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A recent formal comment published in PLOS Computational Biology highlights the 
relationship between generalized contrastive PCA (gcPCA) [1] and the framework of 
generalized eigenvalue decomposition (GED) [2]. We thank Woller et al. [3] for their 
thoughtful analysis and for drawing our attention to relevant prior literature that we 
did not cite in the original paper [4–8]. We fully agree with their observation that the 
procedure used to optimize gcPCA’s objective function is mathematically equivalent 
to GED, and that this is true of other contrastive methods as well, including Linear 
Discriminant Analysis (LDA). Accordingly, rather than the statement “gcPCA is equiv-
alent to GED,” it is more precise to say instead that gcPCA belongs to a larger family 
of GED-based data analysis methods that also includes LDA.

Woller et al. [3] further argued that gcPCA should be regarded as a supervised 
method because it requires label information to distinguish datasets A and B. While 
we understand their reasoning, we believe it is important to clarify why gcPCA does 
not fit the conventional definition of a supervised method. In our view, the defining 
hallmark of supervised approaches is not the presence of labels, but rather the use 
of explicit examples of desired outputs to train a model [9–11]. LDA is unequivocally 
supervised because class labels directly specify the outputs the model is trained to 
predict. In contrast, gcPCA relies on labels only to define two datasets to be con-
trasted, but the outputs of the method are not equivalent to those labels. The dis-
tinction is critical because gcPCA is easily confused with LDA, and categorizing it as 
supervised reinforces this confusion. On the other hand, we agree that a distinction 
must also be drawn between gcPCA and standard PCA, which uses no label infor-
mation at all. gcPCA occupies a middle ground in which it uses labels to structure 
the contrast, but its outputs are not label-equivalent predictions. This highlights that 
the terms “supervised” and “unsupervised” represent an overly rigid dichotomy that 
poorly describes contrastive dimensionality reduction [10].

We would also like to address a point of confusion regarding the orthogonalization 
process in orthogonalized gcPCA. In standard PCA, the ordering of components is 
straightforward: eigenvalues are nonnegative, with the largest positive values first 
and the values closest to zero last. In gcPCA, eigenvalues can be both positive and 
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negative. Here, the ordering places the largest positive eigenvalues first, the larg-
est negative eigenvalues last, and the eigenvalues closest to zero in the middle. 
Accordingly, orthogonalized gcPCA alternates between the first and last components 
since these have the largest eigenvalue magnitudes. We hope this clarification 
will help readers better understand the basis for the ordering of components in our 
implementation.

Woller et al. [3] also emphasized the benefits of non-orthogonal components, 
and we agree that these can be valuable in certain contexts. In our view, the choice 
between orthogonal and non-orthogonal gcPCs should be guided by the data  
analysis goal. When the aim is to study the properties of individual components, non-
orthogonal gcPCs may be advantageous, as they more faithfully preserve relation-
ships with the original feature space. However, when the objective is dimensionality 
reduction, orthogonal components are generally preferable because they form an 
orthogonal basis for a lower-dimensional subspace. For this reason, we provide both 
options in the gcPCA toolbox and leave the choice to the end user.

In closing, we again thank Woller et al. [3] for their constructive and insightful 
commentary. Their contribution has clarified the mathematical relationship between 
gcPCA and GED and also helped position gcPCA within the broader landscape of 
statistical methods. We hope that this exchange will help researchers more clearly 
appreciate both the algorithmic foundations and methodological implications of 
gcPCA. More broadly, we view this dialogue as a valuable step toward refining and 
extending the use of contrastive approaches in the analysis of high-dimensional 
datasets.
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