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Abstract 

With the rapid emergence of single-cell transcriptomics datasets, reproducible marker 

genes and functional annotation of cell type or state is becoming increasingly import-

ant. Conventional methods that rely on differential gene expression (DEG) analysis 

lack both consistency across datasets and functional annotations of selected mark-

ers. Here, we present scSCOPE, an R-based platform that utilizes stabilized LASSO 

(Least Absolute Shrinkage and Selection Operator) feature selection, bootstrapped 

co-expression networks, and pathway enrichments to identify reproducible and 

functionally relevant marker genes and associated pathways in scRNAseq data-

sets. Using 9 scRNAseq datasets from human and mouse immune cells generated 

by different sequencing technologies, we show that scSCOPE outperforms other 

conventional methods by automatically identifying cell type-specific marker genes 

and pathways with the highest consistency across all datasets. scSCOPE’s gene 

co-expression and pathway analyses also provide in-depth molecular insights into 

the functionality of identified marker genes. We anticipate that scSCOPE will greatly 

improve cell type annotation and accelerate the design of experimental validation and 

functional investigations on cell heterogeneity.

Author summary

With the growing number of single-cell transcriptomics datasets, it has become 
increasingly important to identify consistent markers that define cell types and 
their associated functions. However, existing methods rely heavily on analyzing 
individual gene expression, which can vary between experiments and fail to 
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capture the bigger picture of how genes work together. In our study, we present 
scSCOPE, a computational tool designed to address these limitations. Unlike 
traditional methods, scSCOPE not only evaluates gene expression but also 
incorporates gene co-expression. This approach enables the identification of 
marker genes and pathways of cell types of interest with the highest consistency 
across all datasets and provides in-depth molecular insights into the functionality 
of identified marker genes. We anticipate that scSCOPE will greatly improve cell 
type annotation and accelerate the design of experimental validation and func-
tional investigations on cell heterogeneity.

Introduction

Single cell RNA sequencing (scRNAseq) enables high throughput profiling of tran-
scriptomics for millions of cells at a time, and has transformed our understanding of 
cell heterogeneity, physiological state, and function in varied tissues across develop-
ment and diseases [1–7]. Cell type identification in scRNAseq requires clustering of 
cells into distinct cell types based on their gene expression profiles, followed by the 
identification of marker genes associated with each cell type [8]. Currently, marker 
gene selection in scRNAseq data is an error-prone task. This is because common 
marker gene identification methods rely solely on differential gene expression (DEG) 
analysis, where the highest differentially expressed genes are often selected as 
cell-type specific markers [9]. Similarly, to infer cell-type specific functionality, cur-
rent state-of-the-art methods use DEGs found in each cell type as inputs to look 
for pathway enrichments using databases such as KEGG, Gene Ontology [10–13]. 
These pathways are then ranked based on enrichment scores or p-values, which are 
directly influenced by the number of DEG inputs. Various state-of-the-art methods 
including Mast, Deseq2, Bimod, Wilcox Rank Sum Test, Roc, DESingle have been 
developed to identify DEGs in scRNAseq datasets [14–20]. These methods focus 
on mitigating the challenges associated with scRNAseq data’s inherent bimodality, 
dropout events, and technical variations [14–18,20,21]. However, there are two major 
limitations associated with these methods: (1) They analyze one gene at a time 
only based on expression values and do not consider gene-gene interactions, and 
therefore can be extremely sensitive to technical and biological variations in sample 
collection and sequencing platforms, resulting in low marker gene identification and 
pathway enrichment stability or consistency across datasets [22–24]. This is particu-
larly problematic for rarer cell types or transient cell states that are not well character-
ized; (2) Secondly, these techniques lack the capability to functionally annotate each 
marker gene in a particular cell type. As a result, researchers must manually choose 
a few marker genes from the pool of DEGs for experimental validation, based solely 
on their differential expression, and without functional insights.

Genes do not operate alone. Hundreds of genes can be regulated by the same 
sets of transcriptional drivers. Incorporation of gene co-expression along with DEG 
analysis can help improve the identification of cell-type specific marker genes and 
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pathways that represent functionally important molecular signatures of cell types/states that are stable across datasets. 
However, complex multi-gene models suffer from statistical instability, leading to inconsistencies when inputs are slightly 
altered [25–28]. This problem is particularly pronounced in scRNAseq analysis due to the variation associated with 
sequencing techniques and downstream data analysis [21].

To overcome these limitations, we have developed scSCOPE (single-cell Stabilized COre gene and Pathway Elec-
tion), which utilizes stabilized LASSO (Least Absolute Shrinkage and Selection Operator) feature selection, bootstrapped 
co-expression networks, and pathways enrichments to identify stable and functionally relevant marker genes and associated 
pathways for cell type identification and functional annotation using scRNAseq datasets [27–32]. scSCOPE is an extension of 
SCOPE, our previously established bulk RNAseq analysis method that empowers the synergy between co-expression analy-
sis and regularized multiple regressions to provide stable and robust predictions of marker genes and pathways [31].

We performed a systematic benchmarking of scSCOPE and other state-of-the-art methods [15–20] across 9 scRNAseq 
datasets including 6 human PBMC (Peripheral Blood Mononuclear Cell) [33] datasets and 3 mouse immune cell datasets 
generated by different sequencing technologies [34–36]. We also performed simulations to compare the performance of 
scSCOPE with other methods on synthetic datasets. Our results show that scSCOPE accurately identifies marker genes 
and pathways that (i) show a high degree of gene co-expression, an indicative of involvement in cell-type specific func-
tional programs; (ii) represent cell-type specific molecular signatures that can be reliably captured regardless of technical 
variations across different scRNAseq datasets. Furthermore, scSCOPE automatically annotates each marker gene with 
enriched pathways and gene co-expression to facilitate cell-type specific functional annotations and validation.

Results

The framework of scSCOPE

The input for scSCOPE is a clustered single-cell RNAseq dataset with an expression matrix (Fig 1A). Based on scRNA-
seq data clustering (Fig 1A), scSCOPE begins by running a bootstrapped logistic LASSO (see Methods) to identify “core 
genes” that robustly separate two groups of cells in multiple iterations [30] (Fig 1B). These “core genes” then undergo 
bootstrapped co-expression network analysis (Methods) to identify their stably co-expressed genes (“secondary genes”) 
(Fig 1C) [28]. The “core-secondary” gene pairs are subsequently subjected to pathway enrichment analysis (Methods; Fig 
1D), leading to a collection of pathways enriched in each cell type (Fig 1E) [32]. Next, the “core-secondary” gene pairs are 
ranked based on their pairwise correlations and enrichment in different pathways. Marker genes are then selected from 
all the genes in the top core-secondary gene pairs based on their differential expression (Methods, Fig 1F and 1G). All the 
marker genes identified by scSCOPE are annotated with the top pathways they are associated with. This provides import-
ant functional annotations of the selected marker genes (Methods). As a final step, scSCOPE employs a unique ranking 
system to assess the identified pathways by integrating the impact of both gene expression and co-expression (Methods). 
Taken together, scSCOPE harnesses information from multiple modalities to identify highly stable and functionally infor-
mative cell-type specific marker genes and pathways using scRNAseq data.

scSCOPE identified marker genes that are stable across datasets and relevant to cell-type specific functions

To assess the accuracy, stability, and functional significance of the markers and pathways identified by scSCOPE, we col-
lected 6 scRNAseq datasets on human PBMCs (Peripheral Blood Mononuclear Cells) generated from different sequenc-
ing technologies and 3 mouse immune cell datasets [33–36]. PBMCs, which include lymphocytes (T cells, B cells, and 
NK cells), monocytes, and dendritic cells, are one of the most well characterized cell types with identified cell markers 
and signaling drivers along each lineage [37]. The three mouse datasets are GSE109999, GSE168158 and Tabula Muris 
[34–36]. GSE109999 is a dataset of FACS-sorted immune cells (B-cells, T-cells, Granulocytes, Erythroblasts, and Progen-
itor cells) sequenced using CEL-seq2 technology [35]. As the cell types were determined prior to sequencing, this dataset 
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Fig 1.  Overview of scSCOPE Framework. (A) scSCOPE requires a gene expression matrix along with cluster annotations as input. (B) The input 
data undergoes Iterative Sparse Lasso Regression to identify genes capable of segregating two distinct groups. In each iteration of LASSO regression, 
data is split into training and testing groups with the same cluster composition as in the original dataset. Only those genes consistently chosen in over 
a threshold (θ) of iterations are designated as Core Genes. (C) Core Genes are then subjected to Bootstrapped Co-expression analysis, where all the 
genes significantly co-expressed or differentially co-expressed with the core genes are identified as secondary genes. This analysis is run in a 60% 
sub-sample of the original data for 100 iterations and only stable gene interactions that appear in more than K iterations out of 100 are selected. (D) 
Each core gene, and its stable secondary genes identified through Co-expression analysis, then undergoes Pathway enrichment analysis. (E) Pathway 
analysis can identify not only pathways enriched in the cluster but also core-secondary gene interactions and their involvement across multiple path-
ways. (F, G) The results from co-expression analysis, differential expression, and pathway enrichment are analyzed together to determine marker genes 
and pathways for the cluster of interest. Each of these steps are repeated and run in parallel for each analysis.

https://doi.org/10.1371/journal.pcbi.1013574.g001

https://doi.org/10.1371/journal.pcbi.1013574.g001
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is considered a gold-standard dataset (from here on referred to as “gsBlood” dataset). GSE168158 is a dataset of B-cells 
and its subtypes in the mouse bone marrow [36]. Tabula Muris is an extensive collection of single-cell transcriptome data 
obtained from around 100,000 cells representing 20 different organs in mice, including bone marrow (immune) cell types 
with pre-defined clusters that we analyzed here [34].

To assess scSCOPE in comparison to alternative state-of-the-art methods including Deseq2, Wilcox, ROC, Bimod 
and MAST, we measured the performance of each method for marker gene identification in simulated and real datasets. 
Simulated datasets were generated from GTEX single-cell data using a set of highly correlated genes for phenotype pre-
diction using linear and non-linear models [38] (Methods). For pathway identification, scSCOPE outperforms other meth-
ods across both linear and non-linear scenarios (Figs 2B, 2D and S1B). When a lower number of genes were available 

Fig 2.  Simulations comparing the performance of scSCOPE with other methods. F1 score = {TP/[TP + 0.5 × (FP + FN)]} calculated for the accuracy 
of scSCOPE and other methods in identifying predictive genes and pathways simulated in the GTEX single-cell gene expression data using linear (A, B) 
and non-linear (C, D) models across all simulations.

https://doi.org/10.1371/journal.pcbi.1013574.g002

https://doi.org/10.1371/journal.pcbi.1013574.g002
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for classification, other methods showed better performance-likely likely due to the dataset’s lower complexity (S1A Fig). 
However, as the number of genes used for prediction increased, scSCOPE more accurately identified them as compared 
to other methods in both linear and non-linear models (S1A Fig). This improvement was particularly pronounced under 
nonlinear conditions, highlighting scSCOPE’s ability to detect complex gene-gene interactions compared to other con-
ventional tools. Given that real scRNAseq data often exhibit unknown levels of correlation and may not conform strictly to 
linear assumptions, scSCOPE would likely outperform other conventional methods on marker gene identification. Thus, 
using simulated datasets, in comparison to other methods, scSCOPE demonstrated comparable performance under 
linear models and exhibited advantages under non-linear settings in identifying predictive genes (Figs 2A, 2C and S1A). 
In addition, we observed that scSCOPE exhibits a higher true positive rate (TPR) and a lower false discovery rate (FDR) 
in identifying both genes and pathways compared with other methods (S2 Fig). Across all simulation settings and meth-
ods, the number of false positive genes remained very low (fewer than five per simulation), whereas the number of false 
positive pathways was higher. This is because the same set of genes could be enriched in multiple overlapping pathways, 
which inflates pathway-level false discoveries.

With real datasets, we noted that scSCOPE identified a small number of marker genes (Fig 3A) compared to all the 
DEGs provided by other methods (S1 Table). DEGs were filtered based on their adjusted p-value (<0.05) and abs(logFC) 
(> 0.25). To compare the stability of marker gene identification, we used 6 human PBMC datasets [33]. For DEGs iden-
tified by other methods, we chose the top genes ranked by the highest average log2 fold change or lowest p-values to 
compare with scSCOPE. The stability of the top DEGs identified by each method and scSCOPE markers were then 
tested across the different datasets for each cluster (Fig 3B). We found that scSCOPE markers showed the highest level 
of consistency across all 6 datasets compared to all other methods when selecting different number of top marker genes 
(5,10,20,50) ranked by both average log2 fold change and p-value. (Figs 3C, 3D, S3A, and S3B). We also observed 
that Correlated Gene Network identified by scSCOPE is more stable as compared to differentially expressed genes 
(S3C Fig). In addition, we observed that more than 25 percent of marker genes identified by scSCOPE are identified by 
Co-expression alone in both real and simulated datasets (Fig 3E). This suggests that scSCOPE’s incorporation of gene 
co-expression networks improves the stability of marker gene identification as compared to conventional methods that are 
based on single-gene differential expression analysis.

Since scSCOPE considers the level of gene co-expression as a criterion for marker gene selection, we next assessed 
gene co-expression levels of scSCOPE-markers among all the DEGs using the Wilcox rank sum test. We first identi-
fied DEGs for each cell type in the gsBlood dataset, which were then subjected to “hub-gene” analyses using the String 
database and Cytohubba plugin within the Cytoscape application [39–41]. “Hub genes” are genes with the highest number 
of co-expressed genes [25]. We observed that the top hub genes consistently aligned with the scSCOPE-markers (S4A 
to S4C Fig). For example, 10 out of the top 15 hub genes in B-cells, 8 out of the top 10 hub genes in T-cells, and 9 out of 
the top 10 hub genes in Granulocytes were identified as scSCOPE-markers. This high degree of convergence suggests 
that scSCOPE indeed automatically identifies markers that show high levels of gene co-expression. The hub genes not 
selected as markers by scSCOPE are denied using criteria including pathway enrichment and differential expression.

scSCOPE provides functional annotations to cell-type specific markers

scSCOPE’s implementation of gene co-expression and pathway enrichment for marker identification automatically pro-
vides functional annotations to the selected markers. All the marker genes and their associated pathways are listed in S2 
Table. The gene co-expression networks across multiple pathways can be visualized by gene network plots generated 
using the “geneNetwork” function from the R-implementation of scSCOPE. We also created an interactive interface for 
generating gene network plots accessible at Gene Network (https://sant7.shinyapps.io/geneNetwork/).

As an example, scSCOPE identified Cd3d as a marker for T-cells (Fig 4A) and automatically revealed that Cd3d 
exhibits significant co-expression with genes in T-cell specific pathways, including Th17 cell differentiation, Th1 and Th2 

https://sant7.shinyapps.io/geneNetwork/
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cell differentiation, and T-cell receptor signaling pathways (Fig 4B–4E). In addition, the gene network plot for Cd3d in 
hematopoietic cell lineage pathway reveals that Cd3d is positively co-expressed with genes specific to T-cell speciation 
and differentiation, including Cd2, Cd7, Cd3g, Cd3e, Itgb3, H2-Ab1, while negatively co-expressed with non-T-cell specific 
genes like Cd9, Kit, Itga4, Cr1l, Cd22 and Cr2 (Fig 4F and 4G). Thus, scSCOPE’s annotation is supported not only by 
the expression and co-expression patterns of Cd3d, but also by its enrichment within key T cell-related pathways. These 
findings align with the well-established functional role of Cd3d as a component of the T-cell Receptor (TCR)/CD3 complex, 
which is essential for T cell activation, differentiation, and the coordination of immune responses [42].

The gene network plot generated by scSCOPE is particularly useful to facilitate target gene prediction when a transcrip-
tion factor is identified as a marker gene. For example, scSCOPE identified Tcf7 (transcription factor 7), a gene encoding 
the transcription factor Tcf1 as a marker gene for T-cells in the gsBlood dataset (S5A Fig). In total, Tcf7 gene exhibited 
significant co-expression (absolute value ≥ 0.2) with more than 1700 genes across the entire dataset. scSCOPE refined 
these gene co-expression to focus only on T-cell specific pathways, thereby isolating and prioritizing the most relevant 

Fig 3.  scSCOPE identifies fewer but more stable marker genes. (A) Bar Plots showing the number of marker genes identified by scSCOPE as 
compared to the DEGs identified by other methods. (B) The stability assessment of each method in identifying marker genes involves calculating the 
stability measure (S) based on the common marker genes detected within the same cluster across various datasets. This measure (S) is defined as the 
average of all (S

c
)

ij
 values, where (S

c
)

ij
 represents the percentage of common Marker Genes identified between dataset “i” and dataset “j” within cluster 

“c”. Here, “c” denotes the cluster of interest, “i” corresponds to dataset 1, and “j” corresponds to dataset 2. The (S
c
)

ij
 value is computed for all possible 

pairwise combinations of “i” and “j” for each cluster, and subsequently, these values are averaged to derive the overall stability measure (S). (C,D) Bar 
plots illustrating the stability measure of different methods for identifying marker genes in human PBMC datasets [33]. Top DEGs are selected based on 
their p-values in (C), and the average log fold change in (D). (E) Bar Plot showing the percentage of marker genes identified by Co-expression alone in 
Real and Simulated Datasets.

https://doi.org/10.1371/journal.pcbi.1013574.g003

https://doi.org/10.1371/journal.pcbi.1013574.g003
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gene interactions for T-cells. Gene network plots show that Tcf7 is significantly co-expressed with 57 genes among T-cell 
related pathways (e.g., T-cell receptor signaling pathway, Th17 cell differentiation, Th1 and Th2 cell differentiation path-
ways) (S5B Fig). Notably, 49 out of these 57 genes have binding sites for Tcf1 in their promotor regions [43,44], and 38 
out of these 49 genes have been validated using ChIPseq experiments [44] (S5C Fig). Of the remaining eight genes, four 
(Maml2, Irf4, Hras, and H2-DMa) are regulated by Runx1, a target gene of Tcf1 [43]. Tcf7’s strong connectivity within these 
immune pathways suggests a key regulatory role in T-cell development and function. Collectively, these results demon-
strated that scSCOPE’s gene co-expression and pathway analyses provide enriched and in-depth molecular insights into 
the functionality of identified marker genes in each cell type.

scSCOPE identified a new B-cell marker Il7r

scSCOPE utilizes a multi-step filtering process to pinpoint informative marker genes for cell type classification in scRNA-
seq data. Genes that can distinguish the cell-type of interest, show extensive co-expression with genes enriched in cell-
type specific pathways, and that are differentially expressed are selected as markers in scSCOPE (S6A Fig). As a result, 
genes that rank low in DEG analysis but excel in co-expression and pathway analysis may be identified as markers by 
scSCOPE.

As an example, scSCOPE identified Il7r, a gene with a low differential expression score but substantial co-expression, 
as a marker gene for B-cells in the gsBlood dataset (S2 Table). Based on expression enrichment, Il7r ranks low among 
DEGs for B-cells (MAST: 46th, DESeq2: not identified as a DEG, Wilcox: 46th, ROC: 46th, Bimod: 46th) and is con-
sequently not selected as a marker from previous scRNAseq studies (S6B Fig). However, when considering both the 
strength of gene co-expression and involvement in pathways, Il7r exhibits strong correlations with three core genes identi-
fied for B-cells (S6C Fig) and is enriched in two pathways specific to B-cell functions and is therefore identified as a B-cell 
marker by scSCOPE. In contrast, while genes such as Cd74 and Igkm rank high in DEG analyses in B-cells, they do not 
exhibit significant co-expression or pathway enrichment and are consequently disregarded by scSCOPE as markers (S6B 
and S6C Fig).

Il7r is a cell membrane receptor for the interleukin-7 protein [45–48]. Extensive literature has reported the critical role 
of IL-7R signaling in the survival and maintenance of lymphocytes [45–52]. In the context of B-cells, IL-7R signaling has 
a well-defined role in promoting the proliferation and survival of B-cell progenitors [46,48–50,52]. To demonstrate the 
accuracy and depth of scSCOPE’s functional annotation of marker genes, we next evaluated the scSCOPE generated 
Il7r annotation alongside the known functions of IL-7R signaling in B-cells. We employed scSCOPE on the Tabula Muris 
dataset focusing specifically on the bone marrow and GSE168158 dataset. Tabula Muris dataset incorporates data from 
two experiments with distinct methodologies for cell isolation: droplet technology and FACS sorting. The droplet dataset 
offers broader coverage across B-cell stages, while the FACS dataset provides higher depth sequencing. The two data-
sets encompass diverse and partially overlapping developmental stages of B-cells. We leveraged both datasets to include 
all B-cell subtypes in our analysis.

Fig 4.  The role of Cd3d in T-cells as revealed by scSCOPE. (A) Density Plot showing the relative expression of Cd3d gene in different cell types in 
the gsBlood dataset. (B) The gene network plots for Cd3d gene provide a visual representation of its extensive interactions with genes across diverse 
pathways. Within each plot, surrounding Cd3d are gray circles representing all other genes within the pathway. The lines connecting Cd3d to these 
genes indicate Pearson’s correlation coefficient, ranging from -1 (red) to +1 (blue), reflecting the strength and direction of correlation. Correlations are 
separately calculated for two distinct groups: in this case T-cells and all other cell types. Boxplots accompanying the plots contrast the distributions of 
correlations between groups. p-values from the Kolmogorov-Smirnov test are provided to assess the statistical significance, with the null hypothesis 
stating that two samples are drawn from the same distribution. (C,D,E,F) Gene network plots are zoomed in to visualize only the top genes which show 
highest correlation (|Correlation| ≥ 0.2) with Cd3d across different pathways in T-cells. Lines are colored according to the Pearson’s correlation between 
two genes from -0.5 (red) to + 0.5(blue). (G) Violin Plots for genes significantly correlated with Cd3d in the Hematopoietic cell lineage pathway.

https://doi.org/10.1371/journal.pcbi.1013574.g004

https://doi.org/10.1371/journal.pcbi.1013574.g004
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The development of B-cells is dependent on the sequential DNA rearrangement of the immunoglobulin loci that encode 
subunits of the B cell receptor [48]. The hematopoietic progenitor cells undergo the B-cell lineage specification and 
commitment process from Pre-Pro, Pro-B (further divided to Early-Pro and Late-Pro), Pre-B, immature-B, to naïve B-cells 
[51,52]. Cell proliferation and survival, two major events during B-cell development, are both known to be regulated by 
IL-7R signaling, especially during the Pro-B and Pre-B stages [48–50]. Importantly, scSCOPE accurately identified Il7r as 
a marker specifically for Late-Pro and Pre-B stages.

Expression wise, consistent with its marker status, Il7r indeed shows the highest expression levels at the Late-Pro and 
Pre-B stages compared to all other stages (Fig 5A, 5B, and 5C). scSCOPE’s gene network plots highlighted that Il7r is 
significantly co-expressed with genes enriched in cell cycle and survival-related pathways (Fig 5D and 5G). For cell cycle 
regulation, scSCOPE revealed that Il7r shows an increased co-expression correlation in the cell cycle pathway at Late-
Pro compared to Early-Pro stage (Fig 5D). Indeed, Il7r is positively co-expressed with many cell-cycle related genes like 
Bub1, Mki67, Cd72, Cdc20, Ndc80, Top2a, Cdc25b that promote B-cell proliferation in the Late-Pro stage compared to 
Early-Pro and Pre-B stages (Fig 5D and 5F). For cell survival regulation, IL-7R signaling is known to activate downstream 
STAT5 transcription factor and PI3K-AKT signaling to promote cell survival along B-cell development [48]. Consistently, 
scSCOPE’s co-expression and pathway enrichment analyses revealed that Il7r is co-expressed with genes enriched in 
JAK-STAT, PI3K-AKT, and related pathways such as the FoxO pathway that is repressed during cell survival, and the 
Cytokine-Cytokine receptor interaction pathway important for B-cell differentiation (Fig 5G). Interestingly, from the Late-
Pro to Immature B cell transition, Il7r’s co-expression patterns in these pathways show a shift from a predominantly 
negative correlation to positive correlation (Fig 5G), indicating that IL-7R signaling activity is dynamically regulated during 
this process, consistent with experimental findings [48]. Based on these results, we predict that IL-7R signaling plays a 
critical role in promoting proliferation during the Pro-B cell stage and in facilitating the developmental transition from Pro-B 
to Pre-B and Immature B cells. Although Il7r gene expression or co-expression correlation is not a direct readout of IL-7R 
signaling activity, these analyses demonstrate scSCOPE’s great sensitivity and accuracy in providing insights into the 
dynamic regulation of Il7r and related signaling pathways during early B-cell differentiation.

scSCOPE enabled functional prediction of the unannotated gene Gm8292

In cases where scSCOPE identifies unannotated or poorly characterized genes as markers, their gene network plots 
can offer valuable clues about their potential functions within the cell type of interest. As an example, scSCOPE iden-
tified Gm8292 as a marker gene for hemopoietic progenitor cells in the gsBlood dataset (Fig 6A). Gm8292 (ENS-
MUSG00000100215) is a mouse pseudo-gene on chromosome 1. Its expression has been associated with conditions 
such as cholestatic intestinal injury and TCDD-induced cleft palate [53,54]. However, its function remains unknown. 
scSCOPE’s Gene Network Plot of Gm8292 revealed its significant correlation with multiple genes in the “Cell Cycle” 
pathway (Fig 6B). Interestingly, Gm8292 showed a negative correlation with many genes involved in “Cell cycle arrest” 
including Ticcr, Cdkn2d, Chek2, Mad2l1, E2f2, Cdkn2c, and Pkmyt1 (Fig 6C). Thus, Gm8292 could be involved in cell 
cycle regulation and likely plays a role in the promoting cell cycle progression important for hemopoietic progenitor cells 
proliferation and self-renewal.

To further investigate its identity and potential function, we extracted the Gm8292 genomic sequence from chromosome 
1 and performed a BLAST search against the Mus musculus non-redundant (nr) nucleotide database [55,56]. Remarkably, 
Gm8292 displayed high sequence similarity to several alternative transcripts of the Rps24 gene (Fig 6D), a known com-
ponent of the ribosomal protein family. A review of the literature reveals that Rps24-deficient cells exhibit elevated levels 
of the cell cycle inhibitor p21, alongside upregulation of Cyclin E, Cdk4, and Cdk6 [57,58]. These findings align with our 
co-expression analysis and support the hypothesis that Gm8292 may function analogously to Rps24, potentially contribut-
ing to cell cycle progression. Importantly, although the sequence homology between Gm8292 and Rps24 was not initially 
known, the gene’s putative function could be reasonably inferred based on its co-expression network. This underscores 
the utility of scSCOPE in functional prediction of unannotated genes.
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Fig 5.  scSCOPE identified Il7r gene as a marker gene for Late-Pro and Pre-B cells. (A) Violin Plot showing the relative expression of Il7r gene 
across different B-cell stages in GSE168158 (B) Violin Plot showing the relative expression of Il7r gene across different B-cell stages in FACS dataset of 
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scSCOPE identified more cell-type enriched pathways and more genes within each pathway

As many genes are co-regulated within the same signaling pathways, incorporation of co-expressed genes will help iden-
tify more cell-type specific pathways. However, conventional co-expression analysis with an extensive list of DEGs can 
significantly escalate computational complexity and time. scSCOPE’s pathway enrichment method uses both core genes 
(identified by bootstrapped LASSO) and secondary genes (co-expressed with core genes) as inputs to identify enriched 
pathways in each cluster of interest. Compared to common pathway analyses such as GSEA and ORA [32,59] that use 
DEGs to find enriched pathways, scSCOPE excelled by identifying (i) a higher number of enriched pathways, (ii) more 
stable pathways across different datasets, and (iii) more number of genes within each pathway (S7A, S7B, and S8 Figs 
and S1, S3 and S4 Tables). For example, in the gsBlood dataset, pathways such as the “IL-17 signaling pathway” which 
is important for granulocytes development was not identified by ORA or GSEA for Granulocytes but was identified by 
scSCOPE. This expanded pathways and genes per pathway not only substantiates the robustness of pathway enrichment 
analysis but also provides researchers with a more comprehensive list of potential regulators and effectors.

To highlight the relevance of enriched pathways in each cell type, scSCOPE employs a unique ranking system to 
indicate the significance of the identified pathways. scSCOPE calculates the weights of each pathway to generate “Corr-
Express” values (Methods) by incorporating the correlation and expression differences of all genes within a pathway (Fig 
1A, Methods). The top pathways for each analysis are then ranked based on the absolute values of CorrExpress, referred 
to as “Final Measure”. As a result, scSCOPE outputs a Pathway Bar Plot to identify the top pathways relevant for a cell-
type as well as pathway network plots to study the patterns of expression and co-expression of genes in the pathway in 
different cell types (S7C and S7D Fig). Pathway network plots can be generated using the “pathwayNetwork” function and 
pathway bar plots can be generated using the “pathwayBar” function from R-implementation of scSCOPE. Additionally, 
these plots can be also created by using an interactive web interface accessible at Pathway Network (https://sant7.shin-
yapps.io/pathwayNetwork/).

High biological significance of scSCOPE comes at an expense of time complexity

scSCOPE is substantially slower than current state-of-the-art differential expression tools due to its reliance on exten-
sive bootstrapping (S9A Fig). For example, identifying marker genes in a dataset of 100,000 cells can take up to hours, 
whereas conventional tools complete the task in under a minute (S9A Fig). A notable advantage, however, is that 
scSCOPE generates intermediate output files, enabling the analysis to resume from the last completed step rather 
than restarting entirely, which is an especially useful feature for long-running jobs. Compared to its bulk-cell counterpart 
(SCOPE), the sparse implementation of lasso regression in scSCOPE is four fold faster (S9B Fig). In the case of cor-
relation estimation, scSCOPE and SCOPE exhibit similar runtimes when the number of features is small, but as feature 

Tabula Muris. (C) Relative expression of Il7r gene in different B-cell stages generated by integrating the FACS and Droplet datasets from Tabula Muris. 
(D) Gene network plots for Il7r in Cell Cycle Pathway in Early-Pro and Late-Pro B-cells of the Droplet-Tabula Muris dataset. Il7r gene is placed in the 
middle with all other genes expressed in the pathway placed in the periphery. The lines connecting Il7r to these genes indicate Pearson’s correlation 
coefficient, ranging from -1 (red) to +1 (blue), reflecting the strength and direction of correlation. Correlations are separately calculated for Early-Pro 
B-cells and Late-Pro B-cells. Violin Plots accompanying the plots contrast the distributions of correlations between these groups. p-value from the 
Kolmogorov-Smirnov test is provided to assess the statistical significance, with the null hypothesis stating that two samples are drawn from the same 
distribution. (E) Violin Plots show the relative expression of G2M-phase genes in different clusters in the FACS and Droplet Tabula Muris datasets. 
(F) Correlation Plots for Il7r with selected genes in the Cell Cycle Pathway across Early-Pro and Late-Pro B-cells. Lines are colored according to the 
Pearson’s correlation between two genes from -0.5 (red) to + 0.5(blue). (G) Gene network plots for Il7r gene in Late-Pro, Pre-B and Immature B-cells of 
the FACS-Tabula Muris dataset. Correlations are separately calculated for three groups. Violin Plots accompanying the plots contrast the distributions of 
correlations between these groups. P-values (Kolmogorov-Smirnov test) are denoted: *, p < 0.05; **, p < 0.01; ***, p < 0.0001; ns, p ≥ 0.05. Corresponding 
p-values for Late-Pro vs. Pre-B cells are: 0.0023 (JAK-STAT), 0.00013 (PI3K-Akt), 0.00034 (Cytokine-cytokine), 0.010 (FoxO). Corresponding p-values 
for Pre-B vs. Immature B-cells are: 0.054 (JAK-STAT), 0.024 (PI3K-Akt), 0.047 (Cytokine-cytokine), 0.016 (FoxO).

https://doi.org/10.1371/journal.pcbi.1013574.g005

https://sant7.shinyapps.io/pathwayNetwork/
https://sant7.shinyapps.io/pathwayNetwork/
https://doi.org/10.1371/journal.pcbi.1013574.g005
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Fig 6.  scSCOPE’s functional annotation of an un-annotated gene Gm8292. (A) Density Plot showing the expression level of Gm8292 in different 
clusters of gsBlood dataset. (B) Gene Network Plot for Gm8282 shows that this gene is co-expressed with many genes within the Cell Cycle pathway. All 
the genes in Cell Cycle pathway are placed in the circumference of the circle (Grey color) and Gm8292 gene is placed in the center (Light blue). Lines 
represent the strength and direction of Pearson’s correlations between Gm8292 and all other genes from -1 (red) to +1 (blue). Boxplots contrast the 
distributions of two sets of correlation in the Progenitor cells vs all other cell types. The Kolmogorov-Smirnov test was performed, with the null hypothesis 
being that two samples are drawn from the same distribution. (C) Gene network plots showing correlations between Gm8292 and selected genes from 
the Cell Cycle Pathway (with absolute correlation > 0.2). (D) Neighbor-Joining phylogenetic tree depicting the sequence similarity of the Gm8292 gene to 
entries in the Mus musculus non-redundant (nr) nucleotide database, based on BLAST analysis.

https://doi.org/10.1371/journal.pcbi.1013574.g006

https://doi.org/10.1371/journal.pcbi.1013574.g006
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dimensionality increases, sparse implementation scSCOPE scales more efficiently and ultimately outperforms SCOPE in 
computational speed (S9C Fig).

Discussion

Here we present scSCOPE, an optimised toolbox for single-cell RNA-seq based cell-type identification and functional 
annotation. To the best of our knowledge, scSCOPE is currently the only computational tool that implements gene 
co-expression, pathway enrichment and differential expression to identify marker genes in single cell transcriptomics data. 
scSCOPE is also the first tool to use genes co-expression to identify and rank pathways in single-cell transcriptomics 
data. To promote its application, scSCOPE is implemented as an open-source R-implemented tool (https://github.com/
QingrunZhangLab/scSCOPE) to enable fully automated scRNAseq based cell-type functional annotation.

In comparison with other computational approaches that require manual inference for marker gene selection and 
pathway enrichment analysis based on differential expression, scSCOPE enables automatic identification of markers that 
are not only cell-type specifically enriched but also highly interactive in cell type-specific pathways in an unsupervised 
manner. Using 9 scRNAseq datasets of well-characterized immune cell types in humans and mice by different sequenc-
ing technologies (i.e., SMART-seq2, 10X_v2, 10X_v3, Dropseq, CelSeq, inDrops), we benchmarked scSCOPE against 
other state-of-the-art methods (DESeq2, Wilcox Rank Sum, MAST, ROC, Bimod). Overall, our results demonstrated that 
scSCOPE (i) showed the highest degree of stability in cell type-specific marker gene and pathway identification across all 
datasets; (ii) identified not only the well-established marker genes but also new marker genes based on their extensive 
gene co-expression within the cell type-specific pathways, despite their relatively low expression enrichment; (iii) enabled 
the functional prediction of an unannotated marker gene, and (iv) lastly, identified more cell-type specific pathways and 
more enriched genes within each pathway. We anticipate that with these powerful advancements, scSCOPE will greatly 
improve cell type/state annotation and accelerate the design of experimental validation and functional investigations on 
cell diversity, particularly when it comes to rare cell types or transient cell states that are poorly characterized, highly 
dynamic, and sensitive to external stimuli.

As an example, we demonstrated that scSCOPE identified Il7r as an important marker gene for Late-Pro and Pre-B 
cells in different independent datasets. Extensive experimental research [45,48,60–62] has established Il7r as a well-
known key gene for B-cell differentiation. Nevertheless, due to its relatively low differential expression score, no scRNA-
seq analysis methods, except for scSCOPE, identified Il7r as a marker gene. Importantly, while genes such as Il7r that 
encode signaling molecules (e.g., cell surface receptors, transcription factors) can have powerful impacts on cell differ-
entiation or cell state transitions, they often do not express at high levels and therefore are rarely identified as markers in 
scRNAseq datasets. The fact that scSCOPE selects Il7r as a marker gene highlights its unique ability to identify function-
ally key genes as cell type markers. Notably, Late-Pro and Pre-B cells represent transient cell states, transitioning from 
progenitors to immature B-cells. The scSCOPE’s identification of Il7r as a marker during these states highlights its high 
sensitivity and accuracy in capturing the gene signatures that potentially drive cell lineage/state transitions.

For pathway enrichment, scSCOPE identifies more pathways than other methods. Incorporation of co-expressed genes 
during pathway enrichment also adds a layer of consistency across different datasets. In addition, scSCOPE introduces 
a novel validation strategy for inferred pathways, based on the expression and co-expression patterns of genes. This inno-
vative approach adds a layer of rigor to the analysis, improving the distinction between biologically meaningful pathways 
and potential artifacts. When many genes in a pathway exhibit both differential expression and differential co-expression 
in the cell type of interest, it indicates a potential significance of the pathway in driving cell-type specific biology.

scSCOPE has several limitations. First, since the input for scSCOPE is a gene expression matrix of all the cells and 
the phenotype/cluster annotation for each cell, one limitation of scSCOPE is that it relies on accurate clustering. If the 
initial clustering is wrong, scSCOPE fails to identify unique marker genes and pathways for the cluster of interest. Second, 
scSCOPE offers rich biological insights at the cost of computational runtime because of its extensive bootstrapping. This 

https://github.com/QingrunZhangLab/scSCOPE
https://github.com/QingrunZhangLab/scSCOPE
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limitation is mitigated by intermediate output files, allowing a stoppable multi-step analysis process rather than an all-or-
none process. Lastly, the gene network analysis in scSCOPE heavily relies on good sequencing depth and coverage of 
the transcriptome. With continuing advancements in single-cell sequencing technologies, the accuracy and sensitivity of 
scSCOPE is expected to increase accordingly.

In conclusion, scSCOPE’s consideration of gene networks, novel pathway validation strategy, and comprehensive path-
way enrichment analysis not only enhance our ability to identify critical genes and pathways specific to each cell type but 
also offer more biologically meaningful perspectives on cellular heterogeneity.

Materials and methods

scSCOPE framework

The SCOPE framework was designed to identify candidate genes and pathways separating normal and diseased tissues 
in bulk RNA-seq datasets. We have further improved the SCOPE framework to be applied directly to single cell datasets 
to identify cell-type specific marker genes and pathways.

SCOPE-stabilized LASSO selection

The initial step in scSCOPE involves the deployment of the LASSO algorithm to discern core genes capable of distin-
guishing between two groups [27]. Addressing the inherent instability associated with the LASSO algorithm, the SCOPE 
methodology uses bootstrapped LASSO regression to select genes exhibiting consistent behavior across multiple itera-
tions [31,63,64]. However, the SCOPE methodology, which was developed for binary phenotypes and bulk RNA-seq data, 
could not be applied directly to single-cell data with multiple phenotypes. We therefore introduced “1 vs all” and “1 vs 1” 
logistic regression models to identify core genes associated with each cluster and differentiating between two clusters, 
respectively, in scSCOPE. Consistent with SCOPE’s methodology, LASSO regression iterates 200 times on sub-sampled 
data (split 70–30) and genes selected in over θ runs, termed Core Genes, are chosen for subsequent analysis. The 
default value for θ is 160 (80% of total iterations). In cases where no core genes are identified, the algorithm automatically 
selects the top five genes which appear most frequently in the LASSO iterations as core genes. To address the sparsity 
inherent in single-cell data, we used sparse matrices during LASSO regression.

Co-expression and pathway analysis

Genes function within complex networks, interacting with other genes across various pathways to shape specific pheno-
typic traits [1,2,22]. Despite the good predictive performance of LASSO, it suffers from unstable selections of correlated 
variables and inconsistent selections of linearly dependent variables [31,63,64]. The original SCOPE framework utilizes 
Co-expression and Differential Co-expression analyses to reveal genes that are strongly associated with each core gene, 
which could be missed by LASSO feature selection [31].

To quantitatively analyze these relationships, we computed pairwise correlations between core genes and all other 
genes using the corSparse function from the qlcMatrix package [65], which accommodates for sparse matrices in 
single-cell data. Only those gene pairs that surpassed predefined thresholds for either differential co-expression or 
co-expression were deemed significant. These thresholds were meticulously determined. For correlation, we extracted the 
97.5th percentile from a null distribution of correlations calculated among 1000 random genes in 100 rounds. We repeated 
this for both positive and negative threshold calculations. Similarly, for differential co-expression, we identified the 97.5th 
percentile from a null distribution of differential co-expressions (Correlation

group1
 – Correlation

group2
) between 1000 random 

genes across 100 rounds. Importantly, these threshold values were established separately for each cluster or analysis.
Only those genes demonstrating either pronounced co-expression or significant differential co-expression with 

the core genes, called secondary genes, were advanced for further analysis. To ascertain the stability of core-gene/
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secondary-gene correlations, we performed 100 bootstraps of co-expression analysis on a sub-sample, representing 
60% of the entire dataset. Sampling was done on each iteration. This sub-sample preserved the original dataset’s cluster 
distribution. Only core-secondary gene pairs deemed significant in over K sub-sampled rounds were retained for further 
analysis. The default value for K was 80.

For each core gene and its associated secondary genes, we conducted an Over-Representation Analysis (ORA) using 
the KEGG Pathway and Gene Ontology Database [10–12]. This analysis, executed through the WebGestaltR platform, 
applied a stringent false discovery rate (FDR) threshold of 0.05 to highlight pathways of notable significance [13].

Marker gene identification

After identifying gene pairs that exhibit notable correlation or differential co-expression between core and secondary 
genes, we introduced a metric known as “adjusted differential correlation” to effectively rank these pairs.

Adjusted Differentialij =
pathij

max(pathij)for all i,j pairs
∗ diffmetij

max(diffmetij) for all i,j pairs
, where

i = core gene, j = secondary gene, pathij = number of pathways the gene pair (i,j) is involved in, 

diffmetij = max(correlationij, group1_correlationij, group2_correlationij, ddifferential_correlationij) is the maximum of cor-
relation of the two genes or differential correlation of the two genes between two groups.

The computation of adjusted differential correlation involves two components: the path ratio and diffmet ratio. The path 
ratio is the ratio of the number of pathways the core-secondary pair is enriched in to the maximum number of pathways 
any core-secondary pair is enriched in. Similarly, diffmet ratio is the ratio of diffmet values for the core-secondary pair to 
the maximum value of diffmet for the cluster. Thus, the adjusted differential metric considers both the degree of differential 
co-expression/correlation, and the pathways associated with the gene pairs. In simpler terms, gene pairs that are linked to 
multiple pathways and display substantial correlation or differential co-expression hold more significance as compared to 
others.

To refine our focus, we established a threshold for adjusted differential correlation. Only gene pairs surpassing 20% 
of the maximum adjusted differential correlation within the cluster were deemed significant. In cases where the counts of 
identified marker genes are exceptionally low, this threshold can be relaxed to capture additional genes of interest.

Finally, we evaluated the fold change for each gene from the above pairs. Marker genes were then filtered using a 
threshold for both fold change (0.5) and the fraction of cells expressing the gene (0.45). This stringent criterion helped to 
pinpoint genes that play a substantial role in characterizing the specific cluster under analysis.

Stability calculation

We used human blood cell datasets from different platforms (10x-v3, 10x-v2, Dropseq, CELSeq, Seqwell and inDrops) 
generated by Ding et. al [33] to test for the stability in DEG and pathways identified by different methods. To do this, we 
identified significant DEGs (adjusted p-value < 0.05) in each cluster of all the datasets using different methods (Wilcox 
Rank Sum, Bimodal analysis, MAST, DESEQ2, and ROC) [15–18,20]. We selected the top 50 DEGs (ranked by either 
their absolute average fold change or by their p-values) as marker genes from different methods. Next, we calculated 
overlaps between DEGs in each cluster of one dataset with the same cluster from another dataset. Pairwise overlaps over 
all clusters and all datasets were averaged to generate a new value “Stability Measure”. Similarly, we also calculated the 
Stability measure for marker genes identified by scSCOPE. We also calculated stability measures for the pathways identi-
fied by scSCOPE and other methods in the same datasets.

Stable pathways identification

We performed pathway enrichment for each core gene and its surrounding genes for each cluster separately. For each 
identified pathway, we calculated the number of core-secondary gene pairs enriched in the pathway. Next, we calculated 
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the CorrExpress measure to differentiate between the expression and correlation pattern in the cluster of interest and all 
other cells. CorrExpress measure was calculated separately for genes expressing positive differences (posCorrExpress) 
between two clusters and genes expressing negative differences (negCorrExpress) between two clusters.

For genes i  with
{
(expi)cluster – (expi)othercells

}
≥ 0 :

posCorrExpress =
∑

i(expi)cluster –(expi)othercells
ni

∗
∑

i,j abs|(corij)cluster – (corij)othercells |

nij

and for genes i  with 
{
(expi)cluster – (expi)othercells

}
< 0 :

	
negCorrExpress =

∑
i (expi)cluster – (expi)othercells

ni
∗

∑
i,j abs|(corij)cluster – (corij)othercells |

nij 	

where 
∑

i denotes the sum over all genes in the pathway, (expi)group1 represents the average expression of gene i  in the 
first group, (expi)group2 represents the average expression of gene i  in the second group, and ni  is the total number of 
genes in the pathway. Similarly, 

∑
i,j denotes the sum over all pairs of genes in the pathway, (corij)group1 represents the 

Pearson’s correlation between genes i  and j  in the first group, (corij)group2 represents the Pearson’s correlation between 
genes i  and j  in the second group, and ni, j  is the total number of gene pairs in the pathway.

The calculation of the pathway difference metric involves two key steps. First, the differences in the expression levels of 
individual genes within the specified pathway between two groups are added together and normalized. This is done sep-
arately for genes expressing positive differences as well as genes expressing negative differences between two groups. 
Second, the absolute differences in pairwise correlations among all gene pairs across the two groups are calculated and 
averaged. These two resulting values are multiplied, creating a composite metric, “Final Measure”, that effectively com-
bines the influences of both gene expression variations and correlation dynamics within the pathway. Finally, top pathways 
for each analysis are ranked based on the absolute values of posCorrExpress or negCorrExpress metrics. Moreover, 
scSCOPE extends its analysis by attributing significance levels to both expression and co-expression differences between 
two groups. This is achieved by randomly selecting an equivalent number of genes as those in the pathway and com-
puting the expression and co-expression differences between the two groups. The resulting distributions for expression 
and co-expression differences from these random genes are then compared to those of genes from the pathway. This 
comparison is carried out using a Kolmogorov-Smirnov Test (K-S test), yielding separate p-values for both expression and 
co-expression differences [66]. The correlation and expression difference between two groups in each pathway can be 
visualized using pathway network plots generated using visNetwork library in R [67].

By integrating both gene expression and correlation aspects, the pathway difference metric offered a thorough evalu-
ation of the pathway’s significance. This comprehensive assessment facilitated the prioritization and ranking of relevant 
pathways within each cluster.

Accounting for uneven datasets

Correlation analysis can be highly affected by the number of observations in each cluster of interest. We have incorpo-
rated a maximum sampling strategy to account for this problem. A threshold for maximum number of samples in each 
phenotype is used such that all different clusters have similar number of cells. This is implemented on each iteration of 
Logistic LASSO and Correlation analysis.

Pathway annotation for each marker gene and gene network plots

To annotate each marker gene with pathways, we counted the number of genes in the pathway which were significantly 
correlated with our marker gene of interest. Those pathways with a higher degree of association with the marker gene 
were determined to be more significant for the marker gene in the cluster of interest. Gene network plots were generated 
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based on Pearson’s correlation values between the marker gene and all other genes in the pathway across two groups. 
To look at the significance of correlation difference between two groups, the KS test was performed between pairwise 
correlations of group one with group two and was represented by a box plot/violin plot in the gene network plots. In cases 
where there were fewer than 100 gene-gene correlation values, sampling with replacement was carried out to take at 
least 100 correlation values for analysis.

Hub gene identification using Cytoscape

A list of differentially expressed genes were input into the Cytoscape application and the full STRING network for the list 
was generated using the STRING database [39–41]. Next, we calculated node scores for each gene using the Cytohubba 
plugin and ranked them based on their degrees (interaction). The top 15 nodes/genes were selected as hub genes.

Data generation and model fitting for simulations

Simulated datasets were generated by systematically varying key parameters, including signal-to-noise ratio (SNR), phe-
notype architecture (linear vs. nonlinear), and gene co-expression structures. Single-cell gene expression data from the 
GTEx project served as the input source [38]. For each simulation, a subset of core pathways was selected (p = 5,10,15), 
and genes (n = 10, 20, 30, 40) were prioritized based on their normalized absolute summed Pearson correlation with other 
genes within the selected pathways and their prevalence across multiple pathways. This strategy ensured the selection 
of genes with both high connectivity and pathway relevance. Additional genes were randomly sampled to yield a total of 
2,000 genes per dataset.

The effect sizes (β) for selected genes were drawn from a uniform distribution: β∼Unif([−10,−5]∪ [5,10 ]). For the 
remaining additional genes, β values were sampled from a lower range: β ∼ Unif([−0.1,0.1]). Phenotypes were then simu-
lated using either linear or nonlinear models. To ensure target SNR levels (0.7, 0.8, 0.9), Gaussian noise was added to the 
phenotype signal, followed by logistic transformation to obtain binary outcomes. Each unique parameter combination was 
repeated 50 times, yielding a total of 3,600 simulations. For nonlinear models, only pre-defined interaction terms among 
the selected genes were incorporated into the model to preserve statistical power. These interaction structures were made 
available across all evaluated methods to ensure a fair and consistent basis for comparison.

Implementation in real datasets

We implemented scSCOPE in nine immune cell datasets to validate the accuracy and applicability. Immune cell datasets 
were chosen because they were highly annotated as compared to other cell types. We implemented both “1 vs 1” and “1 
vs all” logistic regression to identify marker genes in each cluster as well as between two clusters in this study. The data-
sets used in this study are:

GSE109999: A gold-standard immune cell dataset

This dataset consisted of FACS-sorted single cells representing B-cells, granulocytes, erythroblasts, and progenitor cells 
sorted from bone marrow, and T-cells isolated from the Thymus of 10–13 weeks old female C57/BL6 mice [35]. These 
isolated cells were subsequently pooled together and subjected to sequencing using the CEL-seq2 protocol. Since the 
biological cell types were FACS-sorted prior to sequencing, this dataset can be labeled as a gold-standard reference for 
cell type identity.

Tabula Muris

Tabula Muris, a multifaceted compendium of single-cell transcriptome data derived from the model organism Mus mus-
culus, comprises nearly 100,000 cells from 20 distinct organs and tissues [34]. In our study, we used a subset of the 
Tabula Muris dataset, specifically originating from the bone marrow. The Tabula Muris dataset comprises two methods 
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for transcriptomic analysis: One utilizes microfluidic droplet-based 3’-end counting, which surveys thousands of cells per 
organ with relatively low coverage (Droplet). The other employs FACS-based full-length transcript analysis, providing 
higher sensitivity and coverage for more detailed insights from fewer cells (FACS).

GSE168158

This dataset integrates single-cell RNA sequencing and CITE-Seq proteomics to profile 7,454 bone marrow-derived B 
cells from two wildtype C57BL/6 mice, capturing multiple transcriptionally distinct clusters spanning early B-cell develop-
ment stages [36].

Human datasets

To assess the stability of scSCOPE and other DGE methods, we used PBMC human datasets generated by Ding et. al in 
the same tissue by using multiple methods, including Dropseq, 10x V2, 10x V3, inDrops, Cel-Seq and Seqwell [33].

Marker gene identification using other methods

Differential expression tests for Wilcox Rank Sum’s test, MAST, DESeq2, Bimod and ROC were carried out using the 
FindMarkers() function from Seurat [20]. An average log fold change cut-off of 0.5 was used and the marker genes not 
expressed by at least 45% of cells in any group were discarded.

Supporting information

S1 Fig.  Simulations comparing the performance of scSCOPE with other methods. F1 score ={TP/[TP + 0.5 × 
(FP + FN)]} calculated for the accuracy of scSCOPE and other methods in identifying predictive genes (A) and pathways 
(B) simulated in the GTEX single-cell gene expression data using linear and non-linear models under different combina-
tions of number of predictive genes and pathways.
(TIF)

S2 Fig.  Simulations comparing the performance of scSCOPE with other methods. True Positive Rate (TPR) and 
False Discovery Rate (FDR) calculated for scSCOPE and other methods in identifying predictive genes (A, B) and path-
ways (C,D) simulated in the GTEX single-cell gene expression data using linear and non-linear models under different 
combinations of number of predictive genes and pathways respectively.
(TIF)

S3 Fig.  scSCOPE identified marker genes are more stable as compared to DEGs. Bar plots illustrating the stability 
measure of different methods for identifying marker genes in human PBMC datasets [33]. Top DEGs are selected based 
on their average log fold change in (A), and p-values in (B). (C) Bar plots showing the stability comparison of scSCOPE 
identified Correlated Gene Network with top genes based on average fold change identified by other methods.
(TIF)

S4 Fig.  Correlation of Hub Genes and scSCOPE identified marker genes in gsBlood Dataset. Top Hub Genes iden-
tified in (A) B-cells (B) T-cells (C) Granulocytes of gsBlood dataset are shown as examples. scSCOPE identified markers 
are indicated by oval shape. Hub genes are ranked based on their level of gene co-expression, indicated by a red-yellow 
color theme.
(TIF)

S5 Fig.  scSCOPE reveals potential targets of Tcf7 gene in T-cells. (A) Density Plot showing the relative expression 
of Tcf7 gene in different cell types of gsBlood dataset. (B) Gene Network Plots for Tcf7 gene show the extensive inter-
actions of Tcf7 gene with genes across multiple pathways in T-cells. In each pathway, Tcf7 gene is placed in the middle 
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with all other genes in the pathway placed in the circumference of the circle. The lines connecting Tcf7 to these genes 
indicate Pearson’s correlation coefficient, ranging from -1 (red) to +1 (blue), reflecting the strength and direction of cor-
relation. Correlations are separately calculated for two distinct groups: in this case T-cells and all other cell types. Box-
plots accompanying the plots contrast the distributions of correlations between these groups. Additionally, p-values from 
the Kolmogorov-Smirnov test are provided to assess the statistical significance, with the null hypothesis stating that two 
samples are drawn from the same distribution. (C) Network diagram showing the co-expressed genes of Tcf7 identified by 
scSCOPE and their annotations based on published experimental results.
(TIF)

S6 Fig.  scSCOPE can identify genes with low fold change but extensive interactions as marker genes. (A) Genes 
identified as core and secondary by scSCOPE must pass correlation cutoffs, adjusted differential cutoffs, and differen-
tial expression cutoffs to be classified as marker genes. (B) Scatter Plot showing the average log2FC of DEGs identified 
by Wilcox rank sum method for B-cells in gsBlood dataset. Top marker genes for each cluster are labelled inside a box, 
indicating their ranking among DEGs from the Wilcoxon analysis. Although Il7r ranks low in terms of average log2FC in 
B-cells, scSCOPE identifies it as a marker gene in B-cells. (C) The Il7r gene is co-expressed with three core genes iden-
tified for B-cells and is also involved in two B-cell pathways. Due to its higher degree of co-expression and involvement in 
multiple pathways, it ranks higher in the “adjusted differential” metric compared to other genes like Cd74 and Igkc, which 
have higher fold changes but lower degrees of correlation and pathway involvement.
(TIF)

S7 Fig.  scSCOPE identifies a higher number of and more stable pathways. (A) Bar plot shows that scSCOPE identi-
fies a higher number of pathways as compared to other methods across all clusters in gsBlood dataset. (B) The stability of 
each method in identifying pathways in the same cluster across different human PBMC datasets was measured using the 
procedure highlighted in Fig 2B. scSCOPE identified pathways showed greater stability as compared to pathways iden-
tified by other methods. (C) Pathway Network Plots show the difference in expression and co-expression patterns of all 
the genes within T-cell Receptor Signaling Pathway and Th17 cell differentiation pathway between T-cells and Progenitor 
Cells. Pathway Network Plots are constructed for both T-cells and progenitor cells, facilitating a comparative analysis of 
pathway dynamics between the two cell types. In each plot, all the genes in the pathway are placed in the periphery of the 
circle. Genes are colored as orange (marker genes identified by scSCOPE) or gray. The size of each node corresponds 
to the average expression of the gene in the group, while edges connecting the nodes represent Pearson’s Correlation 
between two genes, with thickness indicative of correlation strength. Blue edges signify positive correlations, while red 
edges indicate negative correlations. (D) Pathway Bar Plot revealing the top pathways identified for T-cells versus pro-
genitor cells, utilizing the novel metric “corrExpress.” Both “posCorrExpress” and “negCorrExpress” are combined to be 
named as “Final Measure”. This metric integrates differences in both gene `expression and gene-gene co-expression 
across all genes within the pathway. Pathways depicted with baby pink bars predominantly feature upregulated genes in 
T-cells, while those with light blue bars denote an abundance of upregulated genes in progenitor cells.
(TIF)

S8 Fig.  scSCOPE identified more genes within each pathway as compared to other methods. Bar Plots show the 
number of genes identified by various methods enriched in different pathways across different clusters in gsBlood data-
set. The pathways were chosen from the top pathways identified by scSCOPE for each comparison (S3 Table). For every 
pathway in all clusters, scSCOPE identifies higher number of enriched genes than other methods.
(TIF)

S9 Fig.  Comparison of scSCOPE with other methods in terms of running time. (A) Runtime of scSCOPE and other 
DEG methods represented as a line graph with different number of cells. (B) Bar plot showing comparison of SCOPE and 
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scSCOPE to run a single iteration of LASSO algorithm. (C) Comparison of SCOPE and scSCOPE to run a single iteration 
of co-expression analysis under different number of features (x-axis).
(TIF)

S1 Table.  Number of marker genes and pathways identified for each cluster by different methods in gsBlood and 
Human Datasets. 
(XLSX)

S2 Table.  Marker Genes Identified for all datasets used in this study by scSCOPE. 
(XLSX)

S3 Table.  Pathways identified and ranked for gsBlood and Tabula Muris (B-cells) datasets by scSCOPE. 
(XLSX)

S4 Table.  Number of genes identified by scSCOPE and other different methods in different pathways enriched in 
separate comparisons in the gsBlood dataset. 
(XLSX)
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