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Abstract

Alzheimer’s disease encompasses multiple biological scales, spanning molecular factors,
cells, tissues, and behavioral manifestations. The interplay among these scales in shap-
ing the clinical phenotype is not yet fully comprehended. In particular, there is great inter-
est in understanding the heterogeneity of the clinical aspects of AD in order to improve
treatment and prevention, by targeting those aspects most susceptible to the disease.
Here we employed a systems biology approach to address this issue, utilizing multilayer
network analysis and deep phenotyping. This integrative analysis incorporated genomics,
cerebrospinal fluid biomarkers, tau and amyloid beta (AB) PET imaging, brain MRI data,
risk factors, and clinical information (cognitive tests scores, Clinical Dementia Rating and
clinical diagnosis) obtained through the ADNI collaboration. Multilayer networks were
built based on mutual information between the elements of each layer and between lay-
ers. Boolean simulations allowed us to identify paths that transmit dynamic information
across layers. The most prominent path for predicting variables in the cognitive pheno-
type layer included the PET radiotracer fluorodeoxyglucose (FDG) in the posterior cin-
gulate. Combinations of different symptomatic variables, mainly related to mental health
(depression, mood swings, drowsiness) and vascular features (hypertension, cardiovas-
cular history), were also part of the paths explaining the average phenotype. Our results
show that integrating the flow of information across biological scales reveals relevant
paths for AD, which can be subsequently explored as potential biomarkers or therapeu-
tic targets. In particular, our results point for paths related with brain hypometabolism as
a key feature in AD.
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database. Access to ADNI data should be
requested at its website:
https://adni.loni.usc.edu. Web interfaces of the
individual networks, the combined six-layer
network, the paths and the top risk factors
paths are available at GitHub. The complete
code used for the analyses and simulations
described in this study is publicly available at
the following repository:
https://github.com/dsb-lab/multilayerAD.
Instructions and a link to the ADNI data access
portal are provided in the README of the
GitHub repository, so that researchers can
request access and reproduce the analyses with
the same code.
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Author summary

Complex diseases such as Alzheimer’s Disease (AD) involve a diverse array of biological
processes. In our investigation, we undertook a systems biology approach to AD using
network analysis and deep phenotyping within a prospective cohort of patients, incor-
porating clinical, imaging, genetics, and omics assessments. The gene, molecular and
imaging paths explained variation in central nervous system damage, and in metrics of
disease severity, pointing to a significant role of energy deficit within brain networks

in the development of AD. The elucidation of multilayer paths in this context provides
insights into the diverse phenotypes of the disease and holds the potential to improve
understanding of its pathogenesis.

Introduction

Alzheimer’s Disease (AD) is a progressive, degenerative brain disease characterized by loss
of function and death of nerve cells. The disease is defined by the presence of amyloid beta
(AP) plaques and neurofibrillary tau tangles in the brain [1]. Abnormal deposits of these two
proteins have been seen to form aggregates and inclusions, de-structuring the brain architec-
ture. AD is the most common form of dementia, accounting for 60-80% of all cases. Accurate
diagnosis is possible in vivo using biomarkers [2-4]. Although early molecular markers exist,
even in plasma [5], there remains a strong interest in understanding heterogeneity at all lev-
els in the clinical manifestations of AD, both for treatment and prevention, to identify those
individuals at highest risk for the disease. To that end, a multimodal approach integrating dif-
ferent omics data types (genomics, proteomics and metabolomics) and imaging, appears espe-
cially useful [6]. Here we follow this approach using multilayer network analysis to represent
the flow of events underlying the phenotype of AD, including gene expression, tissue dam-
age, and clinical symptoms. The goal is to identify multimodal paths associated with specific
features of AD that will help explain the observed clinical heterogeneity of the disease, and
identify candidate paths for personalized interventions.

Modern complex network theory has shown to be a very useful tool for comprehending
the intricate architecture of biological processes. It is not sufficient to identify and classify the
system’s constituent parts to fully comprehend complex biological systems; understanding the
interactions between those elements is also necessary [7,8]. However, it can be challenging to
evaluate the interaction patterns and functional architecture of biological systems due to the
nontrivial nature of those interactions, the limited statistical power of clinical data, and the
inherent nonlinearities in the dynamics of individual elements.

In spite of those difficulties, some studies have already shown the usefulness of multilayer
networks to help improve our understanding of disease pathogenesis. Multilayer networks
have been used, for instance, to directly link the genomic layer with the phenotypes in differ-
ent types of cancer [9]. In a different approach, a topological analysis of a bipartite network
linking drugs and proteins showed an overabundance of drugs targeting the same proteins,
suggesting more functional drugs for more diverse targets [10]. Multilayer network analy-
sis has also been applied to a cohort of multiple sclerosis patients, enabling the identification
of genetic, protein, and cellular paths explaining variation in central nervous system dam-
age and disease severity metrics, and highlighting their potential as biomarkers [11]. Specif-
ically in Alzheimer’s disease, a multidimensional network framework enabled detection of
the disease with 90% accuracy, revealing unique insights into disease heterogeneity through
identification of similar subtypes with diverse biomarker profiles [12].
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In order to better understand the relationship between endotype and phenotype, our
strategy focuses on connecting the microscopic and macroscopic dimensions of AD. Our
approach enables us to integrate all available biological scales through a multilayer network
that allows a multi-domain analysis of a wide variety of AD features. This form of analysis is
useful for identifying how the disease phenotype is manifested at different levels, so that new
treatment horizons may be explored and approached. Our project is hypothesis-based, aiming
at using real-world data to evaluate our hypothesis and uncover a plausible explanation.

Our approach is divided in the following steps. First, we construct networks for each of
the biological layers individually, using mutual information as the criterion to connect ele-
ments of each layer. Next we identify the connections between layers in order to obtain a mul-
tilayer network. An unbiased analysis of the network connectivity reveals a modular struc-
ture that supports the hypothesis that a hierarchy exists among the different biological layers.
Finally, we identify paths and key drivers for AD phenotype expression. To that end, we use
dynamical Boolean simulations to calculate the shortest paths of information transmission
that lead to the phenotype layer. The variables most commonly present in those paths can be
considered predictors of the phenotype, shedding light on how the different scales interact to
produce this complex disease, and potentially enabling its diagnosis.

Materials and methods
Patients

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database https://adni.loni.usc.edu/. The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD) [13]. Specifically, we used data on patients
between the ages of 55 and 90 for over a decade at 57 sites in the US and Canada. The cohort
included 1998 participants, of which 807 were defined clinically as MCI patients, 533 were
AD patients, and 622 were controls. The features used to implement the multilayer network
included: MRI (Magnetic Resonance Imaging), PET (Positron emission tomography) scans,
CSF (cerebrospinal fluid)/plasma proteomics, genetic information, risk factors, cognitive tests
and diagnosis assessment.

Genetic layer. This layer contains genetic information such as APOE and TOMMA40 alle-
les [14], Polygenic Hazard Score (PHS) and Cumulative Incidence Rate (CIR). The genetic
network, as well as the rest of the individual networks, can be seen in Fig 6, where nodes
represent variables and the edges represent the mutual information between pairs of variables.

The dataset contains three variables in particular that refer to the APOE gene: the indi-
vidual copies APOE_A1 and APOE_A2, for which the number refers to the type of allele that
forms it, and APOE, that represents the amount of E4 alleles present in the individual, which
can be 0, 1 or 2. For example, if a subject has APOE_A1 =2 (has allele E2) and APOE_A2 =4
(has allele E4), then APOE = 1 (one E4 allele), indicating the individual is heterozygous for the
E4 allele.

The polygenic hazard score is a measure based on a combination of multiple genetic vari-
ants, developed to quantify the age of onset of AD dementia. Several SNPs were examined
for their association with AD, then a stepwise Cox proportional hazard model was applied to
choose the SNPs that improved the model. Finally, the vector product between the genotype
for the SNPs and the AD-incidence rates provides quantitative estimates of the annualized
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(cumulative) incidence rate [15]. For this reason, we decided to also add the Cumulative
Incidence Rate (CIR) to the genetic layer, even though it could be considered a risk factor,
because it is closely related to PHS. Importantly, PHS was associated with in vivo biomark-
ers of AD pathology such as reduced CSF Af42 and elevated CSF total tau across the AD
spectrum (in older controls and dementia individuals) [16].

Molecular layer. For both A and tau, CSF as well as plasma samples where used in order
to extract the subjects’ measures. For A, two types of measures where used: AB42 and the
ratio Af342/Af340. As for tau, both tau and phosphorylated tau are measured. Other molecu-
lar measures are amyloid precursor protein (APP); 5-secretase, an enzyme that participates in
the APP to AB42 pathway, and even though it is part of the genetic information of the cells,
telomere length (TL) is also considered a molecular biomarker, since it does not really act as a
gene but a protection of the genetic material, thus a protection of the cells functions and regu-
lations. There is also a variable that represents the ratio between TL and the Single Copy Gene
ratio (QPCR), another measure for TL.

PET layer. Acquisition and standardized preprocessing steps of MRI and PET data in
ADNI have been reported previously and are described in detail on the ADNI website [17].
Only the variables that have the largest relevance in the development of the disease are con-
sidered. Braak stages were used for tau [18], and the Landau signature was used for FDG,
which included the following regions: right and left angular gyrus, bilateral posterior cingu-
late, and right and left inferior temporal gyrus [19]. Finally, regions used for A were: anterior
cingulate cortex, isthmus cingulate cortex, posterior cingulate cortex, inferior frontal gyrus
(pars opercularis, pars triangularis, and pars orbitalis), lateral orbitofrontal cortex, medial
orbitofrontal cortex, middle frontal gyrus (caudal and rostral middle frontal), superior frontal
gyrus, frontal pole, inferior temporal gyrus, middle temporal gyrus, superior temporal gyrus
(superior temporal and transverse temporal), fusiform gyrus, entorhinal cortex, parahip-
pocampal gyrus, lingual gyrus, lateral occipital gyrus, temporal pole, insula, inferior parietal
gyrus, supramarginal gyrus, precuneus, superior parietal gyrus, precentral gyrus, postcentral
gyrus, paracentral gyrus and cuneus [17].

MRI layer. Cortical thicknesses from two signature AD regions were taken into account.
First, Dickerson’s signature, which refers to brain regions known to be highly atrophied due
to AD, making them susceptible to thinning in subjects who might be in very early stages.
Therefore, tracking the thickness of these regions years before symptoms appear could help in
early detection and intervention. It encompasses all parietal as well as frontal regions and the
supramarginal [20]. The second one, Jack signature, involves the entorhinal, inferior temporal,
middle temporal, inferior parietal, fusiform and precuneus areas [21]. Cortical volume, thick-
ness average, and standard deviation were used for all those regions, and also total brain gray
and white matter volume as well as CSF volumes. Lastly, we also collected data from tensor
based morphometry and atrophy measures.

Phenotype layer. This is considered to be the top layer of our multilayer model. On
the one hand, we have all the cognitive tests scores: Alzheimer Disease Assessment Scale
(ADAS) [22], Mini-Mental State Examination (MMSE) [23], Montreal Cognitive Assessment
(MOCA), the composite executive function score, composite language, memory and visu-
ospatial scores. On the other hand, there are also two diagnosis variables, which indicate the
level of dementia of the subject: the Clinical Dementia Rating (CDR) and the clinical diag-
nosis [24]. It defines the group the subject belongs to: controls, Mild Cognitive Impairment
(MCI) patients or AD patients.

Risk factors layer. This layer contains a variety of different aspects such as comorbidi-
ties, clinical history, demographics, depression, and more. The information in the majority
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of these variables is either binary (with a value of 0 or 1 representing if there is an absence or
existence of a given risk factor, respectively), or categorical, like gender (PTGENDER), hand-
edness (PTHAND) and marital status (PTMARRY). Additionally, we also have some quan-
titative measures such as birth year (PTDOBYY), years of education (PTEDUCAT), and fea-
tures given by scores, such as the total modified Hachinski score, which represents a sum of
all modified Hachinski comorbidities. Hachinski scores are a clinical tool to differentiate types
of dementia. In particular, modified Hachinski scores differentiate Alzheimer’s type dementia
and other dementias [25].

Data processing

The omics, imaging and clinical datasets were utilized to construct the multilayer network,
with each dataset corresponding to a layer within the network. The datasets were scrutinized
to address missing values and to determine which patients had data available for each layer.
Notably, no imputation techniques were employed in this study. The patients were stratified
into three groups: healthy, mild and severe, based on the clinical diagnosis variable.

Multilayer network construction

Following the workflow proposed in [11], the first step in building the multilayer network was
to construct individual networks from each of the six datasets by computing mutual informa-
tion between nodes within each layer (mutual information was preferred over linear measures
of correlation to account for the nonlinear nature of many biological processes). The networks
within each layer were constructed separately, to highlight their inherent differences and to
make use of the maximum number of available subjects for each dataset because not all sub-
jects have data for all the layers. Moreover, when computing the mutual information between
a pair of variables, we included only those subjects who had valid (non-missing) data for both
variables in that pair. This approach allows us to maximize the use of available data for each
individual mutual information estimate, rather than restricting the analysis to the subset of
subjects with complete data across all modalities. Once the individual networks were con-
structed, features between layers were connected using mutual information too, based on
the information shown in Fig 8. However, not all layers were interconnected due to a pre-
determined hierarchy applied to the system. This resulted in a six-layer interconnected net-
work, with each layer comprising features derived from the original six datasets. The network
construction process is illustrated in Fig 5. Furthermore, a secondary network was then cre-
ated by incorporating all six datasets, employing linear correlation (Pearson coeflicient) to
establish the edge’s directionality. This latter network was then used in the path analysis.

Calculation of correlation for edges. Mutual information is a nonlinear measure of the
dependence between numerical variables [26]. It is not limited to variables in real numbers or
to linear relationships, so the mutual information is more general than Pearson’s correlation
coeflicient [27].

For discrete variables, mutual information is calculated using the binning method, which
consists in partitioning the supports of X and Y into bins of finite size [28]:

V)~ S p(ii p(ij)
050 St 0 ) w

If n,(i) is the number of points from X that fall into the bin i (analogously for n,(j)), n(i,j)
is the number of points that fall in the intersection, and N is the total number of points (sam-
ple size), then:
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(i)
N

p)~ 20 i)~

- n(i.j)
px(i) N )
which leads to (1).

On the other hand, the multilayer network used for the path analysis was constructed
using Pearson correlation coefficient, that provides a measure of the strength and direction
of linear relationships and it is a value between -1 and 1. Both measures were computed using
the scikit-learn library in Python [29].

Permutation test. We performed permutation tests to establish the statistical significance
of the mutual information and the Pearson coefficient quantifiers. To that end, we random-
ized the data and calculated the statistics of interest for this new dataset for 1000 realizations,
leading to a null distribution of the quantifier. A significance level of a = 0.05 was chosen,
meaning that the true statistics must be larger (in the case of a one-tailed test) or larger or
smaller (in the case of a two-tailed test) than 95% of the randomized measures to reject the
null hypothesis.

Connectivity. The density or connectance of a network is the fraction of observed edges
to the maximum possible number of edges (without self-edges), which is (3) = 1|V|(|V] - 1)
[30]. | V] is the order or number of nodes of a network and |E]| is the size or number of edges of

a network.
2|E|
Y i . )
IVI-(IVI-1)
For a weighted network we use an adaptation of the previous expression, changing the
numerator to the sum of the edge weights.
d — 2 ZVEV,MEV,LI$V W(:‘lgl’lt( u, V) (4)

IVI-(IvI-1)

A subtype of multilayer network is the bipartite network: networks in which there are two
types of nodes, belonging to two distinct subnetworks G; and Gj, in such a way that edges can
only connect nodes of different types. For this type of network, the density has the following
definition:

ledge weights between G; and Gj|
Vil - Vil

dyp = (5)
Note that in this case the maximum number of possible connections (denominator) is |V;| -
|Vi| because each node i from G; can be connected to all nodes j from G;.

Path identification

Average shortest path length. We used Dijkstra’s algorithm to solve the single-source
shortest paths problem in our weighted graphs. This algorithm computes a minimal spanning
tree, a tree-like structure that connects the source node (the initial node, in which the path
starts) to every other node in the graph following the shortest path to each one.

This method can be used to measure a statistic of interest for characterising a network. In
particular, the average shortest path length is given by the formula (6):

_ Zv,uEVd(V’ M)
M- ©
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where V is the set of nodes, | V] is the total number of nodes and d(v,u) is the length of the
shortest path between v and u. In the case of networks in which the weight associated with
the connections is not the distance that separates the nodes, but how strong the connection
between them is, we take the distance as the inverse of this weight. Then, for a weighted net-
work, the average shortest path length gives information on how strong the connections
between nodes are.

Boolean modeling. As described before [11], the method of path identification involved
constructing a combined six-layer network using Pearson correlation. Inspired by [31],
Boolean simulations were then employed to analyze the flow of information across the net-
work, with a particular focus on how perturbations affect nodes in different layers, especially
those related to the phenotype. The aim was to identify variations in paths that converge in
the clinical phenotype in individuals with AD.

Each element in the network, belonging to one of the six layers, is assumed to be either
active or inactive. The Boolean simulation starts in a random state, where each element has a
50% chance of being active or inactive. At each iteration, the activation status of the elements
is updated based on the sum of their neighbors’ states (Fig 1). The connections between the
elements are either activating (positive) or inhibitory (negative). To determine whether a node
will be active or inactive in the next iteration, each neighbour contributes a score based on the
weight and sign of the corresponding Pearson correlation. The total sum of the weights of the
neighbours determines the node’s activation status in the subsequent iteration.

The simulation was conducted for 100 steps by updating the states of the elements in each
iteration. One node was selected as the input and manually switched between active and inac-
tive states in a defined period (i.e., 10 iterations active, then 10 iterations inactive) to analyze
how perturbations propagate through the network and impact a given phenotype (output).
To account for the stochastic nature of biological systems and prevent the simulation from
settling into a fixed state, noise was introduced by assigning a probability for each element
to change its state at each iteration. Fig 2 illustrates the effect of noise on the system. A noise
level of 5% was chosen as it highlights differences in the cross-correlation of signals between
nodes. In the absence of any noise, many nodes remain inactive or active for most of the sim-
ulation, resulting in high cross-correlations between nodes and masking the subtle variations
in connection strength.

: : @®
" 03 N

0.3 ] 0,

/' 9 A A ﬁ B A

05 05~ s
e . B
c c e
Active . mm Positive
Boolean state Pearson correlation ‘

® Inactive mm Negative

Fig 1. Boolean dynamics. Boolean dynamics are implemented on the networks, wherein the activation state of
nodes undergoes changes determined by the cumulative sum of edge weights from their direct neighbors, taking into
account the signs of connections as indicated by the Pearson coefficient: if the total sum is positive, the node becomes
active, otherwise it becomes inactive. In this example, node A starts out inactive. Node B is active and is linked to
node A by an edge with a negative contribution of 0.3. On the other hand, node C, which is also active, contributes to
the activation of A positively with a weight of 0.5. In total, the contribution is 0.2, so node A is activated. In the next
step, A is active and contributes positively to the activation of C, so C remains active. However, the contribution to
node B is negative, so it becomes inactive.

https://doi.org/10.1371/journal.pchi.1013583.9001
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Rank of Cross correlation

Fig 2. Impact of noise on the cross-correlation coefficient of signals between nodes in a combined network. In the absence of noise (0%), the majority of
cross-correlation values approached 1, making it challenging to rank node pairs based on connection strength. However, with 5% noise, the cross-correlation
values exhibited greater variation, enabling easier identification of paths between a selected source and target.

https://doi.org/10.1371/journal.pcbhi.1013583.9002

Following the simulations, a temporal cross-correlation function was computed between
all pairs of nodes using the same measure of similarity as in [31]. The highest cross-
correlation, potentially occurring at a non-zero lag time, was identified, and its reciprocal
was assigned as a weight to the edges within the existing network. The high correlation val-
ues corresponded to low weights, and if there was no edge in the original network, no edge
was added to the new network. The target phenotype was chosen, and the most efficient paths
between it and the fixed source were identified based on the lowest path score, which was
defined as the total sum of the weights (inverse maximum cross-correlations) of the edges
connecting the source and target (Fig 3). The path score prioritized paths with both a min-
imal number of steps and high cross-correlations between nodes within the path. Dijkstra’s
algorithm was employed to pinpoint paths with the lowest path scores. Simulations were car-
ried out for every conceivable pair of inputs and outputs to investigate the flow of information
throughout the entire network, offering insights into the underlying pathology in AD.

To test the consistency of the results, we performed negative controls of the paths by per-
muting the six-layer network constructed with the Pearson correlation, as illustrated in Fig 4.
This process involved swapping edges between node pairs in the network, and it was repeated
100 times. Importantly, an edge swap was only performed if it did not result in two edges con-
necting the same node pair. This approach maintained the original network’s degree distribu-
tion. Additionally, the weights associated with each edge were permuted. The code to perform
the permutation of the edges has been modified from the code published on [32]. Each edge
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Path score = 1/C1 + 1/C2 + 1/C3

Fig 3. Calculation of the path score. The cross-correlation coefficient is computed by assessing the signals for each
connected node pair. A path score is then determined for all possible paths, defined as the sum of the reciprocals of
the cross-correlation coefficients between consecutive node pairs along a specific path.

https://doi.org/10.1371/journal.pchi.1013583.9003

in the original network underwent this edge swapping technique 10 times. Once the permuta-
tions were completed, the top paths for each network were identified using the same method
as before (Fig 5).

Results

A cross-sectional study was performed by integrating data from the ADNI cohort
(https://adni.loni.usc.edu/) at different biological scales: MRI, PET scans (including AB, tau
and FDG PET), CSF/plasma proteomics, genetic information, risk factors and cognitive tests
and diagnosis assessment conforming the phenotype (Fig 6). The results center around the
identification of paths connecting these biological layers. The following paragraphs outline

how these paths were discovered, and which sources are more strongly linked to the pheno-
type. The initial step provides descriptive details about the data, followed by the construction
of the networks. Subsequently, Boolean simulations are executed, and ultimately, the most
significant paths and nodes are chosen.

Comprehensive phenotypic profiling: multi-omics, imaging, and clinical
data across the ADNI cohort

The subjects for the study were classified, using exclusively clinical criteria, as controls
(n=622), subjects with MCI (n=807), or subjects with AD (n=533). As shown in Table 1, the
mean age of the 3 groups was equivalent at approximately 74 years. There were an approx-
imately equal number of men and women in the control, but there were more men than
women in the MCI and AD groups. More than half of the patients in the AD group were
APOE4 carriers, while the controls were less than 30%. Data corresponding to the concentra-
tion of cerebrospinal fluid biomarkers A4, tau and p-tau were collected from the University
of Pennsylvania Alzheimer’s Disease Clinical Core dataset.

Multilayer networks in AD

In order to create networks for each of the six layers, connections between pairs of elements
within each layer were established using mutual information, as explained in [11]. Node pairs
within the same layer were connected to one another with a weight equal to the normal-

ized mutual information between them. A statistical threshold was implemented to examine
whether the correlation for a given pair was strong enough to establish an edge. Specifically,

a node pair’s actual mutual information value was compared to a surrogate distribution of
mutual information values derived from random permutations of the data, and a p-value was
computed. Only pairs with p<0.05 were retained as significant, and an edge was established
between the corresponding nodes.
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Fig 4. Network permutation for negative controls. In this example, in the first permutation, the edges (b,c) and (d,e) were
exchanged with the edges (b,d) and (c,e). For the second permutation, the edges (a,e), (b,c) were swapped with the edges
(a,c) and (b,e). In the third permutation, the top network’s edge swap was applied first, followed by the middle network’s
edge swap: (a,b), (b,c) and (d,e) were exchanged for (a,c), (b,d) and (b,e). Three possibilities were considered when deter-
mining if the paths from the original network appeared in the permuted networks. In the first permutation, the path existed
in the permuted network and was also identified as a top path. In the second permutation, the original path existed in the
permuted network but was not identified as a top path. Finally, in the third permutation, the original path did not exist in
the permuted network at all.

https://doi.org/10.1371/journal.pcbi.1013583.9004
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Fig 5. Illustration of the multilayer network construction. Icons were adapted from freely available resources at
Openclipart and Wikimedia Commons, under Creative Commons licenses.

https://doi.org/10.1371/journal.pcbi.1013583.g005

The individual genetic, molecular and phenotype networks have few variables, due to prior
selection performed to retain only those features thought to have an appreciable effect on
the diagnosis of AD (Fig 6). Genetic and phenotypic networks are less connected than the
molecular network: the connections in the latter have a higher associated weight. In turn, the
PET and MRI networks are larger in size due to the numerous brain regions contained in the
dataset. The nodes in these networks represent functionally connected regions, reflecting rela-
tionships in terms of metabolic processes or neuronal activity. On the other hand, the risk
factor network also has a large number of nodes, but the weight of their connections is gener-
ally low, which gives us an idea of how little dependence there is between the variables. This is
to be expected given the nature of this dataset: risk factors range from the patient’s gender to
whether they have respiratory problems, therefore such weak correlations between variables
are not surprising.

Our approach to the multilayer network hierarchy is originally hypothesis-based, rather
than data-based: each individual network forms a layer or level in the structure of this model,
representing a different biological scale (Fig 7). The genomics layer sits at the bottom of the
hierarchy and is connected with the molecular layer, constituting the microscopic substrate
of the disease. The tissue imaging layers (PET and MRI) are the central functional layers,
which, connected to each other and forming a bridge between the microscopic (genome and
molecules) layer and the clinical output. The risk factor nodes form a loosely connected cloud
around the main structure, although some of their connections are strong: this is the case of
the year of birth (age) and gender of the patients. This analysis thus produced a network of six
connected layers, where each layer contains features (variables) from each of the six original
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Fig 6. Individual networks. The data from each layer is taken from the ADNI cohort and used to create networks, with nodes representing the dataset’s ele-
ments (genetics, molecular, PET, MRI, risk factors, and phenotype) and edges representing the mutual information between element pairs across all subjects.
For clarity, nodes are labeled numerically in the figure, and the corresponding variable names are provided in S1-56 Tables. See high resolution networks at
https://dsb-lab.github.io/networks/

https://doi.org/10.1371/journal.pchi.1013583.9006

Table 1. Characteristics of the ADNI cohort

Groups Controls (n=622) MCI (n=807) AD (n=533)
Age 74+7 74+ 8 75+ 8
Female, % 54.5 39.1 43.6

Age at disease onset - - 76 + 8
APOE €4 carriers, % 29.4 48.0 64.8

ABa4, pg/ml 203 +50 174 £ 53 143 + 41
tau, pg/ml 65 + 31 86 + 52 122 + 60
p-tau, pg/ml 32+18 38+21 50 £29

https://doi.org/10.1371/journal.pcbi.1013583.t001

datasets (Fig 7). Here, connections between layers that do not conform to the proposed struc-
ture have been eliminated, as the hierarchy that we apply to the system is for representation
only. In the rest of the paper we consider the global network without a predefined hierarchy,

to avoid possible biases.

First we proceeded to examine whether the connectivity of the global network reflects the
biological organization into layers discussed above. To that end, node pairs were connected
to each other irrespective of their layer, without a predefined hierarchy, and the connectance
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Fig 7. Multilayer network. Following a hierarchy that connects each layer successively, starting with the genomics layer and working up to the phenotypic
(clinical) layer, individual networks are created and linked together using mutual information once again. The risk factors nodes are shown in the periphery
of the network, as well as being external to the biological hierarchy, for visualization purposes. For clarity, nodes are labeled numerically in the figure, and the
corresponding variable names are provided in S1-56 Tables. See high resolution image at https://dsb-lab.github.io/multilayer_net/.

https://doi.org/10.1371/journal.pcbi.1013583.9g007

matrix between two layers i and j was calculated as follows:

o[ ifisj -
TTL A i

Here d is the standard connection density within a layer, as defined by (4) in the Materials
and Methods section, and d, is the connection density of the bipartite network where each
of two layers is one of the two node sets, as defined by (5). The latter measure is used because
in the case of off-diagonal elements (different layers), we are only interested in how connected
the nodes of one layer are to those of the other, but not with nodes of their own layer.

The resulting connectance matrix is shown in Fig 8. A significant level of network mod-
ularity was discovered by this comparison of connections within and between layers,
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Fig 8. Network densities within and between layers. The connectance matrix was calculated using the expression in (7).

https://doi.org/10.1371/journal.pcbi.1013583.9008

confirming the existence of an underlying multilayer structure: the connectivity within indi-
vidual layers is higher than that between different layers. With the exception of risk factors,
features within a level tend to be more correlated than between levels. The most prominent
example of this is the MRI layer. The nodes in this layer are so closely related to each other
because of the similarity between all the variables, representing levels of atrophy in different
parts of the brain, as opposed to, for example, the nodes in the molecular layer which mostly
represent concentrations of different proteins.

Dynamic network analysis identifies paths associated with phenotype

To obtain a functional view of the information flow across layers, we aimed to integrate all
six layers into paths that reflect network dynamic interactions. We constructed a single net-
work comprising all layers using linear (Pearson) correlations that distinguish between stim-
ulatory or inhibitory edges, depending on the correlation value being positive or negative,
respectively. To explore the logical structure underlying the network, we conducted logic
(Boolean) simulations. These simulations use knowledge of activating and inhibiting relation-
ships between nodes while ignoring the exact functional reactions between the nodes, thus
providing a qualitative description of the system [31]. Nodes are either active or inactive, and
their states are updated synchronously in each iteration of the simulation, depending on the
activation states of their direct neighbors and the weights of the corresponding connections.
Our next objective was to investigate how dynamic changes in a specific input propa-
gate through the network and ultimately impact a given phenotype. We achieved this by
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performing Boolean simulations, as described above, where the input node was periodically
switched between active and inactive states. The responses of all nodes in the network were
then measured by computing the temporal cross-correlation function between their time-
varying state and the dynamic input signal. We then identified the paths in the network with
the highest overall temporal cross-correlation between their signals, which indicate how
information flows from the input to the output. The paths were chosen based on the low-
est path score, which was defined as the total sum of the weights (inverse maximum cross-
correlations) of the edges connecting the source and target [31]. While these paths may not
necessarily reflect physical interactions among nodes, they represent groups of nodes that
co-vary statistically more strongly with each other than the rest of the network.

For each combination of inputs and outputs, we selected the top ten paths with the high-
est joint cross-correlation values between their constituent nodes, resulting in a total of
30,000 combinations. Figs 9, 10, 11, 12 and 13 show these paths for the five inputs (genetic,
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Fig 9. Path analysis from the genetic layer in ADNI participants. Depictions of the multilayer paths identified through
Boolean simulations with the genetic layer as the starting point. The top paths, meeting criteria for negative controls, are
presented for each input (genetic) - output (clinical phenotype) pair. Nodes within each layer are color-coded to reflect
the node’s degree, indicating the frequency of its appearance in a path as a percentage of the total paths. For clarity, nodes
are labeled numerically in the figure, and the corresponding variable names are provided in S1-S6 Tables. For detailed
high-resolution paths, please refer to https://dsb-lab.github.io/network_paths/.

https://doi.org/10.1371/journal.pcbi.1013583.g009
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Fig 10. Path analysis from the molecular layer in ADNI participants. Depictions of the multilayer paths identified through Boolean simulations with
the molecular layer as the starting point. The top paths, meeting criteria for negative controls, are presented for each input (molecular) - output (clinical
phenotype) pair. Nodes within each layer are color-coded to reflect the node’s degree, indicating the frequency of its appearance in a path as a percentage
of the total paths. For clarity, nodes are labeled numerically in the figure, and the corresponding variable names are provided in S1-S6 Tables. For detailed
high-resolution paths, please refer to https://dsb-lab.github.io/network_paths/.

https://doi.org/10.1371/journal.pcbi.1013583.g010

molecular, PET, MRI and risk factors) and outputs (phenotype) pairs for participants in the
cohort. Darker color represents more connections among the nodes.

To evaluate the specificity of the Boolean simulations, we randomly permutated the net-
work connections as described in the Materials and Methods section, to identify negative con-
trol paths that were then compared to those identified in the original networks. We focused
on paths that appeared in less than 1% of the permutations. Out of the 30,000 total paths
identified from participants in the cohort, 17,877 did not appear at all in 100 realizations of
the simulations in the permutated paths. The top paths (those that passed the test for negative
controls) are shown in Figs 9, 10, 11, 12 and 13 for each input (genetic, molecular, PET, MRI
and risk factors) and output (phenotype) pair. All variables with their acronyms are listed in
S1-S6 Tables. Also, to better illustrate the interrelationships between phenotypic variables,
we provide in S1 Fig a matrix for each path analysis with the number of connections between
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Fig 11. Path analysis from the PET layer in ADNI participants. Depictions of the multilayer paths identified through Boolean simulations with the PET
layer as the starting point. The top paths, meeting criteria for negative controls, are presented for each input (PET) - output (clinical phenotype) pair. Nodes
within each layer are color-coded to reflect the node’s degree, indicating the frequency of its appearance in a path as a percentage of the total paths. For clarity,
nodes are labeled numerically in the figure, and the corresponding variable names are provided in S1-S6 Tables. For detailed high-resolution paths, please
refer to https://dsb-lab.github.io/network_paths/.

https://doi.org/10.1371/journal.pcbi.1013583.9011

the nodes of the phenotypic layer. The method for path identification and network permuta-
tion is illustrated in the Materials and Methods section (see Fig 4). To further explore hetero-
geneity and disease progression, we performed separate path analyses within the control, mild
cognitive impairment (MCI), and Alzheimer’s disease (AD) groups using the same method-
ology described above. For each diagnostic subgroup and input data layer, we identified the
top 10 paths with the highest joint cross-correlation. S8-522 Tables provide these top paths
along with the frequency of co-occurring node pairs within each path. This stratified analysis
reveals both common and unique network patterns across disease stages, offering insight into
the evolving phenotypic complexity of AD.

Path analysis

We now discuss the top 10 paths with the highest joint cross-correlation values. In what fol-
lows, the information flows along each path from left to right, and the perturbation starts at
the first node. The paths more commonly found are the following.
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Fig 12. Path analysis from the MRI layer in ADNI participants. Depictions of the multilayer paths identified through Boolean simulations with the MRI
layer as the starting point. The top paths, meeting criteria for negative controls, are presented for each input (MRI) - output (clinical phenotype) pair. Nodes
within each layer are color-coded to reflect the node’s degree, indicating the frequency of its appearance in a path as a percentage of the total paths. For clarity,
nodes are labeled numerically in the figure, and the corresponding variable names are provided in S1-S6 Tables. For detailed high-resolution paths, please
refer to https://dsb-lab.github.io/network_paths/.
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APOE_A1 (copy 1 of APOE gene) - ANGULL01_FDG (globally normalized CMRgl
from left angular gyrus) — AXRASH (rash) — any node of the phenotype layer, when
the input is applied to the genetic layer (Fig 9).

UPKelec_TAU (CSF total Tau using the fully automated Roche Elecsys immunoassay)
— ANGULL02_FDG — APP (CSF amyloid precursor protein) — ADSP_VSP (har-
monized composite visuospatial score), ADSP_EXF (harmonized composite executive
function score), ADSP_MEM (harmonized composite memory score), MMSE (Mini
Mental State Examination) and MOCA (Montreal Cognitive Assessment test), when the
input is applied to the molecular layer (Fig 10).

CINGPSTR12_FDG (globally normalized CMRgl from right posterior cingulum cor-
tex) - AXCRYING (crying) - AXDPMOOD (depressive mood) — ADSP_EXEF, when
the input is applied to the PET layer (Fig 11).

ST44CV (cortical volume of left parahippocampal) - AXDPMOOD - GDS (Geriatric
Depression Score) — MOCA, when the input is applied to the MRI layer (Fig 12).
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Fig 13. Path analysis from the risk factors layer in ADNI participants. Depictions of the multilayer paths identified through Boolean simulations with
the risk factors layer as the starting point. The top paths, meeting criteria for negative controls, are presented for each input (risk factors) - output (clinical
phenotype) pair. Nodes within each layer are color-coded to reflect the node’s degree, indicating the frequency of its appearance in a path as a percentage
of the total paths. For clarity, nodes are labeled numerically in the figure, and the corresponding variable names are provided in S1-S6 Tables. For detailed
high-resolution paths, please refer to https://dsb-lab.github.io/network_paths/.

https://doi.org/10.1371/journal.pcbi.1013583.9013

o« AXELMOOD (elevated mood) - AXCRYING - AXDPMOOD — ADSP_MEM, when
the input is applied to the risk factor layer (Fig 13).

When perturbing sources belonging to the genetic layer (reflecting genetic variability
contributing to the risk of developing AD), we see that there is no transition through all the
intermediate layers of the network: molecular nodes scarcely appear in the paths, and no
node from the MRI layer appears (Fig 9). Perturbations were directly linked to the PET and
risk factor layer, whose nodes represent aspects of the patient’s medical history and age, and
these to changes in clinical outcomes. Perturbations of the molecular network (representing
changes in protein concentration) have a direct influence on the PET layer, in particular on
FDG signal for the angular and cingulum posterior nodes, and are less related to impact MRI
nodes, although some of these represent neurodegeneration like FDG PET (Fig 10). Then, the
central involvement of FDG PET nodes suggest an important role of brain hypometabolism
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in the clinical phenotype. For both genetics and molecular nodes, we found little information
flow coming from the phenotype layer.

The number of paths increases considerably when we have perturbations at the imaging
level (representing changes in protein concentration in the case of PET and changes in brain
tissue degeneration in the case of MRI) (Figs 11 and 12) and at the risk factor level (Fig 13).
Moreover, these paths show a stronger influence on the phenotype compared to those orig-
inating from, for example, the genetic layer, as visually reflected by the thicker edges in the
figures. When the origin of the input is at the PET layer, the input nodes have little connec-
tivity with the genetic layer nodes. In fact the PET nodes are mainly related to the risk factor
layer and, through it, to the MRI nodes or directly to the phenotype nodes. The case of MRI is
analogous: there are not so many connections with the deeper layers (genetic and molecular).
The importance of the MRI nodes is more distributed, i.e. they appear with similar frequency
in the paths, while we see that the relationship with the PET layer is quite centred on the
nodes: CMRgl of the angular gyrus and posterior cingulum cortex. The indirect interaction
with risk factors is also notable, highlighting some specific nodes related to symptomatology,
which are discussed below. This indirect interaction is also found in the opposite direction,
when the source belongs to the risk factor layer. In this case, however, we do not see a strong
influence on the genetic layer. This is consistence with expectations: genes can be expected
to influence the occurrence of some risk factors, but logically these factors cannot change the
genetic information of the person, which is determined from birth.

In general, our results show that as we move towards the highest-scale layers (the imaging
layers and risk factors layer), the paths have very little tendency to return to the genetic and
molecular layers, which shows the importance of considering AD as a multiscale disease, with
the layers connected with different strengths and where information flows from the genetic
and molecular layers, having increasing influence on the phenotype as we move up the layers.

Contrary to what might be expected, the concentrations of A and tau do not appear fre-
quently in the paths, thus their influence on the system is very low. It is also important to
highlight the presence of the angular gyrus and posterior cingulum cortex FDG nodes from
the PET layer in most of the paths, almost independently of the layer to which the source
belongs. All together, our analysis points to a relevant role of brain hypometabolism (FDG
PET) on the information flow compared with A and tau nodes.

To further characterize the role of FDG PET nodes within the network, we systematically
analyzed their upstream and downstream connections with variables from other layers and
showed the summary in Table 2. This analysis revealed that FDG PET nodes maintain a high
number of edges with the MRI layer, with an average mutual information of ~ 0.99, suggest-
ing a very strong correspondence between regional metabolic activity and structural neu-
rodegeneration and also connect extensively with the molecular layer (average MI ~ 0.97),
reflecting their close relationship with protein concentrations. Connections with the pheno-
typic layer were also robust (average MI ~ 0.78), highlighting the downstream influence of
FDG PET features on cognitive and clinical outcomes. By contrast, FDG PET nodes showed

Table 2. Summary of FDG PET connectivity across network layers.

Layer Average Mutual Information (MI) Number edges
Molecular 0.9675 60

MRI 0.9911 286

Risk Factors 0.1819 148

Phenotype 0.7788 129

https://doi.org/10.1371/journal.pcbi.1013583.t002
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a large number of connections with the risk factor layer, but the average MI was much lower
(~ 0.18), indicating weaker but widespread associations driven by the diversity of variables

in this layer. Overall, this analysis, complementing the path analysis, demonstrates that FDG
PET nodes are highly connected across all layers of the network, acting as central integra-
tors of upstream molecular and structural alterations and downstream clinical phenotypes. A
detailed list of FDG PET connections with nodes from all other layers is provided in S7 Table.

Among the variables in the phenotypic layer, MOCA consistently emerged as a recurrent
node across all inferred paths, regardless of the input source (genetic, molecular, imaging,
or risk factors). This suggests that MOCA is one of the most frequently involved phenotypic
outcomes in the network, acting as a common downstream element influenced by multiple
biological and clinical factors. Notably, this centrality can be attributed to MOCA’ high level
of correlation with a broad range of variables from other layers. The path selection process
is based on dynamic Boolean simulations and quantified using temporal cross-correlation
between the input signal and the state of each node. Because MOCA exhibits strong tempo-
ral cross-correlations with many other variables across the network, it is more likely to appear
in high-scoring paths. Also noteworthy is the influence of the patient symptoms, whose vari-
ables are found in the risk factor layer and include low energy, diarrhea, crying, elevated and
depressed mood, among others. Several of these symptoms (in particular, HMSCORE, AXDI-
ARRH, AXENERGY, AXDPMOOD, and AXCRYING) appear recurrently across the inferred
paths, regardless of the data layer from which the path originates. This is the same case as the
MOCA variable.

The analysis shown above could provide information on the modifiable risk factors that
can be used in preventive lifestyle modification trials. In order to detect at which levels these
factors have an impact, we have depicted in Fig 14 the 20 shortest paths that arise when the
origin is a risk factor node. The main sources for these paths are drowsiness, hypertension,
crying, cardiovascular history and musculoskeletal pain. It can be seen that only the risk fac-
tor layer is involved and is directly related to the target, which is the phenotype layer. In par-
ticular, other risk factor nodes related to the sources appear, for example, low energy (180),
related to drowsiness and muscle pain, or depressive mood (195), related to crying. No nodes
from the genetic, molecular or imaging layers appear in these paths. Vascular health and mus-
cle pain are related to executive and visuospatial function, while variable crying is also related
to executive function and memory.

Consistent with the results obtained from the analysis including all participants, we
observed that across all three groups (controls, MCI and AD patients) the largest number
of inferred paths originates from perturbations applied to nodes in the PET and risk factor
layers, compared to inputs from the genetic or molecular layers. A striking finding was that
in both the MCI and AD groups, every single path, regardless of its source, includes at least
one node from the PET layer, underscoring the dominant role of PET abnormalities in medi-
ating network-level influences in more advanced stages of the disease. This pattern was not
observed in the control group, where PET involvement was less frequent. The critical impor-
tance of PET features in MCI and AD likely reflects their ability to capture early metabolic
and neurodegenerative changes that integrate upstream molecular signatures and are closely
linked to downstream phenotypic manifestations.

Another key difference between the diagnostic groups was the presence of molecular
biomarkers of Alzheimer’s pathology in the paths. While in the global analysis (using all
participants) the classical protein biomarkers A and tau appeared infrequently, this pat-
tern changed notably in the MCI and AD groups. In these groups, concentrations of A342
were present in a substantial proportion of the inferred paths, indicating that their influ-
ence becomes more pronounced in individuals already presenting cognitive impairment or
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(b) Hyertension
(204)

(a) Drowsiness
(181)

(d) Cardiovascular history (e) Musculoskeletal pain
(218) (192)

Fig 14. Selection of the top paths when the source is a risk factor node. The top 20 shortest paths are presented for each input (risk factors) - output (clinical
phenotype) pair. Nodes in the risk factor layer are shown in yellow and those in the phenotype layer in blue. The paths for a particular source out of the five
chosen are shown in red: drowsiness, hypertension, crying, cardiovascular history and musculoskeletal pain. For clarity, nodes are labeled numerically in the
figure, and the corresponding variable names are provided in $6 Table. For detailed high-resolution paths, please refer to https://dsb-lab.github.io/risk_paths/.

https://doi.org/10.1371/journal.pchi.1013583.9014

clinical dementia. This aligns with the known progression of AD pathology, in which amy-
loid accumulation precedes and likely contributes to widespread network dysfunction as the
disease evolves.

Discussion

Our study addresses the complexity of AD from a holistic perspective, exploring the con-
nections between the genetic, molecular, and clinical factors that underlie this pathology.
Using a systems biology approach, we have integrated genomics, brain imaging, and clinical
data to analyse AD. We use multilayer network analysis and deep phenotyping to unravel the
complex mechanisms underlying the disease. Our research reveals significant connections
between different biological features and the clinical manifestation of the disease. Our path
analysis identified the involvement of FDG PET in most of the key paths supporting the role
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of brain hypometabolism in the disease. As such, AD was proposed as a metabolic disease
[33-37]. These findings could significantly improve our understanding of AD.

Results obtained in previous studies support our finding. For instance, there is a clear
influence of metabolic changes on the disease in the regions of the angular gyrus and pos-
terior cingulate cortex [38]. The relationship of these areas with the cognitive dysfunction
associated with AD is probably related to their involvement in various cognitive processes
such as attention, visuospatial processing, and memory. This is consistent with the brain
hypometabolism observed in Alzheimer’s disease patients [39-42]. [43] explores how restor-
ing glucose metabolism in the hippocampus can improve cognitive function. In addition,
neuronal dysfunction in these areas may contribute to the manifestation of emotional symp-
toms, such as depression and mood swings [44,45]. Cardiovascular history has also been asso-
ciated with an increased risk of cognitive decline and dementia [46], including Alzheimer’s
disease and FDG hypometabolism in AD-sensitive regions [47,48]. Several observational
studies have shown the potential beneficial role of antihypertensive treatment in preventing
cognitive decline. However, these associations are complex and not fully elucidated [49].

Interestingly, Af and tau levels in the CSF are not very relevant in our global paths: they
do not show much direct association with cognition, probably because their effect is reflected
much more in PET and MRI nodes and these are the ones that affect phenotype the most,
making the effect of molecular nodes very diffuse, as other studies have pointed out [50].
However, given that APP levels in CSF represent the origin of some of the identified global
paths, it is interesting to focus prevention on reducing their proliferation. Therapies specifi-
cally aimed at modulating the activity of those elements have proved futile, probably because
they are carried out when cognitive symptoms are already present and their effect cannot be
reversed [51]. On the contrary, these results differ in the analysis by groups. In early stages
(control), information flow remains more distributed, and traditional biomarkers may not
yet dominate the network structure. As the disease advances (MCI and AD), specific nodes,
especially those from the PET layer and molecular layer (AB42), become increasingly cen-
tral. This group-level comparison provides further support for the hypothesis that higher-
level features such as PET metabolism and symptomatic risk factors mediate and amplify the
effect of underlying genetic and molecular variation, shaping the observed phenotype through
dynamically structured pathways.

On the other hand, our data suggests that early detection of these biomarkers could allow
preventive or therapeutic interventions aimed at modifying disease progression before clin-
ical symptoms appear. Moreover, our paths show that other symptoms such as low energy,
depressive mood, crying, and gastrointestinal issues may play a bridging role between physi-
ological disruptions and cognitive decline. This finding highlights the importance of consid-
ering these factors not merely as secondary outcomes or quality-of-life markers, but as poten-
tially influential components in the disease process itself. Their centrality in the network sup-
ports the rationale for incorporating psychosocial screening and targeted behavioral inter-
ventions as part of a broader, multimodal strategy for managing AD progression [52]. It is
also noteworthy the recurring presence in the path analysis of the MOCA variable, which may
serve as a sensitive indicator of cognitive change that reflects the influence of diverse under-
lying mechanisms. While caution is warranted in interpreting MOCA as a standalone diag-
nostic measure, our findings support its utility as a composite cognitive outcome that is highly
responsive to multimodal perturbations, making it a valuable target for future studies.

In the past, network techniques have shown to be very successful in offering useful insights
into the complicated molecular basis of illnesses, transcending the usual viewpoints centered
on single genes and pathways. Within the traditional network framework, molecules are inter-
connected based on their biological interactions, and by studying the structure and dynamics
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of these interaction networks, it becomes possible to uncover disease modules and nonlinear
pathways [53]. Weighted gene co-expression networks have been used, for instance, to iden-
tify groups of genes (modules) involved in various activated pathways leading to hypertension
[54] or to breast cancer and AD [55]. Recently, these approaches have evolved to encompass
multiple biological layers: in [56] protein-protein interactions related to essential hyperten-
sion were studied through network analyses, also in [57] diverse biological processes such

as membrane potential dynamics and signaling were studied within insulin-secreting cells.
Approaches based on multilayer networks have also produced notable results in the study of
cancer [58-63] and multiple sclerosis [11]. Moreover, new lines of research have been opened
up by the use of network-based models, for example by suggesting a possible connection
between age-related macular degeneration (nAMD) and neurodegenerative disorders such as
AD, schizophrenia and Parkinson’s disease [64]. Here we have applied a multilayer network
analysis to represent the flow of events that underlies the phenotype of a complex disease such
as AD.

Our multilayer network analysis enabled an examination of the interplay between vari-
ous biological scales in Alzheimer’s disease, revealing paths that connect six scales (genomics,
molecular, PET, MR, risk factors, and phenotype) through statistical associations. The anal-
ysis provides evidence for information flow across different scales, with the imaging levels
(PET and MRI) emerging as particularly informative. The layers interconnect with diverse
strengths, and information is modulated as it propagates across them [65,66].

Prior research has sought to establish a direct connection between the genomic layer and
phenotypes in various complex diseases, including AD [67,68]. However, genotypes, Af and
tau deposition, and brain metabolism alone have a limited ability to predict the phenotype
[69,70]. Our findings incorporate omics, imaging, and phenotype data, underscore the signif-
icance of conceptualizing AD as a multiscale condition. Additionally, the identified paths may
serve as potential targets for future personalized medicine treatments in AD.

The data obtained from the ADNI cohort proved to be rich, covering a broad spectrum of
scales. However, certain limitations were encountered during the extraction and analysis of
variables. While the cohort’s overall sample size was sufficient for detecting significant cor-
relations, some specific layers, such as the genomics one, had smaller sample sizes. This lim-
itation has an impact on both the construction of networks and the identification of paths.
Additionally, the analysis had to adopt a cross-sectional approach due to inadequate follow-
up in many participants. The inclusion of longitudinal data across all six layers would enhance
the value of future studies.

Conclusion

In summary, this study examined the functional connections among various scales of bio-
logical data of a complex disease with a complex genetic basis, namely AD. A key finding

of this study, observed from the computed principal paths, was the prominent role of cere-
bral hypometabolism, specifically in the posterior cingulate, as a significant predictor of the
average cognitive phenotype. Additionally, combinations of symptomatic variables related

to mental health (such as depression, mood swings, and drowsiness) and vascular features
(including hypertension and cardiovascular history) were also crucial in explaining the
observed cognitive phenotype. The approach to understanding complex biological systems
through network science is a very active interdisciplinary research field that is gaining more
attention nowadays. Multilayer networks offer several advantages in comparison to traditional
network approaches because of their enormous potential to explore the organisation and con-
nections of the different biological layers in both health and disease, making it a promising
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tool for future efforts in this area of research. This approach could be applied to other neu-
rodegenerative diseases and autoimmune disorders.
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