image context, while suppressing the
activity of uninvolved neurons. This leads to a sparser neural code and sharper tuning, effec-
tively enhancing both single-neuron and population-level selectivities for the familiar stimuli.
While Huang et al. [8] did not find statistically significant evidence in support of tuning curve
sharpening when training and testing only 25 familiar images, our model predicts that sharp-
ening should emerge with a sufficiently large set of recorded neurons. Indeed, tuning sharpen-
ing for familiar stimuli has been observed in the inferotemporal cortex [7]. Our preliminary
experiments on one monkey also found that V2 neurons exhibit sharpening when 200 stimuli
were tested.

Lim and colleagues [22] showed that the plasticity rule underlying the sharpening effect of
familiarity learning to resemble a BCM-like learning rule, with LTD (long-term depression
or decrease in synaptic weight) when the firing rate of the postsynaptic neuron in response
to a stimulus is below a certain threshold, and LTP (long-term potentiation or gain in synap-
tic weight) when the firing rate is above the threshold [22]. Our simulation using networks
utilizing BCM-learning rule successfully reproduced the familiarity suppression and repre-
sentation sparsification (Fig 2). However, we found that similar effects (i.e. suppression and
sparsification, as well as manifold transform) can also be achieved using a Hebbian learning
rule without an explicit firing-rate threshold, when it is combined with a weight normaliza-
tion mechanism as in Oja’s rule (Fig 2). In this case, LTD is mediated effectively by synaptic
scaling, obviating the need for a BCM-type threshold mechanism.

The recurrent circuit formed through familiarity learning functions as a local Hopfield net-
work that encodes specific episodic image memories even in early visual areas. Why might
the early visual cortex be involved in encoding global image memories when IT, where neu-
rons have larger receptive fields for encoding entire object or scene representations, is already
encoding them? One possibility is that early encoding of global image structures, such as
faces [32–34], can support faster recognition and decision-making. Another possibility is that
encoding global image structures by dynamically linking elementary elements at early visual
areas is a form of compositional learning that gives flexibility and versatility in object repre-
sentation [35–38]. Here, we propose a third idea that the recurrent circuits encoding global
images implement a manifold transform to compress irrelevant dimensions, thereby helping
downstream neurons in higher-level visual areas achieve invariant representations explicitly.
Specifically, we proposed that recurrent cortical circuits perform a locally linear but globally
nonlinear transformation of neural manifolds, and that familiarity training induces structured
modifications to this transformation. Using network simulations, we showed that familiar-
ity training indeed optimizes an objective function associated with manifold transformation:
dimensions corresponding to nuisance variation or noise are selectively compressed relative
to those encoding meaningful signals. Specifically, familiarity training was found to reduce
distances along noise directions while preserving or enhancing distances along stimulus-
relevant dimensions near each attractor—behavior consistent with the goals of manifold
transformation, leading to more robust and discriminative representations of global image
concepts.

The recurrent circuit learned through familiarity training induces sparsification of neural
tuning, leading to reduced population-level activity, as a form of efficient coding. We found
that the optimization of the manifold transform objective was positively correlated with both
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increased selectivity and population suppression for familiar images. This implies that spar-
sification co-occurs with the rotation of collective modes around each attractor, jointly con-
tributing to the observed manifold transform. One possible explanation is that aligning the
collective modes with signal dimensions and orthogonalizing them to specific irrelevant (e.g.,
occlusion noise level 𝜃) directions reduces representational interference between concepts,
thus promoting sparsity [39]. However, the precise relationship between sparsification and
mode rotation remains an open question, and further research is needed to fully elucidate
their interaction during Hebbian-based familiarity learning.

From a classical perspective, neurons in higher visual areas such as the inferotemporal
cortex (IT) achieve invariance to transformations including translation, rotation, scale, and
changes in viewpoint. This invariance emerges progressively along the visual hierarchy, with
intermediate areas exhibiting intermediate degrees of invariance—striking a balance between
object specificity and generalization. Classical neural network models, such as the Neocog-
nitron [40] and modern convolutional neural networks (CNNs) [41], realize this process
through purely feedforward architectures. In contrast, we propose that recurrent circuits
play a critical role, perhaps complementary to feedforward connections, in achieving these
invariances via manifold transformations. Each visual area contributes to invariance at a spa-
tial scale that corresponds to the size of its neurons’ receptive fields [35,42]. The invariance
generated by recurrent processing is thus locally appropriate to the scale of each area, while
more global invariance emerges at higher-level visual areas through the hierarchical struc-
ture. Neurons in each visual area read out and build upon the locally invariant population
representations from preceding areas (Fig A4 and Sect D in S1 Text). These inputs, combined
with the area’s own recurrent dynamics and potentially feedforward signals, allow individ-
ual neurons to encode more explicit and robust invariance in their tuning properties. For
instance, population-level representations in V1—shaped by manifold transforms via recur-
rent circuits—can support the development of invariant responses in individual neurons
in V2. In turn, the recurrent circuitry in V2 can facilitate the emergence of more complex
invariant representations in V4.

Manifold-learning methods (e.g., [12,13]) first construct a local-neighbor graph that
encodes approximate linear structure and then compute a single global embedding consis-
tent with that graph. These methods implicitly assume dense, roughly uniform sampling;
with sparse or anisotropic data, local-linear reconstruction and the graph itself can become
unreliable. In real visual tasks such as our familiarity association experiment, the transform
must be learned online from a stream of stimuli: the animal does not have access to a com-
plete, uniformly sampled dataset a priori. This violates the uniform-density assumption and
motivates a locally linear, globally nonlinear strategy implemented by recurrent dynamics.
On the one hand, due to the nature of recurrent dynamics near attractor states, the system’s
behavior becomes approximately linear in a local neighborhood. Within this regime, a neural
manifold can be modified by rotating the collective modes of recurrent gain relative to task-
relevant signals or irrelevant variation. Our network analysis results suggest that, for spatially
close stimuli, such as corrupted images with low-to-mid noise levels (10% or 30%), familiarity
learning leads to such rotations, aligning collective modes more closely with signal dimen-
sions while orthogonalizing them to noise or irrelevant variability. Interestingly, we found
that the network selectively favors modifying those modes that have weak initial strengths,
perhaps as a strategy to preserve computational dynamics and avoid disrupting existing asso-
ciative memories. On the other hand, under extreme distortions, such as 50% occlusion, the
stimuli become farther apart, violating the locality assumption. In such cases, the underlying
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manifold objective may still be achieved through nonlinear dynamics. Thus, the trained recur-
rent computation facilitates flexible and stable manifold transforms centered around familiar
concepts.

Several limitations to this study warrant future investigation. First, the architecture of our
model does not fully replicate the biological complexity of cortical circuits, such as diverse
neuron types and detailed connectivity patterns. Instead, we adopted a simplified canoni-
cal circuit model incorporating standard features of macaque V1—such as surround excita-
tion/inhibition and normalization—to examine the core mechanisms that may generalize to
other areas like V2, V4, and IT. Future work should explore how incorporating more biologi-
cally realistic circuitry could affect the model’s explanatory power for familiarity effects and its
ability to implement manifold transformations.

A second open question concerns the broader applicability of the proposed manifold
transformation framework. While our model successfully handles occlusion noise, its effec-
tiveness across other continuous transformations—such as rotation, translation, contrast
variation, spatial frequency modulation, or dynamic temporal stimuli—remains to be deter-
mined. It is possible that the Hebbian rule is specifically suitable for the image statistics of
the occlusion noise. Thus, a more general learning rule is required to extract and selectively
enhance the gain along signal directions that correspond to the image content, among the
noise directions corresponding to nuisance variables of different types. These generalizations
may also require modifications at the circuit level, but we argue that the principles uncovered
here—local recurrence, Hebbian learning, and normalization—form a canonical computa-
tional motif that can support familiarity learning across the visual hierarchy. But the rela-
tive contribution of recurrent connections and feedforward connections and their synergistic
interaction in creating an increasing degree of invariance remains to be characterized.

Another open question is that the familiarity training used here is unsupervised: clean tar-
gets and their noisy variants are randomly interleaved, removing the temporal structure that
could act as an external supervisory signal. A key direction for future research is to investigate
how recurrent circuits can be extended to process video data and to determine how temporal
associations between images might be leveraged as a form of supervision to guide manifold
learning, like in the slow feature analysis [28].

In closing, manifold transforms in modern machine learning (e.g., [11–13,27]) are power-
ful: they first build a neighborhood graph from the full dataset and then obtain a single, global
low-dimensional embedding by solving an eigenproblem. In contrast, this paper shows that a
recurrent circuit with familiarity training can implement a locally linear yet globally nonlinear
manifold transform, offering a biologically plausible alternative strategy adopted by the brain.

4. Methods
4.1. Feedforward response
The feedforward response to an input image was computed using a set of Nd = 64 convolu-
tional filters. These filters were pre-trained using a convolutional sparse coding algorithm
[18], a method known to yield efficient codes and receptive fields similar to those in the pri-
mary visual cortex [43]. The algorithm jointly optimizes a dictionary of filters, Di, and the
corresponding sparse activations, 𝛼i, by minimizing the following objective over a set of train-
ing image patches, Im:

min
𝜶
∥

k
∑
j=1

Dj ∗ 𝛼j – Im∥2, s.t. ∥𝜶∥0 < q (7)
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This objective function minimizes the reconstruction error subject to an L1 sparsity
penalty. For all subsequent familiarity experiments, these pre-trained filters were held fixed.
To compute the feedforward response for a given input image, the image was convolved with
the 64 learned filters (size 9× 9), using a stride of 3 and no padding, which resulted in 8× 8
feature maps for each filter. We set the size of the network accordingly as Nr =Nc = 8. The net-
work studied thus involves 4096 neurons (8× 8 hypercolumns × 64 channels of sparse fea-
tures) to process a 32× 32 image input. This represents a 4-times overcomplete representa-
tion. To evaluate whether the results depend on the number of filters, we also tested models
with 128 sparse code filters, which, with 9192 neurons, constitute a model with an 8-times
overcomplete representation (Fig A3 and Sect C in S1 Text).

4.2. Common parameter settings of the model
The network we used is a general V1 network, with most of the model’s parameters being
rather standard. The time constant of excitatory neurons (𝜏e = 40) double that of inhibitory
neurons (𝜏i = 20) [44]. The local extent of surround inhibition and excitation is also well
understood, based on the spatial extent of surround inhibition [45]. Here, we set the radius
for mutual facilitation among excitatory neurons to be Re = 2, and the radius for surround
suppression is Ri = 1. The initial weight of plastic excitatory-excitatory connections is wee = 5.
We set the synaptic time constant 𝜏w of both the BCM rule and the general Hebbian rule to
be 2e9, and the time constant of the moving average 𝜏𝜉 in the BCM rule to be 2e7. For the
BCM rule, the initial firing rate threshold for each neuron was set to its average response mag-
nitude, calculated across all stimuli and time steps in the pre-trained network. The absolute
strength of the inhibitory surround, wie, is the main free parameter that was tuned for model
stability. We performed a parameter sweep to understand the impact of this parameter on
the familiarity effects (sharpening of tuning curves and familiar suppression) under different
surround inhibition configurations (Fig A1 and Sect A in S1 Text).

4.3. Familiarity effects experiment (Fig 2)
The network was trained for 80 epochs using a set of 25 natural images from the CIFAR-100
dataset. Within each epoch, every image was presented for 300 ms. To prevent inter-stimulus
interference, the network’s response re, ri were reset to zero before the presentation of each
image. To accelerate learning, the feedforward input during training was scaled by a factor of
30. We set wie = 20 for this experiment.

After every 8 epochs of training, the network’s performance was probed. In these tests, the
network’s response to the 25 familiar (trained) images was recorded. For each test image, the
steady-state response was determined by simulating the network dynamics until convergence
and then averaging over the final 20 ms.

To quantify familiarity effects, we analyzed the steady-state responses of the excitatory neu-
ron, re. We calculated a suppression index (SI) for each neuron i using the following formula:

SI =
rposti – rprei

rposti + rprei
, (8)

where rbeforei and rafter
i represent the neuron’s average response to a stimulus set. Before

and after training, for each neuron, the SI was computed for every stimulus and then aver-
aged across the entire training set. The distribution of indices is plotted in Fig 2B, where we
excluded the non-responsive neurons in pre- or post-training stages.
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To measure tuning curve sharpening, we quantified two metrics for each neuron across
the stimulus set: its peak firing rate and its lifetime sparsity. The lifetime sparsity of a neuron’s
tuning curve was calculated using the index proposed by Vinje and Gallant [46]:

S = n
n – 1

(1 –
(∑j rj/n)

2

∑j(r2j /n)
), (9)

where rj is the neuron’s response to the j-th stimulus out of n total stimuli. A value of S
approaching 1 indicates high lifetime sparsity, meaning the neuron responds selectively to
only a small fraction of stimuli, a key feature of a sharpened tuning curve [47]. The relative
change of the metric was calculated as (Post – Pre)/(Post + Pre).

4.4. Familiarity training experiment to test the Manifold Transform
Hypothesis (Fig 3, S1 Fig)
The stimulus set was based on 5 target images randomly selected from the CIFAR-100 dataset
and converted to grayscale. Noisy variants of each target image, l, were generated by replac-
ing a specified percentage of pixels, n%, with new values drawn from a uniform distribution,
𝜀 ∼ U(0, 1), defining the conditional stimulus distribution p(x | l,n).

The network was trained on this stimulus set for 350 epochs. In each epoch, the images
were presented in a randomized order, with each stimulus shown for 300 ms. To prevent
inter-stimulus interference, the network’s activity rates (re, ri) were reset to zero prior to each
presentation. To accelerate learning, the feedforward input was scaled by a factor of 30. We set
wie = 30 for this experiment.

The network’s performance was evaluated every 10 epochs using all images in the train-
ing set. For each test image, a response fixed point was determined by simulating the network
dynamics until convergence and then averaging the excitatory population activity over the
final 20 ms. In Fig 3E, we averaged Rlev and the Rres over the noise pattern k. In Fig 3F, 3G,
we computed the linear regression and Pearson correlation coefficient of the averaged Rlev

and the Rres over noise pattern, noise level, and target images, with familiarity effects metrics
calculated as in Sect 4.3. We set SI for the pre-training network as 0.

4.5. Manifold transform via local linear dynamics
The representation manifoldMr∗ is implicitly defined by the fixed-point equation of the
recurrent circuit:

G(r,𝜶(x)) = r – 𝜎(Wr + 𝜶(x)); where G(r∗,𝜶(x)) = 0. (10)

Here, r = [re⊤; ri⊤]⊤ is the full network state, and W = [Wee,Wei;Wie,0] (We use “,” to
separate column, “;” to separate row) is the block connectivity matrix. To analyze the local
geometry of this manifold, we derive a first-order approximation for the squared Euclidean
distance, ⟨∥Δr∥2⟩, between nearby points.

For a small change in the input sparse code, Δ𝜶, the corresponding displacement on the
manifold, Δr, can be approximated by a first-order Taylor expansion:

Δr≈ (𝜕 r
∗

𝜕 𝜶 )Δ𝜶 ∶= J(r
∗)Δ𝜶, (11)

where the Jacobian matrix J(r∗) is given by:
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J = (I – Σ′W)–1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
recurrent gain, M

Σ′. (12)

Here, Σ′ is a diagonal matrix with elements Σ′ii = 𝜎′(Wr∗ +𝜶(x))i, measuring the local sen-
sitivity of each neuron. The term M ∶= (I – Σ′W)–1 is the recurrent gain matrix, which cap-
tures how the recurrent circuitry amplifies or suppresses feedforward inputs in the linearized
system.

The average squared distance can now be expressed as ⟨∥Δr∥2⟩ = ⟨Δ𝜶⊤J⊤JΔ𝜶⟩. To under-
stand how recurrent dynamics shape this distance, we analyze M through its eigendecompo-
sition, M =∑i 𝜇iwiv⊤i , where 𝜇i are the eigenvalues and wi, vi are the right and left eigenvec-
tors, respectively. Substituting the eigendecomposition of the recurrent gain matrix into the
average squared distance formula yields:

⟨∥Δr∥2⟩ = ⟨Δ𝜶⊤J⊤JΔ𝜶⟩ (13)

= ⟨∑
ij
𝜇i𝜇j(v⊤i Σ′

±
̃v⊤i

Δ𝜶)(v⊤j Σ′
±

̃v⊤j

Δ𝜶)(w⊤
i wj)⟩ (14)

= ⟨p⊤Gp⟩. (15)

This equation reveals that the geometry is determined by the interplay of two key factors.
The first is captured by the vector p, where each element pi = 𝜇i( ̃v⊤i Δ𝜶) represents the input
change Δ𝜶 projected onto an input filter ̃vi and scaled by the recurrent gain 𝜇i. The second is
the Gram matrix G, with elements Gij =w⊤

i wj, which captures the geometric overlap between
the output patterns (right eigenvectors wi and wj) of the recurrent gain modes. Thus, the man-
ifold’s local geometry depends on both how the linearized dynamics modulate certain input
patterns and how the output patterns interact with each other.

To simplify the mode interactions, we diagonalize the Gram matrix, G =∑k 𝜆kqkq⊤k , which
reveals a set of orthogonal collective modes. Substituting this back into the distance calcula-
tion yields the final expression (Eq 6):

⟨∥Δr∥2⟩ =∑
k
𝜆k∑

ij
(qk)i⟨pipj⟩(qk)j (16)

=∑
k
𝜆k∑

ij
(qk)i𝜇i ̃v⊤i ⟨Δ𝜶Δ𝜶⊤⟩ ̃vj𝜇j(qk)j (17)

=∑
k
𝜆k 𝜑⊤k ⟨Δ𝜶 Δ𝜶⊤⟩𝜑k. (18)

This equation decomposes the squared distance into contributions from each collective
mode k. Each term consists of: 1) Spectrum (𝜆k): The eigenvalue of the k-th collective mode,
which acts as its overall amplification gain, and 2) Alignment (gk ∶= 𝜑⊤k ⟨Δ𝜶 Δ𝜶⊤⟩𝜑k), which
measures how much the input variations are projected along the direction of the mode’s effec-
tive input filter, 𝜑k. This filter, defined as 𝜑k ∶=∑i(qk)i𝜇i ̃vi, is the sum of the input filter of the
original recurrent gain mode weighted by the recurrent gain and their contributions to the
collective mode k.

4.6. Linear analysis in the familiarity-trained network (Fig 4)
To analyze the local linear transform, we first numerically computed the collective modes for
the network trained in the familiarity association task. For each attractor, we calculated the
Jacobian and the corresponding recurrent gain matrix, M. We then performed an eigenvalue
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decomposition on M to find its recurrent gain modes. From the right eigenvectors of M, we
computed the Gram matrix G and performed a second eigenvalue decomposition on it to
determine the properties of the collective modes. This process yielded the spectrum (𝜆k) and
effective input filters (𝜑k) for each collective mode as derived in the previous sections.

Using these computed modes, we then calculated the linear approximation of the relative
distances to probe the local manifold geometry. This was achieved by applying the collective
mode distance formula (Eq 6), which requires computing input variation vector Δ𝜶 along the
signal, residual and level directions in the input space. To isolate the effects of local geome-
try from magnitude, each Δ𝜶 was normalized to unit length. All results were based on the top
10 collective modes, which consistently had the largest eigenvalues. For Fig 4D, 4E, a mode
was included if the magnitude of its change (e.g., in spectrum or alignment) exceeded 10%
of the maximum change observed across all modes. We established the orientation of each
mode: a mode was assigned as signal-oriented if its pre-training signal alignment exceeded
its noise alignment by more than 10% of the maximum observed difference, and vice versa for
noise-oriented modes.

4.7. Sensitivity of alignment and spectrum change of individual collective
mode to the compression (Fig 4)
To quantify how learning-induced changes in the collective mode spectrum (𝜆k) and align-
ment (gk) contribute to noise compression, we performed a sensitivity analysis. First, we
defined the linear component of signal/noise distances: D =∑k 𝜆kgk. The linear relative dis-
tance is R =Dnoise/Dsignal

To understand how changes in the network parameters affect R, we performed a first-order
Taylor expansion around the pre-training state:

ΔR≈ 𝜕R
𝜕Dsignal, pre

ΔDsignal +
𝜕R

𝜕Dnoise, pre
ΔDnoise (19)

=
Dsignal, pre

D2
signal, pre

ΔDnoise –
Dnoise, pre

D2
signal, pre

ΔDsignal. (20)

From this, the necessary and sufficient condition for learning to improve compression
(ΔR < 0) is that the fractional change in signal distancce must exceed the fractional change in
noise distance: ΔDsignal/Dsignal, pre >ΔDnoise/Dnoise, pre.

We define the fractional change as D̃, and decompose it into components related to the
change in spectrum, Δ𝜆k, and the change in alignment, Δgk. The change in linear distance
is ΔD =∑k(𝜆k,preΔgk + gk,preΔ𝜆k +Δ𝜆kΔgk). Focusing on the linear terms and omitting the
interaction term, the fractional change is approximately:

D̃≈ ∑k(𝜆k,preΔgk + gk,preΔ𝜆k)
∑j 𝜆j,pregj,pre

. (21)

The sensitivity of this quantity with respect to a change in the spectrum of mode k is the
fraction of pre-trained distance contributed by that mode’s pre-training alignment:

𝜕D̃
𝜕Δ𝜆k

=
gk,pre

∑j 𝜆j,pregj,pre
. (22)

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013587 October 24, 2025 21/ 25

https://doi.org/10.1371/journal.pcbi.1013587


ID: pcbi.1013587 — 2025/10/24 — page 22 — #22

PLOS COMPUTATIONAL BIOLOGY Manifold transform in recurrent cortical circuit

This yields three sensitivity values for the spectrum change, each with respect to fractional
change in signal distance, noise level distance, and residual noise distance, respectively. We
derived a combined sensitivity measure by averaging these three values. The absolute magni-
tude of this average was then normalized by the maximum observed magnitude to produce
the normalized sensitivity plotted in Fig 4E.

Similarly, the sensitivity with respect to a change in alignment is the fraction of pre-trained
distance contributed by that mode’s pre-training spectrum:

𝜕D̃
𝜕Δgk

=
𝜆k,pre

∑j 𝜆j,pregj,pre
. (23)

This yields distinct sensitivity values for signal, noise level, and residual noise alignments
to the fractional changes of signal, noise level, and residual noise distances. We derived a
combined noise sensitivity by averaging the latter two. Each value was then converted to its
absolute magnitude and subsequently normalized by the maximum magnitude to derive the
normalized sensitivities plotted in Fig 4E.

Supporting information
S1 Fig. Additional visualization of the neural manifold in the familiarity association
experiment. (A) Trajectories of different noise levels correspond to an example image in the
model. The trajectory is averaged across noisy image samples. The black arrow indicates the
direction along which the noise level changes (denoted as the image-to-noise axis). Cross:
trial start; Dots: trial end. (B) Each dot (ellipse) of a particular color represents a sample noise
image (or the covariance of the set of sample images) of the target image at a particular noise
level. Each red cross represents the mean of clusters at each noise level. (C) Each dot repre-
sents the cluster mean of a target image at a specific noise level. The five clusters of dots cor-
respond to the five target images and their noise variants, with color indicating the noise level.
Each ellipse represents the covariance of the samples of the five targeted images at a particular
noise level. Each red cross represents the average of cluster means of the same noise level. For
B and C, the dots and circles, derived from real test images, correspond to the blue and orange
cone, respectively, depicted in the schematic illustrations in Fig 3D.
(TIF)
S1 Text. Additional results.
(PDF)
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