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Author summary

For a complex trait, heritability (h2) gives the genetic determination of its variation. 
Given the emergence of biobank-scale data, a more powerful method is needed 
to estimate h2. Based on the framework of Haseman-Elston regression (RHE-
reg), we integrate a fast randomization algorithm to estimate h2, and RHE-reg can 
tackle biobank-scale data, such as UK Biobank (UKB), very efficiently. Further-
more, we present an analytical solution that balances computational cost and pre-
cision of the estimation, a property that is important in dealing with biobank-scale 
data. We investigated the performance of the RHE-reg in simulated data and also 
applied it for 81 UKB quantitative traits; as tested in UKB data of nearly 300,000 
unrelated individuals, it took on average about 4.5 hours to complete an estima-
tion when used 10 CPUs. We extended the application of RHE-reg into distribut-
ed datasets when privacy is not compromised. As shown in UKB and simulated 
data the performance of RHE-reg was accurate in estimating h2. The software for 
estimating SNP-heritability for biobank-scale data is released.

Abstract

Estimation of heritability has been a routine in statistical genetics, in particular with the 
increasing sample size such as biobank-scale data and distributed datasets, the latter 
of which has increasing concerns of privacy. Recently a randomized Haseman- 
Elston regression (RHE-reg) has been proposed to estimate SNP-heritability, and 
given sufficient iteration (B) RHE-reg can tackle biobank-scale data, such as UK 
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Biobank (UKB), very efficiently. In this study, we present an analytical solution that 
balances iteration B and RHE-reg estimation, which resolves the convergence of the 
proposed RHE-reg in high precision. We applied the method for 81 UKB quantitative 
traits and estimated their SNP-heritability and test statistics precisely. Furthermore, we 
extended RHE-reg into distributed datasets and demonstrated their utility in real data 
application and simulated data.

Introduction

Estimating heritability has been one of the central tasks in statistical genetics [1]. 
Given the increasing sequencing capability, high-throughput genetic data have been 
emerging in the form of biobank-scale [2], which challenges statistical computation, in 
particular, such as the estimation of heritability for complex traits. Conventional meth-
ods, such as REML, for estimating heritability, like the linear mixed model, often takes 
computational cost of O(n2m+ n3), where n is the sample size and m is the number 
of markers. These costs can become infeasible in the context of biobank-scale data. 
Haseman-Elston regression (HE-reg) was originally proposed for linkage analysis 
[3]. After the nuclear correlation between sib pairs is replaced by the linkage dis-
equilibrium (LD) for unrelated samples, the modified HE-reg can be used to estimate 
heritability and is much faster than REML [4]. Given that m is often greater than n 
given the current data, any calculation that is upon genetic relationship matrix (GRM) 
will be unfavorable even for HE-reg. To reduce the computational cost of estimating 
heritability, a randomized estimation of heritability has been introduced [5], called 
randomized Haseman-Elston regression (RHE-reg), which is a promising method that 
can be used for both single-trait and bi-trait analyses [6,7].

RHE-reg is built on a hybrid framework, which has favored analytical properties 
of the Haseman-Elston regression and the feasible computational cost of O(nmB) 
for biobank-scale data; B is the round of iteration for RHE-reg. As pointed out by a 
recent systematic review, iteration control poses one of the challenges for RHE-reg 
[8]. However, the original report by Wu and Sankararaman did not give a clear solu-
tion for the round of iteration [5]. In this study, we investigated RHE-reg and found an 
analytical procedure to control B, which can provide customized iteration for a given 
data.

Now, one of the trends is that genomic cohorts are mushroomed such as emerg-
ing non-invasive prenatal testing cohorts [9,10], but the bottleneck is how to share 
genomic data without compromising personal privacy [11]. As recently practiced, 
when genotypes have been masked in randomization, the randomized method has 
proven to be reliable in addressing genetic problems for distributed data, such as 
searching relatives [12,13]. Following this idea, it is found that after the randomization 
step, RHE-reg can be modified to estimate heritability for distributed datasets, remi-
niscent of vertical or horizontal federated learning [14].

Method description

Wu and Sankararaman proposed a randomized implementation for the Haseman- 
Elston regression (RHE-reg), which dramatically reduced the computational time from 
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O(n2m) to O(nmB) in dealing with tr(K2) [5]; K  is the genetic relationship matrix for n individuals on m markers, and see 
its detailed definition in the section below. It is clear that a large B, indicating more iteration of the presented algorithm, is 
helpful in improving precision, but it is unsolved how to get an estimate for B and its role in determining the boundaries 
of key statistics, upon the standard errors of the randomized estimator [8]. This work is in general consistent with Wu and 
Sankararaman’s work, but we present the analytical sampling variance of the estimated h2 and its corresponding test 
statistics after correction of some technical errors in their original work. We can consequently evaluate how B influences 
the estimation of heritability and its corresponding z score, and, as data can be very large, the control of B is of theoretical 
as well as practical importance. An analytical resolution crystallizes a computational procedure, and we further extend the 
method to another two new scenarios, called vertical-RHE-reg, which is a global implementation for LD score regression 
[15], and horizontal-RHE-reg, which enables Federated Learning but we estimate heritability in distributed data without 
compromise of privacy [14].

Materials and methods

A framework for Randomized Haseman-Elston regression (RHE-reg)

In essence, Haseman-Elston regression is a kind of method of moments (MoM) estimation for heritability, and can provide 
equivalent estimates of heritability for complex traits after IBD is replaced with IBS [4,11]. As we extend the work of Wu 
and Sankararaman [5], we similarly assume that

	
y = Xβ + e; β ∼ N

(
0,
h2

m
Im

)
; e ∼ N

(
0,σ2e In

)
	

in which y is the standardized phenotype of the traits of interest, X  is the standardized genotype matrix of n individu-
als, m is the number of double allelic markers, β is the cumulative effect related to each of the markers, e is the residual 
effect, Im is an m×m identity matrix, h2 is the SNP heritability, and In is an n× n identity matrix, σ2e is the residual variance. 
Under the general assumption for a polygenic trait, it is easy to see that

	
var(y) = E(yyT) – E(y)E(yT) =

h2

m
XXT + σ2e In = h2K+ σ2e In	

K = 1
mXX

T is the genetic relationship matrix (GRM); the moment estimator, or randomized Haseman-Elston regression, 
is to minimize Q=tr

{[
yyT –

(
h2K+ σ2e In

)]2}
. Of Q, by differentiating h2 and σ2e, respectively, we have the following normal 

equations:

	

[
tr(K2) tr(K)
tr(K) n

] [
ĥ2

σ̂2e

]
=

[
yTKy
yTIny

]

	 (1)

The preliminary estimators for ĥ2 and σ̂2e are given as

	

[
ĥ2

σ̂2e

]
=




yT[nK–tr(K)In]y
n[tr(K2)–n]

yT[tr(K2)In–Ktr(K)]y
ntr(K2)–n2 	 (2)

For ease of discussion, we now only focus on the expression without adjustment of covariates. The denominator 
involves tr(K2), a high-order function for GRM. Alternatively, according to the trace property of a matrix, it can be 
calculated that tr(K2) = Σ

n

i,jK
2
i,j , a summation of the square of each element in K . We proved that the expectation of 
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tr
(
K2

)
=
n(n+ 1)
me

+ n, where me is the effective number of markers that depicts the average squared Pearson’s correla-
tions among all genomic markers as often used for measuring linkage disequilibrium [12,16,17]; a brief sketch of how 

tr
(
K2

)
 can be transferred into me is also presented in the section “Estimation for the effective number of markers” 

below. Therefore, the expectation for the preliminary estimator of h2 is E
(
ĥ2
)
= me

n2
(
yTKy – n

)
=

r2mq
r2m
h2 for a typical poly-

genic trait as established [4,18]; r2mq is the averaged LD between a marker and a causal variant, and r2m = 1
me

=
∑m

k,l ρ
2
kl

m2  is 
the averaged LD between any pair of markers – including the LD of a marker with itself. At first glance at Eq 2, it seems 
inevitable to compute K , the computational cost of which is O(n2m), a substantial cost given a large sample size, such 
as for UKB of about 500,000 samples. We obtain the estimate of tr(Kc) according to the properties of matrix algebra, 
and c is the exponential index and c takes the value of 1, 2, 3, or 4 upon the application in this study.

	





Lc,B = 1
B

B∑
b
zTbK

czb

E (Lc,B) = tr(Kc)

var (Lc,B) =
2tr(K2c)

B 	 (3)

Where Lc,B is a linear estimator for tr(Kc), zb is a vector of length n and each element of zb is sampled from the stan-
dard normal distribution, and B is the round of iterations. Of note, the sampling variance of L2,B =

2tr(K4)
B . As will be 

shown below, tr(K4) will be a plugin parameter in the analysis below, and we suggest a robust estimation of tr
(
K4

)
 from 

L4,B = 1
B

∑B
b z

T
bK

4zb rather than B2 var (L2,B). Eq 3 is the most innovative part in the work of Wu and Sankararaman, and it 
is known as Girard-Hutchinson estimation for stochastic trace estimation [19, 20]. Of note, var (L2,B) =

2tr(K4)
B , which was 

incorrectly derived as var (L2,B) =
2tr(K2)

B  in Wu and Sankararaman’s work [5], and to fix their problem directly led to the 
present work.

Randomized estimation for h2 via RHE-Reg

When there is random mating, E[tr (K)] = n, and substituting the expressions given as Eq 3 into Eq 2, a randomized esti-
mator of heritability is

	
ĥ2 =

yT [nK – tr (K) In] y
n [L2,B – n]

≈ yT [K – In] y
L2,B – n

=
yTKy – n
L2,B – n 	 (4)

The component L2,B = 1
B

∑B
b z

T
bK

czb in the denominator is no other than a shuffling nature of the estimation with B rounds 
of resampling.

Sampling variance of RHE-reg

Of Eq 4, we have a = yT [K – In] y  and b = L2,B – n, and their respective mean and variance are

	




a

{
µa = E

(
yTKy – n

)
=

[
tr
(
K2

)
– n

]
h2

σ2a = var
(
yT (K – I) y

)
= 2tr[Σ(K – I)Σ(K – I)]

b

{
µb = L2,B – n = tr

(
K2

)
– n = n(n+1)

me

σ2b = 2
B tr(K

4) 	

The randomized estimator of h2 can be seen as a ratio of ab, in which both a and b are variables, and, according to Delta 
method, its sampling variance can be expressed as var

(
a
b

)
= 1

µ2
b
σ2a – 2

µa

µ3
b
cov(a, b) + µ2

a

µ4
b
σ2b, in which the covariance term 

can be zeroed out in this scenario [21]. So, we can obtain
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var(ĥ2) = 2

(me

n2

)2(
Λ1 +

tr(K4)

B
· h4

)

	 (5)

For the definition of Λ1 please refer to the section “Estimation for key parameters”. As L2,B is 
a random variable, using Taylor approximation ĥ2 can be obtained by E

(
ĥ2
)
= E(a)E

(
1
b

)
. 

E
(
1
b

)
≈ 1

L2,B–n
– 1

(L2,B–n)2
E
[
1
b – (L2,B – n)

]
+ 1

(L2,B–n)3
[
1
b – (L2,B – n)

]2
= 1

L2,B–n
+ 1

(L2,B–n)3
σ2b.

	
E(ĥ2) = E(a)E

(
1
b

)
= h2 + 2

(me

n2

)2
· tr(K

4)

B
· h2

	 (6)

in which the second term is the bias of the RHE-reg estimator. At the same time, we can also find the mean squared error 
(MSE), the summation of the sampling variance and squared bias, for ĥ2 as below

	

MSE
(
ĥ2
)
= var(ĥ2) +

[
E(ĥ2) – h2

]2
= 2

(me

n2

)2(
Λ1 +

tr(K4)

B
· h4

)
+ 4

(me

n2

)4
·


 tr

(
K4

)

B



2

· h4

	 (7)

In this polynomial expression, as will be shown in the simulation and real data analysis, MSE
(
ĥ2
)
 is largely upon the 

sampling variance, which can be further reduced with sufficient iterations (B). As will be shown for UK Biobank examples, 

B dynamically ranges from 10 to 200, even greater upon many factors.

Constructing test statistics

Given the estimation of heritability, we can construct the z-score statistic below:

	
z1 =

ĥ2

σ̂h2
=

(
n2√
2me

)
ĥ2

√
Λ1

√
1+ η

B 	 (8)

in which η =
tr(K4)h4

Λ1
, a quantity that will be zeroed out after sufficient iterations, and σ̂h2 can be estimated from Eq 5. Obvi-

ously, when B is large enough, the optimal z score is the following:

	
z2 =

(
n2√
2me

)
· 1√

Λ1
· ĥ2 (B → ∞)

	 (9)

There is an obvious relationship between two z scores in Eq 8 and Eq 9 (practically B ≈ 50). Given z1 we can predict 
optimal test statistic z3 as below:

	
z3 = z1

√
1+

η

B 	 (10)

It means that after B iteration the expectation of the test statistic is predictable in certain degree.
In summary, given B iterations the test statistic observed is z1, which is subject to the realized values of me, Λ1, and 

ĥ2. z2 is the expected optimized test statistic when B is very large and zeroed out all uncertainty due to iteration. z3 is a 
reconstruction of z1, and z3z1 =

√
1+ η

B , indicating how a larger B seem to bring out advantage in such as a more signifi-
cant p-value.
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Estimation for key parameters

There are several key quantities/parameters involved in the above equations for RHE-reg, and we present how to esti-
mate them. These parameters are me – effective number of markers, tr(K4) the trace of fourth-order GRM, and Λ1.

Estimation for the effective number of markers (me)

	

E
[
tr
(
K2

)]
= E




1
m2

n∑
i,j

[
m∑
k

(xikxjk)

]2
 = E




1
m2

n∑
i,j

{[
m∑
k

(xikxjk)

][
m∑
l

(xilxjl)

]}



	

E
[
tr
(
K2

)]
=

1
m2

n∑
i,j

{[
m∑
k

(xikxjk)

][
m∑
l

(xilxjl)

]}

 can be decomposed into four terms 

E
[
tr
(
K2

)]
=

1
m2




n∑
i

m∑
k

x4ik +
n∑
i

m∑
k ̸=l

x2ikx
2
il +

n∑
i̸=j

m∑
k

x2ikx
2
jk +

n∑
i ̸=j

m∑
k ̸=l

xikxjkxilxjl



 upon i = j (or i ̸= j) and k = l (or k ̸= l), 

and according to Isserlis’s Theory [22], having integrated these four terms, we have

	

E[tr
(
K2

)
] =

1
m2


3nm+ n

m∑
k ̸=l

(
1+ 2ρ2kl

)
+ n(n – 1)m+ n(n – 1)

m∑
k ̸=l

ρ2kl


 = n(n+ 1)

∑m
k,l ρ

2
kl

m2
+ n =

n(n+ 1)
me

+ n

	

in which me =
m2∑m
k,l ρ

2
kl
 the effective number of markers and ρ2kl  the squared Pearson’s correlation of LD between a pair 

of SNPs [23]. Often me ≤ m, and me = m if all markers are in linkage equilibrium (see the note of Table 1). Here, me is 
a population parameter, a summary statistic that encompasses allelic frequencies and linkage disequilibrium of makers. 
According to Eq 3, E (L2,B) = tr

(
K2

)
= n(n+1)

me
+ n, we consequently propose a randomization algorithm, which estimates 

me as below

	

{
m̂e =

n(n+1)
L2,B–n

var
(
m̂e

)
=

2m4
e

n4
tr(K4)
B 	 (11)

A more detailed estimation procedure for me can be found in our recent work [16]. See Note I in S1 Text for more details.

Estimation for tr(K4)

The benchmark estimation for tr(K4) is tr
(
K4

)
=

n∑
i=1

λ4i , a fourth-order summation of the eigenvalues of X . How-

ever, it is computationally expensive when X  is large. There are two alternative choices to estimate tr(K4). Method I: 

t̂r(K4) = B
2 var (L2,B), and B would affect its precision. Method II: t̂r(K4) =

1
B

B∑
b

zTbK
4zb, which uses the fourth-order 

randomized estimation in Eq 3. Both Method I and Method II can be realized via Eq 3. As will be shown below, Method II 
provides more stable estimates than Method I.

About Λ1—high-dimension structure of genetic architecture

For Λ1, Λ1 = tr
{
[
∑

(K – In)]
2
}
= tr

{∑
(K – In)

∑
(K – In)

}
, in which if 

∑
= Kh2 + Iσ2e  is replaced by ∑ = yyT  because K  

is too expensive to constructed as aforementioned, we consequently have

	

Λ1 ≈
{
yT (K – I)K (K – I) yĥ2 + yT (K – I) (K – I) yσ̂2e

}

≈ [L3,0 – 2L2,0 + L1,0] ĥ2 + [L2,0 – 2L1,0 + n] σ̂2e = Lh2 ĥ
2 + Lσ2

e
σ̂2e	 (12)



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013568  October 21, 2025 7 / 20

L3,0 = yTK3y can be estimated as in Eq 3 if z is replaced by y the phenotype itself; it is similarly for L2,0 = yTK2y and 
L1,0 = yTKy . They reflect high-dimensional structure between y and X . So the sampling variance of h2 is not only related to h2 
itself, but is eventually upon the high-order structure between y and X . See Note II in S1 Text for more discussion about Λ1.

About η — the term determines the iteration B

We define the ratio η as below

	
η =

tr
(
K4

)
h4

Λ1 	 (13)

in which tr
(
K4

)
 can be estimated as t̂r(K4) = L4,B =

1
B

B∑
b

zTbK
4zb as above. However, it should be noticed that h4 is a heavy 

penalty for higher heritability; for example, comparing with h2 = 0.01, h2 = 0.1 leads to a 100-fold penalty for the latter in the 
numerator of Eq 13. Easily, we can estimate B if we want to know how many iterations are needed to reach the preset ratio of η0

	
B =

η

η0
=

1
η0

tr
(
K4

)
h4

Λ1 	 (14)

In practice, η0 can take the value of 0.1 or 0.05 as in our simulation and real data analysis below.

Table 1.  Table for high-order moments for different coding scheme for genotypes.

Genotype 
xi,kxi,l

Coding 
scheme1,2,3

Frequencies for xi,kxi,l  (fv1v2)4

AkAkBlBl α1β1 f1,1 = p2kR
2
kl = p2kp

2
l + 2pkplDkl + D2

kl

AkAkBlbl α1β2 f1,2 = p2k · 2RklRkl = 2p2kplql + 2pk (pl – ql)Dkl – 2D2
kl

AkAkblbl α1β3 f1,3 = p2kR
2
kl = p2kq

2
l – 2pkqlDkl + D2

kl

AkakBlBl α2β1 f2,1 = 2pkqkRklrkl = 2pkqkp2l + 2pl (pk – qk)Dkl – 2D2
kl

AkakBlbl α2β2 f2,2 = 2pkqk
(
Rklrkl + Rklrkl

)
= 4pkqkplql + 2 (pk – qk) (pl – ql)Dkl + 4D2

kl

Akakblbl α2β3 f2,3 = 2pkqkRklrkl = 2pkqkq2l + 2ql (pk – qk)Dkl – 2D2
kl

akakBlBl α3β1 f3,1 = q2kr
2
kl = q2kp

2
l – 2qkplDkl + D2

kl

akakBlbl α3β2 f3,2 = 2pkqkrklrkl = 2q2kplql + 2qk (pl – ql)Dkl – 2D2
kl

akakblbl α3β3 f3,3 = q2kr
2
kl = q2kq

2
l + 2qkqlDkl + D2

kl
1For additive effect, under the coding scheme of 0 (aa), 1 (Aa), and 2 (AA) that counts the number of ref 
erence allele (A), which has allele frequency of p; q = 1 – p is the frequency of the alternative allele.  
After standardizing each genotype, we have [α1,α2,α3] = [ 2qk√

2pkqk
, qk–pk√

2pkqk
, –2pk√

2pkqk
] for AA, Aa, and aa, and  

[β1,β2,β3] = [ 2ql√
2plql

, ql–pl√
2plql

, –2pl√
2plql

] for BB, Bb, and bb. It leads to 
∑3

v1,v2
fv1v2αv1βv2 =

Dkl√
2pkqk2plql

= ρkl , in which the 

 subscript v  indexes for the three genotypes of a locus.
2For dominance effect, under the coding scheme of 0 (aa), 2pl (Aa), and 4pl – 2 (AA) for 0, 1,  

and 2 reference alleles, we have [α1,α2,α3] = [
–2q2k√
4p2kq

2
k

, 2pkqk√
4p2kq

2
k

, –2p2k√
4p2kq

2
k

, ] for AA, Aa, and aa, and  

[β1,β2,β3] = [
–2q2l√
4p2l q

2
l

, 2plql√
4p2l q

2
l

, –2p2l√
4p2l q

2
l

] for BB, Bb, and bb. It leads to 
∑3

v1,v2
fv1v2αv1βv2 =

4D2
kl√

4p2kq
2
k ·4p

2
l q

2
l

= ρ2kl.
3For alternative dominance coding scheme of 0, 1, and 0 for 0, 1, and 2 reference alleles, we have  

[α1,α2,α3] = [–
√

2pkqk
1–2pkqk

,
√

1–2pkqk
2pkqk

, –
√

2pkqk
1–2pkqk

] and [β1,β2,β3] = [–
√

2plql
1–2plql

,
√

1–2plql
2plql

, –
√

2plql
1–2plql

]. It leads to  ∑3
v1,v2

fv1v2αv1βv2 = ρkl
(pk–qk)(pl–ql)√

(1–2pkqk)(1–2plql)
+ ρ2kl

√
2plql·2pkqk

(1–2pkqk)(1–2plql)
.

4The four elements rkl = ql +
Dkl
qk

, rkl = pl –
Dkl
qk

, Rkl = ql –
Dkl
pk

, and Rkl = pl +
Dkl
pk

 represent for conditional probabil 
ities for the four haplotypes akbl, akBl, Akbl, and AkBl, respectively. See Note V in S1 Text for detailed calculation.

https://doi.org/10.1371/journal.pcbi.1013568.t001

https://doi.org/10.1371/journal.pcbi.1013568.t001
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Extended utilities for distributed GWAS datasets

Because datasets are often distributed across institutes, we consequently consider two scenarios for the application of 
RHE-reg in distributed datasets. As the estimation for h2 (Eq 4) can be split into the numerator and the denominator, the 
numerator and the denominator are estimated from two different sources. In the other scenario, the whole dataset has 
been distributed into small slices at s different institutes. We call the first scenario the vertical RHE-reg and the latter hori-
zontal RHE-reg.

Vertical RHE-reg

Estimation for h2 can be implemented in summary statistics that the numerator and the denominator can be from different 
components [18]. We denote the correspondingly heritability h̃2 for this subtle difference, as well as all tilded symbols from 
a reference panel that is related to genotypes. Alternatively, Eq 4 can be rewritten as

	

ˆ̃
h
2

=
ñ2(yTKy – n)

n2(L̃2,B – ñ)
= m̃e ·

(yTKy – n)
n2 	 (15)

the denominator L̃2,B = 1
B

∑B
b z

T
bK̃

2
zb. K̃ = 1

m X̃X̃
T
, in which X̃  has the dimension of ñ×m; X̃  is the genotype matrix of the 

reference sample that is employed to estimate L̃2,B. So, var(
ˆ̃
h
2

) is (assuming n ≈ ñ)

	

var
(̂̃
h
2)

=
2[

tr
(
K̃
2
)
– ñ

]2 ·




Λ1 +

[
tr
(
K2

)
– n

]2
[
tr
(
K̃
2
)
– ñ

]2 · h̃4 ·
tr
(
K̃
4
)

B





= 2
(
m̃e

ñ2

)2

·




Λ1 +

(
m̃e

me

)2

· h̃4 ·
tr
(
K̃
4
)

B




	

The bias is E
[̂̃
h
2]

= h2 + 2 ·
(
m̃e
ñ2

)2
· tr(K̃

4)
B · h2, which will be zeroed out when B increases (see Note III in S1 Text for 

more general situations). The corresponding test statistic is

	

z̃1 =
(

ñ2√
2m̃e

)
h̃2

√
Λ1

√
1+

(
m̃e
me

)2
η̃
B 	

in which η̃ =
tr
(
K̃
4
)
h̃4

Λ1
. For the population of similar ancestry, the ratio m̃e

me
≈ 1 is cancelled out after sufficient iteration, and 

leads to

	
z̃2 =

(
ñ2√
2m̃e

)
h̃2√
Λ1 	

Horizontal RHE-reg

For this application, it is assumed that the entire dataset is divided into s institutes (v  is subscript for y and X ). Conse-

quently, yT =

[
yT1
...yT2

... · · ·
...yTs

]
, the whole data y and X  are distributed in s institutes, and the length of yv  upon how the 

proportion of data has in the vth institute; XT=
[
XT1
...XT2

... · · ·
...XTs

]
, similarly the dimension of Xv  is nv ×m in which nv  is the 

number of individuals in the vth institute. One only needs to receive the mean and summation of square for each yv , and 
similarly for receiving the allele frequencies of the m reference alleles of Xv . So after scaling for yv  and Xv ,
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h2 =

∥∥∥∥∥
[
yT1
...yT2

... · · ·
...yTs

]T [
XT1
...XT2

... · · ·
...XTs

]∥∥∥∥∥
2

F

– n

1
m2

∥∥∥∥∥
[
ZT1
...ZT2

... · · ·
...ZTs

]T [
XT1
...XT2

... · · ·
...XTs

] [
XT1
...XT2

... · · ·
...XTs

]T∥∥∥∥∥
2

F

– n

=

∥∥∑s
v=1 y

T
vXv

∥∥2
F – n

1
m2

∥∥∥∑s
v=1 Z

T
vXvX

T
v

∥∥∥
2

F
– n

	 (16)

Zv, a B× nv matrix, can be generated from N(0, 1), by each institute, and consequently independently gener-
ate yTvXv  and ZTvXvX

T
v  without compromise of privacy; the subscript F  indicates Frobenius norm of a matrix that 

∥A∥2F =

(√
tr
(
AAT

))2

= tr
(
AAT

)
. Upon the precision requirement, after B rounds of iterations, η can be calculated so 

as to evaluate whether further iterations are needed. Unlike the vertical RHE-reg, the horizontal RHE-reg is identical to the 
RHE-reg under this simple scenario. An R script is attached for its detailed implementation (S1 Data).

Summary for RHE-reg

Now we discuss some computational issues about RHE-reg. So, eventually B will creep into the RHE-reg. The focus 
here is to investigate how B would affect the RHE-reg, in particular the stability of h2 and z scores. All the above anal-
yses are based on three computational units, y , X , and W  – if covariates are taken into account, and the operation 
between them lead to the whole computational procedure, of which their elementary operations can be implemented 
hierarchically (Table 2). We give an atlas for the computational route. Furthermore, we have w  covariates, and the 
covariate matrix W  is of n× w  dimensions. After inclusion of the covariates, the equations for stopping rules can be 
updated accordingly (see Note IV in S1 Text). We finish the description of the statistical approaches and go to their 
applications now.

Table 2.  Analytical results for RHE-reg.

Individual-level data Vertical RHE-reg

h2 
estimation




h2 = yTKy–n
L2,B–n

var(ĥ2) = 2
(me
n2
)2 (

Λ1 +
tr(K4)
B h4

) z




z1 =
(

n2√
2me

)
ĥ2√

Λ1

√
1+ η

B

z2 =
(

n2√
2me

)
ĥ2√
Λ1




h̃2 = yTKy–n
L̃2,B–ñ

var(h̃2) = 2
(
m̃e
n2

)2{
Λ1 +

(
m̃e
me

)2 tr
(
K̃
4
)

B h4
} z




z̃1 =
(

n2√
2m̃e

)
h̃2

√
Λ1

√
1+

(
m̃e
me

)2 η̃
B

z̃2 =
(

n2√
2m̃e

)
h̃2√
Λ1

Key 
statistics 
estimation




Intermediate parameters
{
Λ1 = Lh2h

2 + Lσ2
e
σ2e , η =

tr(K4)·h4

Λ1

Randomization




̂
tr
(
K2

)
= L2,B = 1

B

∑B
b z

T
bK

2zb
̂
tr
(
K4

)
= L4,B = 1

B

∑B
b z

T
bK

4zb

m̂e

{
m̂e =

n(n+1)
L2,B–n

var
(
m̂e

)
= 2

(me
n

)4 · tr(K
4)

B




Intermediate parameters
{
Λ̃1 = Lh2 h̃

2 + Lσ2
e
σ̃2e , η̃ =

tr
(
K̃
4
)
·h4

Λ1

Randomization




̂
tr
(
K̃
2
)

= L2,B = 1
B

∑B
b z

T
bK̃

2
zb

̂
tr
(
K̃
4
)

= L4,B = 1
B

∑B
b z

T
bK̃

4
zb

m̃e




̂̃me =
ñ(ñ+1)
L̃2,B–ñ

var
( ̂̃me

)
= 2

(
m̃e
ñ

)4
·
tr
(
K̃
4
)

B

L̂h2 =
1
m3 yTK

3y – 2
m2 yTK

2y+ 1
my

TKy
L̂σ2

e
= 1

m2 yTK
2y – 2

my
TKy+ n

Notes: left and right parts of the table give how to implement RHE-reg directly in individual-level data or vertical RHE-reg. In order to show the difference 
between individual-level data estimation and vertical RHE-reg, tilded symbols are introduced to indicate any genotypes from a reference panel. For 
example, L̃2,B =

∑B
b=1 zbK̃K̃

T
zb, in which K = 1

m X̃X̃
T
, and X̃  is from the reference panel of dimension ñ×m.

https://doi.org/10.1371/journal.pcbi.1013568.t002

https://doi.org/10.1371/journal.pcbi.1013568.t002
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Software

We have developed computer software that can handle biobank-scale algorithm presented in this study. The software 
reads genotype in binary format as defined in such as PLINK. For fast vector-matrix multiplication, Mailman algo-
rithm is employed here [24]. We adapt the implementation of the Mailman algorithm from Agrawal’s fast PCA project 
[25]. It is known that using the Mailman algorithm the vector-matrix multiplication in L2,B is reduced from O(nmB) to 

O
(

nmB
max(log3n,log3m)

)
. There is no conceptual obstacle to applying the method for genotype data in dosage format, but the 

Mailman algorithm cannot proceed in such a scenario. There are many matrix multiplication included, and in programming 
some suggested tips to take them out is as shown (S1 Fig).

Results

Simulation results

We conducted simulations to evaluate the aforementioned theoretical results under various parameters. The reference 
allele frequency was evenly sampled from 0.1 ~ 0.5, and h2 was set three values of 0, 0.1, and 0.25, and all SNPs were 
considered causal after a typical polygenic model, which follows Normal distribution. 1) The linkage disequilibrium (Lewon-
tin’s D′) for each pair of consecutive SNPs were D′ =0, 0.2, 0.4, 0.6, and 0.8 for consecutive SNPs. 2) We set three levels 
of unrelated samples n =1,000, 5,000, and 10,000, respectively. 3) Three levels of SNP numbers m =10,000, 50,000, 
and 100,000. These five parameters could totally carry out 45 simulation scenarios for each h2 by our in-house simulation 
code, and its detailed implementation can be found in Zhang et al [16]. For each simulation scenario, we set B the value 
of 10, 20, and 50 in order to find proper B. n, m (as well as their allele frequencies), D′, and h2 were considered to investi-
gate how to determine B. Although neither n nor m reaches real biobank-scale data, we investigate and summarize certain 
properties of RHE-reg under these 135 scenarios in the results below. The biobank-scale test is to be investigated in UK 
Biobank examples.

Result 1: Randomized estimation for tr(K4)

As shown in the method section, tr(K4) was appeared as one of the key parameters in determining the performance of 
the sampling of RHE-reg. The direct estimation of tr

(
K4

)
 from the eigenvalues of K  was the golden standard, and we 

consequently compared Method I, t̂r(K4) = B
2 var (L2,B), and Method II, t̂r(K4) = L4,B, with its direct estimation. As shown 

in Fig 1, the above 135 simulation scenarios were compared with the direct estimation for tr
(
K4

)
=

∑n
i=1 λ

4
i . For Method 

I, increasing B from 10 to 50 could increase the precision of the estimation. In contrast, Method II showed very consis-
tent and high precision for the estimation of tr(K4) regardless of the sample size, an increasing of B from 10 to 50 did not 
help improve precision. The advantage of Method II was probably because L4,B estimated tr(K4) as its mean, whereas 
var

(
L2,y

)
 as its sampling variance. So, hereafter we used Method II L4,B to estimate tr(K4). Of note, as tr

(
K4

)
=

∑n
i=1 λ

4
i  

is computational expensive when K  is large so that only limited sample size and SNP numbers were tested in these 135 
simulations; however, the principal results should be retained for an even larger sample size, as well as K , but with more 
expensive computational cost in solving eigenvalues. Biobank-scale performance of the proposed method will be illus-
trated in UK Biobank 81 traits in Result 4.

Result 2: MSE of RHE-reg

In Eq 7, MSE
(
ĥ2
)
= 2

(me
n2
)2 (

Λ1 +
tr(K4)·h4

B

)
+ 4

(me
n2
)4 ·

[
tr(K4)
B

]2
· h4, and we defined R =

tr(K4)·h4
B
Λ1

= η
B  according to Eq 14. 

In Fig 2, we showed how MSE and R could be reduced by B for these 90 simulated scenarios (excluded 45 scenarios 
under n = 1, 000). We only illustrated the results for n = 5, 000 and 10,000, respectively, because n = 1, 000 was too small 
a sample size here for efficient convergence. The top row of Fig 2 illustrated how MSE were reduced by B, and obviously 
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a much larger B reduced MSE because tr(K
4)·h4
B  was turned down. Actually the bias term 4

(me
n2
)4 ·

[
tr(K4)
B

]2
· h4 played little 

weight in MSE, which was dominantly determined by 2
(me
n2
)2 (

Λ1 +
tr(K4)·h4

B

)
. 2

(me
n2
)2 (

Λ1 +
tr(K4)·h4

B

)
 was at least one or 

two order of magnitude compared with 4
(me
n2
)4 ·

[
tr(K4)
B

]2
· h4. In the second row of Fig 2 R = η/B reflected how quickly 

tr(K4)·h4
B  vanished after B iterations. Neither LD nor h2 played an important role in determining MSE for the simulated sce-

narios, but the ratio between n and m mattered much as under the same sample size, more SNPs always inflated MSE.

Fig 1.  Comparison for the estimation of tr(K4). The x-axis represents benchmark estimation for tr(K4) directly, and y-axis represents the estimation of 
tr(K4) using Method I or Method II respectively. The diagonal line (solid black) is for comparison. Each fitted line shows the correlation between all 135 
estimations with their benchmark estimation tr(K4).

https://doi.org/10.1371/journal.pcbi.1013568.g001

https://doi.org/10.1371/journal.pcbi.1013568.g001
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Result 3: Randomized estimation for h2 and z-score

In result 3, we studied how B could influence h2 and its z-score. As the sampling variance of h2 was reciprocal to the 
sample size Λ0 =

2me
n2  under the null hypothesis and B, it was obviously to see in simulation that: greater n, and greater 

B would help to bring out a more stable estimation for h2 (Fig 3A-C). If we employed ĥ2 from B = 50 as the benchmark, 
when sample size n = 10, 000, there was very high consistent estimation for ĥ2 even B B = 20 (Fig 3C). 2me

n2  is the sam-
pling variance of REML when h2 = 0 [26].

The availability of the z score of the estimated heritability was important for statistical inference. We evaluated the influ-
ence of B in determining the performance of the randomized algorithm (Fig 3D-F). It was known from the above analysis 

E(zh2) ≈ n2√
2me

ĥ2√
Lh2 ĥ

2+L
σ2e

σ̂2
e

, so when the estimation of h2 became stable the test statistic was stable too. So, z1 was rela-

tive stable when n = 5, 000 (Fig 3E) or n = 10, 000 (Fig 3F). When the sample size was sufficiently large, a few iteration 
could guarantee high accuracy of the estimation. In addition, we also tested the estimation by setting h2 = 0.5, 0.75, and 
0.9, respectively, and the results, as promised by our theory, were consistent to what observed.

Result 4: Application of horizontal RHE-reg

This study was to estimate heritability for distributed data as exact as a single piece of data. Two cohorts with n1 = 
4,000 and n2 = 6,000 individuals, respectively, were generated to verify h-RHE-reg. h2 was set the value of 0, 0.1, and 

Fig 2.  Evaluation for the MSE of RHE-reg under the different simulation scenarios. The top row (A-C) represents the comparison for MSE under 
different B for 90 simulated scenarios, and the bottom row (D-F) represents the comparison for the ratio between Λ1 and tr(K

4)·h4
B . In each panel, 90 

simulated scenarios are split into 6 groups given different combination for sample sizes (n = 5,000, and 10,000) and SNP numbers (m = 10,000, 50,000, 
and 100,000). In each group 15 points can be split into 5 groups from left to right for different LD levels (D′ = 0, 0.2, 0.4, 0.6, and 0.8) and each LD group 
has three simulated h2 (0, 0.1, and 0.25), respectively. In each panel, the grey line indicates the mean of the investigated values for the corresponding 15 
scenarios.

https://doi.org/10.1371/journal.pcbi.1013568.g002

https://doi.org/10.1371/journal.pcbi.1013568.g002
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0.25, respectively. The effects of all m = 10,000 SNPs were sampled from the distribution N(0, h
2

m ). Heritability and z 
scores were estimated using individual-level RHE-reg as well as h-RHE-reg. B was set of 10, 20, and 50. The geno-
types of the two simulated cohorts were standardized by x̃1j =

x1j–2pj√
2pj(1–pj)

 and x̃2j =
x2j–2pj√
2pj(1–pj)

 for the j -th locus, where 

pj =
n1

n1+n2
p1j +

n2
n1+n2

p2j  was the average allele frequency. The phenotypes of the two cohorts were standardized by 

ỹ1 =
y1–y
σy

 and ỹ2 =
y2–y
σy

, where y = n1
n1+n2

y1 +
n2

n1+n2
y2 and σ2y = n1

n1+n2–1
y21 +

n2
n1+n2–1

y22 –
n1+n2
n1+n2–1

y2. Each simulation scenario 
had 10 repeats (see Source1.R and Source2.R in S1 Data for its implementation).

The estimates of heritability and its z score were consistent using individual-level RHE-reg and h-RHE-reg in all sce-
narios when the random vectors were the same (Fig 4). We also split the data into n1 = 2,000 and n2 = 8,000 individuals, 
and, as expected, the results were nearly identical and unbiased.

Fig 3.  Estimation of h2and z-score after different B. Each plot illustrates the comparison of the estimated heritability (A-C) and z-score (D-F) given 
B = 10 (x-axis) vs B =20 and 50 (y-axis) under different sample size n = 1, 000, 5,000, and 10,000, respectively. The black solid line is the reference line 
of y = x, and the coloured solid line is the fitted regression, which is printed in each plot. In each plot, there are 45 points in each colour as simulated.

https://doi.org/10.1371/journal.pcbi.1013568.g003

https://doi.org/10.1371/journal.pcbi.1013568.g003
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Real data analysis for UK Biobank

We chose the unrelated 292,223 British white who have no kinship found, as indicated by the genetic kinship provided in 
the UK Biobank (field 22021) for real data test [2]. After quality control, the inclusion criteria were: MAF > 0.01, missing call 
rate < 0.05 and Hardy-Weinberg proportion test p-value > 1e-6, whose genotype call rate > 0.95, and 525,460 autosome 
SNPs were included for analysis. We estimated heritability of the 81 quantitative traits, and included the top two principal 
components and sex as covariates.

We used two strategies to estimate heritability. In strategy I, denoted as B+ strategy hereafter, we set B0 = 10 as a 
warm-up step to evaluate tr(K4) and η0 was set of 0.05. After the warm-up of B0 iteration, we then increased iteration by a 
step of 10, We then estimate final realized η, me, h2, and three kinds of z scores until the convergence ratio of η0 = 0.05 Λ ;  
however, we set a hard stop for B1 = 200 even if η was still greater than 0.05. In strategy II, we directly set B0 = 10, 20, 
or 50 without further considering additional iteration anymore, and consequently denoted as B10, B20, and B50 strategies 
hereafter.

Fig 4.  Application of horizontal RHE-reg in simulation studies. Estimated heritability (A-C) and z-scores (D-F) obtained from RHE-reg (x axis) 
and h-RHE-reg (y axis) under different settings of B =10, 20, and 50, respectively. Point colors represent the simulated heritability. Each scenario was 
repeated 10 times. The dashed line represents the identity line (y = x).

https://doi.org/10.1371/journal.pcbi.1013568.g004

https://doi.org/10.1371/journal.pcbi.1013568.g004
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Comparison of the UKB results between strategy I and II

Even a couple of traits were set to take a hard stop because their B1 were greater than 200, the estimated η̂ for the 81 
traits had a mean of 0.0518, which was very close to the preset η0 = 0.05 (Fig 5A1). It indicated that our theory worked to 
control the precision of the sampling variance of RHE-reg. The trait “age of diabetes diagnosed” had h2 = 1.21± 0.533,  
extremely large standard error compared to other traits, because of its smallest sample size of n = 12, 658 (Fig 5B1). 
In Fig 5C1, we got three z scores, which are z1 =

√
Λ̂0

2Λ̂1

ĥ2√
1+ η̂

B1

 score directly calculated given B1 iterations (green col-

ored, via Eq 8), the optimal z score z2 =
√

Λ̂0

2Λ̂1
ĥ2 when B was infinitive (blue colored, via Eq 9), and the predicted 

z3 = ẑ
√
1+ η̂

B  score (pink colored, via Eq 10).
For comparison, we examined the corresponding statistics that were estimated under B10, B20, and B50, respectively. 

In strategy II, A larger B0 led a smaller η as expected (Fig 5A2-4). Interestingly, regardless the change of B0 in strategy II, 

ĥ2 were very consistent to those estimated from strategy I, as shown that the fitted regression lines were very close to 1 

Fig 5.  Randomized estimation for heritability for UK Biobank 81 quantitative traits. A1-D1) The performance of RHE-reg given the respective B 
number for each trait, η, effective number of markers using randomized estimation (me), ĥ2 (the vertical line covers 95% confidence interval), and z 
scores estimated in three methods. Three z scores are plotted, the green colored z scores are directly estimated given B  iterations for each trait (Eq 
8), the pink colored z scores are optimal z score (Eq 9), and the blue colored z scores are directly estimated given z

√
1+ η  (Eq 10). A2-A4) Compar-

ison for η  between that of B+ and B = 10, 20, and 50, respectively. B2-B4) Comparison for me between that of B+ and B = 10, 20, and 50, respec-
tively; the vertical and horizontal lines are the means of me from x-axis and y-axis, respectively. C2-C4) Comparison for h2 between B+ and B = 10, 20, 
and 50, respectively; the fitted lines is printed on the top left corner of each plot. D2-D4) Comparison for the three pairwise z scores. The green colored 
z scores are estimated in Eq 8 given B+ and the number of B as shown on the x-axis label, the pink colored z score are estimated in Eq 9, and blue 
colored ones in Eq 10, respectively.

https://doi.org/10.1371/journal.pcbi.1013568.g005

https://doi.org/10.1371/journal.pcbi.1013568.g005
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(Fig 5B2-B4). Three types of z scores were compared (Fig 5C2-C4), and the optimal z scores from both strategies were 
nearly perfect (blue points and blue dashed lines). Then, as shown in Fig 5C4, the three kinds of z scores were nearly 
completely matched.

In addition, the estimates were also consistent with our previous results using a less efficient method [27], and see 
S1 Table for more details. The heritability estimated by the randomization algorithm exhibited a relative high degree of 
correlation (Pearson’s correlation coefficient of 0.77) with the previous estimates for 81 traits. Compared to the previous 
results, the me was nearly consistent with the GRM-based estimates, and is with averaged 1.38% deviation after 10 itera-
tions and further decreased to 1.23% deviation after 50 iterations (S1 Table).

We also compared the computational efficiency of RHE-reg with GCTA [28] and BOLT-REML [29] in estimating the her-
itability on BMI. The comparison was conducted on a sub-dataset in UKB with randomly selected 10,000 individuals and 
523,945 SNP markers after filtration. The results indicate significant efficiency improvement in estimating the heritability of 
complex traits in biobank-scale datasets for RHE-reg, with computation times reduced by 96.6% and 83.8% compared to 
GCTA and BOLT-REML, respectively (S2 Table). More benchmark comparison of the computational performance could be 
found in earlier studies [18,5]. Even using a complete dataset, RHE-reg could also complete heritability estimation within 
an acceptable time (S3 Table). In our tested 81 UKB traits, with 10 threads, it on average took 453 mins to finish the anal-
ysis of a trait and the average iteration of B = 90.

Application of vertical RHE-reg

Of Eq 15, ˆ̃h
2

= m̃e · (yTKy–n)
n2

 indicates that m̃e and (y
TKy–n)
n2  can be from two independent sources. Consequently, we split 

each UKB trait evenly into halves to test the v-RHE-reg, and Eq 15 had four possible combinations: 1) split 1/1: both m̃e 
and (y

TKy–n)
n2  were estimated from split 1; 2) split 2/1: m̃e was estimated from split 2 and (y

TKy–n)
n2  split 1; 3) split 1/2: m̃e was 

estimated from split 1 and (y
TKy–n)
n2  split 2; 4) both m̃e and (y

TKy–n)
n2  were estimated from split 2. So, we had four estimators 

as below

	




h21,1 =
[
m̃e

]
1
·
[
(yTKy–n)

n2

]

1

, split 1/1

h21,2 =
[
m̃e

]
1
·
[
(yTKy–n)

n2

]

2

, split 2/1

h22,1 =
[
m̃e

]
2
·
[
(yTKy–n)

n2

]

1

, split 1/2

h22,2 =
[
m̃e

]
2
·
[
(yTKy–n)

n2

]

2

, split 2/2
	

Of each trait, its heritability and z score tests could be constructed within each split and between each split by exchang-
ing the LB estimation, and consequently brought out v-RHE-reg. As shown in Eq 15, we compared the result for B=10, 20, 
and 50, respectively, and observed consistent results between split 1 and split 2, and between split 1/2 and split 2/1.

Fig 6 showed the results of these four estimators under different B. It illustrated that pairwise estimates ĥ21,1 against ĥ22,2,  
and ĥ21,2 against ĥ22,1 , and as observed the pairwise estimates were quite consistent with each other both within and 
between splits.

Discussion

The presented study is developed on the randomized Haseman-Elston regression for the estimation of SNP- 
heritability proposed recently by Wu and Sankararaman (2018) [5]. They very smartly used a randomization approach –  
Girard-Hutchinson estimation, which significantly reduces the computational cost in estimating tr(K2) from O(n2m) to 
O(nmB) [20,19]. However, the drawbacks of their method may be its unclear property for B, which further leads to obscure 
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sampling variance of the estimated heritability. As discussed in a recent review, it has been obscure in the original RHE-
reg since no closed-form solutions were provided to quantify the connection between B and the estimation procedure [8]. 
After integrating analytical results for Haseman-Elston regression into this randomized framework [4], we present here a 
close-form solution for RHE-reg. Having provided the sampling variance, we are able to evaluate how B influences the 
estimation procedure of RHE-reg precisely. In particular, a key element that is related to the sampling variance of L2,B,  
which is proportional to 

2tr(K4)
B . It should be noticed var(ĥ2) = 2me

n2  under the null hypothesis that h2 = 0 as established 
previously [4,26,18]. The quantity of 2me

n2  is identical to the sampling variance of REML under the null hypothesis or that of 
modified Haseman-Elston regression [26,4,18]. Of note, the present study is focused on the presence of typical polygenic 
architecture because counterexample, albeit pathological, can be found when causal variants are distributed not random 
as discussed [4,27].

A nature extension of the method is to include multi-component, such as for the estimation for each chromosome. It 
is obvious that the method for deriving sampling variance should be extended for multi-components estimation if their 
corresponding Xi  and Xj  are in global linkage, or nearly, equilibrium, which is often the case for human populations [17]. 
Much advanced numerical tools, such as condition numbers, are needed to evaluate the approximation of the randomized 
algorithm [30]. Some inconsistency between GRM-based estimation and randomization estimation, such as the overall 
correlation of 0.77 for estimated heritability between Xu et al.’s results and the current result, may arise from the differ-
ent covariates chosen [27]. In Xu et al.’s work, the heritability was estimated under the first two PCs corrected, while the 
current randomization method further took gender as extra covariate, this may cause the observed discrepancy especially 
in the gender-related traits.

Fig 6.  Application of v-RHE-reg for 81 quantitative traits in UKB. The top and the bottom row represent heritability and z score respectively. Each 
column illustrates results after B iterations. In each plot, the coordinate for a grey point is heritability/z-score estimated from split 1 (x-axis) and split 2 
(y-axis).

https://doi.org/10.1371/journal.pcbi.1013568.g006

https://doi.org/10.1371/journal.pcbi.1013568.g006
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In summary, the purpose of the present study is two-fold. First, we provide a method to balance iteration and precision 
of estimation, and an improved implementation of RHE-reg is realized. Secondly, we extend RHE-reg into the estimation 
of SNP-heritability for distributed data, which uses the controlled B to synchronize the estimation across datasets. With 
increasing genomic cohorts but distributed in different institutes, it is now a trend to propose computational solutions with-
out compromising privacy [31]. The enhanced RHE-reg framework can consequently have computational and analytical 
merits, and, as demonstrated, we further extend its utilities such as vertical- and horizontal RHE-reg, as demonstrated in 
this study. Given the increasing cry for genomic privacy, both vertical and horizontal RHE-reg will be meaningful in secur-
ing genomic information. However, given its traditionally very quantitative origin of statistical genetics, statistical routines 
may have competing, if not superior, solutions than those derived from available information technology [32,12].

It is straightforward to apply the estimation procedure for the estimation of dominance variance components both for individual- 
level data and summary statistics. The only update of the equation h2d =

yTKdy–n
tr(K2

d)–n
 is to replace K  with Kd =

1
mXdX

T
d .  

For each SNP, xi,d  is coded 0, 2p, and 4p-2 for the genotype that counts 0, 1 and 2 reference alleles; and furthermore, 

Xd  is further scale by 
Xd,l–2p

2
l

2pi(1–pi)  [33,34]. So for a pair of individual i and j, Kd[i,j] =
1
m
Σm
l

(Xd,i,l – 2p
2
l )(Xd,j,l – 2p

2
l )

4p2i (1 – pi)
2 .  

After replacing K  with Kd , all the above estimation procedure can be applied for h2d . Furthermore, 

tr
(
K2
d

)
= n(n+ 1)

∑m
k,l ρ

4
kl

m2
+ n =

n(n+ 1)
me.d

+ n. The effective number of markers in terms of Xd  is me.d =
m2

m+
∑m

k̸=l ρ
4
kl

, a tet-

radic form of LD for a pair of SNPs.
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